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Reexamining financial and economic
predictability with new estimators of realized

variance and variance risk premium

Abstract

This study explores the predictive power of new estimators of the equity vari-
ance risk premium and conditional variance for future excess stock market returns,
economic activity, and financial instability, both during and after the last global finan-
cial crisis. These estimators are obtained from new parametric and semiparametric
asymmetric extensions of the heterogeneous autoregressive model. Using these new
specifications, we determine that the equity variance risk premium is a predictor of
future excess stock returns, whereas conditional variance predicts them only for long
horizons. Moreover, a comparison of the overall results reveals that the conditional
variance gains predictive power during the global financial crisis period. Further-
more, both the variance risk premium and conditional variance are determined to be
predictors of future financial instability, whereas conditional variance is determined
to be the only predictor of economic activity for all horizons. Before the global finan-
cial crisis period, the new parametric asymmetric specification of the heterogeneous
autoregressive model gains predictive power in comparison to previous work in the
literature. However, the new time-varying coefficient models are the ones showing
considerably higher predictive power for stock market returns and financial instabil-
ity during the financial crisis, suggesting that an extreme volatility period requires
models that can adapt quickly to turmoil.

JEL-Classifications: C22; C51; C52; C53; C58; G17

Keywords: Net measures; Nonparametric methods; Predictability; Realized variance; Vari-
ance risk premium; VIX

1 Introduction

A recurrent question in the financial literature is whether stock returns are predictable.
No clear evidence exists of this predictability, and it often depends on the predictors used.
Wilcox (2007) and Lettau and Van Nieuwerburgh (2008) state that a large consensus exists
regarding dividend- and earnings-price ratios being predictors of stock market behavior
(see also Campbell and Shiller, 1988). Other researchers such as Bollerslev et al. (2009,
2011, 2012, 2014), Drechsler and Yaron (2011), Galaix (2012), Bekaer and Hoerova (2014)
and Kelly and Jiang (2014) indicate that the predictability of stock returns is stronger
when the variance risk premium (VRP) is included in models as a predictor. Another
stream of literature states that stock returns are not predictable; for example, Bossaerts
and Hillion (1999) observe that out-of-sample prediction is not possible for stock returns,
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and Welch and Goyal (2008) state that standard predictive variables are not statistically
significant both in-sample and out-of-sample. Furthermore, Bossaerts and Hillion (1999)
run regressions of 1-month excess returns on the dividend yield, short-term yield, and
bond yield for 14 countries and implement several selection criteria from relevant statistics
literature. Similarly, Welch and Goyal (2008) run regressions for early 2006 using the
dividend price ratio, dividend yield, earnings-price ratio, dividend-earnings (payout) ratio,
various interest rates and spreads, inflation rates, book-to-market ratio, and volatility as
predictors. However, none of these studies consider the VRP as a potential predictor
of future stock returns. Furthermore, Ang and Bekaert (2007) conclude that long-run
predictability is nonsignificant by studying whether various dividend yields can predict
excess stock returns, and Campbell and Thompson (2008) determine that the out-of-sample
predictability of future excess stock returns is small but meaningful by analyzing several
subsample periods and a set of predictors that does not include the VRP.

In this paper, by decomposing the squared CBOE volatility index (VIX) into the equity
VRP and conditional variance (CV) of the stock market proposed by Bekaer and Hoerova
(2014), we explore the predictive power of new models of the VRP and CV for future
excess stock returns, economic activity, and financial instability; see also Bloom (2009).
Realized variance (RV) has often been used as a proxy of CV in relevant studies, such
as that by Bollerslev et al. (2009). Furthermore, Barndorff-Nielsen et al. (2010) propose
realized semivariance as the first asymmetric measure of RV. This measure decomposes
RV into a positive component and a negative component corresponding to positive and
negative high-frequency returns, respectively. However, this measure does not capture how
unsettling positive or negative returns are likely to be for current volatility and investment
opportunities. To overcome this caveat, we propose a new asymmetric measure of RV
inspired by the studies on asymmetric oil price changes by Hamilton (1996) and Ramos and
Veiga (2011), called the net realized variance (NRV). The concept is not only to decompose
RV into positive and negative components but also to consider more extreme returns and
use them to replace the lagged daily positive and negative realized semivariance terms in the
semivariance heterogeneous autoregressive (SHAR) model of Patton and Sheppard (2015)
and the semivariance heterogeneous autoregressive-Q (SHARQ) model of Bollerslev et al.
(2016). Furthermore, the proposed models are extended to allow for flexible time-varying
coefficients that are estimated nonparametrically. In contrast to Chen et al. (2017), who
introduce time-varying coefficients in their heterogeneous autoregressive (HAR) model as
functions of time, coefficients change with the realized quarticity, as proposed by Bollerslev
et al. (2016). Notably, Bianchi et al. (2017) report that U.S. stock returns are priced in
the cross section by considering a multifactor model in which macroeconomic risk factors
and risk premiums have time-varying coefficients in order to capture the instability in such
factors and premiums.

Guided by relevant studies, such as those by Bollerslev et al. (2014) and Bekaer and
Hoerova (2014), we employ ordinary least squares regressions with standard errors obtained
using the procedure of Newey and West (1987) to compare the predictive power of various
models. The predictive power of the VRP and CV is measured in terms of the statistical
significance of the potential predictors and adjusted R2 values. For robustness, we run
regressions where we include other potential predictors, such as the real 3-month rate,
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logarithm of the dividend yield, credit spread (CS), and term spread (TS) (see Bekaer and
Hoerova, 2014, for the use of similiar regressors in a robust analysis).

On the basis of our results, we answer two main questions: (1) whether asymmet-
ric measures of RV increase the predictive power of the VRP and CV; and (2) whether
CV-and consequently the VRP-obtained from time-varying coefficient models are superior
predictors of stock market returns, economic activity, and financial instability than those
obtained from parametric specifications. The answer to both of these questions is affirma-
tive. Asymmetric extensions of the HAR model are crucial because they are superior in
predictive power to models that do not include asymmetric measures of RV. Moreover, the
predictive power of the VRP often increases when models with time-varying coefficients
are used.

This paper makes several contributions to the literature. First, we propose novel asym-
metric extensions of the HAR model that use an estimator of RV asymmetry, which resolves
the caveats of realized semivariance. Second, we use nonparametric methods to estimate
analogous asymmetric models with time-varying coefficients as functions of the realized
quarticity. Third, we calculate various monthly VRP forecasts with the new specifications
of RV and compare their predictive power of financial instability and economic activity
with that of competitive benchmark models. The results of this comparison indicate that
some of the new specifications substantially increase the predictive power of the VRP and
CV. Finally, our results reinforce those obtained by researchers such as Bollerslev et al.
(2009, 2011, 2012, 2014) and Bekaer and Hoerova (2014).

The remainder of this paper is organized as follows: Section 2 presents an alternative
asymmetric measure of RV as well as new extensions of the HAR model. Section 3 reports
the estimation results, and Section 4 tests the ability of the new predictors to predict
stock market returns, economic activity, and financial instability, as well as providing some
discussion. Finally, Section 5 concludes the paper.

2 Novel RV models

Since high-frequency data are available, RV has been a major focus of research into ac-
counting for uncertainty in financial investments. Among numerous other applications, RV
is considered a proxy of economic uncertainty (see Bekaer and Hoerova, 2014) and has a
critical role in estimating and forecasting the VRP, which itself is a measure of risk aversion
to uncertainty. It is obtained as RVt =

∑M
i=1 r

2
t,i, where rt,i is the price return at time i of

day t, and M is the total number of intraday values.
The VRP is a risk compensation measure used by investors to determine investors’

degree of risk aversion to uncertainty, often defined as the difference between implied market
variance and actual RV (see Feunou et al., 2015). Technically, the VRP is defined as
the difference between the conditional return variance, determined using a ”risk-neutral”
probability measure, and the RV over the following month; that is,

V RPt = V IX2
t − Et[RV

(22)
t+1 ], (1)

where Et[RV
(22)
t+1 ] is proxied by the forecast of the monthly S&P 500 RV estimates. Com-
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monly, the HAR model of Corsi (2009) is used to forecast RV
(22)
t+1 using past RVs at various

time frequencies. This measure does not account for the asymmetric response of volatility.
Yet, negative shocks have a stronger effect on volatility, and consequently, on the forecasts
of RV and the VRP, than positive shocks of the same magnitude. Investors dislike the
uncertainty embedded in negative shocks because the likelihood of high losses increases.
Thus, we believe that incorporating the volatility asymmetry effect into RV models will
increase the power of the VRP in predicting future stock returns, economic activity, and
financial instability.

One method to proceed is decomposing the RV into positive and negative semivariances,
calculated by summing high-frequency positive and negative squared returns (see Barndorff-
Nielsen et al., 2010; Patton and Sheppard, 2015). In the next subsection, we propose an
asymmetric measure of RV that focuses on the effect of extreme returns on volatility.

2.1 Alternative asymmetric measure of realized variance

As mentioned, volatility responds asymmetrically to positive and negative shocks of the
same magnitude, with negative shocks having a larger effect on volatility. This is the so-
called leverage effect (see Christie, 1982; Campbell and Hentschel, 1992; Bollerslev et al.,
2006). Although asymmetry and leverage are not exactly the same, we use them inter-
changeably hereafter.1

The first researchers to consider leverage effects in the context of a heterogeneous mar-
ket hypothesis are Corsi et al. (2012), who model the leverage effect by incorporating past
negative returns at several frequencies. More recently, Patton and Sheppard (2015) incor-
porate the realized semivariance estimator of Barndorff-Nielsen et al. (2010) into the HAR
model. Their results indicate that although intraday returns are often small, critical infor-
mation must be disentangled from both positive and negative intraday returns. Neverthe-
less, Hamilton (1996) suggest that investors do not react quickly to what could be a jump;
however, they should change their behavior when they appreciate a large shock compared
not only with the immediate past but also with a longer past horizon. Thus, if one wants to
measure how unsettling extreme positive returns are likely to be for volatility, calculating
the amount by which current prices have risen over a given period is appropriate. This
leads to the concept of positive NRV (see Hamilton, 1996, 2003; Ramos and Veiga, 2011) in
the context of net oil price changes, which is a measure of the variance of positive extreme
returns that drive investors to change strategy. In this paper, we calculate the NRV of the
current day using net returns, which is the difference between the current log-price and loga-
rithm of the largest price over the previous day, r∗t,i = log(pt,i)−log(max(pt−1,M , . . . , pt−1,1)).
The proposed positive NRV estimator for day t is calculated as

NRV +
t =

M∑
i=1

r∗2t,iI(r
∗
t,i ≥ 0). (2)

1Leverage is a special case of asymmetry (see, for example, McAleer, 2014).
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Similarly, a measure of net negative realized variance is calculated as

NRV −
t =

M∑
i=1

r∗2t,iI(r
∗
t,i < 0). (3)

2.2 Parametric NRV models

The first RV model suggested in this paper extends the HAR model of Corsi (2009) to
include the NRV to measure uncertainty in extreme returns as

RVt = β0 + β+
1 NRV +

t−1 + β−
1 NRV −

t−1 + β2RVt−1|t−5 + β3RVt−1|t−22 + ut,

where NRV + and NRV − are defined as in equations (2) and (3), respectively, RVt−j|t−h =
1

h+1−j

∑h
i=j RVt−i with j ≤ h. Therefore,RVt−1, RVt−1|t−5 and RVt−1|t−22 correspond to

the daily, weekly, and monthly lag RVs. This extension of the HAR model is named net
asymmetric HAR (NHAR). The purpose of this model is to improve the estimation and
forecast power of the RV’s tail values, which are likely to be the predictors of extreme
investment behavior.

Although RV is a consistent estimator of integrated volatility under certain conditions,
it is often affected by measurement errors in finite samples. To account for these, Bollerslev
et al. (2016) propose a new family of models named HARQ for the RV, which are basically
HAR models whose coefficients are linear functions of the realized quarticity. Thus, the
bias related to the estimated error of RV is corrected at each time step. The formula of
the HARQ model is

RVt = β0 + (β1 + β1QRQ
1/2
t−1)RVt−1 + β2RVt−1|t−5 + β3RVt−1|t−22 + ut. (4)

Similarly, their SHARQ model substitutes the RV in (4) with the realized semivariance
of Barndorff-Nielsen et al. (2010). They prove empirically that their models outperform
the HAR model and its extensions, and in some cases, the SHAR model of Patton and
Sheppard (2015) in forecasting RV.

Furthermore, a natural extension is to consider the NRV and net realized quarticity,
RQ∗

t ≡ M
3

∑M
i=1 r

∗4
t,i , to correct for the estimation error in the NRV at each time step. The

proposed model, named the net HARQ (NHARQ) model, is formulated as

RVt = β0+(β+
1 +β+

1QRQ
∗1/2
t−1 )NRV +

t−1+(β−
1 +β−

1QRQ
∗1/2
t−1 )NRV −

t−1+β2RVt−1|t−5+β3RVt−1|t−22+ut.
(5)

The coefficients of NRV + and NRV − also change with the net realized quarticity to
account for possible measurement errors in the NRV estimators.

In this paper, we do not consider the presence of jumps. Patton and Sheppard (2015)
demonstrate that specifications that include jumps (for example, the HAR-J) have poor
performance in comparison with the SHAR model.

2.3 Time-varying coefficients models

The innovative idea of Bollerslev et al. (2006) to include time-varying coefficients for cor-
recting measurement errors in the HAR model may be extended with nonparametric tech-
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niques. Bollerslev et al. (2016) indicate that the measurement error is stronger for the
daily lagged RV, although it still exists for the weekly and monthly lagged RVs, and they
model it as a linear function of the square root of the lagged realized quarticity. Instead, we
propose allowing for linear and nonlinear relationships as required. The model is expressed
as follows:

RVt = X ′
tβt + ut, t = 1, 2, . . . , T, (6)

Depending on the regressors, we denote the time-varying coefficient models as either tv-
SHARQ or tv-NHARQ.

Nonparametric methods are not convenient for models with numerous regressors because
their rate of convergence decreases as the number of regressors increases. Semiparametric
methods such as model (6) are typical alternatives, which maintain a great level of flexibility
and a satisfactory rate of convergence. The coefficients in (6) are unknown functions of the
square root of the realized quarticity. We call this a time-varying coefficient linear model. In
the nonparametric literature, time-varying coefficients may be an unknown function of time
as βt = f(t/T ), or an unknown function of a random variable zt as βt = f(zt). Robinson
(1989) introduces the unknown function of time as βt = f(t/T ), which is generalized in
various contexts in studies by researchers such as (Cai, 2007; Kristensen, 2012; Orbe et al.,
2005; Phillips et al., 2017; Casas et al., 2017, amongst many others). In addition, Chen
et al. (2017) apply it to the HAR model of Corsi (2009) for the RV of S&P 500 index returns.
It is a flexible approach but its forecast is inconsistent because no information exists from
the dependent variable at time T + 1. Our coefficients instead change depending on the
dynamics of the square root of the realized quarticity. Theoretical results obtained using
this approach have been studied by Cai et al. (2009), whereas Das (2005) and Henderson
et al. (2015) have used the approach for instrumental variables and SUR frameworks,
respectively.

The estimations and forecasts of model (6) are performed using the local linear (LL)
nonparametric estimator. First proposed by Fan and Gijbels (1996) and widely used since,
this estimator requires that the function f(·) has a second derivative in the region where zt,

in our problem RQ
1/2
t−1, is defined. The LL estimator is chosen over the Nadaraya-Watson

estimator because of the superior properties at the LL estimator’s boundary; specifically,
the LL estimator is asymptotically unbiased at the boundary, which is an advantage in
the out-of-sample prediction. In fact, initial forecasts obtained using the LL estimator
in our models are superior those obtained using the Nadaraya-Watson estimator. It is
widely known that the LL estimator is sometimes negative for finite samples, even when
the dependent variable is always positive, such as in our application. Asymptotically, this
is not the case, and the number of negative values decreases as T increases. One method
of avoiding this problem is to use the logRVt series, as in Chen et al. (2017). Instead, we
use the RVt series following the example of Bekaer and Hoerova (2014) and interpolate the
possible few negative LL estimates.

The tv-NHARQ model is given by

RVt = β0(zt−1)+β+
1 (zt−1)NRV +

t−1+β−
1 (zt−1)NRV −

t−1+β2(zt−1)RVt−1|t−5+β3(zt−1)RVt−1|t−22+ut.
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Coefficients βt =
(
β0(zt−1), β

+
1 (zt−1), β

−
1 (zt−1), β2(zt−1), β3(zt−1)

)′
and their first derivatives

β
(1)
t are estimated, following the notation in Cai (2007) using(

β̂t

β̂
(1)
t

)
=

(
ST,0(zt−1) ST,1(zt−1)
ST,1(zt−1) ST,2(zt−1)

)−1(
TT,0(zt−1)
TT,1(zt−1)

)
where

ST,k(zt−1) = T−1

T∑
t=1

XtX
′
t(Z−zt−1)

kKb(Z−zt−1) and TT,k =
T∑
t=1

Xt(Z−zt−1)
kKb(Z−zt−1)RVt

for k = 0, 1, 2, 3. Variable Z is the vector of all RQ∗1/2 in the training sample, and
zt−1 = RQ

∗1/2
t−1 is the conditional value. The kernel function Kb(u) = K(u/b)/b, is a

symmetric continuous function with support in [-1, 1] and bandwidth b. The bandwidth
should reach zero slower than T approaches infinity, and in practice, it is calculated through
cross-validation. In addition, if the process (Xt, Zt, ut) is stationary, then the estimator is
consistent and asymptotically normal. The condition of stationarity can be relaxed to α-
mixing processes and Z can be an I(1) process; details can be found in Cai et al. (2009).
Estimators of the tv-SHARQ model are defined similarly for the realized semivariance and
RQ

1/2
t−1.

3 In-sample performance

Our empirical results are based on the S&P 500 index, and its RV is used as the benchmark
to compare models’ estimation power. High-frequency prices for the index are obtained from
1-minute close prices.2 The sample comprises observations of the RV and its asymmetric
measures with a total of 3,020 daily observations ranging from July 1, 2004, to June 28,
2016. Figure 1 shows the autocorrelation function (ACF) of the RV. The ACF decays slowly
toward zero, suggesting the existence of long memory. Furthermore, Figure 2 presents the
daily realized semivariance and NRV estimates. We observe that the RV − shows larger
values of volatility than the RV +. This difference is larger for the NRV measures whose
scale is larger than that of the RV because they measure more extreme variability.

Table 1 lists the coefficient estimates, p-values, R2, mean square errors (MSEs), and
mean values of the QLIKE loss function for the parametric specifications, whereas Table 2
lists the MSE and QLIKE for the semiparametric specifications of RV.3 The main indication
of the results in Table 1 is that the coefficient estimates of the new measure of uncertainty
decrease in magnitude;specifically, β+

1 and β−
1 in the NHAR and NHARQmodels are smaller

in absolute value than their counterparts in the SHAR and SHARQmodels. Similarly, these
coefficients are smaller for the NHARQ than for the SHARQ model. This is expected as
the scale of NRV is larger. Moreover, the β−

1 estimates are larger in absolute value than

2Detailed information can be found on http://download-stock-data.webs.com/.
3The QLIKE loss function of Patton (2011) is given by QLIKEt ≡ RVt

ERVt
− log RVt

ERVt
− 1, where ERVt

corresponds to the estimated realized variance at day t obtained with the selected models.
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Figure 1: Autocorrelation function of daily S&P 500 realized variance ranging from July 1, 2004
till Jun 28, 2016.

Figure 2: Daily S&P 500 realized semivariance (first row) and net RV (second row). Positive
(first column) and negative (second column) measures ranging from July 1, 2004 till Jun 28, 2016.
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β+
1 for most models. This result agrees with Patton and Sheppard (2015), who obtain

similar evidence for the SHAR model. Furthermore, the β−
1 estimates are statistically

significant for all models, whereas the estimates of β+
1 are nonsignificant for the NHAR,

SHARQ, and NHARQ models, which is a clear sign of leverage in the data. In addition,
we observe that the magnitude of the sum of β2 and β3 coefficients slightly decreases when
using models that account for the effect of the realized quarticity, such as the HARQ and
SHARQ models. The model with the highest R2 is the SHARQ, followed by the HARQ and
NHARQ models. Moreover, these models have the smallest MSE and QLIKE loss function
values. The results in Table 2 indicate that the time-varying coefficient models have lower
values of MSE, but the QLIKE loss function values are higher than those obtained with
the parametric specifications.

In the next section, we analyze the out-of-sample forecast performance of all models for
financial instability and economic output.

4 Financial and economic predictability

The VRP is used as a proxy of risk aversion, whereas RV is considered a proxy of economic
uncertainty (see Bekaer and Hoerova, 2014). The monthly VRP is obtained as in (1), using
the monthly RV forecasts as well as the VIX2

t , which as in Bekaer and Hoerova (2014),
is expressed in monthly percentages squared, i.e. VIX2/12 where VIX is the quoted VIX
index level in annualized percent. The analysis period ranges from August, 2008, to July,
2016. Moreover, the last financial and sovereign debt crises are included in the sample.

Figure 3 illustrates the VRP estimates obtained using some of the discussed parametric
and time-varying coefficient models. We observe that parametric measures of the VRP
have peaks during 2008-2009, which correspond to the global financial crisis and European
sovereign debt crisis; furthermore, the second peak is lower in magnitude than the first.
Forecasts of the VRP with rolling and increasing window schemes are similar when para-
metric specifications of the RV are used, whereas semiparametric models seem to be more
effective with the increasing window scheme, which uses a larger number of data points in
the training set.4 Moreover, the tv-SHARQ models provides the largest values of the VRP
among all models.

4.1 Predictability of excess stock market returns

Bollerslev et al. (2009), Bekaer and Hoerova (2014), Bollerslev et al. (2014) and Bollerslev
et al. (2015) observe that the VRP is a significant predictor of future stock returns by
running regressions of future excess returns on the VRP. However, the equity risk premium
is explained by multiple factors (see, for instance, Ang and Bekaert, 2007; Menzly et al.,
2004). To avoid the misspecification of univariate regressions, Bekaer and Hoerova (2014)
consider models in which the VRP and CV are simultaneously used as predictors of future
excess stock returns, indicating that CV is often rejected as a predictor.

4A large enough number of observations in the training sample is important for the nonparametric
methodologies since these estimators can suffer from large biases mainly at spatial points with sparse
neighborhoods (see Xu and Phillips, 2011, for evidence on this issue).
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Table 2: semiparametric model’s goodness of fit

The table provides in-sample measures
of goodness-of-fit for semiparametric
models. The value of the MSE is multi-
plied by 1e+ 06.

tv-SHARQ tv-NHARQ
MSE 0.026 0.022
QLIKE 1.876 0.224

Figure 3: Monthly series of variance risk premia obtained with parametric (first row) and
semiparametric models (second row), using RW (left column) and IW (right column) schemes.
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Following Bollerslev et al. (2009) and Bekaer and Hoerova (2014), we run regressions
of S&P 500 future excess returns, first on VIX2 and a set of regressors Xt, and second on
the VRP, the CV measures obtained using the specifications presented in Section 2, and
Xt. Specifically, the following equations are used:

h−1rt,t+h = a(h) + b(h)V IX2
t + e(h)Xt + ut,t+h, (7)

h−1rt,t+h = a(h) + c(h)V RPt + d(h)CVt + e(h)Xt + ut,t+h, (8)

where rt,t+h denotes the h = 1, 2, ..., 12 month excess returns of the S&P 500.5 The set of
control variables Xt includes other potential predictors such as (1) the real 3-month rate
(3MTB), which is the 3-month T-bill minus CPI inflation; (2) the logarithm of the dividend
yield (log(DY)); (3) the CS obtained using the difference between Moody’s BAA and AAA
bond yield indices; and (4) the TS calculated using the difference between the 10-year and
3-month treasury yields. All variables are expressed in annualized percentages (see Bekaer
and Hoerova, 2014, for the use of the same predictors). The R2 values from these regres-
sions, where the dependent variables are composed by overlapping return observations, can
be spuriously large when the horizon h increases (see Campbell et al., 1997). Moreover, the
t-statistics for testing the hypothesis about a(h), b(h), c(h), d(h) and e(h) may not follow
a standard normal distribution because the standard errors of the ordinary least squares
estimates can also be subject to bias. However, as observed by Bollerslev et al. (2014),
the VRP is less persistent at a frequency of 1 month, and therefore, the finite sample bias
is small. Furthermore, the overlap in monthly data can make the regression disturbance
autocorrelated and affect the standard errors of the estimates. Hence, as in Bekaer and
Hoerova (2014), we use robust Newey-West standard errors.

4.1.1 Period 2008–2016 including the global financial crisis

Tables 3–5 present the results of the regressions. Regarding the 1-month horizon, we observe
that the VRP is a predictor of stock market returns in all regressions, and that CV is a
statistically significant predictor only for the tv-NHARQ model. The regression with the
highest adjusted R2 is that where the VRP and CV are obtained directly from RV (Table
3). The sign of the VRP is positive, which means that an increase in the VRP today will
positively affect the stock excess returns next month. This is in concordance with Bollerslev
et al. (2009), Han and Zhou (2011), Bekaer and Hoerova (2014) and Bollerslev et al. (2014).
They confirm that stocks with a high VRP have more volatility, and consequently, are
riskier and tend to command more expected returns. Among the set of control variables,
only the TS is not a predictor of returns. Surprisingly, the CS has a negative sign; however,
Bollerslev et al. (2009) and Bekaer and Hoerova (2014) report negative coefficients for the
CS in univariate and multivariate excess return regressions, respectively. Regarding the
real 3-month rate, we observe that it also has a negative relationship with future stock
market returns. During the period of analysis characterized by high volatility, financial
instability, and a low and even negative real 3-month rate, an increase of the interest of
safe securities might be an incentive for investors to move capital from stock markets to

5Results on univariate and bivariate regressions can be founded in the Supplementary Appendix.
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banks or even to invest in goods, leading to a decrease of stock prices and consequently
of stock returns. Furthermore, VIX2 is a predictor of stock market returns with positive
coefficients.

Conclusions on the predictability of equity returns drawn using models (7) and (8) for
the 3-month horizon are similar: VIX2 and the VRP are predictors of future stock returns,
whereas CV is not. Furthermore, the magnitude of the coefficients of the VRP often
decreases compared with those of the previous horizon. The regression with the strongest
predictive power includes the VRP and CV obtained with the time-varying NHARQ model
and IW scheme (Table 4). The adjusted R2 values increase substantially and are higher
than those reported in the literature. All potential predictors in the set Xt are statistically
significant. The logarithm of the dividend yield has consistent positive coefficients, whereas
the CS and TS consistently have negative coefficients.6

Finally, when we consider the horizon of 12 months, we observe that VIX2, the VRP,
and CV are predictors of future stock returns for the majority of regressions. Moreover,
the adjusted R2 values increase despite being smaller than those reported for the 3-month
horizon (Table 5). Among the set of regressors, only the real 3-month rate is statistically
significant, but the sign of its coefficients remains negative. The regressions with high
predictive power are still those whose VRP and CV are obtained using the time-varying
coefficient models.

Overall, we conclude that the VIX2 and VRP are predictors of future stock returns for
all horizons, whereas the CV is only a predictor for the 12-month horizon. Depending on
the horizon, real 3-month rate, and logarithm of the dividend yield, the CS and TS are
also predictors of future excess stock market returns. Furthermore, we obtain a stronger
predictive power using the time-varying coefficient models with net measures of RV for the
3- and 12-month horizons.

4.1.2 Period 1990–2007, excluding the global financial crisis

Now, we analyze the performance of the proposed estimators of the VRP and CV, and the
set Xt of potential predictors used in the previous subsection during the period before the
last crisis.7 This period ranges from January 1990 to December 2007, and coincides with
the period analyzed by Bollerslev et al. (2009).

Tables 6–8 show the results. Regarding the 1-month horizon, we still observe that the
VRP is a predictor of future excess returns, whereas CV is not. The sign of this relationship
is also positive, but the magnitude of the VRP’s coefficients is smaller. Furthermore, the
predictive power decreases: the best predictive regression reaches an adjusted R2 of 0.159
(compared with the 0.197 obtained previously) with predictors obtained from the time-
varying coefficient SHARQ model and IW scheme. From the set Xt, we also observe a
difference; specifically, only the real 3-month rate is statistically significant among all extra
variables, and its negative sign is maintained.

6Bollerslev et al. (2009) also report negative coefficients for the TS in univariate excess return regressions.
7We only consider the models that take the measurement error correction in consideration for two

reasons: first, the predictors of the alternative models have never been selected as the best predictors in
the previous sample period and second legibility of tables.
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Table 3: Stock excess return regressions: Horizon 1 month (period 2008-2016).

Regressions (monthly observations) with variance risk premium, conditional variance, real 3-month rate, the logarithm of dividend yield, credit spread and term spread.

The standard errors presented below the estimated parameters are the Newey-West standard errors using max[3, 2 · horizon] lags. ♢♢♢ means that the variable is not

significant at any relevant level (1%, 5% and 10%) of significance.

Panel A: Parametric and semiparametric measures of VRP and CV

Constant -6.548 -4.222♢♢♢ -4.918♢♢♢ -4.959♢♢♢ -4.935♢♢♢ -4.969♢♢♢ -4.780♢♢♢ -4.800♢♢♢ -4.582♢♢♢ -4.566♢♢♢ -4.608♢♢♢ -4.576♢♢♢ -4.547♢♢♢ -4.576♢♢♢ -5.663 -4.968♢♢♢ -6.307 -6.825

(3.361) (3.741) (3.687) (3.687) (3.672) (3.674) (3.699) (3.702) (3.730) (3.731) (3.688) (3.684) (3.733) (3.728) (3.449) (3.666) (3.412) (3.603)

R3MT -4.156 -3.382 -3.623 -3.584 -3.647 -3.608 -3.645 -3.600 -3.477 -3.467 -3.551 -3.562 -3.599 -3.608 -4.225 -3.933 -4.177 -4.340

(2.075) (1.986) (2.129) (2.148) (2.127) (2.146) (2.076) (2.095) (2.077) (2.085) (2.067) (2.069) (2.033) (2.040) (2.094) (2.088) (2.093) (2.076)

log(DY ) 21.550 18.588 19.234 19.519 19.239 19.525 19.148 19.386 19.116 19.053 19.256 19.044 19.329 19.272 21.359 19.946 21.563 21.771

(6.808) (6.817) (6.903) (6.845) (6.895) (6.836) (6.896) (6.844) (6.882) (6.895) (6.830) (6.880) (6.933) (6.966) (6.775) (6.819) (6.832) (7.121)

CS -6.815 -7.612 -7.257 -7.341 -7.243 -7.333 -7.299 -7.381 -7.631 -7.572 -7.720 -7.581 -7.727 -7.584 -6.917 -7.270 -6.854 -6.638

(2.714) (2.655) (2.701) (2.684) (2.701) (2.684) (2.700) (2.683) (2.646) (2.646) (2.609) (2.623) (2.625) (2.632) (2.745) (2.705) (2.729) (2.448)

TS -0.903♢♢♢ -1.034♢♢♢ -0.959♢♢♢ -0.990♢♢♢ -0.953♢♢♢ -0.986♢♢♢ -0.968♢♢♢ -1.000♢♢♢ -1.020♢♢♢ -1.027♢♢♢ -1.028♢♢♢ -1.023♢♢♢ -1.047♢♢♢ -1.051♢♢♢ -1.130♢♢♢ -0.989♢♢♢ -0.976♢♢♢ -0.904♢♢♢
(0.655) (0.666) (0.667) (0.667) (0.667) (0.666) (0.668) (0.668) (0.666) (0.666) (0.662) (0.663) (0.670) (0.671) (0.703) (0.667) (0.682) (0.657)

V IX2 0.031

(0.017)

V RPRV 0.082

(0.026)

RV 0.027♢♢♢
(0.023)

V RPHARRW
0.067

(0.023)

CVHARRW
0.028♢♢♢
(0.022)

V RPHARIW
0.067

(0.023)

CVHARIW
0.028♢♢♢
(0.022)

V RPSHARRW
0.066

(0.023)

CVSHARRW
0.029♢♢♢
(0.022)

V RPSHARIW
0.066

(0.023)

CVSHARIW
0.029♢♢♢
(0.022)

V RPNHARRW
0.066

(0.023)

CVNHARRW
0.029♢♢♢
(0.022)

V RPNHARIW
0.067

(0.023)

CVNHARIW
0.029♢♢♢
(0.022)

V RPHARQRW
0.082

(0.024)

CVHARQRW
0.027♢♢♢
(0.023)

V RPHARQIW
0.081

(0.024)

CVHARQIW
0.027♢♢♢
(0.023)

V RPSHARQRW
0.083

(0.023)

CVSHARQRW
0.028♢♢♢
(0.023)

V RPSHARQIW
0.081

(0.023)

CVSHARQIW
0.028♢♢♢
(0.022)

V RPNHARQRW
0.080

(0.025)

CVNHARQRW
0.030♢♢♢
(0.022)

V RPNHARQIW
0.076

(0.025)

CVNHARQIW
0.030♢♢♢
(0.021)

V RPtv−SHARQRW
0.034

(0.019)

CVtv−SHARQRW
0.029♢♢♢
(0.018)

V RPtv−SHARQIW
0.050

(0.021)

CVtv−SHARQIW
0.017♢♢♢
(0.022)

V RPtv−NHARQRW
0.032

(0.018)

CVtv−NHARQRW
0.031

(0.018)

V RPtv−NHARQIW
0.027♢♢♢
(0.024)

CVtv−NHARQIW
0.036♢♢♢
(0.029)

Adj. R2 0.157 0.197 0.172 0.173 0.171 0.172 0.173 0.174 0.187 0.185 0.189 0.186 0.179 0.175 0.175 0.164 0.149 0.149
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Table 4: Stock excess return regressions: Horizon 3 months (period 2008–2016).

Regressions (monthly observations) with variance risk premium, conditional variance, real 3-month rate, the logarithm of dividend yield, credit spread and term spread.

The standard errors presented below the estimated parameters are the Newey-West standard errors using max[3, 2 · horizon] lags. ♢♢♢ means that the variable is not

significant at any relevant level (1%, 5% and 10%) of significance.

Panel A: Parametric and semiparametric measures of VRP and CV

Constant -3.598 -2.899♢♢♢ -2.841♢♢♢ -2.860♢♢♢ -2.870♢♢♢ -2.882♢♢♢ -2.895♢♢♢ -2.905♢♢♢ -2.866♢♢♢ -2.885♢♢♢ -2.973♢♢♢ -2.988♢♢♢ -2.901♢♢♢ -2.965♢♢♢ -3.376 -3.209♢♢♢ -3.556 -2.751♢♢♢
(1.827) (2.133) (2.044) (2.046) (2.040) (2.042) (2.072) (2.073) (2.117) (2.122) (2.109) (2.118) (2.169) (2.178) (1.951) (2.077) (1.883) (2.101)

R3MT -4.763 -4.525 -4.509 -4.491 -4.527 -4.508 -4.555 -4.537 -4.503 -4.509 -4.562 -4.575 -4.564 -4.583 -4.780 -4.707 -4.766 -4.182

(1.440) (1.608) (1.649) (1.670) (1.639) (1.660) (1.613) (1.632) (1.635) (1.638) (1.598) (1.595) (1.599) (1.598) (1.441) (1.518) (1.448) (1.857)

log(DY ) 12.630 11.706 11.512 11.646 11.547 11.673 11.640 11.738 11.683 11.694 11.856 11.823 11.824 11.872 12.598 12.224 12.636 11.893

(3.983) (4.259) (4.170) (4.123) (4.180) (4.130) (4.226) (4.181) (4.210) (4.234) (4.214) (4.271) (4.269) (4.325) (4.007) (4.223) (4.000) (4.039)

CS -2.976 -3.214 -3.178 -3.217 -3.166 -3.208 -3.166 -3.198 -3.278 -3.246 -3.266 -3.211 -3.292 -3.221 -3.004 -3.087 -2.983 -3.521

(1.180) (1.063) (1.092) (1.078) (1.094) (1.080) (1.089) (1.076) (1.053) (1.056) (1.047) (1.058) (1.035) (1.044) (1.180) (1.100) (1.182) (1.158)

TS -0.965 -0.998 -0.983 -0.998 -0.980 -0.995 -0.984 -0.997 -1.001 -1.002 -0.998 -0.996 -1.009 -1.007 -1.025 -0.984 -0.978 -0.950

(0.325) (0.308) (0.314) (0.308) (0.315) (0.309) (0.313) (0.308) (0.308) (0.307) (0.309) (0.310) (0.305) (0.303) (0.327) (0.312) (0.329) (0.319)

V IX2 0.019

(0.009)

V RPRV 0.034

(0.014)

RV 0.017♢♢♢
(0.011)

V RPHARRW
0.036

(0.013)

CVHARRW
0.017♢♢♢
(0.012)

V RPHARIW
0.036

(0.013)

CVHARIW
0.017♢♢♢
(0.012)

V RPSHARRW
0.035

(0.013)

CVSHARRW
0.017♢♢♢
(0.012)

V RPSHARIW
0.035

(0.013)

CVSHARIW
0.017♢♢♢
(0.012)

V RPNHARRW
0.033

(0.013)

CVNHARRW
0.018

(0.011)

V RPNHARIW
0.033

(0.013)

CVNHARIW
0.018

(0.011)

V RPHARQRW
0.038

(0.016)

CVHARQRW
0.017♢♢♢
(0.012)

V RPHARQIW
0.037

(0.016)

CVHARQIW
0.017♢♢♢
(0.012)

V RPSHARQRW
0.036

(0.016)

CVSHARQRW
0.018

(0.011)

V RPSHARQIW
0.034

(0.015)

CVSHARQIW
0.018

(0.011)

V RPNHARQRW
0.036

(0.017)

CVNHARQRW
0.018

(0.011)

V RPNHARQIW
0.033

(0.016)

CVNHARQIW
0.018

(0.011)

V RPtv−SHARQRW
0.019

(0.009)

CVtv−SHARQRW
0.018

(0.009)

V RPtv−SHARQIW
0.023

(0.009)

CVtv−SHARQIW
0.015

(0.013)

V RPtv−NHARQRW
0.019

(0.009)

CVtv−NHARQRW
0.019

(0.009)

V RPtv−NHARQIW
0.032

(0.012)

CVtv−NHARQIW
0.003♢♢♢
(0.023)

Adj. R2 0.441 0.447 0.450 0.450 0.449 0.449 0.446 0.447 0.450 0.449 0.447 0.445 0.446 0.443 0.443 0.437 0.435 0.455
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Table 5: Stock excess return regressions: Horizon 12 months (period 2008-2016)

Regressions (monthly observations) with variance risk premium, conditional variance, real 3-month rate, the logarithm of dividend yield, credit spread and term spread.

The standard errors presented below the estimated parameters are the Newey-West standard errors using max[3, 2 · horizon] lags. ♢♢♢ means that the variable is not

significant at any relevant level (1%, 5% and 10%) of significance.

Panel A: Parametric and semiparametric measures of VRP and CV

Constant -0.151♢♢♢ 0.078♢♢♢ 0.097♢♢♢ 0.084♢♢♢ 0.097♢♢♢ 0.084♢♢♢ 0.098♢♢♢ 0.090♢♢♢ 0.057♢♢♢ 0.062♢♢♢ 0.030♢♢♢ 0.041♢♢♢ 0.042♢♢♢ 0.055♢♢♢ -0.418♢♢♢ 0.115♢♢♢ -0.323♢♢♢ 0.003♢♢♢
(0.809) (0.826) (0.843) (0.832) (0.841) (0.832) (0.848) (0.834) (0.826) (0.819) (0.819) (0.814) (0.835) (0.825) (0.883) (0.841) (0.834) (0.840)

R3MT -0.948 -0.867 -0.864 -0.859 -0.867 -0.863 -0.874 -0.868 -0.873 -0.869 -0.888 -0.886 -0.892 -0.887 -0.936 -0.911 -0.941 -0.837

(0.425) (0.434) (0.448) (0.451) (0.448) (0.450) (0.442) (0.445) (0.436) (0.438) (0.431) (0.432) (0.425) (0.428) (0.430) (0.445) (0.430) (0.503)

log(DY ) 2.341♢♢♢ 2.044♢♢♢ 1.977♢♢♢ 2.029♢♢♢ 1.973♢♢♢ 2.029♢♢♢ 1.993♢♢♢ 2.035♢♢♢ 2.079♢♢♢ 2.068♢♢♢ 2.124♢♢♢ 2.091♢♢♢ 2.126♢♢♢ 2.103♢♢♢ 2.372♢♢♢ 2.072♢♢♢ 2.323♢♢♢ 2.221♢♢♢
(1.763) (1.825) (1.878) (1.856) (1.875) (1.855) (1.875) (1.849) (1.834) (1.825) (1.818) (1.814) (1.839) (1.828) (1.785) (1.819) (1.792) (1.797)

CS -0.264♢♢♢ -0.367♢♢♢ -0.340♢♢♢ -0.360♢♢♢ -0.340♢♢♢ -0.359♢♢♢ -0.343♢♢♢ -0.362♢♢♢ -0.368♢♢♢ -0.371♢♢♢ -0.369♢♢♢ -0.366♢♢♢ -0.370♢♢♢ -0.374♢♢♢ -0.237♢♢♢ -0.360♢♢♢ -0.245♢♢♢ -0.383♢♢♢
(0.478) (0.428) (0.433) (0.430) (0.433) (0.430) (0.430) (0.428) (0.426) (0.426) (0.429) (0.430) (0.419) (0.419) (0.495) (0.427) (0.495) (0.347)

TS -0.306♢♢♢ -0.315♢♢♢ -0.311♢♢♢ -0.314♢♢♢ -0.310♢♢♢ -0.314♢♢♢ -0.312♢♢♢ -0.315♢♢♢ -0.315♢♢♢ -0.315♢♢♢ -0.314♢♢♢ -0.313♢♢♢ -0.317♢♢♢ -0.318♢♢♢ -0.231♢♢♢ -0.317♢♢♢ -0.251♢♢♢ -0.302♢♢♢
(0.261) (0.260) (0.263) (0.260) (0.264) (0.261) (0.263) (0.261) (0.260) (0.260) (0.260) (0.261) (0.259) (0.259) (0.261) (0.262) (0.262) (0.270)

V IX2 0.008

(0.003)

V RPRV 0.013

(0.004)

RV 0.007

(0.003)

V RPHARRW
0.013

(0.005)

CVHARRW
0.007

(0.004)

V RPHARIW
0.013

(0.005)

CVHARIW
0.007

(0.004)

V RPSHARRW
0.013

(0.004)

CVSHARRW
0.007

(0.004)

V RPSHARIW
0.013

(0.004)

CVSHARIW
0.007

(0.004)

V RPNHARRW
0.013

(0.004)

CVNHARRW
0.007

(0.004)

V RPNHARIW
0.013

(0.004)

CVNHARIW
0.007

(0.004)

V RPHARQRW
0.013

(0.005)

CVHARQRW
0.007

(0.003)

V RPHARQIW
0.014

(0.005)

CVHARQIW
0.007

(0.003)

V RPSHARQRW
0.013

(0.005)

CVSHARQRW
0.007

(0.003)

V RPSHARQIW
0.013

(0.005)

CVSHARQIW
0.007

(0.003)

V RPNHARQRW
0.013

(0.005)

CVNHARQRW
0.008

(0.003)

V RPNHARQIW
0.013

(0.005)

CVNHARQIW
0.008

(0.003)

V RPtv−SHARQRW
0.007

(0.002)

CVtv−SHARQRW
0.008

(0.002)

V RPtv−SHARQIW
0.011

(0.004)

CVtv−SHARQIW
0.005♢♢♢
(0.004)

V RPtv−NHARQRW
0.007

(0.002)

CVtv−NHARQRW
0.008

(0.002)

V RPtv−NHARQIW
0.010

(0.004)

CVtv−NHARQIW
0.005♢♢♢
(0.006)

Adj. R2 0.330 0.341 0.342 0.343 0.342 0.343 0.340 0.342 0.338 0.340 0.336 0.337 0.333 0.335 0.344 0.339 0.344 0.330
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At the 3-month horizon, the VRP is again a predictor of stock market returns, whereas
the CV is not. However, the magnitude of the VRP’s coefficients is higher in comparison
with those of a more recent sample period and the predictability decreases. The best
predictive regression, which is that with the NHARQ model predictors, has an R2 of 0.324.
In addition, regarding the set of extra predictors, we observe that the real 3-month rate
and logarithm of the dividend yield are statistically significant, and that the log(DY) has
expected positive coefficients.

Finally, at the 12-month horizon, in contrast to the previous sample period, the CV
has no predictability, and the magnitude of the VRP’s coefficients is larger. The best
predictive regression is that where the regressors are obtained using the NHARQ model
and IW scheme.

Moreover, the R2 values before the crisis are higher than those obtained for the previous
sample period and 12-month horizon. Among the potential predictors, only the real 3-
month rate is statistically significant. The same evidence is obtained for the previous
sample period.

The main conclusions drawn from the precrisis period compared with the postcrisis
period are as follows: First, during the last financial crisis, CV gains predictive power at
least at the 12-month horizon. Second, the predictability is higher at the 1- and 3-month
horizons when the crisis and postcrisis periods are considered, whereas at the 12-month
horizon it decreases. This does not occur in the precrisis period because the R2 values
increase with the horizon. Third, the NHARQ model predictors are effective at the 3-
and 12-month horizons, whereas the time-varying coefficient NHARQ and SHARQ models
are superior for the stock market return predictability in the sample, including the crisis
and postcrisis periods, which suggests that a period of greater volatility requires models
that can adapt quickly to turbulence. Finally, we believe that our results reinforce those
reported by Bollerslev et al. (2009), and that we substantially increase the predictive power
of the VRP by considering either net estimator of RV and time-varying coefficient models.

4.2 Predictability of economic activity

Some previous research stands that increases in volatility (uncertainty shocks) can be trans-
mitted to the economic activity by leading to a quick deceleration of the aggregate output
and an increase of unemployment (see, for example, Bloom, 2009; Bachmann et al., 2013).
Therefore, as in Bekaer and Hoerova (2014), we use the VIX2, VRP and CV measures
proposed in this paper to study their performance when predicting the economic activity,
which is proxied by industrial production growth.8

Some research states that increases in volatility (uncertainty shocks) can be transmit-
ted to the economic activity by leading to a quick deceleration of the aggregate output
and an increase in unemployment(see, for example, Bloom, 2009; Bachmann et al., 2013).
Therefore, as in Bekaer and Hoerova (2014), we use the VIX2, VRP, and CV measures
to study their performance in predicting economic activity, which is proxied by industrial

8The industrial production growth is the log-difference of the total industrial production index (see
Bekaer and Hoerova, 2014, for the use of the same proxy).
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Table 6: Stock excess return regressions: Horizon 1 month (period 1990-2007).

Regressions (monthly observations) with variance risk premium, conditional variance, real 3-month rate, the logarithm of dividend

yield, credit spread and term spread. The standard errors presented below the estimated parameters are the Newey-West standard

errors using max[3, 2 · horizon] lags. ♢♢♢ means that the variable is not significant at any relevant level (1%, 5% and 10%) of

significance.

Panel A: Parametric and semiparametric measures of VRP and CV

Constant 0.426♢♢♢ 0.208♢♢♢ 0.153♢♢♢ 0.098♢♢♢ 0.096♢♢♢ 0.277♢♢♢ 0.376♢♢♢ -0.241♢♢♢ -0.368♢♢♢ 0.280♢♢♢ -0.277♢♢♢
(2.046) (2.075) (2.077) (2.063) (2.075) (2.087) (2.085) (2.376) (2.043) (2.090) (2.248)

R3MT -1.342 -1.299 -1.289 -1.275 -1.271 -1.331 -1.333 -1.200 -1.132 -1.316 -1.202

(0.379) (0.382) (0.381) (0.377) (0.379) (0.386) (0.385) (0.404) (0.347) (0.370) (0.386)

log(DY ) 2.324♢♢♢ 2.431♢♢♢ 2.422♢♢♢ 2.511♢♢♢ 2.441♢♢♢ 2.461♢♢♢ 2.341♢♢♢ 2.527♢♢♢ 2.931♢♢♢ 2.580♢♢♢ 2.584♢♢♢
(1.727) (1.704) (1.694) (1.707) (1.676) (1.732) (1.722) (1.723) (1.710) (1.722) (1.679)

CS -0.644♢♢♢ -0.731♢♢♢ -0.741♢♢♢ -0.826♢♢♢ -0.798♢♢♢ -0.618♢♢♢ -0.635♢♢♢ -1.035♢♢♢ -0.491♢♢♢ -0.453♢♢♢ -1.005♢♢♢
(1.653) (1.669) (1.674) (1.671) (1.682) (1.639) (1.653) (1.623) (1.664) (1.692) (1.660)

TS -0.478♢♢♢ -0.429♢♢♢ -0.414♢♢♢ -0.403♢♢♢ -0.395♢♢♢ -0.450♢♢♢ -0.454♢♢♢ -0.321♢♢♢ -0.359♢♢♢ -0.470♢♢♢ -0.331♢♢♢
(0.429) (0.434) (0.431) (0.433) (0.431) (0.430) (0.429) (0.473) (0.420) (0.438) (0.457)

V RPRV 0.062

(0.024)

RV -0.027♢♢♢
(0.046)

V RPHARQRW
0.054

(0.025)

CVHARQRW
-0.003♢♢♢
(0.052)

V RPHARQIW
0.052

(0.025)

CVHARQIW
0.002♢♢♢
(0.052)

V RPSHARQRW
0.049

(0.024)

CVSHARQRW
0.011♢♢♢
(0.050)

V RPSHARQIW
0.049

(0.025)

CVSHARQIW
0.011♢♢♢
(0.053)

V RPNHARQRW
0.057

(0.023)

CVNHARQRW
-0.025♢♢♢
(0.054)

V RPNHARQIW
0.059

(0.023)

CVNHARQIW
-0.023♢♢♢
(0.051)

V RPtv−SHARQRW
0.041

(0.017)

CVtv−SHARQRW
0.047♢♢♢
(0.036)

V RPtv−SHARQIW
0.058

(0.019)

CVtv−SHARQIW
-0.353♢♢♢
(0.308)

V RPtv−NHARQRW
0.043

(0.017)

CVtv−NHARQRW
-0.011♢♢♢
(0.050)

V RPtv−NHARQIW
0.039♢♢♢
(0.026)

CVtv−NHARQIW
0.074♢♢♢
(0.308)

Adj. R2 0.158 0.152 0.152 0.151 0.151 0.155 0.155 0.149 0.159 0.154 0.149

19



Table 7: Stock excess return regressions: Horizon 3 months (period 1990-2007).

Regressions (monthly observations) with variance risk premium, conditional variance, real 3-month rate, the logarithm of dividend

yield, credit spread and term spread. The standard errors presented below the estimated parameters are the Newey-West standard

errors using max[3, 2 · horizon] lags. ♢♢♢ means that the variable is not significant at any relevant level (1%, 5% and 10%) of

significance.

Panel A: Parametric and semiparametric measures of VRP and CV

Constant 0.018♢♢♢ 0.076♢♢♢ 0.079♢♢♢ 0.122♢♢♢ 0.090♢♢♢ 0.197♢♢♢ 0.224♢♢♢ -0.768♢♢♢ -0.219♢♢♢ -0.100♢♢♢ -0.697♢♢♢
(1.866) (1.877) (1.882) (1.875) (1.890) (1.864) (1.894) (1.974) (1.850) (1.853) (2.107)

R3MT -1.294 -1.309 -1.311 -1.319 -1.309 -1.351 -1.338 -1.128 -1.234 -1.269 -1.180

(0.354) (0.361) (0.362) (0.361) (0.360) (0.367) (0.366) (0.356) (0.327) (0.341) (0.363)

log(DY ) 2.744 2.725 2.694 2.754 2.683 2.723 2.634 2.594 2.936 2.852 2.906

(1.614) (1.614) (1.607) (1.631) (1.603) (1.646) (1.621) (1.614) (1.678) (1.630) (1.597)

CS -1.296♢♢♢ -1.230♢♢♢ -1.199♢♢♢ -1.221♢♢♢ -1.207♢♢♢ -1.077♢♢♢ -1.134♢♢♢ -1.755♢♢♢ -1.301♢♢♢ -1.342♢♢♢ -1.534

(1.670) (1.672) (1.667) (1.667) (1.663) (1.671) (1.652) (1.690) (1.654) (1.736) (1.652)

TS -0.402♢♢♢ -0.416♢♢♢ -0.415♢♢♢ -0.426♢♢♢ -0.410♢♢♢ -0.448♢♢♢ -0.437♢♢♢ -0.202♢♢♢ -0.365♢♢♢ -0.381♢♢♢ -0.298♢♢♢
(0.387) (0.392) (0.392) (0.392) (0.390) (0.393) (0.394) (0.406) (0.374) (0.376) (0.387)

V RPRV 0.061

0.015

RV 0.029♢♢♢
(0.030)

V RPHARQRW
0.063

(0.016)

CVHARQRW
0.020♢♢♢
(0.038)

V RPHARQIW
0.064

(0.017)

CVHARQIW
0.017♢♢♢
(0.039)

V RPSHARQRW
0.063

(0.016)

CVSHARQRW
0.015♢♢♢
(0.039)

V RPSHARQIW
0.063

(0.017)

CVSHARQIW
0.018♢♢♢
(0.039)

V RPNHARQRW
0.068

(0.016)

CVNHARQRW
-0.009♢♢♢
(0.049)

V RPNHARQIW
0.068

(0.017)

CVNHARQIW
0.001♢♢♢
(0.042)

V RPtv−SHARQRW
0.055

(0.011)

CVtv−SHARQRW
0.088

(0.030)

V RPtv−SHARQIW
0.058

(0.014)

CVtv−SHARQIW
-0.042♢♢♢
(0.135)

V RPtv−NHARQRW
0.054

(0.011)

CVtv−NHARQRW
0.046♢♢♢
(0.037)

V RPtv−NHARQIW
0.048

(0.015)

CVtv−NHARQIW
0.180♢♢♢
(0.177)

Adj. R2 0.318 0.319 0.319 0.320 0.319 0.324 0.323 0.321 0.317 0.316 0.318
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Table 8: Stock excess return regressions: Horizon 12 months (period 1990-2007).

Regressions (monthly observations) with variance risk premium, conditional variance, real 3-month rate, the logarithm of dividend

yield, credit spread and term spread. The standard errors presented below the estimated parameters are the Newey-West standard

errors using max[3, 2 · horizon] lags. ♢♢♢ means that the variable is not significant at any relevant level (1%, 5% and 10%) of

significance.

Panel A: Parametric and semiparametric measures of VRP and CV

Constant -2.170♢♢♢ -2.106♢♢♢ -2.091♢♢♢ -2.093♢♢♢ -2.048♢♢♢ -2.181♢♢♢ -2.028♢♢♢ -2.631♢♢♢ -2.509 -2.582 -2.742

(1.342) (1.358) (1.356) (1.382) (1.363) (1.337) (1.374) (1.680) (1.294) (1.414) (1.422)

R3MT -0.904 -0.922 -0.930 -0.926 -0.928 -0.922 -0.935 -0.805 -0.830 -0.814 -0.799

(0.279) (0.282) (0.279) (0.288) (0.279) (0.288) (0.281) (0.322) (0.266) (0.292) (0.332)

log(DY ) 1.290♢♢♢ 1.268♢♢♢ 1.211♢♢♢ 1.354♢♢♢ 1.166♢♢♢ 1.375♢♢♢ 1.207♢♢♢ 1.513♢♢♢ 1.574♢♢♢ 1.569♢♢♢ 1.595♢♢♢
(1.265) (1.258) (1.240) (1.261) (1.251) (1.269) (1.238) (1.444) (1.408) (1.364) (1.339)

CS 1.018♢♢♢ 1.127♢♢♢ 1.191♢♢♢ 1.093♢♢♢ 1.202♢♢♢ 1.137♢♢♢ 1.162♢♢♢ 0.691♢♢♢ 0.771♢♢♢ 0.660♢♢♢ 0.712♢♢♢
(1.032) (1.000) (0.992) (1.006) (0.984) (1.003) (1.000) (0.984) (1.070) (1.031) (1.128)

TS -0.141♢♢♢ -0.157♢♢♢ -0.157♢♢♢ -0.161♢♢♢ -0.153♢♢♢ -0.148♢♢♢ -0.158♢♢♢ -0.049♢♢♢ -0.083♢♢♢ -0.062♢♢♢ -0.056♢♢♢
(0.203) (0.207) (0.205) (0.212) (0.205) (0.209) (0.205) (0.257) (0.193) (0.216) (0.229)

V RPRV 0.050

(0.014)

RV -0.021♢♢♢
(0.041)

V RPHARQRW
0.052

(0.015)

CVHARQRW
-0.033♢♢♢
(0.052)

V RPHARQIW
0.054

(0.016)

CVHARQIW
-0.038♢♢♢
(0.054)

V RPSHARQRW
0.050

(0.015)

CVSHARQRW
-0.032♢♢♢
(0.055)

V RPSHARQIW
0.053

(0.015)

CVSHARQIW
-0.040♢♢♢
(0.054)

V RPNHARQRW
0.049

(0.014)

CVNHARQRW
-0.035♢♢♢
(0.056)

V RPNHARQIW
0.054

(0.015)

CVNHARQIW
-0.042♢♢♢
(0.053)

V RPtv−SHARQRW
0.034

(0.004)

CVtv−SHARQRW
0.041

(0.024)

V RPtv−SHARQIW
0.034

(0.006)

CVtv−SHARQIW
0.025♢♢♢
(0.072)

V RPtv−NHARQRW
0.033

(0.004)

CVtv−NHARQRW
0.044

(0.015)

V RPtv−NHARQIW
0.031

(0.008)

CVtv−NHARQIW
0.091♢♢♢
(0.117)

Adj. R2 0.552 0.555 0.559 0.553 0.558 0.553 0.560 0.532 0.532 0.533 0.533
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production growth.9

Tables 9–11 indicate the results of industrial production regressions. The first notable
result is that the V IX2 is a predictor of economic activity at all considered horizons, with
a negative sign. At the 1-month horizon, both the VRP and CV are predictors of future
economic activity with negative coefficients. Moreover, the regression that achieves the
highest predictive power includes the VRP and CV obtained with the tv-SHARQ model.
The coefficient of CV is the lowest in absolute value of all regressions, and the adjusted
R2 is 0.250. Conclusions for the 3-month horizon differ slightly. Although CV remains a
predictor of economic predictability, the VRP does not in the most predictive regression,
whose regressors are obtained with the HARQ model and rolling window scheme. The
signs of the relationships are maintained. Finally, regarding the 12-month horizon, we
observe again that only CV is a predictor of economic activity, the sign of its coefficients
is still negative, and the best predictor is from the tv-NHARQ model; furthermore, the
predictability for this horizon seems to decrease because the adjusted R2 values are smaller
than those for previous horizons (Table 11). Similar results are obtained by Bekaer and
Hoerova (2014).

Overall, we conclude that CV predicts future economic activity at all horizons, whereas
the VRP predicts it only at the 1-month horizon.

4.3 Predictability of financial instability

A stable financial system can allocate resources efficiently to access and manage financial
risks, maintain a high level of employment in the economy, and eliminate relative price
movements of real or financial assets that will affect monetary stability. Therefore, moni-
toring financial instability is of great interest. We use as a proxy of financial instability the
CISS indicator, which is an indicator of financial stress provided by the European Monetary
Union (see Bekaer and Hoerova, 2014, for the use of the same indicator).

Tables 12–14 show results of the predictability of financial instability using the proposed
measures of the VRP and CV, as well as the values of the CISS indicator for 1-, 3-, and
12-month horizons; the VRP and CV accurately predict financial instability at all three
horizons. The highest adjusted R2 values of 0.554, 0.481, and 0.244 are obtained using
the tv-NHARQ estimators of the VRP and CV for the 1-, 3-, and 12-month horizons,
respectively. As expected, the relationship between predictors and financial instability is
always positive.

9The industrial production growth is the log-difference of the total industrial production index (see
Bekaer and Hoerova, 2014, for the use of the same proxy).
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5 Conclusions

We propose new parametric and semiparametric asymmetric extensions of the HAR model
that consider how unsettling positive and negative returns are likely to be for the volatility
and current investment decisions and allow the coefficients to be time varying.

Using the decomposition of VIX2 into the equity VRP and CV of stock market returns,
we test our specifications by analyzing the predictive power of the VRP and CV for future
excess stock returns, economic activity, and financial instability. We observe that the VRP
is a predictor of future excess stock returns for short, medium, and long horizons, for the
periods before, during, and after the global financial crisis. Furthermore, both variables
are predictors of financial instability at all horizons with positive coefficients. However,
regarding the economic activity during and after the crisis, the VRP loses predictive power
in favor of CV. CV is a predictor of the future economic activity at all horizons with a
negative coefficient, whereas the VRP is a predictor only at the 1-month horizon.

In conclusion, the best model in terms of stock market return predictability varies
depending on the sample period. During and after the global financial crisis, asymmetric
time-varying coefficient models are often the most effective at predicting stock market
returns. These models are more flexible and adapt quicker to changes in periods of high
volatility. However, regarding the precrisis period, models using the NRV as a measure
of asymmetry have the highest predictive ability for the stock market returns. Regarding
financial instability predictions during and after the crisis, the same conclusion is drawn:
the best forecasts of the VRP and CV are obtained using time-varying coefficient models.

Overall, asymmetric extensions of the HAR model, often with time-varying coefficients,
are crucial for increasing the predictive power of the VRP, especially in the context of stock
market returns and financial instability.
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