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Abstract

We consider large N,T panel data models with fixed effects, a common factor allow-
ing for cross-section dependence, and persistent data and shocks, which are assumed
fractionally integrated. In a basic setup, the main interest is on the fractional param-
eter of the idiosyncratic component, which is estimated in first differences after factor
removal by projection on the cross-section average. The pooled conditional-sum-of-
squares estimate is

√
NT consistent but the normal asymptotic distribution might not

be centered, requiring the time series dimension to grow faster than the cross-section
size for correction. We develop tests of homogeneity of dynamics, including the degree
of integration, that have no trivial power under local departures from the null hypoth-
esis of a non-negligible fraction of cross-section units. A simulation study shows that
our estimates and test have good performance even in moderately small panels.
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1. Introduction

The classical approach in the panel data literature for modeling persistence uses autore-
gressive (AR) models under different panel specifications. For example, Arellano and Bond
(1991) and Alvarez and Arellano (2003) develop asymptotics for their estimators based on
AR models characterized by homogeneous slope parameters under large N and fixed or in-
creasing T . Pesaran (2007) uses a dynamic panel setup to test for panel unit roots allowing
for slope heterogeneity when N and T are both large. Han and Phillips (2010) obtain infer-
ence in an AR(1) panel based on generalized method of moments (GMM) estimation with
strong instruments when the homogeneous AR parameter is near unity.

There is a recent literature on large N, T panel data models with long-range dependence
constituting an alternative to AR specifications, see e.g. Robinson and Velasco (2015), Erge-
men and Velasco (2017) and Ergemen (2017). Like models with AR dynamics, these models
nest I(1) behaviour, but smoothly and thus the estimates of long-range dependence param-
eters are asymptotically normal unlike the nonstandard asymptotics under nonstationary
AR specifications. This leads to chi-squared test statistics for memory parameter estimates
and, for instance, panel unit-root testing can be readily performed based on the memory
estimates.

Although classical AR panel literature uses both homogeneous and heterogeneous AR
parameter specifications in modeling persistence, little or no justification is provided for
these choices. In fractional panel data literature, Ergemen and Velasco (2017) and Ergemen
(2017) allow memory parameters under their setups to vary across cross-section units, pro-
viding valid arguments that this allows for a greater flexibility in suiting the presentation
of data as well as describing the dynamics of different units more accurately rather than
restricting all units to have the same dynamics. However, a formal testing procedure for
persistence homogeneity has not yet been provided in the fractional panel data literature
either. Developing such a test is important because when there is no statistically significant
discrepancy between the integration orders of different cross-section units, it is preferable to
employ pooled memory estimates that enjoy faster (

√
NT ) convergence rates and avoid the

curse of dimensionality as N increases.

To fill in this gap, this paper develops a testing framework for persistence homogeneity
when interactive fixed effects are also present. In doing so, we first present a rigorous treat-
ment for a panel data model that allows for fractionally integrated long-range dependence
in both idiosyncratic shocks and a common-factor structure that accounts for cross-section
dependence. In the model, persistence is described by a memory or fractional integration
parameter, constituting an alternative to dynamic autoregressive (AR) panel data models.
The setup we consider requires that both the number of cross section units, N, and the length
of the time series, T, grow in the asymptotics, departing from the case of multivariate time
series (with N fixed) or short panels (with T fixed). Our setup differs from Hassler et al.
(2011) and Robinson and Velasco (2015) in that we model cross-section dependence employ-
ing an unobservable common factor structure that can be serially correlated and display
long-range dependence, which makes the model more general by introducing cross-section
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dependence without further structural impositions on the idiosyncratic shocks.

Using a type-II fractionally integrated panel data model with fixed effects and cross-
section dependence modeled through a common factor dependence, we allow for long-range
persistence through this factor and the integrated idiosyncratic shock. The model assumes
a common set of parameters for the dynamics of the idiosyncratic component of all cross-
sectional units. We deal with the fixed effects and the unobservable common factor through
first differencing and projection on the cross-section average of the differenced data as a
proxy for the common factor, respectively. Then, estimation of the memory parameter
is based on a pooled conditional sum of squares (CSS) criterion function of the projection
residuals which produces estimates asymptotically equivalent to Gaussian ML estimates. We
require to impose conditions on the rate of growth of N and T to control for the projection
error and for an initial condition bias induced by first differencing of the type-II fractionally
integrated error terms, so that our pooled estimate can achieve the

√
NT convergence rate.

We nevertheless discuss bias correction methods that relax the restriction that T should grow
substantially faster than N in the joint asymptotics, which would not affect the estimation of
the heterogeneous model. We also propose a heterogenous model whose estimates, adapting
the same CSS criterion to have heterogeneous dynamics, are shown to be asymptotically
normal for each cross section unit as T gets larger.

We then develop LM tests for dynamics homogeneity that are similar to the slope ho-
mogeneity tests of Su and Chen (2013) in panel data models with interactive fixed effects
and that allow for scale heterogeneity. In particular, these tests include the null of homoge-
nous degree of integration and have no trivial power under local departures from the null
hypothesis of a non-negligible fraction of cross-section units.

We explore the performance of our estimates and tests via Monte Carlo experiments,
which indicate that our inference methods have good small-sample properties in a variety of
scenarios.

Next section details the model and necessary assumptions. Section 3 explains the es-
timation strategy for both homogeneous and heterogeneous parameters, and discusses the
asymptotic behaviour of the estimates. Section 4 shows the details of persistence homogene-
ity testing along with the asymptotics. Section 5 presents Monte Carlo simulations. Finally,
Section 6 concludes the paper.

Throughout the paper, we use the notation (N, T )j to denote joint cross-section and time-
series asymptotics, →p to denote convergence in probability and →d to denote convergence
in distribution. All mathematical proofs and technical lemmas are collected in the appendix.

2. The Model

In this section, we detail a type-II fractionally integrated panel data model with fixed effects
and cross-section dependence and list our assumptions. We consider that the observable yit
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satisfy
λt (L; θ0) (yit − αi − γift) = εit, (1)

for t = 0, 1, . . . , T, i = 1, . . . , N, where εit ∼ iid(0, σ2) are idiosyncratic shocks; θ0 ∈ Θ ⊂
Rp+1 is a (p+ 1)× 1 parameter vector; L is the lag operator and for any θ ∈ Θ and for each
t ≥ 0,

λt (L; θ) =
t∑

j=0

λj (θ)Lj (2)

truncates λ (L; θ) = λ∞ (L; θ). We assume that λ (L; θ) has this particular structure,

λ (L; θ) = ∆δψ (L; ξ) ,

where δ is a scalar, ξ is a p× 1 vector, θ = (δ, ξ′)′. Here ∆ = 1− L, so that the fractional
filter ∆δ has the expansion

∆δ =
∞∑
j=0

πj(δ)L
j, πj(δ) =

Γ(j − δ)
Γ(j + 1)Γ(−δ)

,

and denote the truncated version as ∆δ
t =

∑t−1
j=0 πj(δ)L

j, with Γ (−δ) = (−1)δ∞ for δ =
0, 1, . . . , Γ (0) /Γ (0) = 1; ψ (L; ξ) is a known function such that for complex-valued x,
|ψ (x; ξ)| 6= 0, |x| ≤ 1 and in the expansion

ψ (L; ξ) =
∞∑
j=0

ψj (ξ)Lj,

the coefficients ψj (ξ) satisfy

ψ0 (ξ) = 1, |ψj (ξ)| = O (exp (−c (ξ) j)) , (3)

where c (ξ) is a positive-valued function of ξ. Note that

λj (θ) =

j∑
k=0

πj−k (δ)ψk (ξ) , j ≥ 0, (4)

behaves asymptotically as πj(δ),

λj (θ) = ψ (1; ξ) πj(δ) +O
(
j−δ−2

)
, as j →∞,

see Robinson and Velasco (2015), where

πj(δ) =
1

Γ(−δ)
j−δ−1(1 +O(j−1)) as j →∞,

so the value of δ0 determines the asymptotic stationarity (δ0 < 1/2) or nonstationarity
(δ0 ≥ 1/2) of yit − αi − γift and ψ(L; ξ) describes short memory dynamics.
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The αi are unobservable fixed effects, γi unobservable factor loadings and ft is the unob-
servable common factor that is assumed to be an I(%) process, where we treat % as a nuisance
parameter. This way the model incorporates heterogeneity through αi as well as γi and also
introduces account cross-section dependence by means of the factor structure, γift, which
was not considered in Robinson and Velasco (2015). When we write (1) as

yit = αi + γift + λ−1
t (L; θ0) εit = αi + γift + λ−1 (L; θ0) {εit1 (t ≥ 0)} ,

where 1 (·) is the indicator function, the memory of the observed yit is max {δ0, %} , where ft
could be the major source of persistence in data. The model could be complemented with
the presence of incidental trends and other exogenous or endogenous observable regressor
series, see Ergemen and Velasco (2017) and Ergemen (2017).

The model can be reorganized in terms of the variable ∆δ0
t yit for i = 1, . . . , N, and

t = 1, . . . , T and when ψ (L; ξ0) = 1− ξ0L corresponds to a finite AR(1) polynomial as

∆δ0
t yit = (1− ξ0) ∆δ0

t αi + ξ0∆δ0
t yit−1 + γi (1− ξ0L) ∆δ0

t ft + εit,

which is then easily comparable to a standard dynamic AR(1) panel data model with cross-
section dependence, e.g. that of Han and Phillips (2010),

yit = (1− ρ)αi + ρyit−1 + γift + εit.

In both models, error terms are iid, and there are fixed effects (so long as δ0 6= 1, ξ0 6= 1
and ρ 6= 1). However, autoregressive panel data models can only cover a limited range of
persistence levels, just I (0) or I (1) series depending on whether |ρ| < 1 or ρ = 1. On the
other hand, the fractional model (1) covers a wide range of persistence levels depending on
the values of δ0 and %, including the unit root case and beyond. In addition, (1) accounts
for persistence in cross-section dependence depending on the degree of integration of ∆δ0

t ft.

We are interested in conducting inference on θ, in particular on δ. For the analysis in
this paper we require that both N and T increase simultaneously due to presence of the
unobserved common factor and the initial condition term in the fractional difference operator,
unlike in Robinson and Velasco (2015), who only require T to grow in the asymptotics, while
N could be constant or diverging simultaneously with T . In the first part of the paper we
assume a common vector parameter, including a common integration parameter δ, for all
cross-section units i = 1, . . . , N. While the fractional integration parameter may as well be
allowed to be heterogeneous, our approach is geared towards getting a pooled estimate for
the entire panel exploiting potential efficiency gains. Further, this pooling has to control for
potential distortions due to common factor elimination, that, as well as fixed effects removal,
lead to some bias in the asymptotic distribution of parameter estimates, cf. Robinson and
Velasco (2015).

We use the following assumptions throughout the paper:

Assumption A.

5



A.1. The idiosyncratic shocks, εit, i = 1, 2, . . . , N, t = 0, 1, 2, . . . , T are independently and
identically distributed both across i and t with zero mean and variance σ2, and have a finite
fourth-order moment, and δ0 ∈ (0, 3/2).

A.2. The I(%) common factor is ft = ∆−%t zft , % < 3/2, where zft = ϕf (L) vft−k with ϕf (s) =∑∞
k=0 ϕ

f
ks
k,
∑∞

k=0 k|ϕ
f
k | <∞, ϕf (s) 6= 0 for |s| ≤ 1, and vft ∼ iid(0, σ2

f ), E|v
f
t |4 <∞.

A.3. εit and ft are independent of the factor loadings γi, and are independent of each other
for all i and t.

A.4. Factor loadings γi are independently and identically distributed across i, supiE|γi| <
∞, and γ̄ = N−1

∑N
i=1 γi 6= 0.

A.5. For ξ ∈ Ξ, ψ (x; ξ) is differentiable in ξ and, for all ξ 6= ξ0, |ψ (x; ξ)| 6= |ψ (x; ξ0)| on
a subset of {x : |x| = 1} of positive Lebesgue measure, and (3) holds for all ξ ∈ Ξ with c (ξ)
satisfying

inf
Ξ
c (ξ) = c∗ > 0. (5)

Assumption A.1 implies that the idiosyncratic errors λ−1 (L; θ) εit, are fractionally inte-
grated with asymptotically stationary increments, δ0 < 3/2, which will be exploited by our
projection technique. The homoskedasticity assumption on idiosyncratic shocks, εit, is not
restrictive since yit are still heteroskedastic as αi and γi vary in each cross section.

By Assumption A.2, the common factor ft is a zero mean fractionally integrated I(%)
linear process, with the I (0) increments possibly displaying short-range serial dependence
but with positive and smooth spectral density at all frequencies. The zero mean assumption
is not restrictive since we are allowing for fixed effects αi which are not restricted in any way.
Restrictions similar to Assumption A.2 have been used under different setups in e.g. Hualde
and Robinson (2011) and Nielsen (2014). Under Assumption A.2, the range of persistence for
the common factor covers unit root and beyond, making the model a powerful tool for several
practical problems. Although we treat % as a nuisance parameter, in empirical applications
this parameter could be estimated based on the cross-section average of the observed series
using semiparametric estimates, e.g. with a local Whittle approach. Assumption A.3 and
A.4 are standard identifying conditions in one-factor models as also used in e.g. Pesaran
(2006) and Bai (2009). In particular, the condition on γ̄ is related to Assumption 5(b) of
Pesaran (2006) and used to guarantee that our projection to remove factors works in finite
samples.

Assumption A.5 ensures that ψ (L; ξ) is smooth for ξ ∈ Ξ, and the weights ψj lead to short-
memory dynamics as is also assumed by Robinson and Velasco (2015), where the parameter
space Ξ can depend on stationarity and invertibility restrictions on ψ (L; ξ) .

3. Parameter Estimation

Bai (2009) and Pesaran (2006), among many others, study the estimation of panel data
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models with cross-section dependence. Bai (2009) estimates the slope parameter in an in-
teractive fixed effects model where the regressors and the common factor are stationary and
idiosyncratic shocks exhibit no long-range dependence. Likewise, Pesaran (2006) estimates
the slope parameter in a multifactor panel data model where covariates are I(0). In this
section we focus on the estimation of the parameter vector θ that describes the idiosyncratic
dynamics of data, including the degree of integration.

In our estimation strategy, we first project out the unobserved common structure using
sample averages of first-differenced data as proxies, where the fixed effects are readily removed
by differencing. We then use a pooled conditional-sum-of-squares (CSS) estimation on first
differences based on the remaining errors after projection.

First-differencing (1) to remove αi, we get

∆yit = γi∆ft + ∆λ−1
t (L; θ0) εit, i = 1, . . . , N, t = 1, 2, . . . , T,

where we denote by θ0 the true parameter vector, and then ∆yit is projected on the cross-
section average ∆ȳt = N−1

∑N
i=1 ∆yit as (non-scaled) proxies for ∆ft with the projection

coefficient φ̂i given by

φ̂i =

∑T
t=1 ∆ȳt∆yit∑T
t=1(∆ȳt)2

,

which we assume can be computed for every i with
∑T

t=1(∆ȳt)
2 > 0. Then we compute the

residuals

εit(θ) = λt−1

(
L; θ(−1)

) (
∆yit − φ̂i∆ȳt

)
, i = 1, . . . , N, t = 1, . . . , T.

where θ(−1) = (δ − 1, ξ′)′ adapts to the previous differencing initial step.

Then we denote by θ̂ the estimate of the unknown true parameter vector θ0,

θ̂ = arg min
θ∈Θ

LN,T (θ),

where we assume Θ is compact and LN,T is the CSS of the projection residuals after fractional
differencing

LN,T (θ) =
1

NT

N∑
i=1

T∑
t=1

εit(θ)
2,

which is the relevant part of the concentrated (out of σ2) Gaussian likelihood for εit(θ).

Note that after the first-differencing transformation to remove αi, there is a mismatch
between the sample available (t = 1, 2, . . . , T ) and the length of the filter λt−1

(
L; θ(−1)

)
that

can be applied to it, with the filter ∆λ−1
t (L; θ0) that generates the data, since for instance

λt−1

(
L; θ(−1)

)
∆λ−1

t (L; θ0) εit = λt (L; θ)λ−1
t (L; θ0) εit − λt

(
θ(−1)

)
εi0,

because λt
(
L; θ(−1)

)
∆ = λt (L; θ) , t = 0, 1, . . . . Even when θ = θ0, all residuals involve εi0,

i.e. the initial condition, which is reflected in a bias term of θ̂ as in Robinson and Velasco
(2015).
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The estimates are only implicitly defined and entail optimization over Θ = D× Ξ, where
Ξ is a compact subset of Rp and D= [δ, δ], with 0 < δ < δ < 3/2. We aim to cover
a wide range of values of δ ∈ D with our asymptotics, c.f. Nielsen (2014) and Hualde
and Robinson (2011), but there are interactions with other model parameters that might
require to restrict the set D reflecting some a priori knowledge on the true value of δ or to
introduce further assumptions on N and T. In particular, and departing from Robinson and
Velasco (2015), it is essential to consider the interplay of % and δ0, i.e. the memories of the
unobservable common factor and of the idiosyncratic shocks, respectively, since projection
on cross-section averages of first differenced data is assuming that ∆ft is (asymptotically)
stationary, but possibly with more persistence than the idiosyncratic components.

Then, for the asymptotic analysis of the estimate of θ, we further introduce the following
assumptions.

Assumption B. The lower bound δ of the set D satisfies

max {%, δ0} − 1/2 < δ ≤ δ0. (6)

Assumption B indicates that if the set D is quite informative on the lower possible value
of δ0 and this is not far from %, the CSS estimate is consistent irrespective of the relationship
between N and T, as we show in our first result.

Theorem 1. Under Assumptions A and B, θ0 ∈ Θ, and as (N, T )j →∞,

θ̂ →p θ0.

Although the sufficient condition in Assumption B may seem restrictive, the lower bound
could be adapted accordingly to meet the distance requirement from % and δ0 using informa-
tion on the whereabouts of these parameters. This assumption may be relaxed at the cost
of restricting the relative rates of growth of N and T in the asymptotics. In the technical
appendix, we provide more general conditions that are implied by Assumption B to prove
this result.

A similar result of consistency for CSS estimates is provided by Hualde and Robinson
(2011) and Nielsen (2014) for fractional time series models and in Robinson and Velasco
(2015) for fractional panels without common factors. Note that the theorem only imposes
that both N and T grow jointly, but there is no restriction on their rate of growth when (6)
holds. This contrasts with the results in Robinson and Velasco (2015), where only T was
required to grow and N could be fixed or increasing in the asymptotics. An increasing T
therein is required to control for the initial condition contribution due to first differencing
for fixed effects elimination, as is needed here, but projection on cross-section averages for
factor removal further requires that both N and T grow.

Next, we establish the asymptotic distribution of the parameter estimates, for which
we assume that ψ (L; ξ) is twice continuously differentiable for all ξ ∈ Ξ with ψ̇t(L; ξ) =
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(d/dξ)ψt(L; ξ) where it is assumed that
∣∣∣ψ̇t(L; ξ)

∣∣∣ = O (exp(−c(ξ)j)) . In establishing the

asymptotic behaviour, the most delicate part is formulating the asymptotic bias. The initial

condition (IC) bias of (NT )1/2
(
θ̂ − θ0

)
is proportional to T−1∇T (θ0), where

∇T (θ0) = −
T∑
t=1

τt(θ0) {τ̇t(θ0)− χt(ξ0)}

where τt (θ) = λt
(
θ(−1)

)
= λt (L; θ) 1 =

∑t
j=0 λj (θ), τ̇t(θ) = (∂/∂θ)τt(θ) and χt is defined

by

χ (L; ξ) =
∂

∂θ
log λ (L; θ) = (log ∆, (∂/∂ξ′) logψ (L; ξ))

′
=
∞∑
j=1

χj (ξ)Lj.

The term ∇T (θ0), depending only on the unknown θ0 and T , also found in Robinson and Ve-
lasco (2015), appears because of the data-index mismatch that arises due to time truncation
for negative values and first differencing.

Introduce the (p+ 1)× (p+ 1) matrix

B (ξ) =
∞∑
j=1

χj (ξ)χ′j (ξ) =

[
π2/6 −

∑∞
j=1 χ

′
2j (ξ) /j

−
∑∞

j=1 χ2j (ξ) /j
∑∞

j=1 χ2j (ξ)χ′2j (ξ)

]
,

and assumeB (ξ0) is non-singular. For the asymptotic distribution analysis we further require
the following conditions.

Assumption C.

C.1. As (N, T )j →∞,
N

T
log2 T +

T

N3
→ 0.

C.2. max {1/4, %− 1/2} < δ0 ≤ min {5/4, 5/2− %} .

The next result shows that the fractional integration parameter estimate is asymptotically
normal and efficient at the

√
NT convergence rate.

Theorem 2. Under Assumptions A, B and C, θ0 ∈ Int(Θ), as (N, T )j →∞,

(NT )1/2
(
θ̂ − θ0 − T−1B−1 (ξ0)∇T (θ0)

)
→d N

(
0, B−1 (ξ0)

)
,

where ∇T (θ0) = O(T 1−2δ0 log T1{δ0 <
1
2
}+ log2 T1{δ0 = 1

2
}+ 1{δ0 >

1
2
}).

Corollary 1. Under Assumptions of Theorem 2,

(NT )1/2
(
θ̂ − θ0

)
→d N

(
0, B−1 (ξ0)

)
for δ0 >

1
2
, and this also holds when δ0 ∈

(
1
3
, 1

2

)
if additionally, as (N, T )j →∞, NT 1−4δ0 log2 T →

0, and when δ0 = 1
2

if NT−1 log4 T → 0 .
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These results parallel Theorem 5.3 in Robinson and Velasco (2015) additionally using
Assumption C to control for the projection errors and requiring N to grow with T to remove
the cross-sectionally averaged error terms, while the range of allowed values of δ0 is limited
in the same way. Assumption C.1 basically requires that T grows faster than N, but slower
than N3, so that different projection errors are not dominating to achieve the

√
NT rate of

convergence. This last restriction is milder than the related conditions that impose TN−2 →
0 for slope estimation, e.g. Pesaran (2006), but we also need T to grow faster than N to
control the initial condition bias.

Condition C.2 is only a sufficient condition basically requiring that the overall memory,
% + δ0, be not too large so that common factor projection with first-differenced data works
well, especially if N grows relatively fast with respect to T, and that % is not much larger
than δ0, so the common factor distortion can be controlled for. We relax these sufficient
conditions in the technical appendix to prove our results.

The asymptotic centered normality of the uncorrected estimates further requires that
δ0 >

1
3

in view of Assumption C.1, so it is interesting for statistical inference purposes to

explore a bias correction. Let θ̃ be the fractional integration parameter estimate with IC
bias correction constructed by plugging in the uncorrected estimate θ̂,

θ̃ = θ̂ − T−1B−1
(
ξ̂
)
∇T (θ̂).

The next result shows that the bias-corrected estimate is asymptotically centered and efficient
at the

√
NT convergence rate.

Corollary 2. Under Assumptions of Theorem 2,

(NT )1/2
(
θ̃ − θ0

)
→d N

(
0, B−1 (ξ0)

)
.

Bias correction cannot relax the lower bound restriction on the true fractional integration
parameter δ0, but eliminates some further restrictions on N and T though still requires
Assumption C.1 which implies the restrictions of Theorem 5.2 of Robinson and Velasco
(2015) for a similar result in the absence of factors.

3.2 Estimation of a Heterogeneous Model

Although a panel data approach allows for efficient inference under a homogeneous setup,
it may be restrictive from an empirical perspective. Most of the time, the applied econome-
trician is interested in understanding how each cross-section unit behaves while accounting
for dependence between these units. We therefore consider the heterogeneous version of (1)
with the same prescribed properties as

λt (L; θi0) (yit − αi − γift) = εit, (7)

where θi0 may change for each cross-section unit. This type of heterogeneous modelling is
well motivated in country-specific analyses of economic unions and asset-specific analyses
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of portfolios where cross-section correlations are permitted and generally the interest is in
obtaining inference for a certain unit rather than for the panel.

Under the heterogeneous setup, just like in the homogeneous case, the common factor
structure is asymptotically replaced by the cross-section averages of the first-differenced
data under the sufficient conditions given in Assumption C. The asymptotic behaviour of
the heterogeneous estimates can be easily derived from the results obtained in Theorems 1
and 2 taking N = 1 as follows. Now, denote

θ̂i = arg min
θ∈Θi

L∗i,T (θ),

with Θi defined as before, Di =
[
δi, δi

]
⊂ (0, 3/2), and

L∗i,T (θ) =
1

T
εi(θ)εi(θ)

′,

where εi = (εi1, . . . , εiT ) , and

εit(θi) = λt−1

(
L; θ

(−1)
i

)(
∆yit − φ̂i∆ȳt

)
.

We have the following results replacing δ0, δ and δ̄ in Assumptions A.1, A.5, B and C.2
with δi0, δi and δ̄i, respectively. We denote these conditions as Ai, Bi and Ci, and assume
them to hold for all i.

Theorem 3. Under Assumptions Ai and Bi, θi0 ∈ Θi, and as (N, T )j →∞,

θ̂i →p θi0,

and under Assumptions Ai, Bi and Ci, θi0 ∈ Int(Θi), as (N, T )j →∞,

T 1/2
(
θ̂i − θi0

)
→d N

(
0, B−1 (ξi0)

)
.

An increasing N is still needed here, as in the homogeneous setting, since the projection
errors arising due to factor removal require that N →∞. However the asymptotic theory is
made easier due to the convergence rate being just

√
T now, with which the initial-condition

(IC) bias asymptotically vanishes for all values of δi0 ∈ D, without any restriction on the
relative rate of growth of N and T.

4. Homogeneity Test

In both AR and fractional panel data literature, the use of homogeneous versus heteroge-
neous dynamic parameters is a rather arbitrary choice in theoretical modeling of persistence.
While it can be argued that allowing for heterogeneity in dynamics is a more flexible way
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of modeling persistence in applied research, this can cause efficiency losses when the true
dynamics are homogeneous. For example, Ergemen (2017) analyzes debt and GDP series for
OECD countries under heterogeneity of dynamics, however both series are estimated to be
I(1) series, in which case considering homogeneous dynamics appear to be a more efficient
approach.

Bearing in my mind such possibilities and the lack of formal justifications for the hetero-
geneity of dynamics in the literature, we develop a formal testing procedure in this section.
We propose a test of the model (1) against its heterogeneous version (7) similar to the LM
test developed in Su and Chen (2013) for slope homogeneity in panel data models with
interactive fixed effects.

In order to set up the testing framework, we use the following auxiliary heterogeneous
model

λt (L; θ0 + ϑi0) (yit − αi − γift) = εit,

where ϑi denote the deviations from a common value θ0 and the null hypothesis of homo-
geneity corresponds to

H0 : ϑ10 = · · · = ϑN0 = 0.

To estimate the deviations we use the CSS loss function

L̃N,T (ϑ1, . . . , ϑN) =
1

NT

N∑
i=1

T∑
t=1

ε̃it(ϑi)
2

where

ε̃it(ϑi) = λt−1

(
L; θ̂(−1) + ϑi

)(
∆yit − φ̂i∆ȳt

)
, i = 1, . . . , N, t = 1, . . . , T,

with θ̂ defined in Section 3 and to test the null hypothesis H0 against

H1 : at least one ϑj0 6= 0,

we consider LM tests, evaluating under H0 the derivatives of L̃N,T ,

∂

∂ϑi
L̃N,T (ϑ1, . . . , ϑN) =

2

NT

T∑
t=1

ε̃it(ϑi)
∂

∂ϑi
ε̃it(ϑi)

=
2

NT

T∑
t=1

ε̃it(ϑi)

{
∂

∂ϑi
λt−1

(
L; θ̂(−1) + ϑi

)}
λ−1
t−1

(
L; θ̂(−1)

)
εit(θ̂),

i.e.
∂

∂ϑi
L̃N,T (0, . . . , 0) =

2

NT

T∑
t=1

εit(θ̂)χt−1

(
L; θ̂(−1)

)
εit(θ̂).

Then we can check that

∂2

∂ϑi∂ϑ′i
L̃N,T (0, . . . , 0) =

2

NT

T∑
t=1

εit(θ̂)

{
∂2

∂ϑi∂ϑ′i
λt−1

(
L; θ̂(−1)

)}(
∆yit − φ̂i∆ȳt

)
+

2

NT

T∑
t=1

χt−1

(
L; θ̂(−1)

)
εit(θ̂)χ

′
t−1

(
L; θ̂(−1)

)
εit(θ̂),
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and that the cross derivatives with respect to ϑi and ϑj, i 6= j, are identically zero, so we
can set up the following LM type statistic

LMNT =
1

T

N∑
i=1

(
T∑
t=1

εit(θ̂)ε̇
′
it(θ̂)

)
B(θ̂)−1

(
T∑
t=1

εit(θ̂)ε̇
′
it(θ̂)

)

=
1

T

N∑
i=1

T∑
t=1

T∑
s=1

εit(θ̂)εis(θ̂)ε̇
′
it(θ̂)B(θ̂)−1ε̇is(θ̂),

where ε̇it(θ̂) = χt−1

(
L; θ̂(−1)

)
εit(θ̂) and we replace the second derivative of the CSS function

by TB(θ̂) as an approximation to the limit of
∑T

t=1 ε̇it(θ̂)ε̇
′
it(θ̂) for each i, ignoring the contri-

butions from second derivatives of λt−1 (L; θ) . If a common parameter estimate θ̂ describes
properly the dynamics of all cross-sections, then we expect, for all i, εit(θ̂) to be approxi-
mately uncorrelated with ε̇it(θ̂), which only depends on past observations of εit(θ̂). However,
as the number of restrictions increases with N, we consider instead a properly centred and
scaled statistics in the joint asymptotics,

JNT =
(
N−1/2LMNT −BNT

)
/
√
VNT

as in Su and Chen (2013) where

BNT =
1

TN1/2

N∑
i=1

T∑
t=1

ε2
it(θ̂)ε̇it(θ̂)B(θ̂)−1ε̇′it(θ̂)

VNT =
2

T 2N

N∑
i=1

T∑
t=1

σ̂4
i

[
T∑
s=1

ε̇′it(θ̂)B(θ̂)−1ε̇is(θ̂)

]2

with individual estimates σ̂2
i = T−1

∑T
t=1 ε

2
it(θ̂) to account for possible heterogeneity in the

variances across cross-section units, where VNT can be replaced by

V ∗NT =
2 (p+ 1)

N

N∑
i=1

σ̂8
i ,

or, under cross-section (unconditional) homoskedasticity, by

V̄NT =
2σ̂4

T 2N

N∑
i=1

T∑
t=1

[
T∑
s=1

ε̇′it(θ̂)B(θ̂)−1ε̇is(θ̂)

]2

or just V̄ ∗NT = 2 (p+ 1) σ̂8 with σ̂2 = (NT )−1∑N
i=1

∑T
t=1 ε

2
it(θ̂).

We introduce a variant of Assumption A for our asymptotic analysis.

Assumption A*.

All other conditions in Assumption A hold and Assumption A.1 is replaced by
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A.1*. The idiosyncratic shocks, εit, i = 1, 2, . . . , N, t = 0, 1, 2, . . . , T are independently and
identically distributed across t and are independent across i, with zero mean and variance
σ2
i , and have a finite 12th-order moment uniformly in i, with

σ̄(8) = lim
N→∞

1

N

N∑
i=1

σ8
i <∞, (8)

and δ0 ∈ (0, 3/2).

Assumption A* removes the identical distribution condition across i, in particular allowing
for heterogeneity across i in the variance, and it can be shown that under Assumption A* and
the rest of conditions of Corollary 1, (NT )−1/2 (θ̂ − θ0) = Op (1) and is still asymptotically

normal but with a different asymptotic variance, increased by the factor σ̄(4)/
(
σ̄(2)
)2
> 1

compared to the homoskedastic case, with σ̄(4) and σ̄(2) defined as described in (8). It also
requires an increased number of moments to account for the structure of LMNT .

Theorem 4. Under the assumptions of Corollary 1 and Assumption A*, as (N, T )j → ∞,
under H0,

JNT →d N (0, 1) .

Then the null hypothesis is rejected when JNT is large compared to the corresponding
critical value from the standard normal distribution. In practice we would expect that VNT
and V̄NT perform better than V ∗NT or V̄ ∗NT under the null in finite samples, since they resemble
more closely the actual variability in LMNT , as the asymptotic approximations on which V ∗NT
and V̄ ∗NT are based might need moderate values of N and T to be accurate.

Similar tests can be developed to test homogeneity in some subset of θ (while maintaining
homogeneity in the remaining dimensions). For that we just need to replace ε̇it(θ̂) in the
definition LMNT , BNT and VNT by the corresponding coordinates of the (p+ 1) vector

χt−1

(
L; θ̂(−1)

)
εit(θ̂) to be tested, and then, possibly, replace (p+ 1) in the definitions of

VNT or V̄NT by the number of homogeneity restrictions tested.

To investigate the power properties of our LM test we consider the following sequence of
local alternatives

H1,TN : ϑi0 = ζN−1/4T−1/2 for i ∈ IN
for some (p+ 1)-vector ζ 6= 0 and some index set IN satisfying for n = 2, 4,

σ̄
(n)
1 = lim

N→∞

1

N

∑
i∈IN

σni ∈ (0,∞) ,

which indicates that a non-negligible proportion of cross-section units display dynamics local
to those defined by the common value θ0. The next theorem shows that our homogeneity
test has no trivial power under these local alternatives, which converge as in Su and Chen
(2013) to the null almost at an optimal rate defined by the rate of convergence of the pooled
estimate θ̂.
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Theorem 5. Under the assumptions of Theorem 4, as (N, T )j →∞, under H1,TN ,

JNT →d
σ̄

(4)
1 ζ ′B0ζ

(2 (p+ 1) σ̄(8))
1/2

+N (0, 1) .

The positive drift depends naturally on the value of ζ, on the parameters that are not
constant across i (through B0), and on the relative variability of the cross-section units whose

dynamics depart from H0 (through the ratio σ̄
(4)
1 /

(
σ̄(8)
)1/2

). In case of homoskedasticity, we

find trivially that this drift is just υζ ′B0ζ/ (2 (p+ 1))1/2 where υ = limN→∞N
−1
∑

i∈IN 1 ∈
(0, 1) , and for a pure fractional model the drift amounts to υζ2

δπ
2/
(
6
√

2
)
.

5. Monte Carlo Simulations

In this section we carry out a Monte Carlo experiment to study the small-sample performance
of the memory estimates and the homogeneity test in the simplest case in which there
are no idiosyncratic short memory dynamics, ξ = 0, no heteroskedasticity and persistence
depends only on the value of δ0. We draw the idiosyncratic shocks εi,t as standard normal
and the factor loadings γi from U(−0.5, 1) not to restrict the sign. We then generate serially
correlated common factors ft = 0.5ft−1+∆−%t zft , based on the iid shocks zft drawn as standard
normals and then fractionally integrated to the order %. The individual effects αi are left
unspecified since they are removed via first differencing in the estimation, and projections
are based on the first-differenced data. We focus on different cross-section and time-series
sizes, N and T, as well as different values of δ0 and %, and different ζ values leading to
departures from the null to determine the power in the testing case. Simulations are based
on 1,000 replications.

5.1. Memory Estimation

We investigate the finite-sample properties of our estimate of δ0. In this case, we set N =
10, 20 and T = 50, 100 for values of δ0 = 0.3, 0.6, 0.9, 1, 1.1, 1.4 thus covering a heavily
biased stationary case, a slightly nonstationary case, near-unit-root cases and finally a quite
nonstationary case, respectively.

We report total biases containing initial-condition and projection biases as well as carry
out bias correction based on estimated memory values to obtain projection biases for % =
0.4, 1. As is clear in Table 1, when the factors are less persistent (% = 0.4), the estimate is
heavily biased for the stationary case of δ0 = 0.3 while the bias gets considerably smaller
around the unit-root case. Noticeably, the bias becomes negative when δ0 ≥ 0.6 for sev-
eral (N, T ) combinations. Better results in terms of bias are obtained with increasing T.
Expectedly, when the factors have a unit root, the estimate of δ0 contains a larger bias in
the stationary (δ0 = 0.3) and in the moderately nonstationary (δ0 = 0.6) cases because the
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idiosyncratic shocks are dominated by a more persistent common factor. Biases for other
memory values are also exacerbated due to factor persistence increase except for the very
high persistent case δ0 = 1.4. Bias correction works reasonably well when % = 0.4 although
benefits are limited for % = 1. While there is a monotonically decreasing pattern for increas-
ing δ0 in terms of bias both for the total bias and bias-corrected cases, magnitudes of biases
increase when δ0 leaves the neighbourhood of unity.

Table 1 also reports the root mean square errors (RMSE), which indicate that performance
increases with increasing δ0, T and NT. Standard errors are dominated by bias in terms of
contribution to RMSE. Table 2 shows the empirical coverage of 95% confidence intervals of
δ0 based on the asymptotics of our estimate. For % = 0.4, 1, the true fractional parameter is
poorly covered when δ0 ≤ 0.6. Bias correction in these cases improves the results reasonably.
For near-unit-root cases, the estimate achieves the most accurate coverage, especially by
comparison with intervals based on estimates of δ0 = 1.4 and δ0 ≤ 0.6.

5.2. Homogeneity Test

To determine the size and power properties of our test, we consider N = 5, 10 to study a
factor-augmented multivariate time-series setup and a small panel setup, respectively, and
T = 50, 100 to show the usefulness of our test in empirical studies that use moderately small
time series. We also consider the pure fractional case in which both the common factor and
the idiosyncratic errors are pure fractional processes as well as the case in which the common
factor, generated as in the previous subsection, is serially correlated.

In terms of size, the test performs well for δ0 < 1 while it may be oversized when δ0 ≥ 1,
as Table 3 shows. An increasing N drives down the size of the test while an increasing T
does not affect the size much. When δ0 ≥ 1, an increasing % exacerbates the oversize problem
of the test, which is quite pronounced when the factor is serially correlated.

To check the power properties of the test, we consider ζ = 0.1N1/4T 1/2, 0.5N1/4T 1/2,
corresponding to local departure values of 0.1 and 0.5 under H1,TN , and for ease of exposition,
we analyze the case in which ϑi0 exhibit departures from the null for all i. Table 4 shows that
when the departures from the null are by 0.1, the test has low power for δ0 ≤ 0.6 although
for other δ0 values, the power is reasonably high attaining the maximum when δ0 = 1 in
most cases. Increasing N, T help in terms of power improvement. When ζ = 0.5N1/4T 1/2 in
Table 5, power of the test is quite high in all cases except when δ0 = 0.3. These results also
reflect the findings from the previous setting and even more so, demonstrate that the test is
consistent even for relatively small panels.

6. Final Comments

We have considered large N, T panel data models with fixed effects and cross-section depen-
dence where the idiosyncratic shocks and common factors are allowed to exhibit long-range
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dependence. Our methodology for memory estimation consists in conditional-sum-of-squares
estimation on the first differences of defactored variables, where projections are carried out
on the sample means of differenced data. We then develop tests for homogeneity of dynam-
ics based on deviations from our homogeneous estimates. While Monte Carlo experiments
indicate satisfactory results, our methodology can be extended in the following directions:
(a) Different estimation techniques, such as fixed effects and GMM, can be used under our
setup as in Robinson and Velasco (2015); (b) The idiosyncratic shocks may be allowed to
feature spatial dependence providing further insights in empirical analyses. Design of per-
sistence homogeneity tests in a setting that allows for spatial dependence, though possibly
challenging, could make testing procedures more robust.

7. Technical Appendix

We prove our results under more general conditions that are implied by Assumptions B
and C allowing for some trade off between the choice of δ and the asymptotic relationship
between N and T . The weaker counterpart of Assumption B is as follows.

Assumption B∗.

B∗.1. δ0 − 1 < δ/2 and %− 1 < δ/2.

B∗.2. If %− δ > 1
2
, as (N, T )j →∞,

N−2T 2(%−δ)−1 → 0

B∗.3. If δ0 − δ ≥ 1
2
, as (N, T )j →∞,

N−1T 2(δ0−2δ)−1 → 0

N−1
(
1 + T 2(δ0+%−1)−4δ

) (
log T + T 2(%−1)+2(δ0−1)−1

)
→ 0.

7.1 Proof of Theorem 1

The projection parameter from the projection of ∆yit on its cross-section averages, ∆ȳt, can
be written as

φ̂i =

∑T
t=1 ∆ȳt∆yit∑T
t=1(∆ȳt)2

=
γi
γ̄

+ ηi (9)

where

ηi =

∑T
t=1 ∆ȳt∆λ

−1
t (L; θ0) (εit − γi

γ̄
ε̄t)∑T

t=1 (∆ȳt)
2

is the projection error. The conditional sum of squares then can be written as

LN,T (θ) =
1

NT

N∑
i=1

T∑
t=1

(
λ0
t (L; θ)

(
εit − φ̂iε̄t

)
− τt(θ)(εi0 − φ̂iε̄0)− ηiγ̄λt−1 (L; θ) ft

)2

(10)
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where

λ0
t (L; θ) = λt (L; θ)λ−1

t (L; θ0) =
t∑

j=1

λ0
j (θ)Lj.

and in (10) the first term is the (corrected) usual idiosyncratic component, the second term
is the initial condition term, and the third term is the projection error component.

Following Hualde and Robinson (2011) we give the proof for the most general case where
possibly δ ≤ δ0 − 1/2. Additionally, the common factor in our model is I(%) by Assumption
A.2. While δ may take arbitrary values from [δ, δ] ⊆ (0, 3/2), ensuring uniform convergence
of LN,T (θ) requires the study of cases depending on δ0 − δ, while controlling the distance
%− δ. We analyze these separately in the following.

In analyzing the idiosyncratic component and the initial condition component, we closely
follow Hualde and Robinson (2011). For ε > 0, define Qε = {θ : |δ − δ0| < ε} , Qε =
{θ : θ /∈ Qε, δ ∈ D} . For small enough ε,

Pr(θ̂ ∈ Qε) ≤ Pr

(
inf

Θ∈Qε
SN,T (θ) ≤ 0

)
where SN,T (θ) = LN,T (θ) − LN,T (θ0). In the rest of the proof, we will show that LN,T (θ),
and thus SN,T (θ), converges in probability to a well-behaved function when δ0− δ < 1/2 and
diverges when δ0 − δ ≥ 1/2. In order to analyze the asymptotic behaviour of SN,T (δ) in the
neighborhood of δ = δ0 − 1/2, a special treatment is required. For arbitrarily small ζ > 0,
such that ζ < δ0 − 1/2 − δ, let us define the disjoint sets Θ1 = {θ : δ ≤ δ ≤ δ0 − 1/2− ζ} ,
Θ2 = {θ : δ0 − 1/2− ζ < δ < δ0 − 1/2} , Θ3 = {θ : δ0 − 1/2 ≤ δ ≤ δ0 − 1/2 + ζ} and
Θ4 =

{
θ : δ0 − 1/2 + ζ < δ ≤ δ

}
, so Θ = ∪4

k=1Θk. Then we will show

Pr

(
inf

θ∈Qε∩Θk

SN,T (δ) ≤ 0

)
→ 0 as (N, T )j →∞, k = 1, . . . , 4. (11)

We write LN,T (θ) in (10) as

1

NT

N∑
i=1

T∑
t=1

{(
λ0
t (L; θ) (εit − φ̂iε̄t)

)2

+ τ 2
t (θ)(εi0 − φ̂iε̄0)2 + η2

i γ̄
2(λt−1 (L; θ) ft)

2

− 2ηiγ̄ (λt−1 (L; θ) ft)λ
0
t (L; θ)

(
εit − φ̂iε̄t

)
+ 2ηiγ̄ (λt−1 (L; θ) ft) ∗ τt(θ)(εi0 − φ̂iε̄0)

−2 λ0
t (L; θ)

(
εit − φ̂iε̄t

)
∗ τt(θ)(εi0 − φ̂iε̄0)

}
.

The projection error component in the conditional sum of squares,

sup
θ∈Θ

∣∣∣∣∣γ̄2 1

N

N∑
i=1

η2
i

1

T

T∑
t=1

(λt−1 (L; θ) ft)
2

∣∣∣∣∣ = op (1) , (12)
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because the left hand side is Op(T
2%+2δ0−6+T−1 log T+N−1T 4δ0−6+N−2)+Op(T

4%+2(δ0−δ)−7+
T 2(%−δ−1) log T
+N−1T 2(%−δ)+4δ0−7 + T 2(%−δ)−1N−2) = op (1) uniformly in θ ∈ Θ by γ̄2 →p E [γi]

2 , Lemmas
1 and 2(a) and Assumption B∗.2 since 2% + δ0 − δ < 7/2, %− δ < 1 and % + 2δ0 − δ < 7/2,
are implied by Assumption B∗.1.

Similarly,

sup
θ∈Θ

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

τ2
t (θ)(εi0 − φ̂iε̄0)2

∣∣∣∣∣ = sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

τ2
t (θ)

∣∣∣∣∣
∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

(
ε2
i0 − 2φ̂iεi0ε̄0 + φ̂2

i ε̄
2
0

)∣∣∣∣∣ ,(13)

= Op

(
T−2δ + T−1 log T

)
Op (1) = op(1),

because δ > 0, 1
N

∑N
i=1 ε

2
i0 + 1

N

∑N
i=1 φ̂

2
i = Op (1) , ε̄0 = Op

(
N−1/2

)
and Cauchy-Schwarz

inequality, see Lemma 1, and therefore we find for the cross term corresponding to the sum
of squares in (12) and (13) that

sup
θ∈Θ

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

ηiγ̄λt−1 (L; θ) ft ∗ τt(θ)(εi0 − φ̂iε̄0)

∣∣∣∣∣ = op (1)

uniformly in δ by (12), (13) and Cauchy-Schwarz inequality.

The other cross terms involving usual fractional residuals λ0
t (L; θ)

(
εit − φ̂iε̄t

)
are also

uniformly op (1) for θ ∈ Θ4 using Cauchy-Schwarz inequality and that the part of the con-

ditional sum of squares in (λ0
t (L; θ) (εit − φ̂iε̄t))2 converges uniformly in this set. Lemmas 3

and 4 show that these cross terms are also uniformly op (1) for θ ∈ Θ1 ∪ Θ2 ∪ Θ3 under
the assumptions of the theorem. Then to show (11) we only need to analyze the terms in
(λ0

t (L; θ) (εit − φ̂iε̄t))2 for Θk, k = 1, . . . , 4 as in Hualde and Robinson (2011).

Proof for k = 4. We show that

sup
θ∈Θ4

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

[
(λ0

t (L; θ) (εit − φ̂iε̄t))2 − σ2

∞∑
j=0

λ0
j (θ)2

]∣∣∣∣∣ = op(1), (14)

analyzing the idiosyncratic term, εit, and the cross-section averaged term, φ̂iε̄t, separately.
For the idiosyncratic term, we first show following Hualde and Robinson (2011),

1

NT

N∑
i=1

T∑
t=1

(
λ0
t (L; θ) εit

)2
=

1

NT

N∑
i=1

T∑
t=1

(
t∑

j=0

λ0
j (θ) ε̄it−j

)2

→p σ2

∞∑
j=0

λ0
j (θ)2 ,

uniformly in δ by Assumption 1 as (N, T )j → ∞ since −1/2 + ζ < δ − δ0 for some ζ > 0.
Since the limit is uniquely minimized at θ = θ0 as it is positive for all θ 6= θ0, (11) holds for
k = 4 if (14) holds and the contribution of cross-section averaged term, φ̂iε̄t, is negligible.
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To check (14) we show

sup
θ∈Θ4

∣∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

( t∑
j=0

λ0
j (θ) εit−j

)2

− E

(
t∑

j=0

λ0
j (θ) εit−j

)2
∣∣∣∣∣∣ = op(1),

where the term in absolute value is

1

T

T∑
j=0

λ0
j (θ)2 1

N

N∑
i=1

T−j∑
l=0

(ε2
il − σ2)

+
2

T

T−1∑
j=0

λ0
j (θ)λ0

k (θ)
1

N

N∑
i=1

T−j∑
l=k−j+1

εilεil−(k−j) = (a) + (b). (15)

Then,

E sup
Θ4

|(a)| ≤ 1

N

N∑
i=1

(
1

T

T∑
j=0

sup
Θ4

λ0
j (θ)2E

∣∣∣∣∣
T−j∑
l=0

(ε2
il − σ2)

∣∣∣∣∣
)
.

Uniformly in j, V ar(N−1
∑N

i=1

∑T−j
l=0 ε

2
il) = O(N−1T ), so using −1/2 + ζ < δ − δ0,

sup
Θ4

|(a)| = Op

(
N−1/2T−1/2

∞∑
j=1

j−2ζ−1

)
= Op(N

−1/2T−1/2).

By summation by parts, the term (b) is equal to

2λ0
T−1 (θ)

T

T−1∑
j=0

1

N

N∑
i=1

T∑
k=j+1

T−j∑
l=k−j+1

λ0
j (θ) εilεil−(k−j)

− 2

T

T−1∑
j=0

λ0
j (θ)

T∑
k=j+1

[
λ0
k+1 (θ)− λ0

k (θ)
] 1

N

N∑
i=1

k∑
r=j+1

T−j∑
l=r−j+1

εilεil−(r−j)

= (b1) + (b2) .

Then, using that V ar
(
N−1

∑N
i=1

∑T
k=j+1

∑T−j
l=k−j+1

{
εilεil−(k−j)

})
= O (N−1T 2) uniformly

in i and j,

E sup
Θ4

|(b1)| ≤ T−ζ−3/2

T∑
j=1

j−ζ−1/2V ar

(
T∑

k=j+1

T−j∑
l=k−j+1

{
εilεil−(k−j)

})1/2

≤ N−1/2T−2ζ ,

while

E sup
Θ4

|(b2)| ≤ T−1

T∑
j=1

j−ζ−1/2

T∑
k=j+1

k−ζ−3/2V ar

(
1

N

N∑
i=1

k∑
r=j+1

T−j∑
l=r−j+1

{
εilεil−(r−j)

})1/2

≤ N−1/2T−1/2

T∑
j=1

j−ζ−1/2

T∑
k=j+1

k−ζ−3/2 (k − j)1/2 ≤ KN−1/2T−2ζ ,

20



and therefore (b) = Op(N
−1/2T−2ζ) = op(1).

Next, we deal with the terms carrying ε̄t in the LHS of (14). We write

1

NT

N∑
i=1

T∑
t=1

φ̂2
i

(
λ0
t (L; θ) ε̄t

)2
=

1

N

N∑
i=1

φ̂2
i

1

T

T∑
t=1

(
λ0
t (L; θ) ε̄t

)2
. (16)

The average in i is Op (1) by Lemma 1, while the sum in t in the lhs (16) satisfies for θ∗ with
first component θ∗(1) = ζ − 1

2
,

1

T

T∑
t=1

(
λ0
t (L; θ) ε̄t

)2
= Op

(
σ2

N

∞∑
j=0

λ0
j (θ∗)2

)
= Op

(
N−1

)
= op (1)

as N →∞, uniformly in θ ∈ Θ4 as T →∞, and (16) is at most Op(N
−1) = op(1) uniformly

in θ ∈ Θ4.

Finally, the cross-term due to the square on the lhs of (14) is asymptotically negligible by
Cauchy-Schwarz inequality. So we have proved (14), and therefore we have proved (11) for
k = 4.

Proof for k = 3, 2. The uniform convergence for the idiosyncratic component for the proof
of (11) follows as in Hualde and Robinson (2011), since the average in i = 1, . . . , N adds no
additional complication as in the case k = 4. The treatment for the cross-section averaged
term and the cross-product term follows from the same steps as the idiosyncratic term as
well as the results we derived for k = 4 using 1

N

∑N
i=1 φ̂

2
i = Op (1) and that ε̄t has variance

σ2/N.

Proof for k = 1. Noting that

L∗N,T (θ) :=
1

N

N∑
i=1

1

T

T∑
t=1

(
λ0
t (L; θ) (εit − φiε̄t)

)2 ≥ 1

N

N∑
i=1

1

T 2

(
T∑
t=1

λ0
t (L; θ) (εit − φiε̄t)

)2

,

we write

Pr

(
inf
Θ1

L∗N,T (θ) > K

)
≥ Pr

T 2ζ inf
Θ1

1

N

N∑
i=1

(
1

T δ0−δ+1/2

T∑
t=1

λ0
t (L; θ) (εit−j − φiε̄t−j)

)2

> K


since δ − δ0 ≤ −1/2− ζ.

For arbitrarily small ε > 0, we show

Pr

T 2ζ inf
Θ1

1

N

N∑
i=1

(
1

T δ0−δ+1/2

T∑
t=1

λ0
t (L; θ) (εit−j − φiε̄t−j)

)2

> K


≥ Pr

inf
Θ1

1

N

N∑
i=1

(
1

T δ0−δ+1/2

T∑
t=1

λ0
t (L; θ) (εit−j − φiε̄t−j)

)2

> ε

→ 1 as (N, T )j →∞.
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Define h
(1)
i,T (δ) = T−δ0+δ−1/2λ0

t (L; θ) εit−j = T−1/2
∑T

j=1

λ0j (θ)

T δ0−δ
εit−j and

h
(2)
T (δ) = T−δ0+δ−1/2λ0

t (L; θ) ε̄t−j = T−1/2
∑T

j=1

λ0j (θ)

T δ0−δ
ε̄t−j. By the weak convergence results

in Marinucci and Robinson (2000), for each i = 1, . . . , N,

h
(1)
i,T (δ)⇒ λ0

∞ (1; θ)

∫ 1

0

(1− s)δ0−δ

Γ(δ0 − δ + 1)
δBi(s)

as (N, T )j → ∞, where Bi(s) is a scalar Brownian motion, i = 0, . . . , N, and by ⇒ we
mean convergence in the space of continuous functions in Θ1 with uniform metric. Tightness
and finite dimensional convergence follows from the fractional invariance property presented

in Theorem 1 in Hosoya (2005) as well as supiT E
[
h

(1)
i,T (δ)2

]
< ∞. Similarly, N1/2h

(2)
T (δ) is

weakly converging to the same functional of B0(s). Then, as (N, T )j → ∞, following the

discussions for double-index processes in Phillips and Moon (1999) and 1
N

∑N
i=1 φ

2
i = Op (1) ,

1

N

N∑
i=1

(
1

T δ0−δ+1/2

T∑
t=1

λ0
t (L; θ) (εit−j − φiε̄t−j)

)2

→p λ0
∞ (1; θ)2 Var

(∫ 1

0

(1− s)δ0−δ

Γ(δ0 − δ + 1)
δB(s)

)
=

σ2λ0
∞ (1; θ)2

(2(δ0 − δ) + 1) Γ2(δ0 − δ + 1)
,

uniformly in θ ∈ Θ1, where

inf
Θ1

λ0
∞ (1; θ)2 Var

(∫ 1

0

(1− s)δ0−δ

Γ(δ0 − δ + 1)
δB(s)

)
=

σ2

(2(δ0 − δ) + 1) Γ2(δ0 − δ + 1)
> 0,

so that

Pr

inf
Θ1

1

N

N∑
i=1

(
1

T δ0−δ+1/2

T∑
t=1

λ0
t (L; θ) (εit−j − φiε̄t−j)

)2

> ε

→ 1 as (N, T )j →∞

and (11) follows for i = 1 as ε is arbitrarily small. �

7.2 Other Proofs in Sections 3 and 4

We use the following more general conditions that are implied by Assumption C in our
proofs.

Assumption C∗.

C∗.1. As (N, T )j →∞,
N

T
log2 T +

T

N3
→ 0.

C∗.2. As (N, T )j →∞,

N
(
T 4(%+δ0)−11 log2 T +N−2T 8δ0−11

)
log2 T → 0

N
(
T 2(%+δ0−3) + T−2δ0 log2 T

)
log2 T → 0.
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C∗.3. As (N, T )j →∞,
N−1T 1−2δ0 → 0.

Proof of Theorem 2. We first analyze the first derivative of LN,T (θ) evaluated at θ = θ0,

∂

∂θ
LN,T (θ)|θ=θ0 =

2

NT

N∑
i=1

T∑
t=1

{
−ηiγ̄λt−1 (L; θ0) ft − τt(θ0)

(
εi0 − φ̂iε̄0

)
+ εit − φ̂iε̄t

}
×
{
−ηiγ̄χt−1 (L; ξ0)λt−1 (L; θ0) ft − τ̇t(θ0)

(
εi0 − φ̂iε̄0

)
+ χt (L; ξ0)

(
εit − φ̂iε̄t

)}
,

where χt (L; ξ0) εit = χt−1 (L; ξ0) εit + χt (ξ0) εi0.

In open form with the (NT )1/2 normalization,

√
NT

∂

∂θ
LN,T (θ)|θ=θ0 =

2√
NT

N∑
i=1

T∑
t=1

η2
i γ̄

2λt−1 (L; θ0) ft ∗ χt−1 (L; ξ0)λt−1 (L; θ0) ft (17)

+
2√
NT

N∑
i=1

T∑
t=1

τt(θ0)τ̇t(θ0)(εi0 − φ̂iε̄0)2 (18)

+
2√
NT

N∑
i=1

T∑
t=1

ηiγ̄λt−1 (L; θ0) ft ∗ τ̇t(θ0)(εi0 − φ̂iε̄0) (19)

− 2√
NT

N∑
i=1

T∑
t=1

ηiγ̄λt−1 (L; θ0) ft ∗ χt (L; ξ0)
(
εit − φ̂iε̄t

)
(20)

+
2√
NT

N∑
i=1

T∑
t=1

ηiγ̄χt−1 (L; ξ0)λt−1 (L; θ0) ft ∗ τt(θ0)(εi0 − φ̂iε̄0)(21)

− 2√
NT

N∑
i=1

T∑
t=1

τt(θ0)(εi0 − φ̂iε̄0) ∗ χt (L; ξ0)
(
εit − φ̂iε̄t

)
(22)

− 2√
NT

N∑
i=1

T∑
t=1

ηiγ̄χt−1 (L; ξ0)λt−1 (L; θ0) ft ∗ (εit − φ̂iε̄t) (23)

− 2√
NT

N∑
i=1

T∑
t=1

τ̇t(θ0)(εi0 − φ̂iε̄0)(εit − φ̂iε̄t) (24)

+
2√
NT

N∑
i=1

T∑
t=1

(εit − φ̂iε̄t) ∗ χt (L; ξ0)
(
εit − φ̂iε̄t

)
. (25)

The term (17) is asymptotically negligible, since with Lemmas 1 and 2 and % − δ0 <
1
2
,

we find that

2γ̄2
√
N√
T

1

N

N∑
i=1

η2
i

T∑
t=1

λt−1 (L; θ0) ftχt−1 (L; ξ0)λt−1 (L; θ0) ft

= Op(N
1/2T−1/2)Op(T

2%+2δ0−6 +N−1T 4δ0−6 + T−1 log T +N−2)Op (T ) ,
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which is op (1) under Assumption C∗.1-2.

In (18), we can directly take the expectation of the main term to get the bias term
stemming from the initial condition,

2√
NT

N∑
i=1

T∑
t=1

τt(θ0)τ̇t(θ0)E
[
ε2
i0

]
= 2σ2

(
N

T

)1/2 T∑
t=1

τt(θ0)τ̇t(θ0),

which is O
(
N1/2

(
T−1/2 + T 1/2−2δ0 log2 T

))
= O

(
N1/2T−1/2

)
, with variance

2

NT

N∑
i=1

V ar
[
ε2
i0

]( T∑
t=1

τt(θ0)τ̇t(θ0)

)2

= O
(
T−1 + T 1−4δ0 log4 T

)
= o (1)

since δ0 > 1/4, as (N, T )j →∞, while

2√
NT

N∑
i=1

T∑
t=1

τt(θ0)τ̇t(θ0)φ̂2
i ε̄0

2 =
2√
NT

Nε̄2
0

1

N

N∑
i=1

φ̂2
i

T∑
t=1

τt(θ0)τ̇t(θ0)

= Op

(
(TN)−1/2 (1 + T 1−2δ0 log2 T

))
= op (1)

because δ0 > 1/4, and by Cauchy-Schwarz inequality the cross term is of order

Op

(
N1/2

((
T−1/2 + T 1/2−2δ0 log2 T

)))1/2
Op

(
(TN)−1/2 (1 + T 1−2δ0 log2 T

))1/2

= Op

((
T−1 + T−2δ0 log2 T + T 1−4δ0 log2 T

))1/2
= op (1)

if δ0 > 1/4.

We show that (19) is op (1) considering the contribution of

2√
NT

N∑
i=1

T∑
t=1

ηiλt−1 (L; θ0) ftτ̇t(θ0)εi0

whose absolute value is bounded, using Lemmas 1 and 2(c), and %− δ0 <
1
2
, by

2
√
NT

(
1

N

N∑
i=1

ε2
i0

1

N

N∑
i=1

η2
i

)1/2 ∣∣∣∣∣ 1

T

T∑
t=1i

λt−1 (L; θ0) ftτ̇t(θ0)

∣∣∣∣∣
= Op

(
(NT )1/2 (T 2(%+δ0−3) + T−1 log T +N−1T 4δ0−6 +N−2

)1/2
T−1

)
+Op

(
(NT )1/2 (T 2(%+δ0−3) + T−1 log T +N−1T 4δ0−6 +N−2

)1/2
{
T %−2δ0−1/2 + T−δ0/2−1/2

+T−δ0 + T %−3δ0/2−1

}
log T

)
= Op

(
N1/2

(
T %+δ0−3 + T−1/2 log T +N−1

)
T %−2δ0 log T

)
+Op

(
N1/2T %+δ0−3T−δ0/2 log T

)
+Op

(
N1/2T %−3δ0/2−1 log T +N−1/2T %−3δ0/2−1/2 +N1/2T−δ0 log2 T

)
+ op (1)
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which, using %− δ0 <
1
2
, is

Op

(
N1/2T−δ0 log2 T +N−1T 1−2δ0 log2 T

)
+ op (1)

which is op (1) by Assumption C∗.

For (20), we consider the contribution of

2√
NT

N∑
i=1

T∑
t=1

ηiλt−1 (L; θ0) ft ∗ χt (L; ξ0) εit

whose absolute value is bounded by

2
√
NT

 1

N

N∑
i=1

η2
i

1

N

N∑
i=1

(
1

T

T∑
t=1

λt−1 (L; θ0) ft ∗ χt (L; ξ0) εit

)2
1/2

= Op

(
(NT )

(
T 2%+2δ0−6 + T−1 log T +N−1T 4δ0−6 +N−2

)
T−1

)1/2

= Op

(
N
(
T 2%+2δ0−6 + T−1 log T +N−1T 4%−6 log T +N−2

))1/2
= op (1)

by using Assumptions C∗.1-2, because, uniformly in i, using %− δ0 <
1
2
,

E

( 1

T

T∑
t=1

λt−1 (L; θ0) ft ∗ χt (L; ξ0) εit

)2


=
1

T 2

T∑
t=1

T∑
r=1

E [λt−1 (L; θ0) ft ∗ χt (L; ξ0) εit ∗ λr−1 (L; θ0) fr ∗ χr (L; ξ0) εir]

=
1

T 2

T∑
t=1

T∑
r=1

E [λt−1 (L; θ0) ft ∗ λr−1 (L; θ0) fr]E [χt (L; ξ0) εit ∗ χr (L; ξ0) εir]

= O

(
1

T 2

T∑
t=1

t∑
r=1

(
|t− r|2(%−δ0)−2 + |t− r|%−δ0−2

)
log t

)
= O

(
T−1 log T + T 2(%−δ0−1)

)
= O

(
T−1 log T

)
�.

Then the term (20) is op (1) because the factor depending on φ̂iχt (L; ξ0) ε̄t could be dealt
with similarly using Cauchy-Schwarz inequality and Lemma 1.

The proof that the term (21) is op (1) could be dealt with exactly as when bounding (19),
while the proof that the term (23) is op (1) could be dealt with in a similar but easier way
than (20).

The leading term of (24), depending on εi0εit,

2√
NT

N∑
i=1

T∑
t=1

τ̇t(θ0)(εi0 − φ̂iε̄0)(εit − φ̂iε̄t),
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has zero mean and variance proportional to

1

T

T∑
t=1

τ̇t(θ0)2 = O
(
T−1 + T−2δ0

)
= o (1)

so it is negligible and the same can be concluded for the other terms depending on φ̂i.

The behaviour of the main term in (22) is given in Lemma 5 and that of (25) in Lemma 6
and, combining the plims of (18) and (22), we obtain the definition of ∇T (δ) .

Then collecting the results for all terms (17) to (25) we have found that

√
NT

∂

∂θ
LN,T (θ)|θ=θ0 →d

(
N

T

)1/2 T∑
t=1

{τt(θ0)τ̇t(θ0)− τt(θ0)χt(θ0)}+N (0, 4B (ξ0)) .

Finally we analyze the second derivative of LN,t (θ) evaluated at θ = θ0,
(∂2/∂θ∂θ′)LN,T (θ)|θ=θ0 , which equals

2

NT

N∑
i=1

T∑
t=1

{
−ηiγ̄χt−1 (L; ξ0)λt−1 (L; θ0) ft − τ̇t(θ0)

(
εi0 − φ̂iε̄0

)
+ χt (L; ξ0)

(
εit − φ̂iε̄t

)}
×
{
−ηiγ̄χt−1 (L; ξ0)λt−1 (L; θ0) ft − τ̇t(θ0)

(
εi0 − φ̂iε̄0

)
+ χt (L; ξ0)

(
εit − φ̂iε̄t

)}′
+

2

NT

N∑
i=1

T∑
t=1

{
−ηiγ̄λt−1 (L; θ0) ft − τt(θ0)

(
εi0 − φ̂iε̄0

)
+ εit − φ̂iε̄t

}
×
{
−ηiγ̄b0

t (L)λt−1 (L; θ0) ft − τ̈t(θ0)
(
εi0 − φ̂iε̄0

)
+ b0

t (L)
(
εit − φ̂iε̄t

)}
,

where b0
t (L) = χ̇t (L; ξ0) + χt (L; ξ0)χt (L; ξ0)′ , χ̇t (L; ξ) = (∂/∂θ′)χt (L; ξ) and

τ̈t(θ) = (∂2/∂θ∂θ′) τt (θ) . Using the same techniques as in the proof of Theorem 1, as N
and T get larger, only the term on χt (L; ξ0) εitχt (L; ξ0)′ εit in the first element of the rhs
contributes to the probability limit, see the proof of Theorem 5.2 in Robinson and Velasco
(2015). In the second part of the expression, all terms are asymptotically negligible by using
the same arguments as in the convergence in distribution of the score, obtaining as N →∞
and T →∞,

∂2

∂θ∂θ′
LN,T (θ)|θ=θ0 →p 2σ2B (ξ0) .

Lemma 7 shows the convergence of the Hessian LN,T (θ) evaluated at θ̂ to that evaluated
at θ0, and the proof is then complete. �

Proof of Corollary 1. The result is a direct consequence of Theorem 2.
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Proof of Corollary 2. Follows from Theorem 2 as the proofs of Theorems 5.1 and 5.2 in
Robinson and Velasco (2015).

Proof of Theorem 3. These are simple consequences of the results from Theorems 1 and
2, taking N = 1, where the rate of convergence is just

√
T now so that the asymptotic IC

bias is removed for any δi0 ∈ D. �

Proof of Theorem 4. The key point is to write

N−1/2
(
LMNT −N1/2BNT

)
=

2N−1/2

T

N∑
i=1

T∑
t=1

t−1∑
s=1

εit(θ̂)εis(θ̂)ε̇
′
it(θ̂)B(θ̂)−1ε̇is(θ̂)

and approximate this by

T∑
t=1

zNT,t, where zNT,t =
2N−1/2

T

N∑
i=1

εit

t−1∑
s=1

εisε̇
′
itB
−1
0 ε̇is (26)

by Lemma 10, where B0 = B (ξ0) , with zNT,t being a Martingale Difference, so that

Var

[
T∑
t=1

zNT,t

]
=

T∑
t=1

Var [zNT,t] =
T∑
t=1

E
[
z2
NT,t

]
and fully expanding matrix calculations using ε̇it = χt (L) εit =

∑t
j=1 χjεit−j, with χj =(

χ1
j , . . . , χ

p+1
j

)′
,

Var [zNT,t] =
4

NT 2

N∑
i=1

σ2
iE

( t−1∑
s=1

εisε̇
′
itB
−1
0 ε̇is

)2


=
4

NT 2

N∑
i=1

σ2
i

t−1∑
s=1

t−1∑
r=1

E
[
εisεirε̇

′
itB
−1
0 ε̇isε̇

′
itB
−1
0 ε̇ir

]
=

4

NT 2

p+1∑
a,b,c,d=1

B−1
a,bB

−1
c,d

N∑
i=1

σ2
i

t−1∑
s=1

t−1∑
r=1

E
[
εisεirε̇

a
itε̇

b
isε̇

c
itε̇

d
ir

]
=

4

NT 2

p+1∑
a,b,c,d=1

B−1
a,bB

−1
c,d

N∑
i=1

σ2
i

t−1∑
s=1

E
[
ε2
is

]
E [ε̇aitε̇

c
it]E

[
ε̇bisε̇

d
is

]
(1 + o (1))

=
4

NT 2

p+1∑
a,b,c,d=1

B−1
a,bB

−1
c,d

N∑
i=1

σ8
i

t∑
j=1

χajχ
c
j

t−1∑
s=1

s∑
k=1

χbkχ
d
k (1 + o (1))

(omitting lower order contributions from other pairwise moments and higher order cumulant
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combinations) which is

4

NT 2

p+1∑
a,b,c,d=1

B−1
a,bB

−1
c,d

N∑
i=1

σ8
i

t∑
j=1

χajχ
c
j

t−1∑
k=1

(t− k)χbkχ
d
k (1 + o (1))

=
4t

NT 2

N∑
i=1

σ8
i trace

{
B−1

0 B0B
−1
0 B0

}
(1 + o (1))

=
4t

NT 2

N∑
i=1

σ8
i (p+ 1) (1 + o (1))

since
∑t−1

k=1 (t− k)χbkχ
d
k = t

∑t−1
k=1 χ

b
kχ

d
k (1 + o (1)) as t→∞, because χbk = O (k−1) , so that

Var

[
T∑
t=1

zNT,t

]
→ 4 (p+ 1)

NT 2

N∑
i=1

σ8
i

T∑
t=1

t→ 2σ̄8 (p+ 1) ,

as (N, T )j →∞, so that by Lemma 9

N−1/2LMNT −BNT →d N
(
0, 2σ̄8 (p+ 1)

)
.

Then it remains to show that

VNT → p
2

T 2N

N∑
i=1

T∑
t=1

σ4
i

[
T∑
s=1

ε̇′itB
−1
0 ε̇is

]2

→ p
2

T 2N

N∑
i=1

T∑
t=1

σ4
i

T∑
s=1

T∑
r=1

E
[
ε̇′itB

−1
0 ε̇isε̇

′
itB
−1
0 ε̇ir

]
→ 4

T 2N

N∑
i=1

σ8
i

T∑
t=1

t ∗ trace
{
B−1

0 B0B
−1
0 B0

}
→ 2σ̄(8) (p+ 1) ,

using Lemma 11, and the theorem follows. �

Proof of Theorem 5. The proof consists of four steps, where we omit most details already
in other proofs.

Step 1. θ̂ − θ0 →p 0, which follows by an essentially similar proof as Theorem 1, the ϑi0
contribution for i ∈ IN being negligible.

Step 2. θ̂ − θ0 = Op

(
N−1/4T−1/2

)
, in particular for υ = σ̄

(2)
1 /σ̄(2) ∈ (0, 1) ,

θ̂ − θ0 = υζN−1/4T−1/2 +Op

(
N−1/2T−1/2

)
using the same Taylor expansion as in Theorem 2, with stochastic remainder of order
Op

(
N−1/2T−1/2

)
, but additional (average) drift υζN−1/4T−1/2 obtained by a similar ar-

gument as in step 4 below.
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Step 3. Equivalence of analysis of JNT evaluated under θ̂ and evaluated under θ0 (for all
cross-section units) with error θ̂ − θ0 = Op

(
N−1/4T−1/2

)
, similar to Lemma 10 where now

the contribution of the term (37) which depends directly on θ̂−θ0 is Op

(
N1/4T−1/2 log3 T

)
=

op (1) , but there is a new drift term, so that the right hand side of

εit(θ̂)− εit (θ0) =
(
θ̂ − θ0

)
χt

(
L; θ̂∗

)(
εit − φ̂iε̄t

)
− τt(θ̂∗)(εi0 − φ̂iε̄0)− ηiγ̄λt−1

(
L; θ̂

)
ft

for
∥∥∥θ̂∗ − θ∥∥∥ ≤ ∥∥∥θ̂ − θ0

∥∥∥ is still negligible, but for θNT = θ0 + ζN−1/4T−1/2 and for

dit,NT = N−1/4T−1/2ζ ′χt (L; θ0) εit1{i∈IN}

we have that

εit (θ0) = λt (L; θ0)λ−1
t (L; θNT ) εit

= εit + dit,NT

plus a remainder for i ∈ IN of order N−1/2T−1 depending on a lag polynomial of εit with
coefficients χ̇t = O (t−1 log t) as t→∞ uniformly in N and T.

Step 4. Evaluation of the drift generated by dit,NT .We have that nowN−1/2
(
LMNT −N1/2BNT

)
can be approximated by

∑T
t=1 z̄NT,t where

z̄NT,t =
2N−1/2

T

N∑
i=1

(εit + dit,NT )
t−1∑
s=1

(εis + dis,NT ) ε̇′itB
−1
0 ε̇is (27)

and where the term in εitεis is the same as
∑T

t=1 zNT,t leading to the asymptotic normal
distribution, while the term in εitdis,NT keeps the martingale structure and is negligible,
while that in dit,NTdis,NT ,

2N−1

T 2

∑
i∈IN

T∑
t=1

t−1∑
s=1

ζ ′χt (L; θ0) εitζ
′χt (L; θ0) εisε̇

′
itB
−1
0 ε̇is,
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converges to its expectation,

2

NT 2

∑
i∈IN

T∑
t=1

t−1∑
s=1

E
[
ζ ′χt (L; θ0) εitζ

′χt (L; θ0) εisε̇
′
itB
−1
0 ε̇is

]
=

2

NT 2

∑
i∈IN

p+1∑
a,b=1

∑
j1,...,j4

ζ ′χj1 (θ0) ζ ′χj2 (θ0)χaj3 (θ0)χbj4 (θ0)Ba,b
0

T∑
t=1

t−1∑
s=1

E [εit−j1εis−j2εit−j3εis−j4 ]

=
2

NT 2

∑
i∈IN

p+1∑
a,b=1

Ba,b
0

T∑
t=1

t−1∑
s=1

∑
j1,...,j4

ζ ′χj1 (θ0) ζ ′χj2 (θ0)χaj3 (θ0)χbj4 (θ0)

×{E [εit−j1εit−j3 ]E [εis−j2εis−j4 ] + E [εit−j1εis−j2 ]E [εit−j3εis−j4 ] + E [εit−j1εis−j4 ]E [εis−j2εit−j3 ] + κ4 [εit−j1 , εis−j2 , εit−j3 , εis−j4 ]}

=
2

NT 2

∑
i∈IN

σ4
i 1{i∈IN}

p+1∑
a,b=1

Ba,b
0

T∑
t=1

t−1∑
j1=1

ζ ′χj1 (θ0)χaj1 (θ0)

t−1∑
s=1

s∑
j2=1

ζ ′χj2 (θ0)χbj2 (θ0) + o (1)

=
2

NT 2

∑
i∈IN

σ4
i 1{i∈IN}

p+1∑
a,b=1

Ba,b
0

T∑
t=1

t−1∑
j1=1

ζ ′χj1 (θ0)χaj1 (θ0)
t−1∑
k=1

(t− k) ζ ′χk (θ0)χbk (θ0) + o (1)

= σ̄
(4)
1 ζ ′B0B

−1
0 B0ζ + o (1)

= σ̄
(4)
1 ζ ′B0ζ + o (1)

taking only into account only the first pair of expectations since the other terms contribute
a smaller order, while the term in εisdit,NT ,

2N−3/4

T 3/2

N∑
i=1

T∑
t=1

t−1∑
s=1

ζ ′χt (L; θ0) εitεisε̇
′
itB
−1
0 ε̇is

converges to zero, because its expectation is

2N−3/4

T 3/2

N∑
i=1

T∑
t=1

t−1∑
s=1

E
[
ζ ′χt (L; θ0) εitεisε̇

′
itB
−1
0 ε̇is

]
≤ K

N1/4

T 3/2

T∑
t=1

t−1∑
s=1

(t− s)−2
+ = O

(
N1/4T−1/2

)
= o (1) ,

because E [εisε̇is] = 0. Finally, using similar arguments, we still obtain VNT →p 2 (p+ 1)σ(8)

as under H0, and the theorem follows. �
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8. Lemmas

Lemma 1. Under Assumptions A, as (N, T )j →∞,

1

N

N∑
i=1

η2
i = Op(T

2%+2δ0−6 + T−1 log T +N−1T 4δ0−6 +N−2)

1

N

N∑
i=1

φ̂2
i = Op(1).

Proof of Lemma 1. We only prove the first statement, since the second one is an easy
consequence of the first one, (9) and γ̄2 →p (E[γi])

2 > 0 and E[γ2
i ] <∞. Write

1

N

N∑
i=1

η2
i =

1
NT 2

∑T
t=1

∑T
t′=1 ∆ȳt∆ȳt′

∑N
i=1 λ

−1
t

(
L; θ

(−1)
0

)
(εit − γi

γ̄
ε̄t)λ

−1
t′

(
L; θ

(−1)
0

)
(εit′ − γi

γ̄
ε̄t′)(

1
T

∑T
t=1(∆ȳt)2

)2 .

The denominator converges to a positive constant term because

1

T

T∑
t=1

(∆ȳt)
2 = γ̄2 1

T

T∑
t=1

(∆ft)
2 +

1

T

T∑
t=1

(λ−1
t

(
L; θ

(−1)
0

)
ε̄t)

2 + 2γ̄
1

T

T∑
t=1

∆ftλ
−1
t

(
L; θ

(−1)
0

)
ε̄t

and by Assumptions A.3 and 4, satisfies as (N, T )j →∞,

1

T

T∑
t=1

(∆ȳt)
2 →p E(γi)

2σ2
∆ft , σ2

∆ft = lim
T→∞

1

T

T∑
t=1

E
[
(∆ft)

2
]
,

since % < 2/3 and the second term is negligible due to cross section averaging, because it
has expectation

1

TN2

T∑
t=1

N∑
i=1

N∑
j=1

E
[
λ−1
t

(
L; θ

(−1)
0

)
εitλ

−1
t

(
L; θ

(−1)
0

)
εjt

]
=

σ2

TN

T∑
t=1

E

[
t∑

j=0

λ−1
j

(
θ

(−1)
0

)2
]

= O
(
N−1

)
= o (1)

and variance

1

T 2N4

T∑
t=1

N∑
i=1

N∑
j=1

T∑
t′=1

N∑
i′=1

N∑
j′=1

×
(
E
[
λ−1
t

(
L; θ

(−1)
0

)
εitλ

−1
t′

(
L; θ

(−1)
0

)
εi′t′
]
E
[
λ−1
t

(
L; θ

(−1)
0

)
εjtλ

−1
t′

(
L; θ

(−1)
0

)
εj′t′
]

+E
[
λ−1
t

(
L; θ

(−1)
0

)
εitλ

−1
t′

(
L; θ

(−1)
0

)
εj′t′
]
E
[
λ−1
t

(
L; θ

(−1)
0

)
εjtλ

−1
t′

(
L; θ

(−1)
0

)
εi′t′
])

= O

(
T−2N−4

T∑
t=1

N∑
i=1

N∑
j=1

T∑
t′=1

{
|t− t′|2(δ0−1)−1

+

}2
)

= O
(
T−1N−2

(
T 4(δ0−1)−1 + log T

))
= o (1) ,
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and the third is op (1) because of Cauchy-Schwarz inequality.

In the numerator, it suffices to focus on the dominating term εit of the error term εit− γi
γ̄
ε̄t,

since ε̄t = Op(N
−1/2) and γ̄ →p E(γi) 6= 0 by Assumption A.4. Then,

1

NT 2

T∑
t=1

T∑
t′=1

∆ȳt∆ȳt′
N∑
i=1

λ−1
t

(
L; θ

(−1)
0

)
εitλ

−1
t′

(
L; θ

(−1)
0

)
εit′ (28)

=
γ̄2

NT 2

T∑
t=1

T∑
t′=1

∆ft∆ft′
N∑
i=1

λ−1
t

(
L; θ

(−1)
0

)
εitλ

−1
t′

(
L; θ

(−1)
0

)
εit′

+
1

NT 2

T∑
t=1

T∑
t′=1

λ−1
t

(
L; θ

(−1)
0

)
ε̄tλ
−1
t′

(
L; θ

(−1)
0

)
ε̄t′

N∑
i=1

λ−1
t

(
L; θ

(−1)
0

)
εitλ

−1
t′

(
L; θ

(−1)
0

)
εit′

+
2γ̄

NT 2

T∑
t=1

T∑
t′=1

∆ftλ
−1
t′

(
L; θ

(−1)
0

)
ε̄t′

N∑
i=1

λ−1
t

(
L; θ

(−1)
0

)
εitλ

−1
t′

(
L; θ

(−1)
0

)
εit′ .

Up to the factor γ̄2, the expectation of the first term in (28), which is positive, is, using
the independence of ft and εit and Assumption A.3,

1

T 2

T∑
t=1

T∑
t′=1

E (∆ft∆ft′)E
(
λ−1
t

(
L; θ

(−1)
0

)
εitλ

−1
t′

(
L; θ

(−1)
0

)
εit′
)
.

The expectations above for all t 6= t′ are, cf. Lemma 8,

E (∆ft∆ft′) = O
(
|t− t′|2(%−1)−1

+ + |t− t′|%−2
+

)
E
(
λt

(
L; θ

(−1)
0

)
εitλt′

(
L; θ

(−1)
0

)
εit′
)

= O
(
|t− t′|2(δ0−1)−1

+ + |t− t′|δ0−2
+

)
where |a|+ = max {|a| , 1}and bounded for t = t′ because max{%, δ0} < 2/3, so that ∆ft and

λt

(
L; θ

(−1)
0

)
εit are asymptotically stationary. Then, this term is

Op

(
1

T 2

T∑
t=1

t∑
t′=1

|t− t′|2%+2δ0−6
+ + |t− t′|%+δ0−4

+

)
= Op

(
T 2%+2δ0−6 + T−1 log T

)
.

The expectation of the second term in (28), which is also positive, is

1

T 2

T∑
t=1

T∑
t′=1

E
[
λ−1
t

(
L; θ

(−1)
0

)
ε̄tλ
−1
t′

(
L; θ

(−1)
0

)
ε̄t′λ

−1
t

(
L; θ

(−1)
0

)
εitλ

−1
t′

(
L; θ

(−1)
0

)
εit′
]

=
1

N2T 2

T∑
t=1

T∑
t′=1

N∑
j=1

N∑
k=1

E
[
λ−1
t

(
L; θ

(−1)
0

)
εjtλ

−1
t′

(
L; θ

(−1)
0

)
εkt′λ

−1
t

(
L; θ

(−1)
0

)
εitλ

−1
t′

(
L; θ

(−1)
0

)
εit′
]

=
1

N2T 2

T∑
t=1

T∑
t′=1

N∑
j=1

N∑
k=1

t∑
a=1

t′∑
b=1

t∑
c=1

t′∑
d=1

τ 0
a τ

0
b τ

0
c τ

0
δE [εjt−aεkt′−bεit−cεit′−d] ,
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where τ 0
a = τa (θ0) = λ−1

a

(
θ

(−1)
0

)
and the expectation can be written using the indicator

function 1 {·} as

= E [εjt−aεkt′−b]E [εit−cεit′−d] 1 {t− a = t′ − b} 1 {t− c = t′ − d} 1 {j = k}
+E [εjt−aεit′−d]E [εkt′−bεit−c] 1 {t− a = t′ − d} 1 {t′ − b = t− c} 1 {j = i = k}
+E [εjt−aεit−c]E [εkt′−bεit′−d] 1 {t− a = t− c} 1 {t′ − b = t′ − d} 1 {j = i = k}
+κ4 [εit] % {t− a = t′ − b = t− c = t′ − d} 1 {j = k = i} .

This leads to four different types of contributions, the first type being

σ4

NT 2

T∑
t=1

T∑
t′=1

t∧t′∑
a=1

t∧t′∑
c=1

τ 0
a τ

0
a+|t−t′|τ

0
c τ

0
c+|t−t′|

= O

(
1

NT 2

T∑
t=1

t∑
t′=1

|t− t′|4(δ0−1)−2
+ + |t− t′|2δ0−4

+

)
= O

(
N−1

(
T−1 log T + T 4(δ0−1)−2

))
,

proceeding as in Lemma 8. The second type is

σ4

N2T 2

T∑
t=1

T∑
t′=1

t∧t′∑
a=1

t∧t′∑
c=1

τ 0
a τ

0
a+|t−t′|τ

0
c τ

0
c+|t−t′| = O

(
N−2

(
T−1 log T + T 4(δ0−1)−2

))
and the third one is, using that (τ 0

a )
2

= π2
a (1− δ0) ∼ a2δ0−4 and δ0 < 3/2,

σ4

N2T 2

T∑
t=1

T∑
t′=1

t∑
a=1

t′∑
b=1

(
τ 0
a

)2 (
τ 0
b

)2
= O

(
N−2

)
.

The final fourth type involving fourth order cumulants is

κ4

N2T 2

T∑
t=1

T∑
t′=1

t∧t′∑
a=1

(
τ 0
a τ

0
a+|t−t′|

)2
= O

(
1

NT 2

T∑
t=1

T∑
t′=1

|t− t′|2δ0−4
+

)
= O

(
N−1T−1

)
,

The third term in (28) can be bounded using Cauchy-Schwarz inequality and the Lemma
follows compiling all the contributions. �

Lemma 2. Under Assumptions A and B, as T →∞,

(a) sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

(λt−1 (L; θ) ft)
2

∣∣∣∣∣ = Op

(
1 + T 2(%−δ)−1

)
(b)

1

T

T∑
t=1

λt−1 (L; θ0) ft ∗ χt−1 (L; ξ0)λt−1 (L; θ0) ft = Op

(
1 + T 2(%−δ0)−1 log T

)
(c)

1

T

T∑
t=1

τ̇t−1(θ0)λt−1 (L; θ0) ft = Op

(
T−1 +

{
T 2(%−2δ0)−1 + T−δ0−1 + T−2δ0 + T 2(%−δ0−1)−δ0

}1/2
log T

)
.
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Proof of Lemma 2. To prove (a) note that by the triangle inequality,

sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

(λt−1 (L; θ) ft)
2

∣∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

{
(λt−1 (L; θ) ft)

2 − E
[
(λt−1 (L; θ) ft)

2
]}∣∣∣∣∣(29)

+ sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

E
[
(λt−1 (L; θ) ft)

2
]∣∣∣∣∣ .

Under Assumption 2, we have

λt−1 (L; θ) ft = ψ (L; ξ) ∆δ−%
t−1zt =

t−1∑
j=0

λj(δ − %; ξ)zt−j =
∞∑
j=0

cjvt−j,

where cj = cj(δ− %, ξ) =
∑j

k=0 ϕ
f
kλj−k(δ− %, ξ) ∼ cj%−δ−1 as j →∞ under Assumption A.2.

First, notice that uniformly in θ ∈ Θ

sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

E
[
(λt−1 (L; θ) ft)

2
]∣∣∣∣∣ = sup

θ∈Θ

∣∣∣∣∣σ2
v

T

T∑
t=1

t∑
j=0

c2
j

∣∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣∣KT
T∑
t=1

(
1 + t2(%−δ)−1

)∣∣∣∣∣ = O(1+T 2(%−δ)−1),

while the first term on the lhs of (29) is

1

T

T−1∑
j=1

c2
j

T−j∑
l=1

(v2
l − σ2

v) +
2

T

T−2∑
j=0

T−1∑
k=j+1

cjck

T−j∑
l=k−j+1

vlvl−(k−j) = (a) + (b),

say. Then, with γv (j) = E [v0vj] ,

E sup
Θ
|(a)| ≤ 1

T

T−1∑
j=0

sup
Θ
c2
jE

∣∣∣∣∣
T−j∑
l=1

(v2
l − γv (j))

∣∣∣∣∣ .
Uniformly in j, V ar(

∑T−j
l=1 v

2
l ) = O(T ), so

sup
Θ
|(a)| = Op

(
T−1/2

T−1∑
j=1

j2(%−δ)−2

)
= Op(T

−1/2 log T + T 2(%−δ)−3/2).

Next, using summation by parts, we can express (b) as

2cT−1

T

T−2∑
j=0

cj

T−1∑
k=j+1

T−j∑
l=k−j+1

{
vlvl−(k−j) − γv (j − k)

}
+

2

T

T−2∑
j=0

cj

T−2∑
k=j+1

(ck+1 − ck)
k∑

r=j+1

T−j∑
l=r−j+1

{
vlvl−(r−j) − γv (j − r)

}
= (b1) + (b2).
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Uniformly in j,

V ar

(
T−1∑
k=j+1

T−j∑
l=k−j+1

vlvl−(k−j)

)
= O(T 2),

so,

E sup
Θ
|(b1)| ≤ KT−1T %−δ−1

T∑
j=0

j%−δ−1

{
V ar

(
T−1∑
k=j+1

T−j∑
l=k−j+1

vlvl−(k−j)

)}1/2

= O(T 2(%−δ)−1 + T %−δ−1 log T )

where K is some arbitrarily large positive constant. Similarly,

E sup
Θ
|(b2)| ≤ KT−1

T∑
j=0

j%−δ−1

T∑
k=j+1

k%−δ−2

{
V ar

(
k∑

r=j+1

T−j∑
l=r−j+1

vlvl−(r−j)

)}1/2

= O(T 2(%−δ)−1 + T %−δ−1 log T + 1)

since

V ar

(
k∑

r=j+1

T−j∑
l=r−j+1

vlvl−(r−j)

)
≤ K(k − j)(T − j).

The proof of (b) of the Lemma is similar but simpler than that of (a) and is omitted.

To prove (c) of the Lemma, note that T−1
∑T

t=1 λt−1 (L; θ0) ftτ̇t(θ0) has zero mean and
variance

1

T 2

T∑
t=1

T∑
r=1

τ̇t(θ0)τ̇r(θ0)E [λt−1 (L; θ0) ftλr−1 (L; θ0) fr] . (30)

When 0 ≤ %− δ0 ≤ 1, |E [λt−1 (L; θ0) ft ∗ λr−1 (L; θ0) fr]| ≤ K|t− r|2(%−δ0)−1
+ and using that

|τ̇t(θ0)| ≤ Kt−δ0 log t, (30) is

O

(
1

T 2

T∑
t=1

t∑
r=1

(tr)−δ0 log t log r|t− r|2(%−δ0)−1
+

)

= O

(
1

T 2

T∑
t=1

t−δ0 log2 t
{
t−δ0

(
t2(%−δ0) + log t

)
+
(
t1−δ0 + log t

) (
t2(%−δ0)−1 + 1

)})
= O

(
T−2

)
+O

(
T−1−δ0

{
T−δ0

(
T 2(%−δ0) + log T

)
+
(
T 1−δ0 + 1

) (
T 2(%−δ0)−1 + 1

)})
log2 T

= O
(
T−2

)
+O

({
T−1−2δ0

(
T 2(%−δ0) + log T

)
+
(
T 1−δ0 + 1

) (
T 2(%−δ0−1)−δ0 + T−1−δ0

)})
log2 T

= O
(
T−2

)
+O

({
T 2(%−2δ0)−1 + T−1−2δ0 log T + T−1−δ0 + T−2δ0 + T 2(%−2δ0−1)+1 + T 2(%−δ0−1)−δ0

})
log2 T

= O
(
T−2

)
+O

({
T 2(%−2δ0)−1 + T−1−δ0 + T−2δ0 + T 2(%−δ0−1)−δ0

}
log2 T

)
.

When %− δ0 < 0, |E [λt−1 (L; θ0) ft ∗ λr−1 (L; θ0) fr]| ≤ K|t− r|%−δ0−1
+ , see Lemma 8, so (30)
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is

O

(
1

T 2

T∑
t=1

t∑
r=1

(tr)−δ0 log t log r|t− r|%−δ0−1
+

)

= O

(
1

T 2

T∑
t=1

t−δ0 log2 t

)
= O

(
T−2 + T−δ0−1 log3 T

)
,

and the result follows. �

Lemma 3. Under the assumptions of Theorem 1, as (N, T )j →∞,

sup
θ∈Θ1∪Θ2∪Θ3

∣∣∣∣∣ γ̄NT
N∑
i=1

T∑
t=1

ηiλt−1 (L; θ) ft ∗ λ0
t (L; θ)

(
εit − φ̂iε̄t

)∣∣∣∣∣ = op (1) .

Proof of Lemma 3. For θ ∈ Θ1 ∪Θ2 ∪Θ3, since γ̄ →p E [γi] = Op (1) as N →∞, we only
need to consider

1

NT

N∑
i=1

T∑
t=1

ηiλt−1 (L; θ) ft ∗ λ0
t (L; θ)

(
εit − φ̂iε̄t

)
=

1

NT

N∑
i=1

T∑
t=1

ηiλt−1 (L; θ) ft ∗ λ0
t (L; θ) εit −

1

NT

N∑
i=1

T∑
t=1

ηiλt−1 (L; θ) ft ∗ λ0
t (L; θ) φ̂iε̄t,

where the first term is equal to

1

NT

N∑
i=1

T∑
t=1

ηiλt−1 (L; θ) ft ∗ λ0t (L; θ) εit

=
1

T−1
∑
t (∆ȳt)

2

1

NT 2

N∑
i=1

T∑
t=1

T∑
r=1

∆ȳrλ
−1
r

(
L; θ

(−1)
0

)(
εir −

γi

γ̄
ε̄r

)
∗ λt−1 (L; θ) ft ∗ λ0t (L; θ) εit

=
1

T−1
∑
t (∆ȳt)

2

1

NT 2

N∑
i=1

T∑
t=1

T∑
r=1

(
γ̄∆fr + λ−1

r

(
L; θ

(−1)
0

)
ε̄r
)
λ−1
r

(
L; θ

(−1)
0

)(
εir −

γi

γ̄
ε̄r

)
∗ λt−1 (L; θ) ft ∗ λ0t (L; θ) εit.

Next γ̄−1 = Op (1) as N → ∞ and 1
T−1

∑
t(∆ȳt)

2 = Op (1) as T → ∞, cf. proof of Lemma 1,

while

1

NT 2

N∑
i=1

T∑
t=1

T∑
r=1

(
γ̄∆fr + λ−1

r

(
L; θ

(−1)
0

)
ε̄r
)
λ−1
r

(
L; θ

(−1)
0

)(
εir −

γi

γ̄
ε̄r

)
λt−1 (L; θ) ftλ

0
t (L; θ) εit (31)

=
γ̄

NT 2

N∑
i=1

T∑
t=1

T∑
r=1

∆frλ
−1
r

(
L; θ

(−1)
0

)
εirλt−1 (L; θ) ftλ

0
t (L; θ) εit

+
1

NT 2

N∑
i=1

T∑
t=1

T∑
r=1

λ−1
r

(
L; θ

(−1)
0

)
ε̄rλ
−1
r

(
L; θ

(−1)
0

)
εirλt−1 (L; θ) ftλ

0
t (L; θ) εit

−
1

NT 2γ̄

N∑
i=1

γi

T∑
t=1

T∑
r=1

γ̄∆frλ
−1
r

(
L; θ

(−1)
0

)
ε̄rλt−1 (L; θ) ftλ

0
t (L; θ) εit

−
1

NT 2γ̄

N∑
i=1

γi

T∑
t=1

T∑
r=1

λ−1
r

(
L; θ

(−1)
0

)
ε̄rλ
−1
r

(
L; θ

(−1)
0

)
ε̄rλt−1 (L; θ) ftλ

0
t (L; θ) εit.
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The first term on the rhs of (31) can be written as γ̄ times

1

NT

N∑
i=1

T∑
t=1

t∑
j=0

t∑
k=0

λj (δ − %, ξ)λ0
k (θ) zt−jεit−k

1

T

T∑
r=1

∆frλ
−1
r

(
L; θ

(−1)
0

)
εir

which using Lemma 8 and |a|+ = max{|a|, 1} has expectation

1

NT 2

N∑
i=1

T∑
t=1

T∑
r=1

E [∆frλt−1 (L; θ) ft]E
[
λ−1
r

(
L; θ

(−1)
0

)
εirλ

0
t (L; θ) εit

]

= O

 1
T 2

∑T
t=1

∑T
r=1

(
|t− r|2(%−1)−δ

+ + |t− r|%−1−δ
+ + |t− r|%−2

+

)
×
(
|t− r|2(δ0−1)−δ

+ + |t− r|δ0−1−δ
+ + |t− r|δ0−2

+

) 
= o (1)

uniformly in θ ∈ Θ1∪Θ2∪Θ3, since all exponents in |t−r|+ are negative under Assumptions
A and B∗.1, so that we can write its centered version as

1

NT

N∑
i=1

T∑
t=1

t∑
j=0

t∑
k=0

λj (δ − %, ξ)λ0
k (θ)Ai,t−j,t−k

=
1

NT

N∑
i=1

T∑
t=1

t∑
j=0

λj (δ − %, ξ)λ0
j (θ)Ai,t−j,t−j

+
1

NT

N∑
i=1

T∑
t=1

t∑
j=0

∑
k 6=j

λj (δ − %, ξ)λ0
k (θ)Ai,t−j,t−k

= (a) + (b) , say, where

Ai,t−j,t−k = zt−jεit−k
1

T

T∑
r=1

∆1−%
r zrλ

−1
r

(
L; θ

(−1)
0

)
εir−

1

T

T∑
r=1

E
[
zt−jεit−k∆

1−%
r zrλ

−1
r

(
L; θ

(−1)
0

)
εir

]
.

Then

E sup
δ
| (a) | ≤ 1

T

T∑
j=0

sup
δ

∣∣λj (δ − %, ξ)λ0
j (θ)

∣∣E ∣∣∣∣∣ 1

N

N∑
i=1

T−j∑
`=1

Ai,`,`

∣∣∣∣∣ ,
where

V ar

[
1

N

N∑
i=1

T−j∑
`=1

Ai,`,`

]
=

1

N
V ar

[
T−j∑
`=1

Ai,`,`

]
with

V ar

[
T−j∑
`=1

Ai,`,`

]
=

T−j∑
`=1

V ar [Ai,`,`] +

T−j∑
`=1

∑
`′ 6=`

Cov [Ai,`,`, Ai,`′,`′ ] .

37



Now V ar [Ai,`,`] is

1

T 2

T∑
r=1

T∑
r′=1

 E
[
z2`∆1−%

r zr∆
1−%
r′ zr′ε

2
i`λ
−1
r

(
L; θ

(−1)
0

)
εirλ

−1
r′

(
L; θ

(−1)
0

)
εir′

]
−E

[
z`εi`∆

1−%
r zrλ

−1
r

(
L; θ

(−1)
0

)
εir

]
E
[
z`εi`∆

1−%
r′ zr′λ

−1
r′

(
L; θ

(−1)
0

)
εir′

] 
=

1

T 2

T∑
r=1

T∑
r′=1

 E
[
z2`∆1−%zr∆1−%zr′

]
E
[
ε2i`λ

−1
r

(
L; θ

(−1)
0

)
εirλ

−1
r′

(
L; θ

(−1)
0

)
εir′

]
−E

[
εi`λ

−1
r

(
L; θ

(−1)
0

)
εir

]
E
[
z`∆

1−%
r zr

]
E
[
εi`λ

−1
r′

(
L; θ

(−1)
0

)
εir′

]
E
[
z`∆

1−%
r′ zr′

] 
=

1

T 2

T∑
r=1

T∑
r′=1


(
E
[
z2`
]
E
[
∆1−%zr∆1−%zr′

]
+ 2E

[
z`∆

1−%zr
]
E
[
z`∆

1−%zr′
])

×
(
E
[
ε2i`
]
E
[
λ−1
r

(
L; θ

(−1)
0

)
εirλ

−1
r′

(
L; θ

(−1)
0

)
εir′

]
+ 2E

[
εi`λ

−1
r

(
L; θ

(−1)
0

)
εir

]
E
[
εi`λ

−1
r′

(
L; θ

(−1)
0

)
εir′

])
−E

[
εi`λ

−1
r

(
L; θ

(−1)
0

)
εir

]
E
[
z`∆

1−%zr
]
E
[
εi`λ

−1
r′

(
L; θ

(−1)
0

)
εir′

]
E
[
z`∆

1−%zr′
]


and

∑T−j
`=1 V ar [Ai,`,`] is, using Lemma 8 (omitting the logarithmic terms),

O

 1

T 2

T−j∑
`=1

T∑
r=1

T∑
r′=1


(
|r − r′|2(%−1)−1

+ + |r − r′|%−2
+ + |r − `|%−2|r′ − `|%−2

)
×
(
|r − r′|2(δ0−1)−1

+ + |r − r′|δ0−2
+ + |r − `|δ0−2|r′ − `|δ0−2

) 


= O
(
log T + T 2(%−1)+2(δ0−1)−1

)
,

while using a similar argument

Cov [Ai,`,`, Ai,`′,`′ ]

=
1

T 2

T∑
r=1

T∑
r′=1

 E
[
z`z`′∆

1−%
r zr∆

1−%
r′ zr′εi`εi`′λ

−1
r

(
L; θ

(−1)
0

)
εirλ

−1
r′

(
L; θ

(−1)
0

)
εir′
]

−E
[
z`εi`∆

1−%
r zrλ

−1
r

(
L; θ

(−1)
0

)
εir

]
E
[
z`′εi`′∆

1−%
r′ zr′λ

−1
r′

(
L; θ

(−1)
0

)
εir′
] 

=
1

T 2

T∑
r=1

T∑
r′=1

{
E [z`z`′∆

1−%zr∆
1−%zr′ ]E

[
εi`εi`′∆

1−δ0
r+1 εir∆

1−δ0
r+1 εir′

]
−E

[
εi`λ

−1
r

(
L; θ

(−1)
0

)
εir

]
E [z`∆

1−%
r zr]E

[
εi`′λ

−1
r′

(
L; θ

(−1)
0

)
εir′
]
E
[
z`′∆

1−%
r′ zr′

] }

=
1

T 2

T∑
r=1

T∑
r′=1



(E [z`z`′ ]E [∆1−%zr∆
1−%zr′ ] + E [z`∆

1−%zr]E [z`′∆
1−%zr′ ] + E [z`′∆

1−%zr]E [z`∆
1−%zr′ ])

×


E [εi`εi`′ ]E

[
λ−1
r

(
L; θ

(−1)
0

)
εirλ

−1
r′

(
L; θ

(−1)
0

)
εir′
]

+E
[
εi`λ

−1
r

(
L; θ

(−1)
0

)
εir

]
E
[
εi`′λ

−1
r′

(
L; θ

(−1)
0

)
εir′
]

+E
[
εi`′λ

−1
r

(
L; θ

(−1)
0

)
εir

]
E
[
εi`λ

−1
r′

(
L; θ

(−1)
0

)
εir′
]


−E
[
εi`λ

−1
r

(
L; θ

(−1)
0

)
εir

]
E [z`∆

1−%zr]E
[
εi`′λ

−1
r′

(
L; θ

(−1)
0

)
εir′
]
E [z`′∆

1−%zr′ ]


and using Lemma 8

∑T−j
`=1

∑
`′ 6=`Cov [Ai,`,`, Ai,`′,`′ ] is

O

 1

T 2

T−j∑
`=1

T−j∑
`′=1

T∑
r=1

T∑
r′=1


(

|`− `′|−2
(
|r − r′|2(%−1)−1

+ + |r − r′|%−2
+

)
+|r − `|%−2|r′ − `′|%−2 + |r′ − `|%−2|r − `′|%−2

)
×
(

|`− `′|−2
(
|r − r′|2(δ0−1)−1 + |r − r′|δ0−2

+

)
+|r − `|δ0−2|r′ − `′|δ0−2 + |r − `′|δ0−2|r′ − `|δ0−2

)



= O
(
log T + T 2(%−1)+2(δ0−1)−1

)
.
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Then, using
∣∣λj (δ − %, ξ)λ0

j (θ)
∣∣ ≤ Cj%+δ0−2δ−2,

E sup
δ
| (a) | ≤ 1

T

T∑
j=0

sup
δ

∣∣λj (δ − %, ξ)λ0
j (θ)

∣∣E ∣∣∣∣∣ 1

N

N∑
i=1

T−j∑
`=1

Ai,`,`

∣∣∣∣∣
= O

(
N−1

(
log T + T 2(%−1)+2(δ0−1)−1

)(
T−2 + sup

δ
T 2(%−1)+2(δ0−1)−4δ

))1/2

= o (1) +O
(
N−1T 4(%−1)+4(δ0−1)−1−4δ

)1/2
= o (1)

since δ0 − 1 < δ/2 and %− 1 < δ/2, using Assumption B∗.1.

For (b) a similar result is obtained using summation by parts as in the proof of the bound
for (b2) in Lemma 1. First, we can express (b) = (b1) + (b2) with

(b1) =
2λ0

T (θ)

NT

T−1∑
j=0

λj (δ − %, ξ)
T∑

k=j+1

T−j∑
`=k−j+1

N∑
i=1

Ai,`,`−(k−j)

(b2) =
2

NT

T−1∑
j=0

λj (δ − %, ξ)
T−1∑
k=j+1

(λ0
k+1 (θ)− λ0

k (θ))
k∑

r=j+1

T−j∑
`=r−j+1

N∑
i=1

Ai,`,`−(r−j),

so that we find that that E supδ |(b1)| is bounded by

KT−1T δ0−δ−1

T∑
j=1

j%−δ−1TN−1/2
(
log T + T 2(%−1)+2(δ0−1)−1

)1/2

≤ KN−1/2T δ0−δ−1
(
1 + T %−δ

) (
log T + T 2(%−1)+2(δ0−1)−1

)1/2

≤ K
{
N−1

(
T 2(δ0−1)−2δ + T 2(δ0+%−1)−4δ

) (
log T + T 2(%−1)+2(δ0−1)−1

)}1/2

which is o (1) by using Assumptions B∗.1-3 while E supδ |(b2)| is bounded by

KT−1N−1/2

T−1∑
j=0

j%−δ−1

T−1∑
k=j+1

kδ0−δ−2T
(
log T + T 2(%−1)+2(δ0−1)−1

)1/2

≤ KT−1N−1/2

T−1∑
j=0

jδ0+%−2δ−2T
(
log T + T 2(%−1)+2(δ0−1)−1

)1/2

≤ KN−1/2
(
1 + T %+δ0−2δ−1

) (
log T + T 2(%−1)+2(δ0−1)−1

)1/2
,

which is o (1) under Assumptions B∗.1-3.

The bounds for the other terms on the rhs of (31) follow in a similar form, noting that
the presence of cross section averages introduce a further N−1/2 factor in the probability
bounds. �
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Lemma 4. Under the assumptions of Theorem 1, as (N, T )j →∞,

sup
θ∈Θ1∪Θ2∪Θ3

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

λ0
t (L; θ)

(
εit − φ̂iε̄t

)
τt(θ)(εi0 − φ̂iε̄0)

∣∣∣∣∣ = op (1) .

Proof of Lemma 4. Opening the double product λ0
t (L; θ)

(
εit − φ̂iε̄t

)
(εi0− φ̂iε̄0) into four

different terms, we study them in turn. First note that the expectation of

1

NT

N∑
i=1

T∑
t=1

λ0
t (L; θ) εitτt(θ)εi0 (32)

is
σ2

T

T∑
t=1

τt(θ)λ
0
t (θ) = O

(
T−1 log T + T δ0−2δ−1

)
= o (1)

uniformly in δ by Assumption B∗.3, so we can show that (32) is negligible by showing that

sup
θ∈Θ1∪Θ2∪Θ3

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

t∑
j=0

λ0
j (θ) τt(θ)

{
εit−jεi0 − σ2 (t = j)

}∣∣∣∣∣ = op (1) .

The term inside the absolute value is

1

T

T∑
t=1

λ0
t (θ) τt(θ)

1

N

N∑
i=1

{
ε2
i0 − σ2

}
+

1

T

T∑
t=1

t−1∑
j=0

λ0
j (θ) τt(θ)

1

N

N∑
i=1

εit−jεi0

where the first term is Op

(
N−1/2

(
T−1 + T δ0−2δ−1

))
= op (1) , uniformly in δ, while the second

can be written using summation by parts as

1

T

T∑
j=0

T∑
k=j+1

λ0
j (θ) τk(δ)

1

N

N∑
i=1

εik−jεi0

=
τT (δ)

T

T∑
j=0

λ0
j (θ)

1

N

N∑
i=1

T∑
k=j+1

εik−jεi0

− 1

NT

N∑
i=1

T∑
j=0

λ0
j (θ)

T∑
k=j+1

{τk+1(δ)− τk(δ)}
1

N

N∑
i=1

k∑
r=j+1

εir−jεi0

= (b1) + (b2) .

Then,

E sup
δ
|b1| ≤ KT−δ−1

T∑
j=0

jδ0−δ−1N−1/2 (T − j)1/2

≤ KT−δ−1
(
1 + T δ0−δ

)
N−1/2T 1/2 ≤ KN−1/2

(
T−δ−1/2 + T δ0−2δ−1/2

)
= o (1) ,
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by Assumption B∗.3, because Var
[
N−1

∑N
i=1

∑T
k=j+1 εik−jεi0

]
≤ KN−1/2 (T − j)1/2 . Simi-

larly,

E sup
δ
|b1| ≤ KT−1

T∑
j=0

jδ0−δ−1

T∑
k=j+1

k−δ−1N−1/2 (k − j)1/2

≤ KT−1

T∑
j=0

jδ0−δ−1T−δ+1/2N−1/2

≤ KN−1/2
(
T−1 + T δ0−δ−1

)
T−δ+1/2 ≤ KN−1/2

(
T−δ−1/2 + T δ0−2δ−1/2

)
= o (1) .

The second term is

− 1

NT

N∑
i=1

T∑
t=1

λ0
t (L; θ) φ̂iε̄tτt(θ)εi0 = − 1

T

T∑
t=1

λ0
t (L; θ) ε̄tτt(θ)

1

N

N∑
i=1

φ̂iεi0 = op (1)

because we can show that

sup
θ∈Θ1∪Θ2∪Θ3

∣∣∣∣∣ 1

T

T∑
t=1

λ0
t (L; θ) ε̄tτt(θ)

∣∣∣∣∣ = op (1)

using the same method as for bounding (32) , while

1

N

N∑
i=1

φ̂iεi0 =
1

N

N∑
i=1

γi
γ̄
εi0 +

1

N

N∑
i=1

ηiεi0

= Op

(
N−1/2

)
+Op(T

2%+2δ0−6 + T−1 +N−1T 4δ0−6 +N−2)1/2 = op (1)

by Lemma 1 and Cauchy-Schwarz inequality.

The third term,

− 1

NT

N∑
i=1

T∑
t=1

λ0
t (L; θ) εitτt(θ)φ̂iε̄0 = − ε̄0

NT

N∑
i=1

T∑
t=1

λ0
t (L; θ) εitτt(θ)

(
γi
γ̄

+ ηi

)
is negligible because, on the one hand

sup
θ∈Θ1∪Θ2∪Θ3

∣∣∣∣∣ ε̄0

γ̄NT

N∑
i=1

T∑
t=1

λ0
t (L; θ) εitτt(θ)γi

∣∣∣∣∣ = op (1)

because ε̄0 = Op

(
N−1/2

)
, γ̄−1 = Op (1) and the average can be bounded as (32) since γi is

independent of εit, which is zero mean, and on the other hand under Assumption B∗,∣∣∣∣∣ ε̄0

NT

N∑
i=1

T∑
t=1

λ0
t (L; θ) εitτt(θ)ηi

∣∣∣∣∣ ≤ |ε̄0|

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

(
λ0
t (L; θ) εit

)2
τ 2
t (θ)

∣∣∣∣∣
1/2 ∣∣∣∣∣ 1

N

N∑
i=1

η2
i

∣∣∣∣∣
1/2

= op (1)
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because we can show that

sup
θ∈Θ1∪Θ2∪Θ3

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

(
λ0
t (L; θ) εit

)2
τ 2
t (θ)

∣∣∣∣∣ = Op

(
1 + T 2(δ0−2δ)−1

)
using again the same methods, |ε̄0| = Op

(
N−1/2

)
and

∣∣∣ 1
N

∑N
i=1 η

2
i

∣∣∣ = Op(T
2%+2δ0−6 + T−1 +

N−1T 4δ0−6 +N−2) by Lemma 1.

Finally, the last term,

1

NT

N∑
i=1

T∑
t=1

λ0
t (L; θ) φ̂2

i ε̄tτt(θ)ε̄0 = ε̄0
1

T

T∑
t=1

λ0
t (L; θ) ε̄tτt(θ)

1

N

N∑
i=1

φ̂2
i

= Op

(
N−1/2

)
op (1)Op (1) = op (1) ,

is also negligible, proceeding as before. �

Lemma 5. Under the conditions of Theorem 2,

− 2√
NT

N∑
i=1

T∑
t=1

τt(θ0) (εi0 − φiε̄0)∗χt (L; ξ0) (εit − φiε̄t) = −2σ2

(
N

T

)1/2 T∑
t=1

τt(θ0)χt (ξ0)+op (1) .

Proof of Lemma 5. The main term on the left hand side converges to its expectation,

− 2√
NT

N∑
i=1

T∑
t=1

E [τt(θ0)εi0 ∗ χt (L; ξ0) εit] = −2σ2

(
N

T

)1/2 T∑
t=1

τt(θ0)χt (ξ0) ,

since its variance is

1

NT

N∑
i=1

T∑
t=1

T∑
r=1

τt(θ0)τr(θ0)Cov [εi0 ∗ χt (L; ξ0) εit, εi0 ∗ χr (L; ξ0) εir]

=
1

T

T∑
t=1

τt(θ0)2

[
σ4

(
t∑

j=1

j−2 + t−2

)
+ {κ4}

]

+
1

T

T∑
t=1

t∑
r=1

τt(θ0)τr(θ0)

[
σ4

(
t∑

j=0

j−1 (t− r + j)−1 + t−1r−1

)
+ κ4t

−21 {t = r}

]

= O
(
T−1 + T−2δ0

)
+O

(
T−1

T∑
t=1

t∑
r=1

(rt)−δ0
(
|t− r|−1

+ log t+ (tr)−1))

= O
(
T−1 + T−2δ0

)
+O

(
T−1

T∑
t=1

t−δ0
(
t−δ0 log2 t+ t−1 log t

))
= O

(
T−1 log4 T + T−2δ0 log2 T

)
,
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which is o (1) as T →∞, while for the other three terms, we can check in turn that

− 2√
NT

N∑
i=1

T∑
t=1

τt(θ0)εi0φ̂iχt (L; ξ0) ε̄t = Op

(
1√
NT

N∑
i=1

εi0φ̂i

T∑
t=1

τt(θ0)χt (L; ξ0) ε̄t

)

= Op

(
(T/N)−1/2 1

N

N∑
i=1

εi0φ̂i

T∑
t=1

τt(θ0)χt (L; ξ0) ε̄t

)
= Op

(
(T/N)−1/2N−1/2

{
1 + T 1/2−δ0 log1/2 T

})
which is Op

(
T−1/2 + T−δ0 log1/2 T

)
= op (1) because

T∑
t=1

τt(θ0)χt (L; ξ0) ε̄t = Op

N−1/2

{
T∑
t=1

τt(θ0)2 log t

}1/2


= Op

(
N−1/2

{
1 + T 1/2−δ0 log1/2 T

})
,

while∣∣∣∣∣ 2√
NT

N∑
i=1

T∑
t=1

τt(θ0)φ̂iε̄0χt (L; ξ0) εit

∣∣∣∣∣ ≤ |ε̄0|

∣∣∣∣∣ 2

N

N∑
i=1

φ̂iT
−1/2

T∑
t=1

τt(θ0)χt (L; ξ0) εit

∣∣∣∣∣
= Op

(
(NT )−1/2

{
1 + T 1/2−δ0 log1/2 T

})
= op (1) ,

using 1
N

∑N
i=1 φ̂i = Op (1) , |ε̄0| = Op

(
N−1/2

)
and the same argument as for N = 1, and

finally

2√
NT

N∑
i=1

T∑
t=1

τt(θ0)ε̄0φ̂
2
iχt (L; ξ0) ε̄t =

√
Nε̄0

1

N

N∑
i=1

φ̂2
iT
−1/2

T∑
t=1

τt(θ0)χt (L; ξ0) ε̄t

= Op

(NT )−1/2

{
T∑
t=1

τt(θ0)2 log t

}1/2


= Op

(
N−1/2

{
T−1/2 + T−δ0 log1/2 T

})
= op (1) ,

and the proof is completed. �

Lemma 6. Under the conditions of Theorem 2,

2√
NT

N∑
i=1

T∑
t=1

{
(εit − φ̂iε̄t)

[
χt (L; ξ0) εit − φ̂iχt (L; ξ0) ε̄t

]}
→d N (0, 4B (ξ0)) .

Proof of Lemma 6. The left hand side can be written as

2√
NT

N∑
i=1

T∑
t=1

{
εitχt (L; ξ0) εit − εitφ̂iχt (L; ξ0) ε̄t − φ̂iε̄tχt (L; ξ0) εit + φ̂2

i ε̄t ∗ χt (L; ξ0) ε̄t

}
(33)
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where Proposition 2 in Robinson and Velasco (2015) shows the asymptotic N (0, 4B (ξ0))
distribution of the first term as (N, T )j → ∞, and we now show that the remainder terms
are negligible. Then the second term on (33) can be written as

2√
NT

1

N

N∑
i=1

N∑
j=1

T∑
t=1

εit

{
γi
γ̄

+ ηi

}
χt (L; ξ0) εjt,

where 2 (NT )−1/2N−1
∑N

i=1

∑N
j=1

∑T
t=1 εitγiχt (L; ξ0) εjt has zero expectation and variance

proportional to

1

NT

1

N2

N∑
i=1

N∑
j=1

T∑
t=1

N∑
i′=1

N∑
j′=1

T∑
t′=1

E [εitγiχt (L; ξ0) εjtεi′t′γi′χt′ (L; ξ0) εj′t′ ]

=
1

NT

1

N2

N∑
i=1

N∑
j=1

T∑
t=1

N∑
i′=1

N∑
j′=1

T∑
t′=1

E [γiγi′ ]E [εitχt (L; ξ0) εjtεi′t′χt′ (L; ξ0) εj′t′ ]

=
1

NT

1

N2

N∑
i=1

N∑
j=1

T∑
t=1

E
[
γ2
i

]
E
[
ε2
it

]
E
[
{χt (L; ξ0) εjt}2] = O

(
N−1

)
= o (1)

so this term is op (1) as N → ∞. Then the other term depending on ηi is also negligible
because, using Cauchy-Schwarz inequality,∣∣∣∣∣ 2√
NT

1

N

N∑
i=1

N∑
j=1

T∑
t=1

εitηiχt (L; ξ0) εjt

∣∣∣∣∣ ≤ 2√
NT

 1

N

N∑
i=1

η2
i

1

N

N∑
i=1

(
N∑
j=1

T∑
t=1

εitχt (L; ξ0) εjt

)2
1/2

= Op

(
(NT )−1/2 (T 2%+2δ0−6 + T−1)1/2 (NT )1/2

)
= Op

(
(T 2%+2δ0−6 + T−1)1/2

)
= op (1)

because

E

( N∑
j=1

T∑
t=1

εitχt (L; ξ0) εjt

)2
 =

N∑
j=1

N∑
j′=1

T∑
t=1

T∑
t′=1

E [εitεit′χt (L; ξ0) εjtχt′ (L; ξ0) εj′t′ ]

=
N∑
j=1

T∑
t=1

E
[
ε2
it

]
E
[
{χt (L; ξ0) εjt}2] = O (NT ) .

The third term in (33) is also op (1) since it can be written as

2√
NT

N∑
i=1

T∑
t=1

χt (L; ξ0) εitφ̂iε̄t =
2√
NT

N∑
i=1

T∑
t=1

{
γi
γ̄

+ ηi

}
χt (L; ξ0) εitε̄t
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where 2 (NT )−1/2∑N
i=1

∑T
t=1 γiχt (L; ξ0) εitε̄t has zero expectation and variance

2

NT

1

N2

N∑
i=1

N∑
j=1

T∑
t=1

N∑
i′=1

N∑
j′=1

T∑
t′=1

E [γiγi′ ]E [χt (L; ξ0) εitεjtχt (L; ξ0) εi′t′εj′t′ ]

=
2

NT

1

N2

N∑
i=1

N∑
j=1

T∑
t=1

E
[
γ2
i

]
E
[
ε2
jt

]
E
[
{χt (L; ξ0) εit}2] = O

(
N−1

)
while∣∣∣∣∣ 2√

NT

N∑
i=1

T∑
t=1

ηiχt (L; ξ0) εitε̄t

∣∣∣∣∣ ≤ 2N√
NT

 1

N

N∑
i=1

η2
i

1

N

N∑
i=1

(
T∑
t=1

χt (L; ξ0) εitε̄t

)2
1/2

= Op

(
N1/2T−1/2(T 2%+2δ0−6 + T−1)1/2

(
TN−1

)1/2
)

= Op

(
(T 2%+2δ0−6 + T−1)1/2

)
= op (1)

because

E

( T∑
t=1

χt (L; ξ0) εitε̄t

)2
 =

1

N2

T∑
t=1

T∑
t′=1

N∑
j=1

N∑
j′=1

E [χt (L; ξ0) εitεjtχt′ (L; ξ0) εit′εj′t′ ]

=
1

N2

T∑
t=1

N∑
j=1

E
[
ε2
jt

]
E
[
{χt (L; ξ0) εit}2] = O

(
TN−1

)
.

Finally, the fourth term in (33) is also negligible, since

2√
NT

N∑
i=1

T∑
t=1

φ̂2
i ε̄tχt (L; ξ0) ε̄t =

2√
NT

1

N

N∑
i=1

φ̂2
i

1

N

N∑
a=1

N∑
b=1

T∑
t=1

εatχt (L; ξ0) εbt

= Op

(
(NT )−1/2 T 1/2

)
= Op

(
N−1/2

)
= op (1) ,

since N−1
∑N

i=1 φ̂
2
i = Op (1) and N−1

∑N
a=1

∑N
b=1

∑T
t=1 εatχt (L; ξ0) εbt is Op

(
T 1/2

)
because it

has zero expectation and variance

1

N2

N∑
a=1

N∑
b=1

N∑
a′=1

N∑
b′=1

T∑
t=1

T∑
t′=1

E [εatεa′t′χt (L; ξ0) εbtχt′ (L; ξ0) εb′t′ ]

=
1

N2

N∑
a=1

N∑
b=1

T∑
t=1

E
[
ε2
at

]
E
[
{χt (L; ξ0) εbt}2] = O (T ) . �

Lemma 7. Under the assumptions of Theorem 2 and for θ →p θ0,

L̈N,T (θ)→p L̈N,T (θ0).
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Proof of Lemma 7. This follows as Theorem 2 of Hualde and Robinson (2011), using the
same techniques as in the proof of Theorem 1 to bound uniformly the initial condition and
projection terms in a neighborhood of θ0. �

Lemma 8. Under Assumptions A and B∗.1, for θ ∈ Θ, as T →∞,

E [∆frλt−1 (L; θ) ft]

= O
(
|t− r|2(%−1)−δ

+ (log |t− r|+)1{%=1}+1{%=δ} + |t− r|%−1−δ
+ + |t− r|%−2

+

)
E
[
λ−1
t−1

(
L; θ

(−1)
0

)
εirλ

0
t−1 (L; θ) εit

]
= O

(
|t− r|2(δ0−1)−δ

+ (log |t− r|+)1{δ0=1}+1{δ0=δ} + |t− r|δ0−1−δ
+ + |t− r|δ0−2

+

)
,

where |a|+ = max{|a|, 1}, 1 {·} is the indicator function and

E
[
∆1−%zrzt

]
= O

(
|t− r|%−2

+

)
E
[
λ−1
t−1

(
L; θ

(−1)
0

)
εirεit

]
= O

(
|t− r|δ0−2

+

)
.

Proof of Lemma 8. We only prove the statement for E [∆frλt−1 (L; θ) ft], since the rest
follow similarly. Under Assumption A.2, if t > r

E [∆frλt−1 (L; θ) ft] = E
[
∆1−%
r zrλt−1 (L; δ − %, ξ) zt

]
= σ2

v

r∑
j=0

dj (1− %) cj+t−r (δ − %) ,

where dj (a) =
∑j

k=0 ϕ
f
kπj−k(a) ∼ cj−a−1 and cj (a) = cj (a, ξ) =

∑j
k=0 ϕ

f
kλj−k(a, ξ) ∼ cj−a−1

as j →∞, dj (0) = ϕfj and
∑∞

j=0 dj (a) =
∑∞

j=0 cj (a) = 0 if a > 0, ξ ∈ Ξ, so that the absolute
value of the last expression is bounded by, % ≥ 1,

K
r∑
j=0

|dj(1− %)| (j + t− r)%−δ−1 ≤ K (t− r)%−δ−1
t−r∑
j=0

|dj(1− %)|+K
r∑

j=t−r+1

j2%−δ−3

≤ K (t− r)%−δ−1 (t− r)%−1 (log |t− r|+)1{%=1} +K (t− r)2(%−1)−δ

= O
(

(t− r)2(%−1)−δ (log |t− r|+)1{%=1}
)

since % − 1 < δ, % < 3/2 and 2(% − 1) − δ < 0 by Assumption B∗.1, and dj(1 − %) ∼ cj%−2,
% > 1, while dj(0) is summable.

If % < 1, then using summation by parts E [∆frλt−1 (L; θ) ft] is equal to

σ2
v

r−1∑
j=0

{cj+t−r+1 (δ − %)− cj+t−r (δ − %)}
j∑

k=0

dk (1− %) + ct (δ − %)
r∑

k=0

dk (1− %)

= O

(
(t− r)%−δ−2

t−r∑
j=0

j%−1 +
r−1∑
j=t−r

j2%−3−δ + t%−δ−1

)
= O

(
(t− r)2(%−1)−δ + (t− r)%−δ−1

)
,
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using that cj+t−r+1 (δ − %)− cj+t−r (δ − %) = cj+t−r+1 (δ − %+ 1) and
∑r

k=0 dk (1− %) ≤ K.

If r > t

E [∆frλt−1 (L; θ) ft] = σ2
v

t∑
j=0

dj+r−t (1− %) cj (δ − %) ,

so that the absolute of the last expression is bounded by, % ≥ δ,

K
t∑

j=0

(j + r − t)%−2 |cj(δ − %)| ≤ K (r − t)%−2
r−t∑
j=0

|cj(δ − %)|+K

t∑
j=r−t+1

j2%−δ−3

≤ K (r − t)%−2 (r − t)%−δ (log |t− r|+)1{%=δ} +K (r − t)2(%−1)−δ

= O
(

(r − t)2(%−1)−δ (log |t− r|+)1{%=δ}
)
.

since %− 1 < δ and % < 3/2 and cj(δ − %) ∼ cj%−1−δ, % > δ.

If % < δ, then using summation by parts E [∆frλt−1 (L; θ) ft] is equal to

σ2
v

t−1∑
j=0

{cj+r−t+1 (1− %)− cj+r−t (1− %)}
j∑

k=0

dk (δ − %) + cr (1− %)
t∑

k=0

dk (δ − %)

= O

(
(r − t)%−3

r−t∑
j=0

j%−δ +
t−1∑
j=r−t

j2%−3−δ + r%−2

)
= O

(
(r − t)2(%−1)−δ + (r − t)%−2

)
.

Similarly, if r = t

E [∆ftλt−1 (L; θ) ft] = σ2
v

t∑
j=0

cj (1− %) dj (δ − %) = O (1) ,

as the absolute value of the last expression is bounded by
∑r

j=0 j
2(%−1)−δ−1 ≤ K, since

2(%− 1)− δ < 0 by Assumption B∗.1. �

Lemma 9. Under the Assumptions of Theorem 4,

T∑
t=1

zNT,t →d N
(
0, 2σ̄8 (p+ 1)

)
.

where zNT,t and σ̄2 are defined in (26) and (8) respectively.

Proof of Lemma 9. Since zNT,t is a martingale difference sequence given the independence
of εit, we have

Var

[
T∑
t=1

zNT,t

]
=

T∑
t=1

Var [zNT,t] =
T∑
t=1

E
[
z2
NT,t

]
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where, fully expanding matrix calculations using ε̇it = χt (L) εit =
∑t

j=1 χjεit−j, with χj =(
χ1
j , . . . , χ

p+1
j

)′
,

Var [zNT,t] =
4

NT 2

N∑
i=1

σ2
iE

( t−1∑
s=1

εisε̇
′
itB
−1
0 ε̇is

)2


=
4

NT 2

N∑
i=1

σ2
i

t−1∑
s=1

t−1∑
r=1

E
[
εisεirε̇

′
itB
−1
0 ε̇isε̇

′
itB
−1
0 ε̇ir

]
=

4

NT 2

p+1∑
a,b,c,d=1

B−1
a,bB

−1
c,d

N∑
i=1

σ2
i

t−1∑
s=1

t−1∑
r=1

E
[
εisεirε̇

a
itε̇

b
isε̇

c
itε̇

d
ir

]
=

4

NT 2

p+1∑
a,b,c,d=1

B−1
a,bB

−1
c,d

N∑
i=1

σ2
i

t−1∑
s=1

E
[
ε2
is

]
E [ε̇aitε̇

c
it]E

[
ε̇bisε̇

d
is

]
(1 + o (1))

=
4

NT 2

p+1∑
a,b,c,d=1

B−1
a,bB

−1
c,d

N∑
i=1

σ8
i

t∑
j=1

χajχ
c
j

t−1∑
s=1

s∑
k=1

χbkχ
d
k (1 + o (1)) ,

(omitting lower order contributions from other pairwise moments and higher order cumulant
combinations) which is

4

NT 2

p+1∑
a,b,c,d=1

B−1
a,bB

−1
c,d

N∑
i=1

σ8
i

t∑
j=1

χajχ
c
j

t−1∑
k=1

(t− k)χbkχ
d
k (1 + o (1))

=
4t

NT 2

N∑
i=1

σ8
i trace

{
B−1

0 B0B
−1
0 B0

}
(1 + o (1))

=
4t

NT 2

N∑
i=1

σ8
i (p+ 1) (1 + o (1))

since
∑t−1

k=1 (t− k)χbkχ
d
k = t

∑t−1
k=1 χ

b
kχ

d
k (1 + o (1)) as t → ∞, because χbk = O (k−1) . There-

fore,

Var

[
T∑
t=1

zNT,t

]
→ 4 (p+ 1)

NT 2

N∑
i=1

σ8
i

T∑
t=1

t→ 2σ̄8 (p+ 1) ,

as (N, T )j →∞, and to apply a standard CLT, e.g. Brown (1971) it remains to show that

T∑
t=1

E
[
z2
NT,t

∣∣ IN,t−1

]
→p Var

[
T∑
t=1

zNT,t

]
=

T∑
t=1

E
[
z2
NT,t

]
, (34)

where IN,t−1 = σ (εit−1, εit−2, . . . ; i = 1, . . . , N) and that the Lindeberg condition holds . For
the first condition, note that

E
[
z2
NT,t

∣∣ IN,t−1

]
=

4

NT 2

N∑
i=1

σ2
i

(
t−1∑
s=1

εisε̇
′
itB
−1
0 ε̇is

)2
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and therefore, proceeding as in the proof of Theorem 4, the expectation of the lhs of (34) is

4

NT 2

T∑
t=1

N∑
i=1

σ2
iE

( t−1∑
s=1

εisε̇
′
itB
−1
0 ε̇is

)2
 =

4

NT 2

N∑
i=1

σ2
i

T∑
t=1

t−1∑
s=1

t−1∑
r=1

E
[
εisε̇

′
itB
−1
0 ε̇isεirε̇

′
itB
−1
0 ε̇ir

]
=

4

NT 2

N∑
i=1

σ8
i

T∑
t=1

t ∗ trace
{
B−1

0 B0B
−1
0 B0

}
(1 + o (1))

= 2σ̄(8) (p+ 1) + o (1)

= Var

[
T∑
t=1

zNT,t

]
+ o (1)

while its variance is

16

N2T 4

N∑
i=1

σ4
i

T∑
t1=1

T∑
t2=1

Cov

(t1−1∑
s=1

εisε̇
′
it1
B−1

0 ε̇is

)2

,

(
t2−1∑
s=1

εisε̇
′
it2
B−1

0 ε̇is

)2
 (35)

=
16

N2T 4

N∑
i=1

σ4
i

T∑
t1=1

T∑
t2=1

t1−1∑
s1=1

t1−1∑
s2=1

t2−1∑
s3=1

t2−1∑
s4=1

E
[
εis1 ε̇

′
it1
B−1

0 ε̇is1εis2 ε̇
′
it1
B−1

0 ε̇is2εis3 ε̇
′
it2
B−1

0 ε̇is3εis4 ε̇
′
it2
B−1

0 ε̇is4
]

minus the contribution of E
[(∑t−1

s=1 εisε̇
′
itB
−1
0 ε̇is

)2
]
E

[(∑t′−1
s′=1 εis′ ε̇

′
it′B

−1
0 ε̇is′

)2
]
. The expec-

tation can be expressed as a linear combination of products of second order moments and
higher order cumulants of εit (noting that the elements of ε̇it are linear combinations of
ε̇is−j, j = 1, 2, . . . , t), of which the ones providing the contributions with largest order
of magnitude are those expressed as (the product of six) pairwise expectations among
{ε̇it1 , ε̇it1 , ε̇it2 , ε̇it2 , εis1 , ε̇is1 , . . . , εis4 , ε̇is4} . All of them would imply at least 4 expectations
with bounds of the type |sj − sk|−1

+ log T and/or |th − sj|−1
+ log T, j, k = 1, . . . , 4, j 6= k;h =

1, 2, (because ε̇it1 and ε̇it2 appear twice each, and can be combined in two pairwise expecta-
tions of the form E

[
ε̇2
ith

]
, considering p = 0 wlog, and because the product of expectations

term, involving only 2 such bounds, is removed in the covariance calculation). All these
combinations of 4 bounds imply that the contribution of at least 2 time summations out of 6
(in {t1, t2, s1, . . . , s4}) can be bounded by O

(
log4 T

)
, while the contribution from the other

4 summations is O (T 4) , so that (35) can be bounded by

K

N2T 4

N∑
i=1

σ4
i T

4 log4 T = O
(
N−1 log4 T

)
= o (1)

as (N, T )j →∞, and (34) holds.

To check Lindeberg condition we show the sufficient condition

T∑
t=1

E
[
z4
NT,t

]
→ 0, (36)
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as (N, T )j →∞. Denoting µi4 = E [ε4
it] <∞, we write

T∑
t=1

E
[
z4
NT,t

]
=

16

N2T 4

N∑
i=1

µi4

T∑
t=1

E

4
j=1

t−1∑
sj=1

εisj ε̇
′
itB
−1
0 ε̇isj

 .
The expectation involves again second order moments and higher order cumulants of εit of
which the ones providing the largest magnitude contributions are again those expressed as
(products of six) pairwise expectations among {ε̇it, ε̇it, ε̇it, ε̇it, εis1 , ε̇is1 , . . . , εis4 , ε̇is4} . All of
them would imply at least 4 expectations with bounds of the type |sj − sk|−1

+ log T and/or

|t− sj|−1
+ log T, j, k = 1, . . . , 4, j 6= k (because ε̇it appears 4 times and can be combined in

two pairwise expectations E [ε̇2
it] considering p = 0 wlog). These 4 bounds imply that the

contribution of at least 2 time summations out of 5 (in {t, s1, . . . , s4}) can be bounded by
O
(
log4 T

)
, and the contribution from the other 3 summations is O (T 3) . Then we can bound

T∑
t=1

E
[
z4
NT,t

]
≤ K

NT 4
T 3 log4 T = O

(
N−1T−1 log4N

)
= o (1)

as (N, T )j →∞, so (36) holds and the lemma follows. �

Lemma 10. Under the Assumptions of Theorem 4,

T∑
t=1

(zNT,t − ẑNT,t) = op (1)

where zNT,t is defined in (26) and

ẑNT,t =
2

N1/2T

N∑
i=1

εit(θ̂)
t−1∑
s=1

εis(θ̂)ε̇
′
it(θ̂)B(θ̂)−1ε̇is(θ̂).

Proof of Lemma 10. Note that

εit(θ̂) = λ0
t

(
L; θ̂

)(
εit − φ̂iε̄t

)
− τt(θ̂∗)(εi0 − φ̂iε̄0)− ηiγ̄λt−1

(
L; θ̂

)
ft

so that

εit(θ̂)− εit =
(
θ̂ − θ

)
χt

(
L; θ̂∗

)(
εit − φ̂iε̄t

)
− τt(θ̂∗)(εi0 − φ̂iε̄0)− ηiγ̄λt−1

(
L; θ̂

)
ft

for
∥∥∥θ̂∗ − θ∥∥∥ ≤ ∥∥∥θ̂ − θ∥∥∥ and

ε̇it(θ̂)− ε̇it = χt

(
L; θ̂

)
εit(θ̂)− χt (L; θ0) εit

= χt

(
L; θ̂

)(
εit(θ̂)− εit

)
+
(
χt

(
L; θ̂

)
− χt (L; θ0)

)
εit
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with B(θ̂)−1 = B−1
0 +Op

(∥∥∥θ̂ − θ∥∥∥) .
We analyze one of the terms in which the difference zNT,t − ẑNT,t can be decomposed,

which is one of the critical ones since its analysis can not exploit the martingale difference
structure that can be used to bound the other contributions. Following as in the proof of
Theorem 1, we can write that

2N−1/2

T

T∑
t=1

N∑
i=1

(
εit − εit(θ̂)

) t−1∑
s=1

εisε̇
′
itB
−1
0 ε̇is

=
2N−1/2

T

(
θ̂ − θ

) N∑
i=1

T∑
t=1

χt

(
L; θ̂∗

)(
εit − φ̂iε̄t

) t−1∑
s=1

εisε̇
′
itB
−1
0 ε̇is (37)

−2N−1/2

T

N∑
i=1

(εi0 − φ̂iε̄0)
T∑
t=1

τt(θ̂
∗)

t−1∑
s=1

εisε̇
′
itB
−1
0 ε̇is (38)

−2N−1/2

T

N∑
i=1

ηi

T∑
t=1

γ̄λt−1

(
L; θ̂

)
ft

t−1∑
s=1

εisε̇
′
itB
−1
0 ε̇is. (39)

Then
2N−1/2

T

N∑
i=1

T∑
t=1

t−1∑
s=1

χt (L; θ0) εitεisε̇
′
itB
−1
0 ε̇is

has expectation bounded by

K
N−1/2

T

N∑
i=1

T∑
t=1

t−1∑
s=1

(
|t− s|−2

+ log2 t
)

= O
(
N1/2 log2 T

)
because E

[
εisB

−1
0 ε̇is

]
= 0, and variance bounded by

K

T 2

T∑
t=1

T∑
t′=1

t−1∑
s=1

t′−1∑
s′=1

(
|s− s′|−1

+ |t
′ − s|−1

+ |t
′ − s′|−1

+ log3 T
)

= O
(
log5 T

)
by independence of cross-sections, so using θ̂ − θ = Op

(
(NT )−1/2

)
, the term (37) can be

showed to be Op

(
T−1/2 log3 T

)
= op (1) , since the contribution of the factor φ̂iε̄t can be

treated similarly using Cauchy Schwarz inequality and that E[ε̄2
t ] = O (N−1) .

Next,

2N−1/2

T

N∑
i=1

εi0

T∑
t=1

t−1∑
s=1

τt(θ0)εisε̇
′
itB
−1
0 ε̇is

has expectation bounded by

2N−1/2

T

N∑
i=1

T∑
t=1

t−1∑
s=1

t−δ0
(
s−1 |t− s|−1

+ log t
)

= O
(
N1/2T−1 log2 T

)
= o (1) ,
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and variance bounded by

K

T 2

T∑
t=1

T∑
t′=1

t−1∑
s=1

t′−1∑
s′=1

(tt′)
−δ0
(

t−1s−1
{
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}
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)
= O

(
T−1 log5 T

)
so (38) is op (1) .

Finally, (39) is also op (1) because∣∣∣∣∣2N−1/2

T

N∑
i=1

ηi

T∑
t=1
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′
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′
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= Op
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 = op (1)

using 2(%− δ0) < 1 and Assumption C2 with the bound of Lemma 1, because

E

(
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s=1

λt−1 (L; θ0) ftεisε̇
′
itB
−1
0 ε̇is
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=
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0 ε̇is′

]
≤ K

T∑
t=1

t−1∑
s=1

T∑
t′=1

t′−1∑
s′=1

(
|t− t′|2(%−δ0)−1

+ + |t− t′|%−δ0−1
+

)( |s− t′|−1
+ |t− s′|

−1
+ |s− s′|

−1
+

+ |t− t′|−1
+ |s− s′|

−2
+

)
= O

(
T 2
)
. �

Lemma 11. Under the Assumptions of Theorem 4,

VNT , V
∗
NT →p 2 (p+ 1) σ̄(8)

and under cross-section homoskedasticity, V̄NT , V̄
∗
NT →p 2 (p+ 1)σ8 as (N, T )j →∞.
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Proof of Lemma 11. Under conditional heteroskedasticity it follows from uniform conver-
gence of σ̂2

i to σ2
i and from convergence of N−1

∑N
i=1 σ̂

8
i to σ̄(8). To show those, write
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T

T∑
t=1

ε2
it(θ̂)− σ2

i

=
1

T

T∑
t=1

(
ε2
it(θ̂)− ε2

it

)
+

1

T
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i

)
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where
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because E[v2,i,N ] = 0 and Var[v2,i,N ] = O (T−1) uniformly in i, while
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)
εit
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N1/2T−1/2 log2 T
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because
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N−1/2T−1/2

)
and

∣∣∣χt (L; θ̂∗
)

1
∣∣∣ ≤ K log t uniformly in θ̂∗, so that
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i

∣∣σ̂2
i − σ2

i

∣∣ = op (1)

and supi |σ̂ni − σni | = op (1) for any finite n, and therefore

1

N
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i=1

σ̂8
i − σ̄(8) =

1

N
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σ̂8
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1

N
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σ8
i + o (1) ≤ sup

i

∣∣σ̂8
i − σ8

i

∣∣+ o (1) = op (1) .

Under homoskedasticity we have that

σ̂2 − σ2 =
1

N

N∑
i=1

σ̂2
i −

1

N

N∑
i=1

σ2 ≤ sup
i

∣∣σ̂2
i − σ2

i

∣∣ = op (1) .

and therefore σ̂8−σ̄(8) = op (1) . Then the rest of the proof follows similarly as that of Lemma
10. �
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Table 1: Empirical bias and RMSE of δ̂ and δ̃

Uncorrected estimates, δ̂ Bias-corrected estimates, δ̃ = δ̂ − T−1∇(δ̂)

(N, T): (10, 50) (10, 100) (20, 50) (20, 100) (10, 50) (10, 100) (20, 50) (20, 100)

% = 0.4 :
δ0 = 0.3 Bias 0.1672 0.1458 0.1787 0.1493 0.0066 0.0355 0.0322 0.0433

RMSE 0.1761 0.1521 0.1838 0.1532 0.1104 0.0830 0.0869 0.0727
δ0 = 0.6 Bias 0.0485 0.0368 0.0536 0.0380 -0.0011 0.0076 0.0066 0.0094

RMSE 0.0657 0.0484 0.0627 0.0438 0.0596 0.0388 0.0435 0.0279
δ0 = 0.9 Bias -0.0019 -0.0024 0.0042 0.0018 -0.0078 -0.0054 -0.0009 -0.0009

RMSE 0.0406 0.0286 0.0289 0.0192 0.0444 0.0301 0.0306 0.0199
δ0 = 1.0 Bias -0.0120 -0.0096 -0.0049 -0.0042 -0.0126 -0.0099 -0.0052 -0.0043

RMSE 0.0422 0.0302 0.0287 0.0196 0.0441 0.0309 0.0299 0.0201
δ0 = 1.1 Bias -0.0209 -0.0159 -0.0125 -0.0092 -0.0182 -0.0144 -0.0095 -0.0075

RMSE 0.0459 0.0332 0.0311 0.0216 0.0459 0.0329 0.0308 0.0212
δ0 = 1.4 Bias -0.0549 -0.0400 -0.0402 -0.0291 -0.0474 -0.0361 -0.0326 -0.0252

RMSE 0.0721 0.0528 0.0530 0.0380 0.0668 0.0499 0.0476 0.0351

% = 1 :
δ0 = 0.3 Bias 0.3595 0.3718 0.3285 0.3346 0.3039 0.3435 0.2649 0.2995

RMSE 0.3755 0.3856 0.3412 0.3474 0.3380 0.3649 0.2941 0.3209
δ0 = 0.6 Bias 0.1603 0.1652 0.1315 0.1309 0.1357 0.1526 0.1029 0.1153

RMSE 0.1809 0.1833 0.1469 0.1461 0.1677 0.1755 0.1288 0.1357
δ0 = 0.9 Bias 0.0435 0.0478 0.0277 0.0299 0.0404 0.0463 0.0240 0.0281

RMSE 0.0704 0.0663 0.0479 0.0440 0.0710 0.0662 0.0478 0.0434
δ0 = 1.0 Bias 0.0213 0.0273 0.0102 0.0149 0.0220 0.0277 0.0105 0.0152

RMSE 0.0540 0.0471 0.0359 0.0302 0.0559 0.0480 0.0373 0.0308
δ0 = 1.1 Bias 0.0048 0.0128 -0.0023 0.0050 0.0082 0.0147 0.0010 0.0068

RMSE 0.0462 0.0358 0.0317 0.0234 0.0480 0.0370 0.0326 0.0242
δ0 = 1.4 Bias -0.0316 -0.0146 -0.0270 -0.0121 -0.0240 -0.0106 -0.0194 -0.0081

RMSE 0.0547 0.0338 0.0416 0.0245 0.0509 0.0323 0.0372 0.0228
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Table 2: Empirical coverage of 95% CI based on δ̂ and δ̃

Uncorrected estimates, δ̂ Bias-corrected estimates, δ̃ = δ̂ − T−1∇(δ̂)

(N, T): (10, 50) (10, 100) (20, 50) (20, 100) (10, 50) (10, 100) (20, 50) (20, 100)

% = 0.4 :
δ0 = 0.3 3.90 0.60 0.10 0.00 48.30 42.90 41.70 33.00
δ0 = 0.6 68.00 66.00 46.00 43.20 76.90 79.80 75.20 77.30
δ0 = 0.9 91.80 92.00 91.50 92.90 89.90 90.50 90.40 91.90
δ0 = 1.0 91.10 90.80 92.30 93.10 89.90 89.90 90.90 92.50
δ0 = 1.1 87.70 86.40 89.60 89.90 87.90 87.20 89.70 90.30
δ0 = 1.4 63.40 62.70 61.00 68.30 68.90 66.90 70.00 72.10

% = 1 :
δ0 = 0.3 0.00 0.00 0.00 0.00 5.90 1.40 4.70 0.70
δ0 = 0.6 13.90 5.90 9.20 11.10 25.90 11.40 23.90 28.70
δ0 = 0.9 70.60 55.30 73.70 61.40 70.60 55.50 74.70 77.70
δ0 = 1.0 81.90 72.70 85.70 78.80 80.50 72.20 84.90 78.10
δ0 = 1.1 87.50 83.90 89.80 87.40 85.80 82.50 89.10 86.20
δ0 = 1.4 79.50 86.30 75.60 84.30 83.40 87.60 82.40 87.60
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Table 3: Size of the test based on δ̂ for 5% nominal size (in percentages)

Pure fractional case Serially correlated factor case

(N, T): (5, 50) (5, 100) (10, 50) (10, 100) (5, 50) (5, 100) (10, 50) (10, 100)

% = 0.4 :
δ0 = 0.3 5.30 5.50 3.70 3.10 5.10 5.10 3.70 3.30
δ0 = 0.6 5.90 6.60 4.10 4.00 5.60 6.20 4.00 3.80
δ0 = 0.9 5.50 5.90 3.60 3.80 5.20 6.00 3.60 4.00
δ0 = 1.0 6.60 8.40 6.30 6.70 6.90 8.70 5.80 6.20
δ0 = 1.1 13.30 15.40 15.30 17.50 14.40 15.00 16.70 17.20
% = 1 :
δ0 = 0.3 5.20 5.10 4.20 3.30 5.60 6.00 5.00 3.30
δ0 = 0.6 5.30 6.20 3.80 4.00 5.70 5.40 4.20 3.50
δ0 = 0.9 5.60 6.10 4.20 4.70 6.60 7.20 7.60 6.50
δ0 = 1.0 8.90 9.50 7.90 7.20 10.30 11.80 14.10 11.50
δ0 = 1.1 14.30 18.50 18.80 21.10 16.60 19.30 23.10 25.00
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Table 4: Power of the test (with ζ = 0.1 ∗N1/4T 1/2) based on δ̂ for 5% nominal size (in percentages)

Pure fractional case Serially correlated factor case

(N, T): (5, 50) (5, 100) (10, 50) (10, 100) (5, 50) (5, 100) (10, 50) (10, 100)

% = 0.4 :
δ0 = 0.3 13.90 26.90 8.30 23.80 11.70 18.50 7.30 14.60
δ0 = 0.6 6.90 8.10 5.30 7.10 7.30 8.90 5.10 7.10
δ0 = 0.9 53.80 67.90 76.80 90.80 64.40 79.90 82.60 94.80
δ0 = 1.0 81.80 89.30 91.00 93.40 89.10 93.20 93.50 95.50
δ0 = 1.1 87.00 93.30 95.80 96.80 84.20 89.60 93.70 95.10
% = 1 :
δ0 = 0.3 9.70 13.00 8.00 11.90 13.80 16.80 11.00 16.70
δ0 = 0.6 8.00 9.20 6.60 7.40 18.70 23.60 14.80 17.60
δ0 = 0.9 68.00 84.10 82.90 94.20 79.10 90.70 86.10 90.50
δ0 = 1.0 89.90 93.90 94.50 97.50 88.50 95.00 95.10 97.50
δ0 = 1.1 82.50 89.10 91.10 94.00 69.90 78.10 82.70 86.40
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Table 5: Power of the test (with ζ = 0.5 ∗N1/4T 1/2) based on δ̂ for 5% nominal size (in percentages)

Pure fractional case Serially correlated factor case

(N, T): (5, 50) (5, 100) (10, 50) (10, 100) (5, 50) (5, 100) (10, 50) (10, 100)

% = 0.4 :
δ0 = 0.3 56.60 74.80 58.90 78.80 62.00 72.20 65.10 73.70
δ0 = 0.6 92.50 94.10 98.00 98.90 92.60 94.80 98.10 98.90
δ0 = 0.9 84.10 89.00 92.30 96.50 90.10 95.90 96.30 99.50
δ0 = 1.0 97.30 99.60 99.60 99.80 98.80 100 99.80 100
δ0 = 1.1 99.20 99.30 99.70 100 98.80 99.00 99.30 99.80
% = 1 :
δ0 = 0.3 94.80 96.70 97.70 98.60 87.20 90.20 91.80 93.30
δ0 = 0.6 87.90 89.90 94.60 96.40 80.50 86.20 84.60 86.60
δ0 = 0.9 90.00 97.40 97.50 99.40 95.60 99.30 98.40 99.50
δ0 = 1.0 99.00 99.90 100 100 99.00 100 99.80 99.80
δ0 = 1.1 98.80 99.10 99.50 98.80 96.30 97.10 98.50 98.70
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