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Abstract

This paper studies the properties of standard predictive regressions in model economies, character-
ized through persistent vector autoregressive dynamics for the state variables and the associated
series of interest. In particular, we consider a setting where all, or a subset, of the variables may be
fractionally integrated, and note that this induces a spurious regression problem. We then propose
a new inference and testing procedure – the local spectrum (LCM) approach – for the joint signif-
icance of the regressors, which is robust against the variables having different integration orders.
The LCM procedure is based on (semi-)parametric fractional-filtering and band spectrum regres-
sion using a suitably selected set of frequency ordinates. We establish the asymptotic properties
and explain how they differ from and extend existing procedures. Using these new inference and
testing techniques, we explore the implications of assuming VAR dynamics in predictive regressions
for the realized return variation. Standard least squares predictive regressions indicate that pop-
ular financial and macroeconomic variables carry valuable information about return volatility. In
contrast, we find no significant evidence using our robust LCM procedure, indicating that prior
conclusions may be premature. In fact, if anything, our results suggest the reverse causality, i.e.,
rising volatility predates adverse innovations to key macroeconomic variables. Simulations are em-
ployed to illustrate the relevance of the theoretical arguments for finite-sample inference.
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1 Introduction and Literature Review

Regressions involving persistent variables have a long history in economics, econometrics and finance.

In particular, as many time series display slowly decaying autocorrelations, non-stationarities or both,

researchers have studied the properties of regressions that include such variables and identified a num-

ber of pitfalls. Most prominently, in the spurious regressions problem, e.g., Granger & Newbold (1974)

and Phillips (1986), where one persistent unit root, or I(1), process is projected onto another inde-

pendent I(1) process, standard significance tests display large size distortions. A second canonical

example is the prediction of a noisy, and possibly persistent, variable using a highly persistent regres-

sor. This setting is motivated by, among others, stock return or volatility predictability in financial

economics along with associated empirical puzzles such as unstable predictive relations, e.g., Peseran

& Timmermann (1995) and Welch & Goyal (2008), or predictive biases, e.g., Stambaugh (1999).

In this paper, we consider inference for predictive regressions within a VAR economy, where all

included variables may be highly persistent, suggesting that standard inference is subject to problems

akin to those mentioned above. Specifically, the variables may display different degrees of fractional

integration, that is, be I(d) processes, where d may take different non-integer values across series. This

nests standard short memory and integrated VARs, if all variables have d = 0 or d = 1, respectively,

but also accommodates many intermediate cases of varying degrees of fractional integration, thus

comprising a very flexible setting. The variables are (asymptotically) stationary if 0 ≤ d < 1/2, and

non-stationary if d ≥ 1/2.

Our analysis builds on important prior contributions studying different aspects of the scenarios

outlined above. First, for spurious regressions, the theory in Phillips (1986) is extended to the frac-

tionally integrated case by Tsay & Chung (2000), demonstrating how many basic insights carry over

to regressions with independent, fractionally integrated variables. Second, Ferson, Sarkissian & Simin

(2003), Valkanov (2003), Torous, Valkanov & Yan (2005) and Deng (2014) document that similar issues

arise when predicting a noisy stationary variable with a persistent regressor in a local-to-unity (unit

root) setting and, in particular, for long-horizon return regressions. In the latter case, the inference

may also be distorted by a bias caused by correlation between innovations to the (stationary) returns

and the persistent predictor. Stambaugh (1999) shows that this bias can be corrected for a stationary

predictor, but Phillips & Lee (2013) and Phillips (2014) demonstrate that this, more generally, is

infeasible, when the regressor displays local-to-unity, unit-root or explosive persistence. In summary,

it is widely acknowledged that standard inference techniques encounter serious size problems, when

one or more variables of the system are strongly persistent.

Several alternative procedures have been developed to accommodate spurious inference problems

and issues with predictive biases. For example, standard and fractional cointegration frameworks

facilitate inference on general linear relations, whose error is purged of (some of) the persistence of

the original processes, see, e.g., Johansen & Nielsen (2012) for modeling and parametric inference, and

Robinson & Marinucci (2003) and Christensen & Nielsen (2006) for the semiparametric case. Moreover,

various robust inference procedures have been proposed for predictive regressions when the persistent
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regressor follow local-to-unity dynamics, e.g., using Bonferroni corrections in Cavanagh, Elliott & Stock

(1995) and Campbell & Yogo (2006), a conditional likelihood approach in Jansson & Moreira (2006),

and a class of nearly optimal tests in Elliott, Müller & Watson (2015). Recent contributions such as

Phillips & Lee (2013) and Phillips (2014) discuss drawbacks of these approaches, e.g., the lack of power

of the Bonferroni procedure, if the persistence of the regressor is actually stationary, not local-to-unity,

and the lack of extendability to multivariate regressions. As an alternative, and in conjunction with

Magdalinos & Phillips (2009), Kostakis, Magdalinos & Stamatogiannis (2015) and Phillips & Lee

(2016), they develop the IVX methodology. It applies generally to persistent autoregressive processes

(stationary, local-to-unity, unity and explosive) as well as to multivariate testing problems. Finally,

Sizova (2013) consider predictive regressions for stock returns using stationary fractionally integrated

variables (I(d) processes with 0 < d < 1/2), including historical volatility, thus analyzing the same

fundamental problem, but from a different asymptotic perspective.

Despite the fact that inference in systems with persistent variables has received considerable at-

tention, there are presently no results pertaining to our flexible predictive regression framework,

where each variable may display fractional integration of different orders, covering stationary and

non-stationary values. In the cointegration literature, the underlying assumption of (fractional) cointe-

gration is violated under the null hypothesis of no predictability. Moreover, in the stationary-persistent

variable prediction literature, such as the IVX methodology, the regressand is only weakly dependent,

i.e., not fractionally integrated. Finally, the setting with diverse values of d puts us squarely outside

the frequently-applied local-to-unity framework.

In this paper, we fill an important gap in the literature by developing inference and testing proce-

dures for prediction of an I(d) variable within a system of fractionally integrated variables of potentially

different orders. Our methodology is robust to stationary and non-stationary variables. Such unifor-

mity across persistence regimes is highly desirable, allowing us to retain statical power, while letting

the user, a priori, remain agnostic about the stationarity of the system. Specifically, we propose a two-

step inference procedure – the local spectrum (LCM) approach. The first step uses a (semi-)parametric

fractional filter to purge the variables of their long memory, while retaining the coherence among the

variables in the filtered series. The second step relies on band-spectrum regressions, using carefully

selected frequency ordinates to account for any slippage from the mean (or initial value, if d ≥ 1) and

first-stage filtering errors. We establish the asymptotic properties, showing that, the LCM inference

is asymptotically Gaussian and the associated test statistic for joint significance is χ2-distributed,

and thus readily implementable. These results apply in spite of the original variables consisting of a

mixture of stationary and non-stationary variables. Furthermore, in settings where predictive biases

occur in the fractionally integrated VAR system, we show that the LCM procedure, at most, incurs a

second-order impact, regardless of the persistence in the system. This contrasts Phillips & Lee (2013),

who find the corresponding bias to be of first order and uncorrectable in the local-to-unity case.

The methodological contributions closest to ours are those by Shao (2009), Maynard, Smallwood &

Wohar (2013), Christensen & Varneskov (2017), and Müller & Watson (2017). In Shao (2009), the test
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for independence of two fractionally integrated processes is bivariate, and it neither accommodate non-

zero means (or initial values) of the series nor non-stationary long memory (d ≥ 1/2). The two-stage

approach in Maynard et al. (2013) has similar drawbacks. In addition, their asymptotic distribution

theory differs under the null (no predictability) and alternative hypothesis, and it depends on the first-

stage filtering. Müller & Watson (2017) rely on the estimation of a bivariate spectral density, whose

confidence intervals are computed numerically, while LCM approach delivers closed-form inference.

Moreover, the former methodology is not readily extendable to the multivariate case, and is designed

only to extract information about the “long-run” coherence between two series from a fixed number

of frequencies in the vicinity of the origin.1 In contrast, the LCM procedure captures information

about the coherence from a wider range of the spectrum, allowing for more general statements about

predictability. Finally, Christensen & Varneskov (2017) propose a band-spectrum regression estimator

in a stationary fractional cointegration setting, resembling the one used in the second-step LCM

analysis. However, their results pertain only to the 0 < d < 1/2 case. In fact, a direct application

of their medium-band least squares estimator generally generates inconsistent estimates of predictive

power. Hence, both steps of our LCM approach are crucial for reliable inference and testing.

We apply the LCM approach to study predictive regressions for realized volatility. Going back to

Schwert (1989), it has been debated whether financial and macroeconomic variables aid in the predic-

tion of aggregate stock market volatility. Recently, interest in the topic has surged with the adoption of

stochastic volatility in macro-finance models for the purpose of explaining consumption innovations and

cross-sectional asset pricing, e.g., Bansal, Kiku, Shaliastovich & Yaron (2014) and Campbell, Giglio,

Polk & Turley (2017). Hence, recent studies explore alternative ways of improving realized volatility

forecasts using various state variables, e.g., Christiansen, Schmeling & Schrimpf (2012), Paye (2012),

Conrad & Loch (2014), Mittnik, Robinzonov & Spindler (2015), Dew-Becker, Giglio, Le & Rodriguez

(2017), and Nonejad (2017). Although some studies use sophisticated econometric techniques, many

still rely on standard regressions to discern whether financial and macroeconomic variables boost the

predictability of return volatility. Moreover, none of the methods account suitably for the persistence

in the state variables, nor do they explicitly account for long memory in the realized market variance.

The latter is particularly problematic, as this feature is a stylized fact within the financial econometrics

literature.2 In fact, Paye (2012, p. 533) and Nonejad (2017, p. 135) recognize that the state variables

are very persistent, having first-order autocorrelations of the magnitude that generate size distortions

according to Ferson et al. (2003, 2009), so alternative inference procedures may well be warranted.

For specificity, we focus on three state variables – the default spread, three-month U.S. treasury

bills, and price-earnings ratio – whose prowess for realized variance forecasting is highlighted by, among

others, Campbell et al. (2017). We first document that all involved variables may be characterized

as fractionally integrated processes; realized variance as a persistent stationary process, the state

1A similar methodology is used to construct long-run predictive sets in Müller & Watson (2016).
2See, for example, Baillie, Bollerslev & Mikkelsen (1996), Comte & Renault (1998), Andersen, Bollerslev, Diebold &
Ebens (2001), Andersen, Bollerslev, Diebold & Labys (2001, 2003), Bandi & Perron (2006), Christensen & Nielsen
(2006), Andersen, Bollerslev & Diebold (2007), Corsi (2009), and Bollerslev, Osterrieder, Sizova & Tauchen (2013).
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variables as non-stationary ones. Second, we confirm evidence from the extant literature, showing

that all three state variables are, seemingly, significant predictors of realized variance based on least

squares and HAC inference. Third, we demonstrate through realistically calibrated simulations that

standard least squares inference procedures suffer from large size distortions, when the variables in the

VAR system are persistent in the sense of fractional integration. This complements the comprehensive

simulation study in Ferson et al. (2003), demonstrating that size distortions can be very severe, up

to 70% for joint significance tests, in our general setting. Our LCM test for joint significance, on the

other hand, has excellent size and power in finite samples. Fourth, when testing the predictive ability

of the state variables using our robust LCM procedure, we fail to find significant predictive power.

Finally, we test for a reversal of the predictive relation. That is, we explore whether the realized stock

market variance is informative about future realizations of the state variables. Indeed, for the given

sample, elevated volatility serves as a strong predictor for a widening the default spread and a drop

in the price-earnings ratio. We conclude that standard least squares techniques are likely to generate

spurious results regarding realized variance predictions, while the LCM inference procedure may help

uncover new predictive relations, with direct implications for current research themes in both the

macroeconomic and finance areas.

The paper proceeds as follows. Section 2 provides the setup and identifies problems associated

with standard predictive regressions. The local spectrum (LCM) approach is introduced in Section 3.

Section 4 describes the data and establishes baseline least squares evidence, and Section 5 contains

the simulation study. Section 6 explores realized variance prediction using the LCM procedure, and

Section 7 provides robust checks and considers the reverse predictive relations. Finally, Section 8

concludes, and the Appendix contains assumptions, proofs, data details and additional theory.

2 Predictive Regressions with Persistent Variables

This section presents the regression framework, that we use throughout to study the predictive power of

regressors in persistent VAR systems, where all variables may exhibit long memory of different orders.

Inspired by our findings, we discuss the possibility of drawing spurious inference in such systems, which

further motivates our design of the new LCM testing procedure in Section 3.

2.1 Predictive Regressions

We observe a (K + 1) × 1 vector Zt = (yt,X
′
t)
′ at times t = 1, . . . , n, where Xt may include lagged

values of yt . Our main interest is to draw inference on the K × 1 vector B from the regression,

yt = a + B′Xt−1 + ut , (1)

under mild, general assumptions on Zt and ut, including, importantly, allowing for the variables to

display varying degrees of persistence and flexible dynamics. If we impose short memory ARMA dy-
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namics on Zt, with sufficiently well-behaved persistence parameters, then inference on B is standard.3

On the other hand, if some variables display higher degrees of persistence, inference becomes more

complex and subtle. As detailed below, not only will standard least squares generally fail, but the risk

of, spuriously, detecting predictive power grows, almost regardless of how the persistence is modeled.

As noted, the vector Xt−1 may contain the history of yt up to and including time t−1, e.g., a finite

order of its lags. Letting xt−1 denote the k × 1 subvector of Xt−1 that excludes past values of yt, we

also consider regressions of the form,

ỹt = α + β′xt−1 + ũt, (2)

where ỹt has been pre-whitened using its own historical values. By the Frisch-Waugh theorem, if

pre-whitening is performed exploiting the exact same set of historical values of yt included in Xt−1,

then testing for the joint significance of xt−1 using either equation (1) or (2) is equivalent. This result

motivates the design of our robust spectrum inference procedure below.

We primarily focus on testing for significance of the external predictors xt−1 , using regressions of

the form (1) or (2), in cases where xt−1 as well as the dependent variable yt may display dynamics

incompatible with short-memory ARMA processes. Specifically, the variables in the system are allowed

to be fractionally integrated processes, I(d), whose integration order, d, may differ from variable

to variable, nesting short memory and unit root processes as special cases for d = 0 and d = 1,

respectively. As mentioned in the introduction, several studies develop robust inference for (long-

horizon) asset return regressions, where the regressors are local-to-unity processes. Our setting differs

not only because we consider an alternative description of persistence – fractional integration – but

also because we face the additional challenge that the entire VAR system, including the dependent

variable, may be persistent to different degrees. We stress that this is, in fact, the typical case in

applications with multiple financial or macroeconomic regressors.

2.2 Fractional Integration and Spurious Regressions

To set the stage, we assume zt = (yt,x
′
t)
′ obeys the following general dynamics,

D(L)(zt − µ) = vt 1{t≥1} (3)

where µ is a (k + 1) × 1 vector of nonrandom unknown finite numbers, either the means or initial

values of the vector process, D(L) = diag[(1 − L)d1 , . . . , (1 − L)dk+1 ], with (1 − L)d being a generic

fractional filter, defined as,

(1− L)d =

∞∑
i=0

Γ(i− d)

Γ(i+ 1)Γ(−d)
Li, (4)

3Regular strong mixing conditions on Zt and mild summability conditions on its moments imply that HAC inference
procedures, as developed in Newey & West (1987) and Andrews (1991), are readily amenable for least squares.
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and Γ( · ) is the gamma function.4 Moreover, letting “∼” signify that the ratio of the left- and right-

hand-side tends to one in the limit, element-wise, we assume that the fractionally differenced process

in equation (3), vt, is covariance stationary with a spectral density satisfying,

fvv(λ) ∼ Gvv, as λ→ 0+, (5)

and that it admits a Wold representation,

vt =

∞∑
j=0

Ajεt−j ,

∞∑
j=0

‖Aj‖2 <∞, (6)

with innovations εt satisfying E[εt|Ft−1] = 0 and E[εtε
′
t|Ft−1] = Σ, where Ft = σ(εs, s ≤ t) is the

σ-field generated by the innovations εs, s ≤ t. Assumptions (3)-(6) are quite general. They only

parameterize the frequency domain behavior of the vector zt in a local neighborhood of the origin,

λ → 0+, leaving the “higher-frequency” dynamics unspecified. For example, they allow zt to obey a

vector fractional ARIMA process, thus nesting commonly adopted VAR dynamics as a special case

with d1 = · · · = dk+1 = 0.5 Moreover, beyond accommodating different degrees of persistence among

the variables, conditions (3)-(6) allow for elaborate lag- and predictive structures.6

The properties of the individual variables in zt depend on the respective integration orders, di for

i = 1, . . . , k + 1. First, if 0 ≤ di < 1/2, the ith variable is stationary with long memory, whenever

d > 0. As conveyed by equations (3) and (5), long memory processes feature hyperbolically decaying

auto-covariances, contrary to the geometric decay of short memory processes (d = 0). Second, if

di ≥ 1/2, the variable is non-stationary, but it possesses a well-defined mean, if di < 1. Finally, if

−1/2 < di < 0, the ith variable is anti-persistent, a typical characteristic of an over-differenced process.

In addition to these univariate time series characteristics, the memory properties of the variables in

zt have important implications for inference and interpretation of the predictive regressions (1) and

(2). Specifically, if yt and xt−1 have strictly positive integration orders, standard regression techniques

typically lead to spurious inference.

To highlight the spurious inference concerns, consider the simplest case (1), where xt−1 is univariate

(written xt−1), fractionally integrated of order I(dx), independent of yt ∈ I(dy), both have zero means,

and we run regressions of the form,

yt = α + βxt−1 + ut . (7)

4The assumptions stated in the main text are mostly expositional and will need to be strengthened to derive the asymptotic
results. We state the assumptions formally in Appendix A, noting that these are standard in the literature.

5First-order VAR dynamics is used in, e.g., Campbell & Vuolteenaho (2004), Bansal et al. (2014), Campbell et al. (2017),
many of the references therein, and the textbook by Campbell & Viceira (2002).

6Note that assumptions similar to those imposed in equations (3)-(6), see also Appendix A, often are used to study
fractional cointegration, e.g., Robinson & Marinucci (2003), Christensen & Nielsen (2006), and Christensen & Varneskov
(2017), or for the estimation of multivariate fractional models, e.g., Shimotsu (2007) and Nielsen (2015).
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Then, OLS estimation results for equation (7) will be nonstandard, with properties that reflect the

relative integration orders dy and dx. Specifically, let tα and tβ denote the usual t-statistics associ-

ated with the OLS estimates α̂ and β̂, respectively, DW denote the Durbin-Watson test for residual

autocorrelation, and ρy(1) be the first-order autocorrelation of yt, then by combining results from

Theorems 1, 2 and 4 of Tsay & Chung (2000), we obtain,7

(a) if dy ∈ (0, 1/2) and dx ∈ (1/2, 3/2) : α̂ = Op(n
dy−1/2), β̂ = Op(n

dy−dx),

tα = Op(n
dy), tβ = Op(n

dy), R2 = Op(n
2dy−1), and DW P−→ 2(1− ρy(1)).

(b) if dy ∈ (1/2, 3/2) and dx ∈ (1/2, 3/2) : α̂ = Op(n
dy−1/2), β̂ = Op(n

dy−dx),

tα = Op(n
1/2), tβ = Op(n

1/2), R2 = Op(1), and DW P−→ 0.

(c) if dy, dx ∈ (0, 1/2) and dy + dx > 1/2 : α̂ = Op(n
dy−1/2), β̂ = Op(n

dy+dx−1),

tα = Op(n
dy), tβ = Op(n

dy+dx−1/2), R2 = Op(n
2(dy+dx−1)), and DW P−→ 2(1− ρy(1)).

(8)

The results in equation (8) are quite alarming. If the predictive power of non-stationary variables

(di > 1/2) is to be tested and the regressand possesses long memory, dy > 0, then standard least

squares techniques fail. They deliver inconsistent t-statistics, and the associated R2 measures are

biased, Case (a), or inconsistent, Case (b). Moreover, inconsistency also occurs when both variables

are stationary, yet sufficiently persistent to generate the collective non-stationary memory of Case (c).8

Furthermore, the results for the Durbin-Watson test statistic illustrate that residual-based specification

tests may be misleading. Finally, we stress that the rate of (in)consistency of α̂ and β̂ depends on the,

a priori unknown, memory of yt and xt−1. In particular, if dy ∈ (1/2, 3/2), Case (b) shows that α̂

always is inconsistent, while β̂ is either inconsistent, if dy ≥ dx, or subject to very slow convergence if,

for example, dy = dx−ε for some small ε > 0. When yt is stationary, Cases (a) and (c), the parameter

estimates are consistent, albeit at a slow, memory-dependent rate.

For multivariate regressions with independent, but persistent regressors, equation (8) in conjunction

with Chung (2002, Theorem 1) suggest that all parameters, depending on the memory properties of

the corresponding regressors, will display different rates of convergence and feature inconsistent t-

statistics, while the regression R2 will be biased or inconsistent. In the context of our empirical

example below, these results and the compelling evidence of long memory in the realized return

variation (see the introduction and Table 1) imply that we, almost inevitably, face a spurious inference

problem, when using standard least squares methods to forecast volatility based on popular financial

and macroeconomic variables, as the latter, as shown in Section 4, typically are well-characterized as

7Note that Tsay & Chung (2000) derive their asymptotic results under a Type I model of fractional integration, unlike
the Type II model in (3), and they restrict the short memory dynamics to be i.i.d. The latter, however, may easily
be relaxed following the results of Chung (2002). Moreover, the differences between Type I and II models of fractional
integration are detailed in, e.g., Shimotsu & Phillips (2006). For ease of exposition in the main text, we will abstain from
distinguishing between Type I and II processes and refer to specific papers for details.

8If, on the other hand, the variables are stationary and persistent with collective memory dy + dx < 1/2, Chung (2002,
Corollaries 2 and 3) show that β is amenable to standard inference, but inference for α remains non-standard.

7



non-stationary long memory processes.9 Moreover, these concerns extend to other economic relations,

like the predictive modeling of, e.g., purchasing power parity, exchange rate dynamics, and bond

yields, for which, among others, Cheung & Lai (1993), Baillie & Bollerslev (1994) and Duecker &

Startz (1998), respectively, document long-memory persistence.

In sum, the concerns about least squares inference raised by equation (8) highlight the need for

the development of a new reliable methodology for tests regarding the (joint) statistical significance

of predictor variables in diverse, persistent economic systems. We turn towards that task next.

3 The Local Spectrum Approach

This section introduces the local spectrum (LCM) inference and testing procedure and establishes its

asymptotic properties. First, we motivate our approach using the spectral density decomposition of

zt, before describing its two-step implementation in Sections 3.2 and 3.3. Section 3.4 provides the

asymptotic theory results. Finally, Section 3.5 explores robustness to the regressor endogeneity bias.

3.1 Motivation

The intuition behind the local spectrum inference and testing procedure is best conveyed by considering

the spectral density of zt, which is given by,

fzz(λ) ∼ ΛGvv Λ̄, λ→ 0+, (9)

where Λ̄ is the complex conjugate of the (k + 1)× (k + 1) matrix Λ, defined as,

Λ = diag
[
(1− eiλ)d1 , . . . , (1− eiλ)dk+1

]
,

and i =
√
−1. We rely on an exact spectral density representation around the origin in equation (9),

that is, the entries of Λ are of the form (1− eiλ)d rather than the usual approximation λ−d. Not only

does this accommodate richer dynamics of zt, c.f. Shimotsu (2007) and Robinson (2008), it also allows

the LCM inference and testing procedure to apply over a wider range of d, covering both stationary

and non-stationary values. In particular, as discussed by Shimotsu & Phillips (2005), λ−d provides a

good approximation, when d < 1/2, but it deteriorates when d belongs to the non-stationary range,

eventually generating inconsistent estimators of the integration order.

Importantly, equation (9) highlights that the co-dependence structure among the variables of the

VAR system, including predictive relations, depend on whether the off-diagonal elements of Gvv are

non-zero, not on their respective long memory properties, which are captured by the diagonal matrix

Λ. Hence, writing et for the first element of vt and ut for the remaining k × 1 vector, corresponding

to the innovations of the predictors xt, such that vt = (et,u
′
t)
′, then testing significance of xt−1 for yt

9We remark that the inference problems in equation (8) are generic and generally will not be alleviated by applying other
least squared based estimation procedures such as WLS instead of OLS.
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is equivalent to testing significance in the latent regression relation,

et = B′ut−1 + ηt , (10)

where B is a constant parameter vector. That is, we may construct a consistent testing procedure

based on (long memory) filtered variables instead of the original series. The main obstacles, however,

are that we observe zt = (yt,x
′
t)
′ and Λ is unknown. To accommodate these issues, we put forth a

two-step procedure, where zt is fractionally-filtered in a first step, and then a consistent frequency

domain estimator of B that explicitly accounts for the filtering errors is applied in a second step.10

Remark 1. Drawing inference in equations (7) and (10) is analogous to estimating the cross-spectrum

f−1
xx (λ)fxy(λ). However, due to their strong persistence, one cannot readily apply standard local band-

spectrum estimators, either. To see this, let, again, yt ∈ I(dy) and xt ∈ I(dx), then as f−1
xx (λ)fxy(λ) =

G−1
uuGue(1− eiλ)dy−dx with (1− eiλ) = O(λ−1) as λ→ 0+, such procedures are generally inconsistent

unless dy = dx. This highlights the usefulness of a two-step procedure, where the first step accounts for

(1− eiλ)dy−dx, and the second step is designed to ensure robust inference.

Remark 2. Despite Assumptions (3)-(6) only parameterizing the low-frequency part of the spectrum

(as λ → 0+), we emphasize that the (latent) test for predictability in equation (10) is not confined to

persistent (or lower frequency) components in the filtered series et and ut−1; even white noise processes

have constant spectral densities in the vicinity of the origin.

3.2 Step 1: Fractional Filtering

To accommodate a wide range of alternative procedures, we do not adopt a specific estimator of the

fractional integration orders, but rather assume we have an estimator, d̂i for i = 1, . . . , k+1, available,

which satisfies mild consistency requirements. This is formalized through the following assumption,

Assumption F. Let md � n% be a sequence of integers where 0 < % ≤ 1, then, for all i = 1, . . . , k+ 1

elements of zt, we assume to have an estimator with the property,

d̂i − di = Op
(
1/
√
md

)
, and we then let, D̂(L) = diag

[
(1− L)d̂1 , . . . , (1− L)d̂k+1

]
.

Assumptions F is very mild, essentially only requiring the existence of an estimator which, under

the assumptions in Appendix A, is consistent. Of course, we need such consistency to hold for a wide

range of di. To simplify the further analysis, we impose another mild restriction,

0 ≤ di < 2, for i = 1, . . . , k + 1, and we then define, d = min
i=1,...,k+1

di. (11)

10Frisch-Waugh equivalence between equations (1) and (2) rests on the complete elimination of memory in yt. For inference
regarding the predictive relations in equation (10), we likewise must purge the variables of their long memory persistence.
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This restriction is innocuous, in the sense that it is satisfied by most economic series, including all the

macroeconomic and financial variables considered in our empirical analysis. In addition, the upper

bound, di < 2, shortens the proofs considerably by allowing us to invoke periodogram bounds from

Shimotsu (2010), and 0 ≤ di enables us to provide a unified set of trimming and bandwidth conditions

for the medium-band least squares estimator in the second estimation step in Section 3.3.

Once we have obtained D̂(L), estimates of the innovations, vt, are given by,

v̂t ≡ (êt, û
′
t)
′ = D̂(L)zt , (12)

that is, without accounting for the mean, or initial value, in zt. Rather than treating “de-meaning”

of the series on a case-by-case basis, depending on di, we account for the residual impact of the mean

component, D̂(L)µ, in a unified manner during the second stage estimation.

We conclude this section with a couple of examples of memory parameter estimators, one semi-

parametric and one parametric procedure, which are accommodated in our framework:

Example 1 (Exact local Whittle). The semiparametric exact local Whittle (ELW) by Shimotsu &

Phillips (2005) and, in particular, the mean and trend-robust version in Shimotsu (2010) are accom-

modated by Assumption F, where the rate of convergence is restricted through the condition % < 4/5,

when the spectral density is sufficiently smooth ($ = 2 in Assumption D1 of Appendix A).

Example 2 (ARFIMA filter). A parametric alternative to ELW estimation is fitting (possibly, long)

ARFIMA(p, d, q) models, using, e.g., information criteria to determine p and q, and obtain estimates

of d, relying on asymptotic results from Hualde & Robinson (2011) and Nielsen (2015). This procedure

also requires $ = 2, and it achieves the optimal rate of convergence % = 1.11

3.3 Step 2: Medium Band Least Squares

After having computed v̂t, we estimate the parameter vector B in equation (10) in a second step using

a new frequency-domain least squares estimator. To this end, we let,

wh(λj) =
1√
2πn

n∑
t=1

ht e
itλj , Ihk(λj) = wh(λj) w̄k(λj), (13)

be the discrete Fourier transform and cross-periodogram, respectively, where ht and kt are generic (and

compatible) vector time series, and λj = 2πj/n denotes the Fourier frequencies. Moreover, we denote

by Ihk(λj) = <(Ihk(λj))+i=(Ihk(λj)) the real and imaginary decomposition of Ihk(λj). Finally, define

11Assumptions D1-D3 in Appendix A mirror the corresponding assumptions in Shimotsu & Phillips (2005, Assumptions
1’-3’), but we need to impose slightly stronger differentiability assumptions in D3 to satisfy the (still very) mild conditions
of Nielsen (2015, Assumption C). We refer to the latter for details.
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the trimmed discretely averaged co-periodogram (TDAC) as,

F̂hk(`,m) =
2π

n

m∑
j=`

<(Ihk(λj)), 1 ≤ ` ≤ m ≤ n, (14)

where ` = `(n) and m = m(n) are trimming and bandwidth functions, respectively. Then, we can

write the TDAC of ût−1 as F̂ûû(`,m) and, similarly, of ût−1 and êt as F̂ûê(`,m), and use these to

define the medium band least squares (MBLS) estimator as,

B̂(`,m) = F̂ûû(`,m)−1 F̂ûê(`,m), (15)

for which `,m → ∞ and `/m + m/n → 0, as n → ∞.12 The MBLS estimator has some distinct

advantages. First, we avoid being fully parametric about the dynamics of zt, needing only structure of

the spectrum as λ→ 0+. Second, by utilizing trimming and a bandwidth m/n→ 0, we asymptotically

annihilate first-stage estimation errors from the filtering procedure. Specifically, the trimming compo-

nent eliminates any slippage from the means, or initial values, D̂(L)µ occurring at lower frequencies

and, in conjunction with the bandwidth, the estimation errors in Assumptions F. The combination of

these features ensures robust testing for the predictive power of the regressors in equation (10).

Christensen & Varneskov (2017) introduces the generic structure of the MBLS estimator (15) to

analyze fractional co-integration among stationary long-memory processes in the presence of struc-

tural breaks and other low-frequency contaminants. Despite these similarities, this estimator differs

from ours in equation (15) in important ways. Not only is the setting and objective different, but we

perform estimation using fractionally filtered variables and impose new conditions on the trimming

and bandwidth functions ` and m. Moreover, by using filtering in combination with the exact rep-

resentation (9), we accommodate non-stationary variables, whereas Christensen & Varneskov (2017)

require stationarity for all variables and cointegration between yt and xt. This renders their approach

ill-suited for predictive testing, as the latter condition is violated under the null hypothesis of no pre-

dictive ability, and the former condition rules out many series (with di ≥ 1/2). Furthermore, direct

applicability of their estimator is subject to the issues outlined in Remark 1, namely, if the variables of

the system have different (and unknown) integration orders, the estimator is inconsistent for B. Even

for the stationary case, with di = d ∈ (0, 1/2), i = 1, . . . , k + 1, the differences behind the procedures

will, as detailed below, have a first-order impact on the distribution theory. Drawing an analogy with

the differences between the LW and ELW estimators, their procedure is reminiscent of the former and

ours of the latter. This explains why, as described in the following section, our proofs bear a strong

resemblance to those in, e.g., Shimotsu & Phillips (2005) and Shimotsu (2010).13

12We have suppressed dependence on the (lagged) time t indicator in F̂ûû(`,m) and F̂ûê(`,m) to ease exposition. We will,
however, explicate the dependence on time when necessary, e.g., when establishing Lemmas B.1-B.3 and B.10.

13Nonetheless, the relation to the MBLS estimator in Christensen & Varneskov (2017) suggests some inherent robustness
to outliers, structural breaks, deterministic trends, etc., which are known to contaminate co-periodograms at frequency
ordinates close to the origin. We do not formally analyze those effects here.
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3.4 Asymptotic Theory and Inference

The development of the asymptotic theory for our two-step estimator requires additional assumptions.

Assumption T. Let the bandwidth m � nκ and ` � nν with 0 < ν < κ < % ≤ 1. Moreover, recall

that the parameter $ ∈ (0, 2] measures the smoothness of the spectral density in Assumption D1 of

Appendix A. Then, the following cross-restrictions are imposed on `, m, md and n,

m1+2$

n2$
+

`1+$

n$m1/2
+

n1/2

m
1/2
d `

+
n1−2d

m1/2−2d`2
→ 0, as n → ∞.

The trimming conditions in Assumption T are mild. The first term is standard for semiparametric

estimation in the frequency domain, e.g., Robinson (1995) and Lobato (1999). In our setting, this

condition is needed, as we only impose local exogeneity in the spectrum (as λ → 0+) between the

regressors, ut−1 , in equation (10), and the regression residuals, ηt , rather than global exogeneity. The

local exogeneity assumption is mild and relates to the Stambaugh (1999) bias, which we discuss further

in Section 3.5. We stress, however, that our second stage MBLS estimator does not suffer from an

asymptotic bias, regardless of the persistence of the VAR system (3). Note also that $ = 2 holds for

the empirically relevant vector ARFIMA process, implying that κ < 4/5 must be satisfied.

The last three conditions in Assumption T are new to our MBLS estimator, imposing mild upper

and lower bounds on the trimming rate, ν. Specifically, conditions two and four imply,

ν < ($ + κ/2)/($ + 1) and (1− κ/2− 2d (1− κ))/2 < ν, (16)

respectively, to restrict the loss of information from trimming frequencies and eliminate the low-

frequency bias from mean-slippage after the first-stage fractional filtering. For the empirically relevant

vector ARFIMA process (with $ = 2), and if we select κ arbitrarily close to its upper bound 4/5,

we have (3/5 − 2d/5)/2 < ν < 4/5. Since the lower bound is strictly decreasing in d, the highest

lower bound is attained for d = 0 and equals 3/10. The last condition, 0 < ν < κ < % ≤ 1, as well

as the trimming restriction, (1 − %)/2 < ν, are needed to eliminate additional errors stemming from

the estimation of integration orders, di, i = 1, . . . , k + 1, in the first stage. If we adopt a parametric

estimator of di, % = 1, and the restriction is trivial. If the estimator is semi-parametric, and we select

κ < % as well as % arbitrarily close to 4/5, the lower bound becomes 1/10 < ν.

We are now ready to state the distribution theory for the two-step MBLS estimator.

Theorem 1. Let Assumptions F, T, and D1-D3 of Appendix A hold. Moreover, suppose that 0 ≤
di < 2, i = 1, . . . , k + 1, and max(0, (1− 3κ/2)/(1 + κ/2)) < $ ≤ 2, then,

√
m
(
B̂(`,m)−B

)
D−→ N

(
0, GηηG

−1
uu/2

)
.

Theorem 1 demonstrates that the MBLS estimator is correctly centered, so it is not subject to the

persistent regressor biases described by Stambaugh (1999) and Phillips & Lee (2013), and it converges
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at the rate
√
m, well-known from semiparametric estimation in the frequency domain, e.g., Brillinger

(1981, Chapters 7-8), Robinson (1995), and Shimotsu & Phillips (2005).14 The Gaussian distribution

theory is remarkable, given that Robinson & Marinucci (2001) and Christensen & Nielsen (2006) find

the asymptotic distribution for the NBLS estimator (` = 1 in equation (3.3)) to be non-uniform in

the persistence of zt in a fractional co-integration context, being Gaussian for the stationary case

and exhibiting different forms of non-Gaussianity in non-stationary cases. In contrast, our inference

procedure is uniform in 0 ≤ di < 2, i = 1, . . . , k + 1. Moreover, the asymptotic distribution for

our MBLS estimator differs from the one in Christensen & Varneskov (2017, Theorem 3) by being

independent of the integration order of the variables, di, and it holds for stationary as well as non-

stationary variables. The asymptotic variance only depends on the noise-to-signal ratio, GηηG
−1
uu .

Finally, we stress that the asymptotic distribution is independent of mean slippage, first-stage fractional

filtering errors and the trimming parameter, `, as long as Assumption T is satisfied.

As a last obstacle for feasible inference and testing, we must provide consistent estimators of the

long-run covariance matrix Guu and variance Gηη. Again, the main challenge is that we observe v̂t ,

not vt . Similarly, the residuals ηt are latent and we estimated them as,

η̂t = êt − B̂(`,m)′ ût−1 . (17)

Now, using these filtered and estimated series, we define a generic class of estimators,

Ĝhh(`G,mG) =
1

mG − `G + 1

mG∑
j=`G

< (Ihh(λj)) , (18)

for some arbitrary vector ht, while mG = mG(n) and `G = `G(n) are other bandwidth and trimming

functions. This class of long-run covariance estimators is akin to those used by Christensen & Var-

neskov (2017). This is natural; both procedures rely on local spectrum theory (λ→ 0+) and trimming

of frequency ordinates. However, equation (18) differs importantly by using fractionally filtered series

as input and an exact spectrum representation (9), not an approximation valid only in the stationary

case, di < 1/2, i = 1, . . . , k + 1. These points mirror the distinction among the MBLS estimators

discussed earlier. Now, from equation (18), the asymptotic variance of B̂(`,m) is estimated as,

ÂVAR = Ĝη̂η̂(`G,mG) Ĝûû(`G,mG)−1/ (2m). (19)

Hence, writing general linear hypotheses on the parameters B as H0 : RB = r for some k×k selection

matrix R and k× 1 vector r, we only need to impose conditions on the bandwidth mG and trimming

function `G to be ready to introduce, and study the properties of, the LCM test.

Assumption T-G. Let mG � nκG and `G � nνG with 0 < νG < κG ≤ % ≤ 1 and n/(mG`
2
G) → 0.

14The condition max(0, (1− 3κ/2)/(1 + κ/2)) < $ ≤ 2 ensures that the rate restrictions on the trimming and bandwidth
functions in Assumption T are mutually consistent for all values of 0 ≤ d < 2.
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Theorem 2. Let the conditions of Theorem 1 and Assumption T-G hold. Then,

LCM(`,m) ≡
(
RB̂(`,m) − r

)′ (
RÂVARR′

)−1 (
RB̂(`,m)− r

)
D−→ χ2

k.

Theorem 2 provides a significance test for a vector of candidate predictors, valid under general

forms of (long memory) persistence and short memory dynamics, parameterizing only the spectrum

of the processes near the origin (λ → 0+). Interestingly, under appropriate and mild rate conditions

on the functions `, m, `G and mG, the limiting χ2-distribution of LCM(`,m) is independent of the

tuning parameters, making the procedure easy to implement in practice.

Remark 3. Shao (2009) provides a generalized portmanteau test for independence of two stationary

long memory processes (di < 1/2) based on spectral density estimates. However, the test is bivariate,

it relies on a spectrum approximation that is invalid in the non-stationary case, and it assumes that

all series have zero means. Hence, the test does not readily extend to our general setting.

Remark 4. Maynard et al. (2013) propose a two-step rebalancing approach to test for predictive power

in univariate regressions, when the variables may have long memory. The main difference between their

approach and ours is the second step. While they use OLS after filtering, we rely on MBLS. The use of

standard least squares generates a different limiting distribution theory depending on whether yt, xt−1

or both display long memory. Moreover, the first-stage filtering error generally impacts the asymptotic

distribution, and the latter differs depending on whether or not the slope coefficient is zero. Finally,

the regressor, xt , is assumed to have zero mean. Our second-step MBLS approach overcomes these

drawbacks and applies generally for multivariate testing problems.

Remark 5. Utilizing results from Phillips & Shimotsu (2004) and Shimotsu (2010), and furthermore

letting yt ∈ I(dy) and xt ∈ I(dx), our proofs of Theorem 1 illustrate that,

B̂(`,m) =

2π

n

m∑
j=`

Dn(eiλj ; dx)2<(Ixx(λj))

−1

×

2π

n

m∑
j=`

Dn(eiλj ; dx)Dn(eiλj ; dy)<(Ixy(λj))

 + E(`,m,md, n), (20)

with Dn(eiλj ; dy) and Dn(eiλj ; dx) being defined in Appendix B.4 and E(`,m,md, n) denoting an approx-

imation error. This shows that our LCM procedure is related to the frequency domain GLS estimators

in Robinson & Hidalgo (1997) and Nielsen (2005), who weight periodograms in the numerator and

denominator by (the same) functions of the form λ2du
j , du being the integration order of the residuals

in the original regression (1), in parametric and semi-parametric frameworks, respectively. Hence, our

LCM estimator, as seen by equation (20), differs importantly from their estimators by utilizing exact

differencing, resulting in differential weights of the form Dn(eiλj ; d), in conjunction with trimming.
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As a result, we can draw inference for systems with variables having 0 ≤ di < 2 and non-zero means,

whereas the use of their estimators is constrained to stationary long memory processes.

Remark 6. In a sequence of papers, Magdalinos & Phillips (2009), Kostakis et al. (2015) and Phillips

& Lee (2013, 2016) develop the IVX methodology, which is an inference procedure for regressions,

where the variables may be stationary, local-to-unity, unit roots, or mildly explosive. This involves

a somewhat less flexible setting than for our LCM estimator, requiring, for example, the dependent

variable not to be long-range dependent. Moreover, the IVX inference is not Gaussian uniformly in

the persistence regimes, and the correlation between the regressors and the error term is restricted to

be instantaneous. We explore the robustness of the LCM inference towards endogeneity in Section

3.5. However, importantly, the IVX-based Wald significance test is robust to the specific form of

persistence, and it may also differ across regressors. In this sense, our LCM methodology may be

viewed as an analogue for the general class of multivariate fractionally integrated processes, possessing

similarly desirable properties for testing in predictive regressions. We take advantage of this feature by

implementing the IVX methodology as a robustness check on our empirical results in Section 7.

Remark 7. The null hypothesis that xt−1 contains no predictive information for yt rules out (frac-

tional) cointegration between them and, hence, no information is lost by fractional filtering. If there

is, in fact, cointegration between them, one may utilize this in the inference procedure, rather than fil-

tering, to obtain a faster rate of convergence (relative to
√
m) for frequency domain least squares, e.g.,

Robinson & Marinucci (2003), Christensen & Nielsen (2006) and Christensen & Varneskov (2017).

However, as such procedures impose predictability a priori, they are generally not amenable for testing.

3.5 Robustness to Endogeneity Bias

The local exogeneity condition in Assumption D1 accommodates a setting reminiscent of Stambaugh

(1999), as long as the correlation between the innovation to ut and ηt is not too persistent, that is,

as long as ut and ηt have a co-spectrum with fuη(λ) ∼ 0, as λ → 0+. In this section, we allow for a

stronger degree of endogeneity which, arguably, is more aligned with the spirit of Stambaugh (1999),

as well as the imperfect predictor definition in Pastor & Stambaugh (2009).

Suppose we observe xct = xt + ct where, as before, xt = µx +Dx(L)−1ut , with Dx(L) being the

lower right k × k submatrix of D(L), and µx contains the last k elements of µ. Moreover, we let

ct be a k × 1 mean-zero error process with co-spectum fcη(λ) ∼ Gcη , as λ → 0+, where Gcη can

be non-trivial, and the components ut and ct are independent (note that all assumptions on ct are

formalized in Appendix A). In this setting, the predictor, or signal, of interest, xt , is contaminated

with errors, giving rise to endogenous regressor problems, that generate a bias similar to the one

analyzed by Stambaugh (1999). To cleanly identify the impact of endogeneity, suppose that D(L) is

known, µ = 0, and exact differencing is carried out, such that we observe et and uct−1 = ut−1 + c̃t−1

with c̃t = Dx(L)ct. Then, we have the decomposition,

F̂ c
ue(`,m) = F̂uu(`,m)B + F̂uη(1,m) + (F̂uη(`,m)− F̂uη(1,m)) + F̂c̃e(`,m). (21)
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Now, utilizing local exogeneity between ut−1 and ηt, we know, from Lemma B.2 and B.3 of the

Appendix, that
√
mλ−1

m F̂uη(1,m) induces the central limit theory in Theorem 1, i.e., an Op(1) limit

purged of any asymptotic bias, and
√
mλ−1

m (F̂uη(`,m)−F̂uη(1,m)) = op(1). However, the endogeneity-

generated bias term
√
mλ−1

m F̂c̃e(`,m) is unknown and may distort inference. Of course, this setting

is simplified as the mean, or initial values, generally are non-zero, and the integration orders are

unknown and must be estimated in the fractional-filtering stage. Nonetheless, equation (21) reveals

an additional source of complexity for inference on predictive relations in long-memory systems.

We now demonstrate that trimming of frequency ordinates is useful, not only for the asymptotic

elimination of errors due mean-slippage and fractional-filtering, but also in terms of boosting robustness

towards biases arising from endogenous regressors. To this end, we define the fractionally-filtered

and contaminated regressors, ûct = D̂x(L)xct = D̂x(L)xt + D̂x(L)ct , and we let ĉt = D̂x(L)ct.

Specifically, we next establish asymptotic bounds for F̂ c
ûû(`,m)− F̂ûû(`,m) and F̂ c

ûê(`,m)− F̂ûê(`,m),

that is, the additional source of errors for the estimator (15), stemming from having an endogenous

component embedded in the regressors. Moreover, to carry out testing using the LCM approach in

Theorem 2, we define B̂c(`,m) = F̂ c
ûû(`,m)−1F̂ c

ûê(`,m) and η̂ct = êt− B̂c(`,m)′ûct , and we then obtain

equivalent bounds for Ĝcη̂η̂(`G,mG)− Ĝη̂η̂(`G,mG) and Ĝc
ûû(`G,mG)− Ĝûû(`G,mG), that control the

errors entering through the variance estimator (19).

Theorem 3. Suppose the conditions of Theorems 1 and 2 as well as Assumption C hold. Moreover,

suppose that n1/2/m→ 0, n1/2/mG → 0 and d > 0, then, for some arbitrarily small ε > 0,

(a) λ−1
m (F c

ûû(`,m)− Fûû(`,m)) = Op((m/n)d/`1+ε),

(b)
√
mλ−1

m (F c
ûê(`,m)− Fûê(`,m)) = Op((m/n)dm1/2/`1+ε),

(c) Ĝc
ûû(`G,mG)− Ĝûû(`G,mG) ≤ Op((mG/n)d/`1+ε

G ),

(c) Ĝc
η̂η̂(`G,mG)− Ĝη̂η̂(`G,mG) ≤ Op((mG/n)d/`1+ε

G ) + Op((m/n)d/`1+ε).

Theorem 3 provides several interesting insights. First, from (a) and (b), we observe that trimming

is instrumental for the elimination of the endogenous regressor bias. In fact, if ` = O(1), we need to

impose κ < d/(1/2 + d) to avoid that the bias has a first-order (or larger) asymptotic impact on the

inference. This likely will hurt the efficiency of the LCM inference severely, in particular for small d.

Second, if we, on the other hand, let ` → ∞, as n → ∞, and impose κ/2 − d(1 − κ) < ν in addition

to the conditions in Assumption T, we can readily utilize trimming to eliminate the endogeneity bias,

asymptotically, for all values of κ, thereby retaining the asymptotic efficiency of the LCM procedure

reported in Theorem 1 and 2, obtained without endogenous components in the regressors. Since this

bound is strictly decreasing in d, the worst case applies for d arbitrarily close to 0, which, in conjunction

with selecting κ arbitrarily close to its upper bound 4/5 for efficiency, implies 2/5 < ν. Hence, quite

intuitively, we require stronger trimming to retain the same asymptotic efficiency in the presence of

endogenous regressors, if the minimal persistence of the system is small. Third, we impose d > 0 to

16



separate the signal in the predictive regressors from its noise, asymptotically, in analogy to the approach

in Pastor & Stambaugh (2009). Moreover, importantly, this restriction may be relaxed to only require

min2,...,k+1 di > 0, that is, we do not need yt to be fractionally integrated for this identification, and

thereby Theorem 3, to hold. This ensures that the procedure is applicable for predictive regressions

for stock returns with fractionally integrated regressors, which may be stationary or non-stationary

and contain endogenous innovations. Fourth, the conditions n1/2/m → 0 and n1/2/mG → 0 on the

bandwidths are imposed to simplify exposition and avoid stronger cross-restrictions on the tuning

parameters. These may be relaxed.

Corollary 1. Suppose that the conditions of Theorem 3 hold and κ/2− d(1−κ) < ν. The asymptotic

limits in Theorem 1 and 2 then still apply with xct in place of xt.

Corollary 1 demonstrates that, utilizing trimming, we can ensure that the endogenous regressor

bias does not affect the first-order asymptotic theory for the LCM approach. Instead, it will be of

second or smaller order, depending on d. This provides a sharp contrast to the corresponding results

of Stambaugh (1999), who shows that the bias is of second order if the regressors are stationary, and

Phillips & Lee (2013), who document that an uncorrectable bias enters the asymptotic distribution if

the regressors are local-to-unity. The LCM approach successfully eliminates such concerns, uniformly

across the empirically relevant long-memory regimes.

In order for these observations to be applicable in practice, the first step fractional-filtering proce-

dure must also be robust to the presence of noise in the series. This is, indeed, the case.

Remark 8. Despite the latent regressor signal being perturbed by noise, as xct = xt + ct, it follows

from, e.g., Deo & Hurvich (2001), Arteche (2004) and Frederiksen, Nielsen & Nielsen (2012), that

standard semi-parametric estimators of di, i = 1, . . . , k, remain valid, albeit suffering from a higher-

order bias. Similarly, parametric methods may still be utilized by carefully choosing the lag structure

of the short-memory component of the filter, utilizing equivalent representations of an ARMA(p, q)

process with measurement noise and ARMA(p,max(p, q)) models, see, e.g., Granger & Morris (1976).

4 Empirical Illustration: Forecasting Equity Market Volatility

The prediction of future realized equity market volatility using financial and macroeconomic indica-

tors in first-order VAR systems has gained renewed attention, as illustrated by the studies of, e.g.,

Christiansen et al. (2012), Paye (2012), Bansal et al. (2014), Campbell et al. (2017), and Dew-Becker

et al. (2017). This section replicates the qualitative evidence generated by these papers through an

empirical illustration in which we rely on standard least squares techniques. However, we note that the

series display pronounced persistence, pointing towards potential problems with the inference. Hence,

in Section 6, we reassess the evidence using our robust LCM procedure.
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4.1 Data Description

We employ two separate data sets of monthly observations for realized volatility of the aggregate U.S.

stock market, proxied by the S&P 500. The first spans the period from February 1960 through March

2015 and exploits realized variance measures constructed from daily data. This time span mimics

those covered by prior studies in the literature.15 Since high-frequency data are available for the last

part of the sample period, we undertake an additional analysis, covering January 1990 through March

2015, using a more accurate measure of the realized (log-)return variance.

We first introduce the two realized variance measures. We let rt,i denote the daily log-return on

the S&P 500 for trading days i = 1, . . . , nt in months t = 1, . . . , n, and then,

Ṽt =

nt∑
i=1

r2
t,i , (22)

comprises our low-frequency (LF) realized variance measure.16 Such return variance measures over

a fixed (here, monthly) horizon computed from intermediately sampled data have been widely used

in financial econometrics since the work of, e.g., Andersen & Bollerslev (1998), Barndorff-Nielsen &

Shephard (2002), and Andersen, Bollerslev, Diebold & Labys (2003).

Next, for the period where an intra-daily price record is available, we construct an alternative return

variation measure. We use high-frequency return data for the CME Group E-mini S&P 500 futures to

construct accurate trading day measures, and then add the squared close-to-open returns to obtain an

overall variation measure. Since market microstructure frictions induce unwarranted serial correlation

in high-frequency returns, we rely on the flat-top realized kernel of Varneskov (2016, 2017) during the

trading day. This approach is robust to general forms of microstructure noise and possesses desirable

asymptotic properties and good finite sample performance. Since our construction otherwise follows

standard procedures, we relegate the details to Section C of the appendix.

The macroeconomic and financial indicators consists of monthly series for the default spread (DS),

three-month U.S. Treasury bills (TB), and price-earnings ratio (PE). They have all been found to be

successful predictors of equity-index return volatility in recent studies. We follow the literature in

defining DS as the difference between the logarithmic percentage yield on Moody’s BAA and AAA

bonds, the Treasury bill rates are log-transformed, and the PE is constructed as the logarithm of the

ratio of the S&P 500 index to the ten-year trailing moving average of aggregate earnings on the S&P

500 index constituents.17 The source of the different series is provided in Section C of the appendix.

15However, existing work often relies on lower frequency series. Among our references, only Christiansen et al. (2012),
Paye (2012) and Dew-Becker et al. (2017) use monthly data; Bansal et al. (2014) use yearly data and Campbell et al.
(2017) use quarterly. We adopt monthly sampling to increase the power of the statistical significance tests and facilitate
the study of causality and directional predictability. The latter is discussed in Section 7.

16We label it a LF measure since no intra-daily, i.e., “high-frequency” financial data are used in its construction.
17Originally, we used the term spread, defined as the difference between the logarithmic rates on 10-year U.S. Treasury

constant maturity bonds and 3-month U.S. Treasury bills instead of simply the 3-month U.S. Treasury bill series, and
the results were qualitatively identical to those presented below. The change was motivated by a desire to match the set
of state variables employed in the final version of Campbell et al. (2017).
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Table 1 presents full-sample summary statistics for the four series, as well as square-root and log-

transformations of the LF realized variance.18 Beyond the usual unconditional measures, we report

a set of statistics that speak to the time series properties of the series. We provide estimates for the

degree of fractional integration, using both the local Whittle (LW) estimator, cf. Künsch (1987), and

the local polynomial Whittle with noise (LPWN) estimator, see Frederiksen et al. (2012), which is

more robust against measurement errors and short-memory dependencies. Further, we report the MZ

unit root test statistic of Ng & Perron (2001), which is correctly sized and has good power properties

against local alternatives, and we include the KPSS test statistic of Kwiatkowski, Phillips, Schmidt &

Shin (1992) for an I(0) process against the alternative of an I(1).

Table 1 documents that the realized variance (RV) distribution is positively skewed and has fat

tails. These features are mitigated by the concave square-root or logarithmic transformations. Similar

comments apply to the DS, whereas TB and PE are closer to being Gaussian. The most noteworthy

results, however, concerns the conditional properties of the series. Specifically, at standard levels of

significance, we reject that the realized variance is either I(0) or I(1). Instead, the series is best charac-

terized as fractionally integrated with d in the 0.25-0.6 range, depending on the transformation. This

is consistent with the findings of the comprehensive literature referenced in Section 1. Furthermore,

the larger estimates for the fractional integration order, obtained as we apply more concave transfor-

mations to realized variance, are consistent with the findings of, e.g., Haldrup & Nielsen (2007), who

show that outliers, as reflected in the skewness, may bias various estimators of d downwards.

We also reject the null hypothesis of the state variables being I(0) processes and, from the MZ

test, we similarly reject the DS and TB series being I(1). The LW and LPWN estimates corroborate

these findings, suggesting that the DS is fractionally integrated with d ' 0.8, while TB is slightly more

persistent with d ' 0.9.19 Finally, we cannot reject that PE is a unit root process.

For visualization, we complement the estimates of d and the unit root test by depicting the au-

tocorrelation functions (ACFs) in Figure 1. The slowly decaying ACFs are consistent with all four

series being long-range dependent, with PE being most persistent, followed by TB, DS and RV. This

corroborates our estimates of the (relative) size of the respective fractional integration orders.

4.2 Standard Predictive Regressions

The evidence in Table 1 and Figure 1 is consistent with the realized variance series being fractionally

integrated with 0.25 < d < 0.6, while the macroeconomic and financial state variables all have d ≥ 0.8.

Hence, equation (8) suggests that standard least squares procedures provide misleading inference, as

either Case (a) or (b) apply in this context. Nonetheless, we shall initially ignore this issue, as we seek

to establish a benchmark for the (apparent) predictive power obtained through the commonly adopted

OLS procedures.

18The corresponding statistics for the subsample are very similar and omitted for brevity.
19For the LPWN estimator, the integration order d is restricted to the range (0.01, 0.99), because the asymptotic results

in Frederiksen et al. (2012) apply only for d ∈ (0, 1). Hence, estimates reported as d = 0.01 or d = 0.99, reflect that the
lower, respectively, upper bound has been hit.
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An informal assessment may be drawn from Figure 2, which plots the state variables against the

future realized variance over the last fifteen years of the sample, which is characterized by a particularly

high degree of coherence among the series. We observe, in particular, that the realized variance and

DS both are elevated in the fall of 2008, while PE drops sharply during the same time span. However,

we also note that the spikes in the state variables often lag those in the market variance by a few

months, raising questions regarding the direction of predictive causality. We return to this issue in

Section 7, using the LCM approach. Notwithstanding this issue, the fact that the predictor variables

all display abnormal variation during the turbulent market conditions surrounding the recent financial

crisis suggest they may carry (important) information about the future realized variance.

Motivated by the extant literature and the evidence in Figure 2, we run predictive regressions

for the realized variance assuming a first-order VAR system, where Xt−1 in equation (1) consists

of the lagged realized variance and the macroeconomic and financial state variables. The coefficient

estimates, HAC standard errors and adjusted R2 are reported in Table 2 along with LW estimates of

the residual memory and a HAC-based Wald test for the joint significance of the three state variables.

The results for both samples are similar: (1) DS seemingly predicts realized variance and its strength

increases with the addition of PE and TB; (2) all state variables are individually significant (except

TB in the subsample with high-frequency data) and the R2 increases slightly with their inclusion;

and (3) the Wald tests show joint significance at a 5% level (P-Wald above 0.95). Hence, the full

sample results corroborate prior findings by Christiansen et al. (2012), Paye (2012), Bansal et al.

(2014), Campbell et al. (2017), and Dew-Becker et al. (2017). Moreover, the subsample results,

utilizing a high-frequency measure of volatility, demonstrates that they are robust to the choice of

realized variance proxy. However, as noted above, this OLS analysis does not account for the degree

of persistence of the realized variance and the regressors which, as equation (8) shows, will distort the

inference. Consequently, we next explore whether these caveats are relevant for the present setting

via simulations, based on the time series properties of the variables conveyed by Table 1, and contrast

them to the size and power properties of the LCM procedure.

5 Simulation Evidence: Size, Power and Spurious Inference

The section examines the properties of the OLS and LCM procedures in a setup that captures the

persistence of the realized variance and the predictor variables, as summarized in the previous section.

We first provide size and power results for the LCM procedure in a bivariate setup and then proceed

to study the properties of the LCM and OLS procedures in a more general predictive setting.

5.1 Finite Sample Performance of the LCM Test

The size and power of the LCM test are analyzed in a bivariate setting, resembling the one in Hong

(1996) and Shao (2009), but generalized to allow for non-stationary long memory. This entails simu-
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lating fractional ARMA(1, 0) processes for yt and xt, t = 1, . . . , n, in equation (7) as,

(1− L)dy(1− φyL)yt = ρut +
√

1− ρ2vt, (1− L)dx(1− φxL)xt = ut, (23)

respectively, where ut and vt are i.i.d. standard Gaussian random variables. Despite its simplicity,

this setup encompasses several distinct inference scenarios, depending on the identity of the parameter

vector, (φy, φx, ρ, dy, dx). First, we fix φy = φx = 0.2 and let either ρ = 0 or ρ = 0.2, when examining

the size and power properties, respectively. Second, we vary the fractional integration orders dy and

dx to consider different persistence regimes. In particular, DGP 1 is configured with (dy, dx) =

(0.30, 0.45); DGP 2 with (dy, dx) = (0.30, 0.80); DGP 3 with (dy, dx) = (0.55, 0.45); and DGP

4 with (dy, dx) = (0.55, 0.80). These values are in line with the estimated memory parameters for

the realized variance and DS in Table 1, and they capture all three inference cases in equation (8).

Finally, we consider two different sample sizes n = {300, 650}, closely matching the respective size of

the subsample (n = 302) and full sample (n = 662) in our empirical analysis.

Implementing the LCM test in Theorem 2 requires choosing an estimator for the first step fractional

filtering and tuning parameters for the MBLS estimation in the second step. We estimate the memory

parameters using a parametric fractional ARMA(1, 0) model, noting we may apply results from Hualde

& Robinson (2011) and Nielsen (2015) to verify that Assumption F holds with % = 1.20 Moreover, we

consider different tuning parameters for MBLS to analyze their finite sample impact on the LCM test.

Specifically, we let ν = {0.21, 0.25, 0.30}, κ = {0.70, 0.75, 0.799}, νG = 0.25 and κG = 0.9. While the

bandwidth rate κ generally is chosen close to its upper bound to boost the efficiency of the inference

and satisfy the condition n1/2/m → 0 in Theorem 3, the selection of the trimming rate ν is guided

by an assessment of empirically realistic lower bounds. In particular, using the estimate d ' 3/10

from Table 1 (the memory of RV), the lower bound restriction in Assumption T implies that, if κ

is close to 4/5, then (3/5 − 2d/5)/2 < 1/4. Similarly, since the lowest integration order of the state

variables is mini=2,...,k+1 di ' 4/5, the restriction imposed by a potential endogenous component in the

regressors is similarly strictly less than 1/4. Hence, the values ν = {0.21, 0.25, 0.30} capture realistic

lower bounds for the trimming, as they are guided by our empirical application.21 Finally, Assumption

T-G is satisfied by selecting νG = 0.25 and κG = 0.9. All tests are implemented with a nominal size of

5%, and the simulations are performed using 1,000 replications. The results are reported in Table 3.

Table 3 documents that the LCM test has excellent finite sample properties. For the small (sub-

)sample size n = 300, the test is only slightly oversized, with rejection rates in the range 6-9% compared

20For the empirical implementation, we rely on fractional ARMA(p, 0) models with p = {0, 1, 1, 4} for the realized variance,
DS, PE and TB, respectively. These models fit the data well, as indicated by the residuals in Figure 3 and Section 6, and
adding more lags barely increases the explanatory power. Again, Shao (2009), Hualde & Robinson (2011) and Nielsen
(2015) provide results which may be used to verify that the estimates of d are consistent at rate n−1/2. Finally, when
implementing the fractional filter in the first step, we use 10 observations for initialization.

21We also implemented the LCM test with the worst case lower bound on the trimming rate implied by endogenous
regressors, 2/5 < ν, both in the empirical analysis and simulation study. In spite of this very conservative choice, the
persistent state variables imply that the numerical results remain very similar to those reported below, and they are
omitted for brevity.
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to the 5% nominal level, and the power is good, especially when selecting the wider bandwidth,

κ = 0.799. For the larger sample size of n = 650, the LCM test shows both great size and power.

Moreover, we note that the LCM test performs well across all DGPs, so it is robust to a variety of

different, and empirically relevant, persistence scenarios. Finally, while the test is robust to the choice

of the trimming rate ν, yielding similar results across the board, the power is uniformly higher for a

larger bandwidth (κ = 0.799), and this is achieved without sacrificing the size properties. Consequently,

we use κ = 0.799 throughout.

5.2 Inference on Predictive Ability: LCM versus OLS

This section explores the performance of LCM and least squares tests by examining their size properties

in settings, where we aim to predict a persistent variable using persistent regressors. Specifically, we

adopt a scenario similar to equation (23) with ρ = 0 and allow for additional exogenous processes of

the same form as xt. We consider regressions with up to three state variables, setting dx = {0.8, 0.9, 1},
corresponding to the estimated fractional integration orders of DS, TB, and PE in Table 1, and we

let dy = 0.3 (DGP M1) or dy = 0.55 (DGP M2) to capture the relevant range of persistence in

the RV measures. The autoregressive parameter is fixed at 0.2 for all processes, and a larger sample

size n = 1000 is included to help gauge the limiting properties of the testing procedures. Whereas

the LCM test is implemented as described in the previous section, OLS inference is performed using

Newey & West (1987) standard errors and Wald tests. In all regressions, we include a constant, the

lagged realized variance, and one to three exogenous regressors. We report test power for lagged RV,

test size for the individual state variable, the average adjusted R2, and the size of a Wald test for joint

significance of the exogenous regressors. The results are displayed in Table 4.

Table 4 contains several interesting findings. First, for DGP M1, all significance tests for individual

coefficients of the persistent regressors are oversized, irrespective of the number of regressors being

included, and, in fact, the size distortions only grow as the sample size increases. This corroborates

the theoretical result in Case (a) of equation (8), and it shows that the size distortions are substantial,

causing serious concerns about the applicability of OLS inference. For example, for simple regressions

involving only one exogenous predictor with dx = 0.8 (mimicking the DS), we see that nominal rejection

rate rises from 27.7% for n = 300 to 33.5% for n = 1000, far exceeding the nominal 5% level. Second,

sequentially adding exogenous processes, with dx = 1 (PE) and dx = 0.9 (TB) fails to restore the

testing properties of DS, whose individual significance tests continue to be badly distorted. Third,

adding predictors enhances the adjusted R2. This is, again, readily explained by Case (a) of equation

(8). Fourth, the OLS-based Wald test for joint significance of the predictors is severely distorted,

and the size properties only worsen as more persistent predictors are introduced and the sample size

increases. The nominal rejection rates range from 27.7% to 59.8%, underscoring the propensity for

misleading empirical inference. Fifth, the size properties of the LCM test are excellent. Although the

test is slightly oversized for n = 300, the size is very accurate for n = 650, and essentially perfect for

n = 1000, regardless of the number of predictors included.

22



The results for DGP M2 are very similar to those described above, with all qualitative conclusions

being identical despite some minor numerical differences. Perhaps most notably, the size distortions

are even greater for the individual and joint tests in this setting, which is consistent with the different

divergence rates of the t-statistics indicated in equation (8) for Case (a) and (b), respectively.

Overall, the simulations demonstrate severe problems with OLS-based inference and testing, irre-

spective of the predictive ability of the persistent regressors. In contrast, our LCM procedure possesses

very good size and power properties in finite samples, and it should allow for reliable inference in set-

tings with general and diverse degrees of persistence among the variables in the system. Hence, the

LCM test provides a rigorous basis for deciding whether our macroeconomic and financial state vari-

ables add auxiliary predictive power beyond the past volatility in forecasting future realized variance.

6 LCM Analysis of Predictive Power for Future Realized Variance

Section 5 documents that least squares predictive inference and testing procedures are unreliable, when

the variables of the system are persistent. Hence, we now revisit the findings in Table 2 concerning the

significant forecast power of macroeconomic and financial indicators for future realized variance, using

the robust LCM approach. As described in the previous section, first-stage fractional filtering is based

on estimates from (long) fractional ARMA(p, 0) processes, as in Shao (2009). To gauge the suitability

of the fractional ARMA models, we depict the ACFs of the model-implied residual series in Figure

3. Relative to Figure 1, the effectiveness of our parametric approach to “whiten” the variables of the

system is evident.22 Likewise, the MBLS estimation in stage 2 is implemented as described above,

with the trimming rates ν = {0.21, 0.25, 0.30} and bandwidth parameter κ = 0.799. The results for

the full sample and the subsample, exploiting the high-frequency data, are reported in Table 5.

First, from Panel A of Table 5, we observe that the coefficient estimates from the LCM procedure

and the corresponding ones for OLS in Table 2 are of similar magnitude and sign. Second, and

importantly, the LCM test for joint significance of the persistent state variables are now all insignificant,

as the P-Wald statistics are far below any conventional significance level. This contrasts sharply with

the OLS results, which indicate that the state variables are jointly significant the 95% level, and

sometimes at the 99% level. Third, the LCM results are robust to the selection of tuning parameters

and the choice of RV measure, as seen by the subsample results in Panel B. In fact, the LCM tests for

predictive power are even less significant in the subsample. Again, this is contrary to the OLS results

for joint significance, which are stronger in the subsample (significant at the 99% level).

The stark difference between the LCM and OLS results is readily explained by our theoretical and

simulation results. The theory in Section 2.2 and finite sample evidence in Section 5, combined with

the empirical results in Table 1, documenting a strong degree of persistence for the realized variance

as well as the financial and macroeconomic series, imply that the OLS-based tests are inconsistent. In

fact, these procedures will, incorrectly, reject the null hypothesis of no predictability with probability

22The estimated persistence is similar to that conveyed by the results in Table 1.
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approaching one, as the sample size grows. Our LCM procedure, on the other hand, remains valid

irrespective of the persistence displayed by the variables of the VAR system. We conclude that there

is no statistical evidence that any of the selected state variables contain relevant information for

forecasting the future realized variance.

7 Robustness and Reverse Predictability

The LCM results in the previous section indicate that the selected financial and macroeconomic state

variables do not possess significant predictive power for the future realized variance. This section

provides a robustness check with respect to the modeling of the persistence in the VAR system, using

the IVX approach of Kostakis et al. (2015) and Phillips & Lee (2016) reviewed in Appendix D. Next,

using the LCM approach, we explore whether the realized volatility has predictive power for the

macroeconomic indicators, i.e., in the reverse direction of what was tested so far.

7.1 IVX Analysis of Predictability for Realized Volatility

The long memory paradigm is widely acknowledged in the volatility modeling literature, e.g., Andersen

et al. (2003). However, a different econometric framework is often adopted, when studying (long-

horizon) return predictability using financial and macroeconomic state variables. This alternative

approach assumes that the persistence is generated by local-to-unity processes, and robust inference

methods have been developed for this setting. Hence, as robustness check, we now assume that the

dynamics of the VAR system can be described as autoregressive with stationary, local-to-unity, unit

root or locally explosive persistence, and then apply the IVX procedure, cf. Appendix D, to test

realized variance predictions using the three persistent state variables. The results from IVX Wald

tests are presented in Table 6.

The IVX results are fully consistent with those for the LCM procedure in Table 5. In particular,

the coefficient estimates are similar (slightly different for the PE), and the IVX Wald tests for joint

significance of state variables also fail to detect any significant evidence of predictive ability. Hence,

the empirical discrepancy between the LCM and OLS testing procedures, as described in the previous

section, is robust to the paradigm adopted for modeling the persistence of the system.

7.2 LCM Testing of Reverse Causality

The LCM test finds no significant evidence of predictive information for realized volatility in the three

persistent state variables. This does not imply that they are unrelated. Specifically, as noted in Section

4.2, Figure 2 reveals that some major peaks in the DS and PE series trail the realized variance, not the

other way around. Hence, this section explores the reverse predictive relation, that is, whether lagged

realized variance carry information about the subsequent realization of the three state variables. For

illustration, Figure 4 plots the lagged realized variance against the three state variables, both before

and after the first-stage fractional filtering step of the LCM procedure, for the last 15 years of the
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sample. Two points stand out. First, the fractional filtering is successful in stripping the persistence

from the variables, as intended. Second, the large spikes in the DS and PE ratio during the recent

financial crisis occur contemporaneously with outliers in the lagged realized variance series, suggesting

that the latter carries important information about the realized values of the state variables. The

results from testing this hypothesis, using the LCM procedure, are presented in Panels A and B of

Table 7 for the full sample and subsample with high-frequency return data, respectively.

The message from Table 7 is clear; realized variance predicts future changes in all three state

variables, and the results hold for both samples, so it applies for the different RV measures. The

predictive relations are strongly significant for all Wald tests (the P-Wald measures exceed 0.95). The

estimates imply that an increase in realized variance forecasts future elevations in DS and declines for

TB and PE, consistent with the visual evidence in Figure 4. Obviously, the recent financial crisis is

an extraordinary, yet important, economic event with an extraordinary impact on the inference, as is

also evident from Figure 4. Hence, for robustness, we also implement the LCM test for the sample

truncated in December 2007 (n = 574). Panel C of Table 7 reveals that positive shocks to realized

variance remain significant predictors of future increases in DS and declines in PE.

Our LCM methodology is specifically designed to accommodate persistent variation in VAR systems,

so it is well positioned to uncover low-frequency ties between the realized variance and macroeconomic

variables. The above findings show that the market variance is related to important macroeconomic

state variables, even if the latter do not forecast the former, but rather the reverse. These findings

provide a challenge for Campbell et al. (2017) and Bansal et al. (2014), who assert, based on least

squares inference, that such macroeconomic indicators do predict the market variance. Moreover, this

point is important for their conclusion that shocks to the market variance are integral to understanding

the role of diverse macroeconomic fluctuations in driving the cross-sectional pricing across distinct asset

classes. Our results suggest it may be useful to revisit these studies and reassess the evidence. We

defer an in-depth investigation of the implications for macroeconomic and realized variance prediction

to future research.

8 Conclusion

This paper studies the properties of standard predictive regressions in persistent VAR economies and

considers robust inference and testing in such systems. In particular, we analyze a setting, where

all variables may be fractionally integrated of different orders and show that this induces a spurious

regression problem for least squares methods. As a remedy, we propose a new inference and testing

procedure – the local spectrum approach – for joint significance of the predictors, that is robust to

the variables having different integration orders. The LCM procedure is based on (semi-)parametric

fractional-filtering and band spectrum regressions (MBLS), using a carefully selected set of frequency

ordinates. We establish the asymptotic properties of the coefficient estimates and the associated

significance test, relying on an exact spectrum representation. The latter allows us to include both
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stationary (0 ≤ d < 1/2) and non-stationary (d ≥ 1/2) variance in the system. The theoretical analysis

is supplemented with an empirically relevant simulation study, documenting that least squares inference

methods suffer from large size distortions when the variables are persistent. In contrast, our LCM

approach displays excellent finite sample size and power.

We use the LCM procedure to study the implications of assuming standard short-memory VAR

dynamics for the economy in predictive regressions for the realized variance of the S&P 500 equity

index. Focusing on three financial and macroeconomic state variables, whose forecasting ability have

been widely appraised in the macro-finance literature, we confirm that least squares methods generate

evidence supportive of highly significant forecast power. However, we find no such evidence using the

LCM approach. We argue that this suggests that the standard least squares evidence is spurious,

driven by the (ignored) strong persistence of the VAR economy. In fact, our robust LCM approach

suggests that causality may run in the reverse direction, i.e., innovations to the realized variance may

foreshadow future changes in the state variables. Overall, our findings carry implications for several

areas in empirical macroeconomics and finance, including the choice of econometric tools for modeling.
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Full Sample Summary Statistics

Panel A: Mean S.D. Max Min Skew EKur

RV 0.0021 0.0047 0.0814 0.0001 11.088 159.06

Sqrt-RV 0.0396 0.0239 0.2853 0.0104 3.9174 27.513

Log-RV -6.6972 0.9305 -2.5086 -9.1403 0.5268 1.0794

DS 13.462 5.6609 51.241 6.5329 2.4891 9.6242

TB 4.6805 2.9352 15.100 0.0100 0.5813 0.7491

PE 2.8975 0.4154 3.7887 1.8929 -0.3301 –0.4229

Panel B: LW LPWN AR-φ AR-R2 KPSS MZ

RV 0.2897 0.2755 0.4288 0.1839 0.6298∗ -23.664∗∗

Sqrt-RV 0.4458 0.4161 0.6468 0.4184 0.9976∗∗ -19.022∗∗

Log-RV 0.5223 0.5740 0.7034 0.4947 1.2525∗∗ -16.269∗∗

DS 0.8216 0.7811 0.9699 0.9373 1.1527∗∗ -15.400∗∗

TB 0.8993 0.9294 0.9926 0.9814 1.5911∗∗ -8.2203∗

PE 1.0610 0.9900 0.9969 0.9923 1.5836∗∗ -4.9610

Table 1: Descriptive statistics. The summary statistics are provided for all variables using the full sample of
monthly observations (n = 662). The variables are market realized variances (in levels, square-root, and logs), the
default spread (DS), 3m T-bills (TB), and the price-earnings ratio (PE). Panel A shows unconditional summary
statistics, whereas Panel B provides conditional summary statistics. Here, standard deviation, skewness, and excess
kurtosis (relative to 3) are denoted “S.D.”, “Skew”, and “EKur”, respectively. The LW and LPWN semiparametric
estimators of integration order d are implemented using bandwidths m = n0.7 and m = n0.9, respectively, following
the recommendations in Frederiksen et al. (2012). If LPWN takes the values 0.0100 and 0.9900, this implies that
the lower and upper bound of the parameter space have been hit. AR-φ and AR-R2 are the estimated first-order
autocorrelation coefficient and R2. The MZ unit root test is based on GLS detrended data with the number of
lags selected by the MAIC on OLS detrended data, as recommended by Perron & Qu (2007), see Ng & Perron
(2001, Table 1) for tabulated critical values. The KPSS test for the processes being I(0), that is, for obeying short
memory dynamics, is implemented using the Newey & West (1994) automatic bandwidth selection procedure and
the quadratic spectral kernel function, see Hobjin et al. (2004). It has 0.463 and 0.739 as 5% and 1% critical values.
Finally, (∗) and (∗∗) denote rejection at a 5% and 1% significance level, respectively.
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ACF: Sqrt-RV ACF: DS

ACF: TB ACF: PE

Figure 1: Autocorrelation functions. The sample autocorrelation functions are computed for the first 350 lags

for each variable in the full sample, which spans the period from February 1960 through March 2015 (n = 662),

where realized variance is estimated using daily log-returns. The variables are the square-root (sqrt) transformation

of realized variance (RV), the default spread (DS), 3m T-bills (TB), and the price-earnings ratio (PE).
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Sqrt-RVt Sqrt-RVt vs DSt−1

Sqrt-RVt vs TBt−1 Sqrt-RVt vs PEt−1

Figure 2: Plotted series. The upper left panel depicts the full sample of square-root transformed realized

variance. The three remaining panels show the state variables (blue) along with the square-root RV estimates based

on daily data (black) using the sample period January 2000 through March 2015 (n = 183). The left-hand scale is

for the state variables, the right-hand scale for the square-root RV estimates.
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Predictive RV Regressions

Panel A Panel B

Constant 0.0012
(0.0004)

−0.0005
(0.0005)

−0.0012
(0.0005)

−0.0049
(0.0019)

0.0011
(0.0002)

0.0005
(0.0004)

−0.0035
(0.0013)

−0.0041
(0.0014)

RVt−1 0.4288
(0.2005)

0.3919
(0.1852)

0.3918
(0.1849)

0.3838
(0.1842)

0.5939
(0.0679)

0.5653
(0.0730)

0.5628
(0.0712)

0.5558
(0.0726)

DSt−1 - 0.0099
(0.0047)

0.0099
(0.0047)

0.0148
(0.0059)

- 0.0046
(0.0037)

0.0062
(0.0036)

0.0082
(0.0043)

TBt−1 - - - 0.0179
(0.0083)

- - - 0.0091
(0.0079)

PEt−1 - - 0.0385
(0.0220)

0.1185
(0.0425)

- - 0.1186
(0.0400)

0.1203
(0.0383)

Adj. R2 0.1826 0.1945 0.1944 0.1979 0.3504 0.3527 0.3539 0.3527

d̂u 0.1876
(0.0516)

0.1315
(0.0516)

0.1299
(0.0516)

0.1032
(0.0516)

0.0826
(0.0680)

0.0510
(0.0680)

0.0283
(0.0680)

0.0147
(0.0680)

Wald - 4.4044 6.0757 8.7854 - 1.5673 11.282 12.573

P-Wald - 0.9642 0.9521 0.9677 - 0.7894 0.9965 0.9943

Table 2: OLS estimates and tests. We report least squares coefficient estimates and corresponding Newey
& West (1987) standard errors or the variables along with the adjusted R2, a local Whittle (LW) estimate of the
residual memory parameter, and a Wald test and its associated P-value for whether the state variables are jointly
significant. Specifically, Panel A reports results from the full sample where realized variance is estimated using daily
log-returns, and Panel B using a subsample from February 1990 through March 2015 (n = 302) where high-frequency
data is utilized. The LW estimator is implemented using a bandwidth m = bn0.7c. Note that the coefficients in
front of the state variables have been scaled with 100.
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Size and Power of the Local Spectrum Test

DGP 1 DGP 2

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.799) 9.20 61.00 6.30 89.60 8.80 54.80 6.40 83.70

(ν, κ) = (0.25, 0.799) 8.40 60.40 6.70 90.70 8.50 55.60 6.40 83.70

(ν, κ) = (0.30, 0.799) 7.10 60.40 6.50 90.90 7.80 54.80 7.50 85.10

(ν, κ) = (0.25, 0.70) 8.00 47.00 5.90 74.30 9.10 43.20 6.20 66.40

(ν, κ) = (0.25, 0.75) 8.70 54.60 6.30 84.60 8.20 49.00 6.20 76.90

DGP 3 DGP 4

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.799) 7.60 62.90 6.00 90.10 8.70 62.00 5.70 85.50

(ν, κ) = (0.25, 0.799) 7.70 63.00 6.30 91.10 8.90 63.00 6.30 85.20

(ν, κ) = (0.30, 0.799) 7.50 63.40 5.60 91.40 8.00 63.50 6.90 86.60

(ν, κ) = (0.25, 0.70) 6.60 45.40 5.70 72.40 7.70 44.90 5.40 66.80

(ν, κ) = (0.25, 0.75) 7.20 54.70 5.70 84.10 7.90 53.80 6.00 77.20

Table 3: Size and power of the LCM test. This table displays the size (ρ = 0) and power (ρ 6= 0) of the
proposed local spectrum test from Theorem 2, LCM(`,m), as a function of the MBLS trimming and bandwidth
parameters, defined by ` = nν and m = nκ, respectively. As described in Section 5, the tuning parameters are fixed
according to the asymptotic theory and the DGPs are simulated as in Hong (1996) and Shao (2009). Specifically,
two (possibly, correlated) fractional ARMA(1, 0) processes are simulated with φy = φx = 0.2 and varying fractional
integration orders dy and dx. DGP 1 is configured with memory parameters (dy, dx) = (0.30, 0.45); DGP 2 with
(dy, dx) = (0.30, 0.80); DGP 3 with (dy, dx) = (0.55, 0.45); and DGP 4 with (dy, dx) = (0.55, 0.80). The fractional
filtering in the first step of the local spectrum procedure is based on ARFIMA parameter estimates of the memory
parameter, where one AR lag has been included; see Hualde & Robinson (2011) and Nielsen (2015). All tests are
implemented with νG = 0.25 and κG = 0.9. Two sample sizes are considered, n = {300, 650}, corresponding well
with the respective sizes of the subsample and full sample, see Tables 1 and 2. All tests are implemented with a
nominal size of 5%. The simulations are carried out with 1,000 replications.
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ACF: RV residuals ACF: DS residuals

ACF: TB residuals ACF: PE residuals

Figure 3: Autocorrelation functions. The sample autocorrelation functions are computed for the first 350 lags

for the residual series of each variable after applying the ARFIMA filter to estimate the fractional integration order

in the full sample, which spans the period from February 1960 through March 2015 (n = 662). The variables are

the realized variance (RV), the default spread (DS), 3m T-bills (TB), and the price-earnings ratio (PE). Note that

the fractional filter uses ten observations for initialization.
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Local Spectrum Estimates and Tests: RV Predictions

H1, ν = H2, ν = H3, ν =

Panel A 0.21 0.25 0.30 0.21 0.25 0.30 0.21 0.25 0.30

DSt−1 0.0120 0.0115 0.0101 0.0134 0.0136 0.0105 0.0142 0.0148 0.0116

TBt−1 - - - - - - 0.0123 0.0174 0.0141

PEt−1 - - - 0.1008 0.1721 0.0321 0.0944 0.1628 0.0312

Wald 0.9252 0.8462 0.6534 1.1287 1.3660 0.6791 1.2019 1.5026 0.7795

P-Wald 0.6639 0.6424 0.5811 0.4313 0.4949 0.2879 0.2475 0.3183 0.1456

H1, ν = H2, ν = H3, ν =

Panel B 0.21 0.25 0.30 0.21 0.25 0.30 0.21 0.25 0.30

DSt−1 0.0009 -0.0009 -0.0025 0.0030 0.0005 0.0013 -0.0003 -0.0015 0.0007

TBt−1 - - - - - - -0.1294 -0.09978 -0.0286

PEt−1 - - - 0.2178 0.1116 0.3694 0.2062 0.1245 0.3627

Wald 0.0041 0.0043 0.0304 0.3638 0.0989 1.0906 0.8880 0.4661 1.0609

P-Wald 0.0510 0.0520 0.1384 0.1663 0.0483 0.4203 0.1717 0.0737 0.2135

Table 5: Local spectrum estimates and tests. We report coefficient estimates from the local spectrum
procedure to predictability testing as well as corresponding Wald test statistics and P-values. Specifically, Panel
A reports results from the full sample where realized variance is estimated using daily log-returns, and Panel B
using a subsample from February 1990 through March 2015 (n = 302) where high-frequency data is utilized. The
LCM procedure is implemented using bandwidths determined by κ = 0.799 and κG = 0.9 as well as the trimming
parameters ν = {0.21, 0.25, 0.30} and νG = 0.25. The series are fractionally filtered using ARFIMA estimates of
the fractional integration orders, which are consistent at rate n−1/2. The selection of the ARMA polynomials and
properties of the ARFIMA filters are discussed in the Sections 5-6 and Figure 3. The fractional filter uses ten
observations for initialization. The three test statistics H1, H2, and H3 uses the DS, the DS and PE, or all three
variables as predictors and test their joint predictive power. All parameter estimates are scaled with 100.
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IVX Estimates and Tests: RV Predictions

H1, Cz = H2, Cz = H3, Cz =

Panel A -1 -5 -10 -1 -5 -10 -1 -5 -10

DSt−1 0.0110 0.0122 0.0116 0.0119 0.0136 0.0124 0.0152 0.0122 0.0084

TBt−1 - - - - - - 0.0112 -0.0049 -0.0133

PEt−1 - - - 0.0727 0.0333 0.0050 0.1178 -0.0018 -0.0761

Wald 0.6836 0.6263 0.4162 2.6633 0.8268 0.4959 3.0477 2.1215 3.1843

P-Wald 0.5917 0.5713 0.4812 0.7360 0.3386 0.2196 0.6157 0.4524 0.6359

H1, Cz = H2, Cz = H3, Cz =

Panel B -1 -5 -10 -1 -5 -10 -1 -5 -10

DSt−1 0.0089 0.0114 0.0111 0.0118 0.0026 -0.0058 0.0127 -0.0082 -0.0214

TBt−1 - - - - - - 0.0335 0.1085 0.1315

PEt−1 - - - 0.0906 -0.2853 -0.6180 0.0264 -0.8430 -1.5487

Wald 0.2959 0.3445 0.2455 0.2829 1.9290 2.2620 -0.1255 0.3235 0.2704

P-Wald 0.4135 0.4428 0.3798 0.1319 0.6188 0.6773 0.0000 0.0445 0.0345

Table 6: IVX estimates and tests. We report the coefficient estimates from the IVX regression procedure
to predictability testing as well as corresponding Wald test statistics and P-values. Specifically, Panel A reports
results from the full sample where realized variance is estimated using daily log-returns, and Panel B using a
subsample from February 1990 through March 2015 (n = 302) where high-frequency data is utilized. The procedure
is implemented using βz = 0.95 and Cz = {−1,−5,−10} as well as with a bias-correction and using HAC estimates
of the asymptotic covariance matrix, as recommended by Kostakis et al. (2015) and Phillips & Lee (2016). Details
are provided in Appendix D. The three test statistics H1, H2, and H3 uses the DS, the DS and PE, or all three
variables as predictors and test their joint predictive power. All parameter estimates are scaled with 100.
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RVt−1 vs DSt Filtered: RVt−1 vs DSt

RVt−1 vs TBt Filtered: RVt−1 vs TBt

RVt−1 vs PEt Filtered: RVt−1 vs PEt

Figure 4: Plotted series. The left panels depicts the realized variance (RV) based on daily data (black) against

the state variables (blue) along for the sample period January 2000 through February 2015 (n = 182). The right

panels show the corresponding series after fractional filtering. In each plot, the left-hand scale is for the state

variables (divided by 100, as for the parameter estimates), the right-hand scale for the RV estimates.
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Local Spectrum Estimates and Tests: Reverse Causality

DSt, ν = TBt, ν = PEt, ν =

Panel A 0.21 0.25 0.30 0.21 0.25 0.30 0.21 0.25 0.30

RVt−1 2.4285 2.4190 2.4093 -0.1672 -0.1539 -0.1676 -0.0616 -0.0590 -0.0711

Wald 120.27 119.48 118.67 7.5211 6.3851 7.5553 27.384 25.210 36.091

P-Wald 1.0000 1.0000 1.0000 0.9939 0.9885 0.9940 1.0000 1.0000 1.0000

DSt, ν = TBt, ν = PEt, ν =

Panel B 0.21 0.25 0.30 0.21 0.25 0.30 0.21 0.25 0.30

RVt−1 3.0160 2.9736 2.9391 -0.1685 -0.1537 -0.1377 -0.0558 -0.0707 -0.0606

Wald 66.043 64.513 63.268 26.892 22.564 18.259 13.578 21.451 15.904

P-Wald 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 1.0000 0.9999

DSt, ν = TBt, ν = PEt, ν =

Panel C 0.21 0.25 0.30 0.21 0.25 0.30 0.21 0.25 0.30

RVt−1 0.5019 0.4657 0.4735 -0.1415 -0.0859 -0.1021 -0.0445 -0.0384 -0.0749

Wald 7.9791 6.8780 7.1069 2.4612 0.9098 1.2827 7.5614 5.6453 20.767

P-Wald 0.9953 0.9913 0.9923 0.8833 0.6598 0.7426 0.9940 0.9825 1.0000

Table 7: Local spectrum estimates and tests. We report coefficient estimates from the local spectrum
procedure to predictability testing as well as corresponding Wald test statistics and P-values. Specifically, Panel
A reports results from the full sample where realized variance is estimated using daily log-returns, Panel B using
a subsample from February 1990 through February 2015 (n = 301) where high-frequency data is utilized, and
Panel C shows results from a subsample analysis based on RV data constructed using daily log-returns that ends
in December 2007 (n = 574). The LCM procedure is implemented using bandwidths determined by κ = 0.799 and
κG = 0.9 as well as the trimming parameters ν = {0.21, 0.25, 0.30} and νG = 0.25. The series are fractionally filtered
using ARFIMA estimates of the fractional integration orders, which are consistent at rate n−1/2. The selection of
the ARMA polynomials and properties of the ARFIMA filters are discussed in the Section 5-6 and Figure 3. The
fractional filter uses ten observations for initialization. All parameter estimates are scaled with 100.
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Künsch, H. (1987), ‘Statistical aspects of self-similar processes.’, pp. 67–74. In: Prohorov, Y., Sazarov, E. (Eds.),

Proceedings of the First World Congress of the Bernoulli Society. Vol 1. VNU Science Press, Utrecht.

Kwiatkowski, D., Phillips, P. C., Schmidt, P. & Shin, Y. (1992), ‘Testing the null hypothesis of stationarity

against the alternative of a unit root: How sure are we that economic time series have a unit root?’,

Journal of Econometrics 54, 159–178.

Lobato, I. (1997), ‘Consistency of averaged cross-periodogram in long memory series’, Journal of Time Series

Analysis 18, 137–155.

Lobato, I. (1999), ‘A semiparametric two-step estimator in a multivariate long memory model’, Journal of

Econometrics 90, 129–155.

Magdalinos, T. & Phillips, P. C. B. (2009), Econometric inference in the vicinity of unity. CoFie Working Paper

(7), Singapore Management University.

Maynard, A., Smallwood, A. & Wohar, M. E. (2013), ‘Long memory regressors and predictive testing: A

two-stage rebalancing approach’, Econometric Reviews 32, 318–360.

Mittnik, S., Robinzonov, N. & Spindler, M. (2015), ‘Stock market volatility: Identifying major drivers and the

nature of their impact’, Journal of Banking and Finance 58, 1–14.

Müller, U. & Watson, M. (2016), ‘Measuring uncertainty about long-run predictions’, Review of Economic

Studies 83, 1711–1740.

Müller, U. & Watson, M. (2017), ‘Long-run covariability’, Econometrica forthcoming.

Newey, W. K. & West, K. D. (1987), ‘A simple positive semi-definite, heteroskedasticity and autocorrelation

consistent covariance matrix’, Econometrica 55, 703–708.

40



Newey, W. K. & West, K. D. (1994), ‘Automatic lag selection in covariance matrix estimation’, Review of

Economic Studies 64, 631–654.

Ng, S. & Perron, P. (2001), ‘Lag length selection and the construction of unit root tests with good size and

power’, Econometrica 6, 1519–1554.

Nielsen, M. O. (2005), ‘Semiparametric estimation in time-series regression with long-range dependence’, Journal

of Time Series Analysis 26, 279–304.

Nielsen, M. O. (2015), ‘Asymptotics for the conditional-sum-of-squares estimator in mutivariate fractional time

series models’, Journal of Time Series Analysis 36, 154–188.

Nonejad, N. (2017), ‘Forecasting aggregate stock market volatility using financial and macroeconomic predictors:

Which models forecast best, when and why?’, Journal of Empirical Finance 42, 131–154.

Pastor, L. & Stambaugh, R. F. (2009), ‘Predictive systems: Living with imperfect predictors’, Journal of Finance

64, 1583–1628.
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A Assumptions

Instead of stating the assumptions in terms of vt, we follow the frequency domain frameworks in, e.g.,

Robinson & Marinucci (2003), Christensen & Nielsen (2006) and Christensen & Varneskov (2017), by

imposing the regularity conditions in terms of qt = (u′t, ηt)
′ when deriving the central limit theory for

the proposed local spectrum inference and testing procedures.

Assumption D1. The vector process qt, t = 1, . . . , is covariance stationary with spectral density

matrix satisfying fqq(λ) ∼ Gqq as λ → 0+, where the upper left k × k submatrix, Guu, has full rank,

and the (k + 1)th element of the diagonal, Gηη, is strictly greater than zero. Moreover, there exists a

$ ∈ (0, 2] such that |fqq(λ)−Gqq| = O(λ$) as λ → 0+. Finally, let Gqq(i, k + 1) be the (i, k + 1)th

element of Gqq, which has Gqq(i, k + 1) = Gqq(k + 1, i) = 0 for all i = 1, . . . , k.

Assumption D2. qt is a linear process, qt =
∑∞

j=0Ajεt−j, with square summable coefficients∑∞
j=0 ‖Aj‖2 < ∞, the innovations satisfy, almost surely, E[εt|Ft−1] = 0 and E[εtε

′
t|Ft−1] = Ik+1,

and the matrices E[εt⊗ εtε′t|Ft−1] and E[εtε
′
t⊗ εtε′t|Ft−1] are nonstochastic, finite, and do not depend

on t, with Ft = σ(εs, s ≤ t). There exists a random variable ζ such that E[ζ2] <∞ and for all c and

some C, P[‖qt‖ > c] ≤ CP[|ζ| > c]. Finally, the periodogram of εt is denoted by J(λ).

Assumption D3. For A(λ, i), the ith row of A(λ) =
∑∞

j=0Aje
ijλ, its partical derivative satisfies

‖∂A(λ, i)∂λ‖ = O(λ−1‖A(λ, i)‖) as λ→ 0+, for i = 1, . . . , k + 1.

These assumptions are standard in the literature. The main departure from the references above

is the use of the exact spectral density representation in (9).

Assumption C. Suppose ct = ct1{t≥1} is a mean-zero k × 1 vector process satisfying the same

conditions as ut in Assumptions D1-D3, but with a co-spectrum fcη(λ) ∼ Gcη as λ→ 0+ that allows

the constant vector Gcη to have non-zero entries. Moreover, let ut ⊥⊥ cs for all t, s ≥ 1.

Assumption C allows us to treat ct similarly to ut in the proofs with one key difference, its local

co-spectral coherence with the regression errors ηt is non-trivial.

B Proofs

This section contains the proofs of the main asymptotic results in the paper as well as some technical

results in Section B.4. Before proceeding, however, let us introduce some notation. For a generic

vector V , let V (i) index the ith element, and, similarly, for a matrix M , let M(i, q) denote its (i, q)th

element. Moreover, denote by K ∈ (0,∞) a generic constant, which may take different values from

line to line or from (in)equality to (in)equality. Finally, we remark that sometimes the (stochastic)

orders refer to scalars, sometimes to vectors and matrices. We refrain from making distinctions.
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B.1 Proof of Theorem 1

First, write v̂t = D̂(L)D(L)−1D(L)zt1{t≥1}, and define the terms Â(L) ≡ D̂(L)D(L)−1 as well as

at ≡ D(L)zt1{t≥1}, noticing that by definition at = vt +D(L)µ1{t≥1}, with µ corresponding to the

means, or initial values, of zt. Moreover, let µ̃t ≡D(L)µ1{t≥1} and denote by µ̃
(e)
t the first element of

the vector and by µ̃
(u)
t the remaining k × 1 vector. Next, decompose the trimmed discretely averaged

periodogram of the fractionally filtered sequence v̂t,

F̂v̂v̂(`,m)− F̂vv(1,m) =
(
F̂vv(`,m)− F̂vv(1,m)

)
+
(
F̂aa(`,m)− F̂vv(`,m)

)
+
(
F̂v̂v̂(`,m)− F̂aa(`,m)

)
≡ E1 + E2 + E3. (B.1)

This decomposition is crucial for showing that the first-stage filtering errors and mean-slippage only

have an asymptotically negligible impact on the second stage MBLS estimate when trimming of fre-

quencies in the vicinity of the origin. Specifically, since we can write by addition and subtraction,

B̂(`,m)−B = F̂ûû(`,m)−1F̂uη(1,m)− C1 + C2 + C3 (B.2)

where the three error terms, C1, C2, and C3, are defined as

C1 ≡ F̂ûû(`,m)−1F̂
(u)
ûµ̃ (`,m)B, C2 ≡ F̂ûû(`,m)−1F̂

(e)
ûµ̃ (`,m),

C3 ≡ F̂ûû(`,m)−1
(
F̂ûη(`,m)− F̂uη(`,m) + E4

)
, E4 ≡ F̂uη(`,m)− F̂uη(1,m),

with the super superscripts indicating µ̃
(u)
t and µ̃

(e)
t , respectively, the decomposition (B.1) allows us

to establish asymptotic bounds on C1, C2, and C3. The proof is now concluded by the following three

auxiliary lemmas: Lemma B.1 establishes generic bounds for E1, E2, E3 and E4. Lemma B.2 uses

these bounds to show
√
m(C1 + C2 + C3) = op(1) and λ−1

m F̂ûû(`,m)
P−→ Guu. Finally, Lemma B.3

establishes central limit theory for
√
mλ−1

m F̂uη(1,m), i.e., the discretely averaged co-periodogram of

ut−1 and ηt. Hence, by using these lemmas in conjunction with the continuous mapping theorem and

Slutsky’s theorem, this provides the stated central limit theory for
√
m(B̂(`,m)−B).

Finally, we need to provide conditions on $ ∈ (0, 2] such that the second rate restriction in As-

sumption T is mutually consistent with all values 0 ≤ di < 2, i = 1, . . . , k + 1. The second restriction

implies ν < ($ + κ/2)/($ + 1). Moreover, the worst bound on the trimming rate ν in the fourth

restriction is obtained for d = 0: ν > (1 − κ/2)/2. These assumptions are, thus, always mutually

consistent when max(0, (1 − 3/2κ)/(1 + κ/2)) < $ is imposed, as stated in the theorem. Hence, a

solution is always guaranteed to exist since max(0, (1− 3/2κ)/(1 + κ/2)) < 2.

Lemma B.1 (Asymptotic Bounds). Under the conditions for Theorem 1, then, for some arbitrarily

small ε > 0, the following asymptotic bounds hold:

(a) λ−1
m E1 = Op

(
m−1`

)
.
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(b)
√
mλ−1

m E2 ≤ Op((m/n)2dnm−1/2`−2) +Op((m/n)d−1/2mε`−(1+ε)).

(c) Let f̄(`,m, n) ≡ m
n ∨

mε

n1/2`1+ε
∨ 1
`2

for some arbitrarily small ε > 0, then

√
mλ−1

m E3 ≤ Op
(

ln(n)2√n
md
√
m

f̄(`,m, n)

)
+Op

(
ln(n)

√
n

√
md

√
f̄(`,m, n)

)
.

(d)
√
mλ−1

m E4 ≤ Op
(
`1+$/(m1/2n$)

)
.

Proof. For (a). First, by Assumptions D1-D3, we may apply the same arguments as in Christensen

& Varneskov (2017, Equations (B.3)-(B.7)) to show that when `, n→∞, `/n→ 0,

−E1 =
2π

n

`−1∑
j=1

< (Ivv(λj)) ,
2π

n

`−1∑
j=1

< (Iuu(λj)) ∼ Guuλ`, as λ` → 0+, (B.3)

uniformly in probability. Now, by invoking the properties of the matrix Gqq in Assumption D1 and

since the parameter vector B in (10) is constant, this readily establishes (a).

For (b). First, make the decomposition,

E2 = F̂µ̃µ̃(`,m) + F̂vµ̃(`,m) + F̂µ̃v(`,m), (B.4)

utilizing that ãt = vt + µ̃t. Now, for the first term in (B.4), use the bound for the periodogram of a

fractionally differenced constant from Shimotsu (2010, Lemma B.2), see also Lemma B.6(a) below, to

deduce the following stochastic order for the (i, i)th diagonal element, i = 1, . . . , k + 1,

F̂µ̃µ̃(`,m, i, i) =
2π

n

m∑
j=`

< (Iµ̃µ̃(λj , i, i)) =
2π

n

m∑
j=`

Op

(
n1−2di

j2−2di

)
≤
(m
n

)2di
m∑
j=`

Op
(
j−2
)
, (B.5)

where, for the partial sum term, S(`) =
∑m

j=`Op
(
j−2
)
, we may invoke Varneskov (2017, Lemma C.4)

to show |S(`)| ≤ Op(`
−2), since the power series j−q readily has q > 1. Combining these results

with the Cauchy-Schwarz inequality, this readily establishes F̂µ̃µ̃(`,m) ≤ Op((m/n)2d`−2). For the

second term in the decomposition (B.4), use the Cauchy-Schwarz inequality and Assumption D1 in

conjunction with the same arguments as for (B.5) to show

F̂vµ̃(`,m, i, i) =
2π

n

m∑
j=`

< (Ivµ̃(λj , i, i)) =
2π

n

m∑
j=`

Op(1)×Op

(
n1/2−di

j1−di

)

=
2π√
n

m∑
j=`

Op

(
jdi+ε

ndi
1

j1+ε

)
≤ Op

(
1√
n

(m
n

)di mε

`1+ε

)
, (B.6)

uniformly, for some arbitrarily small ε > 0. Hence, by applying the Cauchy-Schwarz inequality, it

follows that F̂vµ̃(`,m) + F̂µ̃v(`,m) ≤ Op(n−1/2(m/n)dmε`−(1+ε)), establishing (b).
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For (c). First, write v̂t = Â(L)at, whose ith element is given by v̂t(i) = (1−L)θ̂iat(i) with power

defined as θ̂i = d̂i − di, and where θ̂i = Op(m
−1/2
d ) by Assumption F. Now, using a Taylor expansion

of the fractional filter (1− L)θ̂i around θ̂i = 0 and the mean-value theorem, we have

(1− L)θ̂i = 1 + θ̂i ln(1− L) +
θ̂2
i

2
ln(1− L)2(1− L)θ̄i (B.7)

for some θ̄i ∈ [θ̂i, 0] and with θ̄i = Op(m
−1/2
d ). Hence, by defining a

(1)
t−1(i) ≡ ln(1 − L)at(i) and the

second order term a
(2)
t−2(i, θ̄i) ≡ ln(1− L)2(1− L)θ̄iat(i), we can make the decomposition,

v̂t(i) = at(i) + θ̂ia
(1)
t−1(i) +

θ̂2
i

2
a

(2)
t−2(i, θ̄i) ≡ at(i) + ā

(1)
t−1(i) + ā

(2)
t−2(i), (B.8)

implying that we may further decompose the (i, i)th element of E3 as

E3(i, i) = F̂v̂v̂(`,m, i, i)− F̂aa(`,m, i, i) (B.9)

= F̂
(1,1)
āā (`,m, i, i) + F̂

(2,2)
āā (`,m, i, i) + 2F̂

(1,2)
āā (`,m, i, i) + 2F̂

(1)
aā (`,m, i, i) + 2F̂

(2)
aā (`,m, i, i)

for i = 1, . . . , k+ 1, with the first and second term in the decomposition being the trimmed discretely

average periodograms of ā
(1)
t−1(i) and ā

(2)
t−2(i), respectively, the third term is their co-periodogram, and

the fourth and fifth terms are their respective co-periodograms with at(i).

Now, for the first term of E3(i, i), we have

F̂
(1,1)
āā (`,m, i, i) =

2πθ̂2
i

n

m∑
j=`

<
(
I(1,1)
aa (λj , i, i)

)
= Op

(
m

n

ln(n)2

md

)
+

ln(n)2

n1/2md

m∑
j=`

Op

(
jε

j1+ε

)
+

ln(n)2

md

m∑
j=`

Op

(
1

j2

)

≤ Op
(
m

n

ln(n)2

md

)
+Op

(
ln(n)2

n1/2md

mε

`1+ε

)
+Op

(
ln(n)2

md

1

`2

)
, (B.10)

for some arbitrarily small ε > 0, using Assumption F and Lemma B.7(a) in conjunction with Varneskov
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(2017, Lemma C.4), as in (B.5) and (B.6). For the second term of E3(i, i),

F̂
(2,2)
āā (`,m, i, i) =

πθ4
i

2n

m∑
j=`

<
(
I(2,2)
aa (λj , i, i)

)

= Op

(
m

n

ln(n)4

m2
d

)
+

ln(n)5

nm2
d

m∑
j=`

Op

(
j1/2+ε

j1+ε

)
+

ln(n)4

n1/2m2
d

m∑
j=`

Op

(
jε

j1+ε

)

+
ln(n)5

n1/2m2
d

m∑
j=`

Op

(
1

j3/2

)
+

ln(n)6

nm2
d

m∑
j=`

Op

(
jε

j1+ε

)
+

ln(n)4

m2
d

m∑
j=`

Op

(
1

j2

)

≤ Op
(
m

n

ln(n)4

m2
d

)
+Op

(
ln(n)5

nm2
d

m1/2+ε

`1+ε

)
+Op

(
ln(n)4

n1/2m2
d

mε

`1+ε

)
+Op

(
ln(n)4

m2
d

1

`2

)
(B.11)

using similar arguments, ln(n)6/n� ln(n)4/n1/2, and ln(n)/`3/2 � mε/`1+ε. Now, since Assumptions

F and T readily imply ln(n)p � md for some finite p ∈ N, m� n, then (B.10) and (B.11) provide the

bound F̂
(2,2)
āā = op

(
F̂

(1,1)
āā (`,m, i, i)

)
. Next, define

f̄(`,m, n) ≡ m

n
∨ mε

n1/2`1+ε
∨ 1

`2
,

then we may write F̂
(1,1)
āā (`,m, i, i) ≤ Op(ln(n)2/mdf̄(`,m, n)). Hence, by (a), (b), (B.10) and (B.11)

in conjunction with the Cauchy-Schwarz inequality and the continuous mapping theorem, we get the

following bounds for the cross-product terms of E3(i, i),

F̂
(1,2)
āā (`,m, i, i) ≤

√
F̂

(1,1)
āā (`,m, i, i)

√
F̂

(2,2)
āā (`,m, i, i) = op

(
F̂

(1,1)
āā (`,m, i, i)

)
,

F̂
(1)
aā (`,m, i, i) ≤

√
F̂aa(`,m, i, i)

√
F̂

(1,1)
āā (`,m, i, i) ≤ Op

(
ln(n)

m
1/2
d

m1/2

n1/2

√
f̄(`,m, n)

)
,

F̂
(2)
aā (`,m, i, i) ≤

√
F̂aa(`,m, i, i)

√
F̂

(2,2)
āā (`,m, i, i) = op

(
F̂

(1)
aā (`,m, i, i)

)
.

As the stochastic bounds for E3(i, i) are independent of i = 1, . . . , k + 1, we use the same arguments,

the Cauchy-Schwarz inequality and the continuous mapping theorem to establish (c).

For (d). First, similarly to (a), write

−E4 =
2π

n

`−1∑
j=1

< (Iuη(λj)) , (B.12)

where we let Iuη(λj) ≡ I(t,1)
uη (λj) denote the co-periodogram of ut−1 and ηt. Now, let us similarly
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write I
(t,0)
uη (λj) for the corresponding periodogram of ut and ηt. Then, by Lemma B.10,

−
√
mλ−1

m E4 =
2π
√
m

nλm

`−1∑
j=1

<
(
I(t,0)
uη (λj)

)
+Op

(
`
√
m

m
√
n

)
≡
√
mλ−1

m F̂
(t,0)
uη (1, `− 1) + op(1), (B.13)

since `/m → 0 and m/n → 0 as n → ∞, with F̂
(t,0)
uη (1, ` − 1) being the TDAC of I

(t,0)
uη (λj). Now,

to establish asymptotic bound for,
√
mλ−1

m F̂
(t,0)
uη (1, ` − 1), we rely on the Cramér-Wold Theorem, cf.

Davidson (2002, Theorem 25.5). Specifically, for an arbitrary k × 1 vector ψ, write

√
mλ−1

m ψ
′F̂ (t,0)
uη (1, `− 1) =

k∑
i=1

ψi2π
√
m

nλm

`−1∑
j=1

<
(
I(t,0)
uη (λj , i)−A(λ, i)J(λj)Ā(λ, k + 1)

)

+

k∑
i=1

ψi2π
√
m

nλm

`−1∑
j=1

<
(
A(λ, i)J(λj)Ā(λ, k + 1)

)
≡ E41 + E42.

For the first term, E41 we may use summation by parts and Lobato (1999, C.2) to show

E41 ≤ Op

(
k∑
i=1

ψi

√
m

nλm

[
`1/3 ln(`)2/3 + ln(`) +

`1/2

n1/4

])
= Op

(
`1/3 ln(`)2/3

m1/2
+

ln(`)

m1/2
+

`1/2

m1/2n1/4

)
,

showing E41
P−→ 0 since `/m→ 0 as n→∞. Next, for E42, we may use Assumptions D1-D3 to invoke

the following asymptotic bounds

E42 ≤ sup
i=1,...,k

K
√
m

λmn

`−1∑
j=1

|fqq(λj , i, k + 1)| = O

(
λ$` `
√
m

λmn

)
= O

(
`1+$

m1/2n$

)
, (B.14)

utilizing that Gqq(i, k + 1) = 0 for all i = 1, . . . , k, thereby concluding the proof.

Lemma B.2 (Central Limit Theory Errors). Under the conditions for Theorem 1, then

(a) λ−1
m F̂ûû(`,m)

P−→ Guu.

(b)
√
m (C1 +C2 +C3) = op(1).

Proof. Before proceeding to the proof, note that `/m → 0 and `1+$/(n$
√
m) → 0 in Assumption

T implies λ−1
m E1 = op (1) and

√
mλ−1

m E4 ≤ op(1). Moreover, we can write
√
mλ−1

m E2 ≤ E21 + E22,

corresponding to the two asymptotic bounds in Lemma B.1(b). The last condition in Assumption T,

then, implies E21 = op(1) and E2
21 = op(1) such that

√
mλ−1

m E2 ≤ op(1) follows by the continuous

mapping theorem and the Cauchy-Schwarz inequality. Similarly, write
√
mλ−1

m E3 ≤ E31 + E32, where

E31 = Op

(
ln(n)2

md
∨ ln(n)2mε

mdm1/2`1+ε
∨ ln(n)2n1/2

mdm1/2`2

)
= op(1),
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trivially by Assumption T, and, similarly,

E32 = Op

(
ln(n)m1/2

m
1/2
d

∨ ln(n)n1/2

m
1/2
d

√
mε

n1/2`1+ε
∨ ln(n)n1/2

m
1/2
d `

)
= op(1),

by κ < % and (n/md)
1/2/` → 0 in Assumption T. Hence, all bounds in Lemma B.1 are op(1). Now,

proceeding to the proof. For (a), the result follows by Lemmas B.1(a)-(c) in conjunction with the

convergence result in Christensen & Varneskov (2017, (B.4)), see also Robinson & Marinucci (2003)

and Lobato (1997). For (b), (λ−1
m F̂ûû(`,m))−1 = Op(1) follows by (a), Guu being full rank by

Assumption D1 and the continuous mapping theorem. Moreover, since
√
mλ−1

m F̂
(u)
ûµ̃ (`,m) = op(1) by

Lemmas B.1(b)-(c), we readily have that
√
mC1 = op(1) by Slutsky’s theorem. The corresponding

result for C2 follows similarly. Finally, for C3, we have

C3 = F̂ûû(`,m)−1
(
F̂ûη(`,m)− F̂uη(`,m)

)
+ F̂ûû(`,m)−1

(
F̂uη(`,m)− F̂uη(1,m)

)
. (B.15)

Hence, since (λ−1
m F̂ûû(`,m))−1 = Op(1), as for C1, as well as

√
mλ−1

m

(
F̂ûη(`,m)− F̂uη(`,m)

)
= op(1) and

√
mλ−1

m

(
F̂uη(`,m)− F̂uη(1,m)

)
= op(1)

by Lemmas B.1(b)-(c) and Lemma B.1(d),
√
mC3 = op(1) follows by Slutsky’s theorem.

Lemma B.3 (Central Limit Theory). Under the conditions for Theorem 1, then

√
mλ−1

m Fuη(1,m)
D−→ N (0, GηηGuu/2) .

Proof. Before proceeding, let Iuη(λj) ≡ I(t,1)
uη (λj) and Fuη(1,m) ≡ F (t,1)

uη (1,m) denote the periodogram

and TDAC for ut−1 and ηt, respectively. Moreover, denote by I
(t,0)
uη (λj) and F

(t,0)
uη (1,m) the corre-

sponding quantities for ut and ηt. Then, using Lemma B.10, we have

√
mλ−1

m

(
F (t,1)
uη (1,m)− F (t,0)

uη (1,m)
)

=
2π
√
m

nλm

m∑
j=1

<
(
I(t,1)
uη (λj)− I(t,0)

uη (λj)
)

= Op

(
m1/2

n1/2

)
,

and, as a result, we may continue by establishing the central limit theory for
√
mλ−1

m F
(t,0)
uη (1,m). To

this end, we will apply the Cramér-Wold Theorem, cf. Davidson (2002, Theorem 25.5), for some

arbitrary k × 1 vector ψ. First use Assumptions D1-D3 to decompose
√
mλ−1

m ψ
′F

(t,0)
uη (1,m) similarly

to the proof of Christensen & Nielsen (2006, Theorem 2),

√
mλ−1

m ψ
′F (t,0)
uη (1,m) =

k∑
i=1

ψi
√
mλ−1

m

2π

n

m∑
j=1

<
(
I(t,0)
uη (λj)

)
=

4∑
i=1

Ui (B.16)
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where the four terms on the right-hand-side are defined as

U1 ≡
k∑
i=1

ψi
√
mλ−1

m

2π

n

m∑
j=1

<
(
I(t,0)
uη (λj , i)−A(λj , i)J(λj)Ā(λj , k + 1)

)
,

U2 ≡
k∑
i=1

ψi
√
mλ−1

m

1

n

m∑
j=1

<
(
A(λj , i)Ā(λj , k + 1)

)
,

U3 ≡
k∑
i=1

ψi
√
mλ−1

m

1

n

m∑
j=1

<

(
A(λj , i)

(
1

n

n∑
t=1

εtε
′
t − Ik+1

)
Ā(λj , k + 1)

)
,

U4 ≡
k∑
i=1

ψi
√
mλ−1

m

1

n

m∑
j=1

<

A(λj , i)

 1

n

n∑
t=1

n∑
s=1,s 6=t

εtε
′
se

i(t−s)λj

 Ā(λj , k + 1)

 .

We will now show that U1, U2 and U3 are asymptotically negligible, before establishing central limit

theory for U4. For U1, we use summation by parts and Lobato (1999, C.2) to show

U1 ≤ Op

(
k∑
i=1

ψi

√
m

λmn

[
m1/3 ln(m)2/3 + ln(m) +

m1/2

n1/4

])
= Op

(
ln(m)2/3

m1/6
+

ln(m)

m1/2
+

1

n1/4

)
,

and, hence, U1
P−→ 0. Next, for U2, we may use Assumptions D1-D3 to invoke the bounds

U2 ≤ sup
i=1,...,k

K
√
m

λmn

m∑
j=1

|fqq(λj , i, k + 1)| = O

(
λ$mm

√
m

λmn

)
= O

(
m1+2$

n2$

)
,

utilizing that Gqq(i, k+ 1) = 0 for all i = 1, . . . , k. This shows that U2 → 0 by Assumption T. For the

third term, U3, we have εtε
′
t − Ik+1 being a martingale sequence with respect to the filtration Ft−1,

implying that the convergence result n−1
∑n

t=1 εtε
′
t − Ik+1 = op(1) readily follows by Assumption D2.

Hence, by Lebesque’s dominated convergence theorem, we have U3 ≤ op(U2)
P−→ 0.

Next, the final term in the decomposition (B.16) may be rewritten as

U4 =
n∑
t=1

ε′t

n∑
s=1,s 6=t

k∑
i=1

ψi

√
m

λmn2

m∑
j=1

<
(
A(λj , i)

′ei(t−s)λjĀ(λj , k + 1)′
)
εs =

n∑
t=1

ε′t

t−1∑
s=1

Cn
t−sεs

where the sequence of (k + 1)× (k + 1) coefficient matrices Cn
t is defined by

Cn
t ≡

1

2πn
√
m

m∑
j=1

χj cos(tλj), χj ≡
k∑
i=1

ψi<
(
A(λj , i)

′Ā(λj , k + 1)′ +A(λj , k + 1)′Ā(λj , i)
′) .

Now, since the components in the sumMt ≡ ε′t
∑t−1

s=1C
n
t−sεs are martingale difference sequences with
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respect to the filtration Ft−1, we may establish the final central limit theory by showing

n∑
t=1

E[M2
t |Ft−1]−

k∑
i=1

k∑
p=1

ψiψpGηηGuu(i, p)/2
P−→ 0,

n∑
t=1

E[M4
t ]→ 0, (B.17)

see, e.g., Hall & Heyde (1980, Chapter 3). From (B.17), there is no difference between the remaining

arguments and those for Christensen & Nielsen (2006, Theorem 2), see their pp. 366-369 where we,

in their notation, set di = dk = de = 0. Hence, we invoke their arguments in conjunction with the

continuous mapping theorem and Slutsky’s theorem to establish the final result.

B.2 Proof of Theorem 2

To establish the distribution result in Theorem 2, it suffices to show consistency of the asymptotic

covariance estimators Ĝûû(`G,mG) and Ĝη̂η̂(`G,mG) for Guu and Gηη, respectively, since, in this case,

the result follows by applying Theorem 1, the continuous mapping theorem and Slutsky’s theorem.

As consistency of the two is provided by the following lemma, this concludes the proof.

Lemma B.4. Under the conditions of Theorem 2,

(a) Ĝûû(`G,mG)
P−→ Guu,

(b) Ĝη̂η̂(`G,mG)
P−→ Gηη.

Proof. For (a). Similarly to the proof of Theorem 1, make a decomposition

Ĝv̂v̂(`G,mG) = Ĝvv(`G,mG) +
(
Ĝaa(`G,mG)− Ĝvv(`G,mG)

)
+
(
Ĝv̂v̂(`G,mG)− Ĝaa(`G,mG)

)
≡ G1 + G2 + G3,

noticing, again, that ût comprises the last k elements of the vector v̂t. Now, since the convergence

result Ĝuu(`G,mG)
P−→ Guu follows by arguments similar to those for Christensen & Varneskov (2017,

Lemma 6), it suffices to show that G2 = op(1) and G3 = op(1). To this end, and similarly to (B.4), let

us first decompose the (i, i)th element of the matrix G2 for i = 1, . . . , k + 1 as

G2(i, i) =
1

mG − `G + 1

mG∑
j=`G

(< (Iµ̃µ̃(λj , i, i)) + 2< (Ivµ̃(λj , i, i)))

=
mG

mG − `G + 1

1

mG

mG∑
j=`G

Op

(
n1−2di

j2−2di

)
+

mG

mG − `G + 1

1

mG

mG∑
j=`G

Op

(
n1/2−di

j1−di

)

≤ Op
(

n

mG`2G

(mG

n

)2di
)

+Op

(
n1/2

mG

(mG

n

)di mε
G

`1+ε
G

)

for some arbitrarily small ε > 0, using the same arguments as for (B.5) and (B.6). Hence, by using these

bounds for all i = 1, . . . , k + 1 diagonal elements in conjunction with the Cauchy-Schwarz inequality
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and Assumption T-G, we readily have G2 = op(1). Next, expand G3 similarly to (B.9),

G3(i, i) =
1

mG − `G + 1

mG∑
j=`G

(
<
(
I

(1,1)
āā (λj , i, i)

)
+ <

(
I

(2,2)
āā (λj , i, i)

)
+ 2<

(
I

(1,2)
āā (λj , i, i)

)

+ 2<
(
I

(1)
aā (λj , i, i)

)
+ 2<

(
I

(2)
aā (λj , i, i)

))
≡

5∑
p=1

G3p(i, i).

Now, for the first term, G31(i, i), we may use the same arguments as for (B.10) to show

G31(i, i) ≤ Op
(

ln(n)2

md

)
+Op

(
n1/2 ln(n)2

mGmd

mε
G

`1+ε
G

)
+Op

(
n ln(n)2

mGmd`2

)
, (B.18)

for some arbitrarily small ε > 0. Hence, by defining

f̄G(`G,mG, n) = 1 ∨
n1/2mε

G

mG`
1+ε
G

∨ n

mG`2G
, with f̄G(`G,mG, n)→ 1,

as n→∞ by Assumptions T and T-G, we may write G31(i, i) ≤ Op
(

ln(n)2m−1
d f̄G(`G,mG, n)

)
. Next,

for the second term, G32(i, i), and by the same arguments as for (B.11), we have

G32(i, i) ≤ Op
(

ln(n)4

m2
d

)
+Op

(
ln(n)5

mGm2
d

m
1/2+ε
G

`1+ε
G

)
+Op

(
n1/2 ln(n)4

mGm2
d

mε
G

`1+ε
G

)
+Op

(
n ln(n)4

mGm2
d`

2
G

)
, (B.19)

using also that ln(n)6 � ln(n)4n1/2 and ln(n)/`
3/2
G � mε

G/`
1+ε
G . Since Assumptions F and T readily

imply ln(n)p � md for some finite p ∈ N, then we may combine the bounds in (B.18) and (B.19)

with Assumption T-G to show G32(i, i) = op
(
G31(i, i)

)
. Hence, by the results for G1, (B.18), (B.19)

in conjunction with the Cauchy-Schwarz inequality and the continuous mapping theorem, we get the

following bounds for the cross-product terms of G3(i, i),

G33(i, i)/2 ≤
√
G31(i, i)

√
G32(i, i) = op

(
G31(i, i)

)
G34(i, i)/2 ≤

√
G1(i, i)

√
G31(i, i) = Op

(
ln(n)

m
1/2
d

√
f̄G(`G,mG, n)

)
, G35(i, i)/2 ≤ op

(
G34(i, i)

)
.

Since the bounds for G3(i, i) are independent of i = 1, . . . , k + 1, we may use the Cauchy-Schwarz

inequality and the continuous mapping theorem to show G3 = op(1), concluding the proof of (a).

For (b). First, write η̂t = ς̂t + ε̂t, where ς̂t = êt − B′ût−1 and ε̂t =
(
B − B̂(`,m)

)′
ût−1, and make

the decomposition

Ĝη̂η̂(`G,mG) = Ĝς̂ ς̂(`G,mG) + Ĝε̂ε̂(`G,mG) + 2Ĝς̂ ε̂(`G,mG). (B.20)

Now, Ĝς̂ ς̂(`G,mG)
P−→ Gηη readily follows by (10) and (a). Moreover, since Ĝε̂ε̂(`G,mG) = Op(m

−1) by
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applying Theorem 1 to
(
B− B̂(`,m)

)
and (a), and Ĝς̂ ε̂(`G,mG) ≤ Op(m−1/2) by the Cauchy-Schwarz

inequality and the first two results, this concludes the proof.

B.3 Proof of Theorem 3

First, for (a), write F̂ c
ûû(`,m) − F̂ûû(`,m) = F̂ĉĉ(`,m) + F̂ûĉ(`,m) + F̂ĉû(`,m). Hence, it suffices to

establish bounds for F̂ĉĉ(`,m, i, i) and F̂ûĉ(`,m, i, i) since the bounds for the off-diagonal terms of the

error matrices will, then, follow by the Cauchy-Schwarz inequality. Hence, by Lemma B.9(b),

F̂ĉĉ(`,m, i, i) =
2π

n

m∑
j=`

Op(λ
2di
j ) ≤ 2πm1+2di

n1+2di

2π

n

m∑
j=`

Op

((
j

m

)2di 1

j1+ε

)

≤ Op
((m

n

)1+2di 1

`1+ε

)
, (B.21)

for some arbitrarily small ε > 0, using Varneskov (2017, Lemma C.4) for the last inequality. Similarly

for the cross-product term, the bounds in Lemma B.9(b) allows us to write

F̂ûĉ(`,m, i, i) =
2π

n

m∑
j=`

Op(λ
di
j ) +

2π

n

m∑
j=`

Op

(
λ2di
j n1/2

j

)
+

2π

n

m∑
j=`

Op

(
λdij ln(n)n1/2

m
1/2
d j

)

≤ Op
(
m1+di

n1+di

1

`1+ε

)
+Op

(
m2di+ε

n1/2+2di

1

`1+ε

)
+Op

(
ln(n)mdi+ε

m
1/2
d n1/2+di

1

`1+ε

)
, (B.22)

using the same arguments as above. However, since we can write the scaled bound (B.22) as

λ−1
m F̂ûĉ(`,m, i, i) ≤ Op

((m
n

)di 1

`1+ε

(
1 +

(m
n

)di n1/2

m
+

ln(n)n1/2

m
1/2
d m1−ε

))
,

the final result follows since n1/2/m→ 0 and F̂ĉĉ(`,m, i, i) ≤ op(F̂ûĉ(`,m, i, i)).
For (b), we have F̂ c

ûê(`,m)− F̂ûê(`,m) = F̂ĉê(`,m). Now, by Assumption C, since ĉt and êt have a

non-trivial spectrum in the vicinity of the origin and satisfy the remaining conditions of Assumption

D1-D3, we have F̂ĉê(`,m) = Op(F̂ûĉ(`,m, i, i)). Hence, the result follows by (a).

For (c), write Ĝc
ûû(`G,mG)− Ĝûû(`G,mG) = Ĝĉĉ(`G,mG) + Ĝĉû(`G,mG) + Ĝûĉ(`G,mG), similarly

to the decomposition in (a). As in (a), we may invoke Lemma B.9(b) to show

Ĝĉĉ(`G,mG, i, i) =
1

mG − `G + 1

mG∑
j=`G

Op(λ
2di
j ) ≤

Km2di
G

n2di

mG∑
j=`G

Op

((
j

mG

)2di 1

j1+ε

)

≤ Op

((mG

n

)2di 1

`1+ε
G

)
, (B.23)

using mG/(mG − `G + 1) ≤ K and Varneskov (2017, Lemma C.4). Similarly, Lemma B.9(b) may be
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used to bound the cross-product term as follows

Ĝûĉ(`G,mG, i, i) ≤
K

mG

mG∑
j=`G

Op(λ
di
j ) +

K

mG

mG∑
j=`G

Op

(
λ2di
j n1/2

j

)
+

K

mG

mG∑
j=`G

Op

(
λdij ln(n)n1/2

m
1/2
d j

)

≤ Op

((mG

n

)di 1

`1+ε
G

)
+Op

((mG

n

)2di n1/2

m1−ε
G `1+ε

G

)
+Op

((mG

n

)di n1/2 ln(n)

mGm
1/2
d

1

`1+ε
G

)
. (B.24)

Hence, by n1/2/mG → 0 and the same arguments as in (a), Ĝûĉ(`G,mG, i, i) ≤ Op((mG/n)di/`1+ε
G ) as

well as Ĝĉĉ(`G,mG, i, i) ≤ op(Ĝûĉ(`G,mG, i, i)), providing the result.

For (d), make the decomposition η̂ct = êt − B̂c(`,m)′ûct = η̂t − τ̂ (1)
t − τ̂

(2)
t , where η̂t is defined as in

(17) and we let τ̂
(1)
t = (B̂c(`,m)− B̂(`,m))′ûct and τ̂

(2)
t = B̂(`,m)′ĉt. Hence, write

Ĝc
η̂η̂(`G,mG)− Ĝη̂η̂(`G,mG) = Ĝ

(1,1)
τ̂ τ̂ (`G,mG) + Ĝ

(2,2)
τ̂ τ̂ (`G,mG)

− 2Ĝ
(1)
η̂τ̂ (`G,mG)− 2Ĝ

(2)
η̂τ̂ (`G,mG) + 2Ĝ

(1,2)
τ̂ τ̂ (`G,mG),

where the first two terms are the (trimmed) long-run variance estimates for τ̂
(1)
t and τ̂

(2)
t , respectively,

and the last three terms are covariances between τ̂
(1)
t , τ̂

(2)
t and η̂t. First, for Ĝ

(1,1)
τ̂ τ̂ (`G,mG), write

Ĝ
(1,1)
τ̂ τ̂ (`G,mG) = (B̂c(`,m)− B̂(`,m))′

(
Ĝûû(`G,mG) + Ĝĉĉ(`G,mG) + Ĝĉû(`G,mG)

+ Ĝûĉ(`G,mG)
)

(B̂c(`,m)− B̂(`,m)). (B.25)

Then, by (a) and (b), B̂c(`,m)−B̂(`,m) ≤ Op((m/n)d/`1+ε). Moreover, Ĝûû(`G,mG)
P−→ Guu follows

by Lemma B.4(a). Hence, we may use (B.23), (B.24) and n1/2/mG → 0 to show

Ĝ
(1,1)
τ̂ τ̂ (`G,mG) ≤ Op

((m
n

)2d 1

`2(1+ε)

)
×

(
1 +

(mG

n

)d 1

`1+ε
G

)
. (B.26)

Next, for the second term Ĝ
(2,2)
τ̂ τ̂ (`G,mG), we have B̂(`,m)

P−→ B by Theorem 1, which, together with

(B.23), delivers the bound Ĝ
(2,2)
τ̂ τ̂ (`G,mG) ≤ Op((mG/n)2d/`1+ε

G ).

For the covariance term Ĝ
(2)
η̂τ̂ (`G,mG), use the decomposition from Lemma B.4(b), η̂t = ς̂t + ε̂t

where, once again, ς̂t = êt − B′ût−1 and ε̂t =
(
B − B̂(`,m)

)′
ût−1. Here, we may readily invoke

Theorem 1 to show B − B̂(`,m) = Op(m
−1/2), such that by (B.24) and the same arguments used for

(b),

Ĝ
(2)
η̂τ̂ (`G,mG) ≤ Op

((mG

n

)d 1

`1+ε
G

)
×
(

1 +m−1/2
)
. (B.27)

Next, for Ĝ
(1)
η̂τ̂ (`G,mG), we write τ̂

(1)
t = τ̂

(1,1)
t + τ̂

(1,2)
t with τ̂

(1,1)
t = (B̂c(`,m) − B̂(`,m))′ût and,
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similarly, τ̂
(1,2)
t = (B̂c(`,m)− B̂(`,m))′ĉt, and use these with decomposition of η̂t to expand

Ĝ
(1)
η̂τ̂ (`G,mG) = Ĝ

(1,1)
ς̂ τ̂ (`G,mG) + Ĝ

(1,2)
ς̂ τ̂ (`G,mG) + Ĝ

(1,1)
ε̂τ̂ (`G,mG) + Ĝ

(1,2)
ε̂τ̂ (`G,mG), (B.28)

explicating the covariance terms between ς̂t, ε̂t, τ̂
(1,1)
t and τ̂

(1,2)
t . By the same arguments as above,

Ĝ
(1,1)
ς̂ τ̂ (`G,mG) = Op

(
Ĝς̂ ς̂(`G,mG)

)
×Op

(
B̂c(`,m)− B̂(`,m)

)
,

Ĝ
(1,2)
ς̂ τ̂ (`G,mG) = Op

(
Ĝûĉ(`G,mG)

)
×Op

(
B̂c(`,m)− B̂(`,m)

)
,

Ĝ
(1,1)
η̂τ̂ (`G,mG) = Op

(
Ĝûû(`G,mG)

)
×Op

(
B̂c(`,m)− B̂(`,m)

)
×Op

(
B − B̂(`,m)

)
,

Ĝ
(1,2)
η̂τ̂ (`G,mG) = Op

(
Ĝûĉ(`G,mG)

)
×Op

(
B̂c(`,m)− B̂(`,m)

)
×Op

(
B − B̂(`,m)

)
.

Hence, by using bounds for B − B̂(`,m), B̂c(`,m)− B̂(`,m), (B.24) and Lemma B.4, we have

Ĝ
(1)
η̂τ̂ (`G,mG) ≤ Op

((m
n

)d 1

`1+ε

)
. (B.29)

For the last term, Ĝ
(1,2)
τ̂ τ̂ (`G,mG), we, again, apply the decomposition τ̂

(1)
t = τ̂

(1,1)
t + τ̂

(1,2)
t to write

Ĝ
(1,2)
τ̂ τ̂ (`G,mG) = Ĝ

(1,2,1)
τ̂ τ̂ (`G,mG) + Ĝ

(1,2,2)
τ̂ τ̂ (`G,mG), (B.30)

where, using the same arguments as above,

Ĝ
(1,2,1)
τ̂ τ̂ (`G,mG) = Op

(
Ĝûĉ(`G,mG)

)
×Op

(
B̂c(`,m)− B̂(`,m)

)
,

Ĝ
(1,2,2)
τ̂ τ̂ (`G,mG) = Op

(
Ĝĉĉ(`G,mG)

)
×Op

(
B̂c(`,m)− B̂(`,m)

)
,

which, if additionally invoking (B.23), delivers the asymptotic bound

Ĝ
(1,2)
τ̂ τ̂ (`G,mG) ≤ Op

((mG

n

)d 1

`1+ε
G

)
×Op

((m
n

)d 1

`1+ε

)
. (B.31)

Hence, by collecting results, we have

Ĝc
η̂η̂(`G,mG)− Ĝη̂η̂(`G,mG) ≤ Op

((mG

n

)d 1

`1+ε
G

)
+Op

((m
n

)d 1

`1+ε

)
, (B.32)

providing the final result, thereby concluding the proof.
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B.4 Technical Lemmas and Definitions

Definition 1 (Fractional Filters). Let θ ∈ R be a fixed scalar, then the following definitions are used

to derive the (higher-order) periodogram bounds below:

(a) Dn(eiλ; θ) =
∑n

k=0
(−θ)k
k! eikλ where (θ)k = Γ(θ+k)

Γ(θ) = (θ)(θ + 1) · · · (θ + k − 1),

(b) Dn(e−iλL; θ) =
∑n−1

p=0 θ̃λpe
−ipλLp, where θ̃λp =

∑n
k=p+1

(−θ)k
k! eikλ,

(c) Jn(eiλ) =
∑n

k=1 e
ikλ/k,

(d) J̃nλj (e
−iλjL) =

∑n−1
p=0 j̃λjpe

−ipλjLp where j̃λjp =
∑n

k=p+1 e
ikλj/k.

Lemma B.5 (Shimotsu & Phillips (2005, Lemma 5.9)). Let the conditions for Theorem 1 hold. More-

over, let ut be the ith element of qt, define ζt = (1 − L)θut1{t≥1} and let θ ∈ [−1 + ε, C] where ε > 0

is arbitrarily small as well as C ∈ (1,∞), then

(a) −wln(1−L)ζ(λj) = Jn(eiλj )Dn(eiλj ; θ)wu(λj) + n−1/2Vn(λj ; θ),

(b) −wln(1−L)u(λj) = Jn(eiλj )wu(λj)− (2πn)−1/2J̃nλj (e
−iλjL)A(0, i)εn + rn(λj),

(c) wln(1−L)2ζ(λj) = Jn(eiλj )2Dn(eiλj ; θ)wu(λj) + n−1/2Ψn(λj ; θ),

where, uniformly in j = 1, . . . ,m, with m
n + 1

n = o(1),

E[sup
θ
|nθ−1/2j1/2−θVn(λj ; θ)|2] = O(ln(n)4), E[|j1/2rn(λj)|2] = o(1) +O(j−1),

E[sup
θ
|nθ−1/2j1/2−θΨn(λj ; θ)|2] = O(ln(n)6).

Lemma B.6 (Shimotsu (2010, Lemma B.2)). Let κt = 1{t≥1} and C ∈ (1,∞). The following results,

then, holds uniformly in j = 1, . . . ,m with m
n + 1

n = o(1) and in θ:

(a) w∆θκ(λj) = O(n1/2−θjθ−1) when θ ≥ 0,

(b) −wln(1−L)∆θκ = Jn(eiλj )w∆θκ(λj) +O
(
n1/2−θ ln(n)

(
j−11{θ∈[−C,1]} + 1{θ∈[1,2]}

))
,

(c) wln(1−L)2∆θκ = Jn(eiλj )2w∆θκ(λj) +O
(
n1/2−θ ln(n)2

(
j−11{θ∈[−C,1]} + 1{θ∈[1,2]}

))
.

Lemma B.7 (Higher-order Periodogram Bounds). Let the conditions for Theorem 1 hold. Moreover,

define θn > 0 such that θn � n−ρ, ρ ∈ (0, 1) and maxi=1,...,k+1 |θ̂i| < θn with probability approaching 1.

Then, the periodograms of a
(1)
t−1(i) and a

(2)
t−2(i, θ̄i), the two terms in the Taylor expansion (B.8), satisfy

the following stochastic bounds for i = 1, . . . , k + 1 and j = 1, . . . ,m, with m
n + 1

n = o(1),

(a) I
(1,1)
aa (λj , i, i) = Op

(
ln(n)2

(
1 + n1/2/j + n/j2

))
,

(b) I
(2,2)
aa (λj , i, i) ≤ Op

(
ln(n)4

(
1 + ln(n)j−1/2 + n1/2j−1

)2)
.

56



Proof. Before proceeding to the proofs, note that for j = 1, . . . ,m with m
n + 1

n = o(1), we have

Jn(eiλj ) = O(ln(n)) and λ−θj Dn(eiλ; θ) = e−(π/2)θi +O(λj) +O(j−1−θ), (B.33)

uniformly for θ ∈ (−1, C] and C ∈ (1,∞), by Shimotsu & Phillips (2005, Lemmas 5.2 and 5.8). These

bounds will be used throughout, sometimes without explicit reference.

For (a). First, use the decomposition of at(i) to write

a
(1)
t−1(i) = ln(1− L)vt(i)1{t≥1} + ln(1− L)µ̃t(i)1{t≥1} ≡ ṽ

(1)
t−1(i) + µ̃

(1)
t−1(i). (B.34)

and, as a result, the discrete Fourier transform as w
(1)
a (λj , i) = w

(1)
ṽ (λj , i) + w

(1)
µ̃ (λj , i). Now, by

combining (B.33), Assumptions D1-D3, and Lemma B.5(b), we have

w
(1)
ṽ (λj , i) = Op(ln(n)) + op(j

−1/2) +Op(j
−1) + (2πn)−1/2J̃nλj (e

−iλjL)A(0, i)εn,

and, moreover, since E[|J̃nλj (e−iλjL)A(0, i)εn|2] = O(n/j) follows by applying the results in Shimotsu

& Phillips (2005, (77) and (89)), this readily shows that w
(1)
ṽ (λj , i) = Op(ln(n)). Hence, by using this

bound in conjunction with Lemmas B.6(a)-(b) for w
(1)
µ̃ (λj , i), it follows that

w(1)
a (λj , i) = Op

(
ln(n)

(
1 + n1/2/j

))
, (B.35)

which, together with the Cauchy-Schwarz inequality, establishes (a) for elements i = 2, . . . , k+ 1, that

is, when vt(i) = ut(i − 1). Moreover, by using the relation (10) with Assumption D2 and the same

arguments, we get an identical bound (B.35) for i = 1, that is, with vt(i) = et. As this will also hold

true for the remaining arguments given below, we only establish results for i = 2, . . . , k + 1.

For (b). First, decompose a
(2)
t−2(i, θ̄i) similarly to (B.34),

a
(2)
t−2(i, θ̄i) = ln(1− L)2(1− L)θ̄ivt(i)1{t≥1} + ln(1− L)2(1− L)θ̄i µ̃t(i)1{t≥1}

≡ ṽ(2)
t−2(i) + µ̃

(2)
t−2(i), and w(2)

a (λj , i) = w
(2)
ṽ (λj , i) +w

(2)
µ̃ (λj , i). (B.36)

Now, using |θ̄i| ≤ |θ̂i| < θn for all i = 1, . . . , k + 1, Lemma B.5(c) and (B.33), it follows that

w
(2)
ṽ (λj , i) ≤ Op

(
ln(n)2λ−θnj

)
+Op

(
ln(n)3λ−θnj j−1/2

)
. (B.37)

Next, to get a simpler asymptotic approximation, we make a second-order Taylor expansion of the

power function of Fourier frequencies λ−θnj around θn = 0,

λ−θnj = 1 + θn ln(1/λj) +
θ2
n

2
ln(1/λj)

2λ−θ̄nj , (B.38)

for some θ̄n ∈ [0, θn], using the mean-value theorem. Hence, since θn � n−ρ, ρ ∈ (0, 1), this readily
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shows that λ−θnj = 1+o(1) and, as a result, w
(2)
ṽ (λj , i) ≤ Op

(
ln(n)2(1 + ln(n)j−1/2)

)
. Moreover, using

Lemma B.6(c) and the fact that θn → 0 as n→∞, this delivers the bounds

w
(2)
µ̃ (λj , i) ≤ K ln(n)2

(
n1/2

j

)(
(n/j)θn + (n)θn

)
≤ K ln(n)2

(
n1/2

j

)
nθn . (B.39)

Now, by combining (B.38) and (B.39) with the bound for w
(2)
ũ (λj , i), this shows that

w(2)
a (λj , i) ≤ Op

(
ln(n)2

(
1 + ln(n)j−1/2 + n1/2j−1

))
, (B.40)

which, together with the Cauchy-Schwarz inequality, establishes (b).

The following lemma collects various bounds from Shimotsu & Phillips (2005) to state a bound

for the discrete Fourier transform of ζt = (1− L)θct1{t≥1}, where ct is an element of ct, that satisfies

Assumption C, and θ ∈ [−1 + ε, C] with ε > 0 being arbitrarily small and C ∈ (1,∞).

Lemma B.8 (Discrete Fourier Transform Bound for ζt). Suppose the conditions of Assumption C

holds and θ ∈ [−1 + ε, C]. Then, for j = 1, . . . ,m with m
n + 1

n = o(1),

wζ(λj) = Op(λ
θ
j) +Op(λ

θ
j ln(n)j−1/2) +Op(λ

−1
j n−θ−1)1{θ∈[−1+ε,−1/2]} +Op(n

−θ−1){θ∈[1/2,C]}.

Proof. The proof proceeds by providing separate arguments and asymptotic bounds for different ranges

the parameter space Θ = {θ ∈ [−1+ ε, C]}. First, for Θ1 = {θ ∈ [−1/2, 1/2]}, use Shimotsu & Phillips

(2005, Lemma 5.1) make the decomposition,

wζ(λj) = Dn(eiλj ; θ)wc(λj)− (2πn)−1/2C̃n(λj , θ), C̃n(λ, θ) = D̃nλ(e−iλL; θ)cn, (B.41)

where Dn(eiλj ; θ) and D̃nλ(e−iλL; θ) are given in Defintion 1. Hence, by Assumption C in conjunction

with an application of (B.33) and Shimotsu & Phillips (2005, Lemma 5.3) to the terms (B.41), we

have, uniformly in j = 1, . . . ,m with m
n + 1

n = o(1), that wζ(λj) = Op(λ
θ
j) +Op(λ

θ
j ln(n)j−1/2). Next,

for Θ2 = {θ ∈ [−1 + ε,−1/2]}, use the decomposition in Shimotsu & Phillips (2005, (45)),

λ−θj wζ(λj) = D̄n(λj ; θ)wc(λj)− C̄n(λj , θ) + λ−θj (2πn)−1/2eiλj (1− eiλj )−1ζn, (B.42)

noting that ζn is I(−θ), and where D̄n(λj ; θ) and C̄n(λj , θ) are defined as

D̄n(λj ; θ) = λ−θj (1− eiλj )−1Dn(eiλj ; θ + 1),

C̄n(λj , θ) = λ−θj (1− eiλj )−1(2πn)−1/2C̃n(λj , θ + 1).

Now, by Shimotsu & Phillips (2005, (31) and (39)), D̄n(λj ; θ) = e−(π/2)θi + O(λj) + O(j−1/2) as well

as C̄n = Op(ln(n)j−1/2), respectively, uniformly in θ. For the last term in (B.42), since it follows that
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the terms eiλj = O(1) and (1 − eiλj )−1 = O(nj−1) as well as ζn = Op(n
−θ−1/2) by, e.g., Phillips &

Shimotsu (2004, Lemma A.5), we have wζ(λj) = Op(λ
θ
j) +Op(λ

θ
j ln(n)j−1/2) +Op(λ

−1
j n−θ−1). For the

subspace Θ3 = {θ ∈ [1/2, 3/2]}, the decomposition in Shimotsu & Phillips (2005, (30)) and the same

arguments give the bound wζ(λj) = Op(λ
θ
j)+Op(λ

θ
j ln(n)j−1/2)+Op(n

−θ−1). As these arguments and

steps may be repeated for subsequent subspaces Θ3+i = {θ ∈ [1/2 + i, 3/2 + i]}, i = 1, . . . ,K for some

finite integer K, this gives the result for some finite C ∈ (1,∞), concluding the proof.

Lemma B.9 (Approximate DFT bound for filtered series). Suppose that the regularity conditions of

Theorem 3 hold. Then, the following bounds hold uniformly in 0 < di < 2, i = 1, . . . , k + 1.

(a) for j = 1, . . . ,m with m
n + 1

n = o(1), it follows

wĉ(λj , i) = Op

(
λdij

(
1 +

ln(n)

j1/2
+

ln(n)

m
1/2
d

+
ln(n)2

j1/2m
1/2
d

+
ln(n)2

md
+

ln(n)3

j1/2md

))
,

wv̂(λj , i) = Op(1) +Op

(
n1/2−di

j1−di

)
+Op

(
ln(n)

m
1/2
d

(
1 +

n1/2

j
+

ln(n)

m
1/2
d

(
1 +

ln(n)

j1/2
+
n1/2

j

)))
.

(b) for j = `, . . . ,m with ` � nν , m � nκ, md � n%, 0 < ν < κ ≤ % ≤ 1 and 1/n→ 0,

wĉ(λj , i) = Op(λ
di
j ), wv̂(λj , i) = Op(1) +Op

(
n1/2−di

j1−di

)
+Op

(
ln(n)n1/2

m
1/2
d j

)
.

Proof. First, for (a), write similarly to the proof of Lemma B.1, ĉt(i) = (1−L)θ̂iζt(i) where we define

the series ζt(i) = (1 − L)dict and let θ̂i = d̂i − di = Op(m
−1/2
d ) by Assumption F. Next, by applying

the Taylor expansion of (1− L)θ̂i in (B.7), we may readily decompose wĉ(λj , i) as

wĉ(λj , i) = wζ(λj , i) + θ̂iw
(1)
ζ (λj , i) +

θ̂2
i

2
w

(2)
ζ (λj , i), (B.43)

with w
(1)
ζ (λj , i) and w

(2)
ζ (λj , i) being the discrete Fourier transforms of ζ

(1)
t−1(i) ≡ ln(1 − L)ζt(i) and

ζ
(2)
t−2(i, θ̄i) ≡ ln(1 − L)2(1 − L)θ̄iζt(i), respectively, for some θ̄i ∈ [θ̂i, 0]. Now, the bound for wĉ(λj , i)

follows by applying Lemmas B.5(a), B.5(c) and B.8 in conjunction with (B.33) and the same ar-

guments used to establish Lemma B.7 ((B.38)-(B.39)). Next, the bound for wv̂(λj , i) follows by the

decomposition in (B.8), Lemma B.6(a) as well as the bounds (B.35) and (B.40). (b) follows by (a).

Lemma B.10 (Lead-lag Co-periodogram Bound). Suppose the conditions of Theorem 1 hold. More-

over, denote by I
(t,1)
uη (λj) the co-periodogram of ut−1 and ηt, and by I

(t,0)
uη (λj) the corresponding peri-

odogram of ut and ηt, then

I(t,1)
uη (λj)− I(t,0)

uη (λj) = Op(n
−1/2).
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Proof. First, expand I
(t,1)
uη (λj) and write by addition and subtraction,

1

2πn

n∑
t=2

n∑
s=2

ut−1ηse
iλj(t−1−s) =

1

2πn

n−1∑
t=2

n−1∑
s=2

utηse
iλj(t−s) +

1

2πn

n∑
s=2

u1ηse
iλj(1−s)

+
1

2πn

n−1∑
t=1

utηne
iλj(t−n)

= I(t,0)
uη (λj)−

1

2πn

n∑
s=1

unηse
iλj(n−s) − 1

2πn

n−1∑
t=1

utη1e
iλj(t−1).

Hence, since we have for j = 1, . . . ,m and m
n + 1

n = o(1), that

1

2πn

n∑
s=1

unηse
iλj(n−s) =

(
une

iλjn

√
2πn

)
w̄η(λj) = Op

(
1√
n

)
, (B.44)

1

2πn

n−1∑
t=1

utη1e
iλj(t−1) =

(
η1e
−iλj

√
2πn

)
wu(λj) = Op

(
1√
n

)
, (B.45)

with the last equalities following by Assumptions D1-D3, Euler’s formula and boundedness of the sine

an cosine functions, this concludes the proof.

C Data Construction

We first account for the construction of the high-frequency (HF) return based realized volatility mea-

sure. Here, in particular, we decompose the daily return as rt,i = rt,i,τ +rt,i−τ,1−τ , where rt,i,τ measures

the open-to-close return for the ith trading day in month t of length τ , that is, the return over the

interval [i − τ, i]. Similarly, we denote by rt,i−τ,1−τ the overnight return from the preceding trading

day, that is, over [i− 1, i− τ ]. We then utilize HF data over the trading day to estimate the quadratic

variation of rt,i,τ , denoted by [r, r]t,i,τ , with arbitrarily high precision as the number of intra-daily

observations increases. Let V̄t,i,τ denote a generic estimator of [r, r]t,i,τ , then our HF estimator of the

monthly realized return variance is defined as

V̄t =

nt∑
i=1

(
V̄t,i,τ + r2

t,i−τ,1−τ
)
, (C.1)

that is, with a correction to account for the variation outside the trading window. We use 30-second

observations of S&P 500 futures contracts, traded on the Chicago Mercantile Exchange (CME), for

the computation of (C.1) for the period up and including 2010, and we use one-minute observations

obtained from TickData on the same ticker after 2010. Since the recorded high-frequency prices

are prone to be contaminated by, e.g., bid-ask bounce and asymmetric information effects (or other

market microstructure effects), it is pertinent to use an estimator that accounts for an array of market
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frictions. For this purpose, we use the flat-top realized kernel of Varneskov (2016, 2017), which is

robust to general forms of market microstructure noise and has been shown to estimate the quadratic

variation with optimal asymptotic and good finite sample properties.

The monthly S&P 500, DS and TB data are obtained from the website of the Federal Reserve Bank

of St. Louis, while the PE data are from Professor Robert Shiller’s website, see Shiller (2000) for

details on its construction.

D IVX Estimation and Testing

The IVX methodology is motivated by the system:

yt = µ+A′xt−1 + et, xt = Rnxt−1 + ut, Rn = Ik +
C

nα
, (D.1)

for some α ≥ 0, where A is a k × 1 coefficient vector and C = diag[c1, . . . , ck], with ci ≤ 0 for all

i = 1, . . . , k. Whereas the innovations of the system vt = (et,u
′
t)
′ are assumed to obey conditions

similar to those in Assumptions D1-D3, see Kostakis et al. (2015, Assumption INNOV) and Phillips &

Lee (2016, Assumption 2.1), the persistence of (D.1) is, in this setting, governed by the autoregressive

matrix Rn, in analogy with the fractional filter D(L) determining the persistence of (3). In particular,

the regressors in (D.1) are said to be integrated if ci = 0 or α > 1; local-to-unity if ci < 0 and α = 1;

mildly stationary if ci < 0 and α ∈ (0, 1); stationary if ci < 0 and α = 0; locally explosive if ci > 0 and

α = 1; and mildly explosive of ci > 0 and α ∈ (0, 1). In this setting, and as outlined in the introduction,

standard inference for A will generally be distorted and/of suffer from first-order predictive biases if

the regressors are no longer stationary. The IVX methodology represents one potential remedy for

such problems and is valid across autoregressive persistence regimes.

The key step when developing feasible IVX inference on A is the construction of self-generated

instruments using an artificial persistence matrix,

z̃t = Rnzz̃t + ∆xt, Rnz = Ik +
Cz
nβ
, β ∈ (0, 1), Cz < 0, (D.2)

serving to reduce the asymptotic order of the regressors to the mildly integrated case, leaving a

residual term that turns out to be asymptotically negligible. In conjunction with the following steps,

this reduction of persistence allows for nuisance parameter free inference. Step 1, the variables yt and

xt are demeaned and stacked into an n× 1 vector Y and an n× k matrix X, respectively. Similarly,

write Z̃ = (z̃′0, . . . , z̃
′
n−1)′. Step 2, obtain OLS residuals from the regressions in (D.1), denoted by êt

and ût, and estimate their covariances,

Σ̂ee =
1

n

n∑
t=1

ê2
t , Σ̂eu =

1

n

n∑
t=1

êtû
′
t, Σ̂uu =

1

n

n∑
t=1

ûtû
′
t. (D.3)

To accommodate potential autocorrelation in the OLS residuals, these estimates are complemented
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with kernel estimates of the lead-lag structure using a bandwidth Mn and Bartlett weights,

Λ̂ee =
1

n

Mn∑
h=1

(
1− h

Mn + 1

) n∑
t=h+1

êtêt−h, Ω̂ee = Σ̂ee + 2Λ̂ee, (D.4)

Λ̂ue =
1

n

Mn∑
h=1

(
1− h

Mn + 1

) n∑
t=h+1

ûtêt−h, Ω̂eu = Σ̂eu + Λ̂′ue, (D.5)

Λ̂uu =
1

n

Mn∑
h=1

(
1− h

Mn + 1

) n∑
t=h+1

ûtût−h, Ω̂uu = Σ̂uu + Λ̂uu + Λ̂′uu. (D.6)

These estimates may, then, be used to construct a bias-corrected IVX estimator,

Ã =
(
Z̃ ′X

)−1 (
Z̃ ′X − nΩ̂′eu

)
, (D.7)

following Phillips & Lee (2016, (2.11)). Whereas the latter, together with Magdalinos & Phillips (2009)

and Kostakis et al. (2015), show that the limit theory for Ã is pivotal, it differs across persistence

regimes. However, its associated Wald statistic is always χ2, similarly to Wald testing for the LCM

procedure in Theorem 2. Hence, to carry out consistent Wald testing, we let the residuals of the IVX

regression be denoted by ẽt and construct HAC covariance estimates,

Σ̃ez =
1

n

n∑
t=1

(z̃tẽt)(z̃tẽt)
′, Λ̃ze =

1

n

Mn∑
h=1

(
1− h

Mn + 1

) n∑
t=h+1

(z̃tẽt)(z̃t−hẽt−h)′, (D.8)

and Ω̃zu = Σ̃ez+Λ̂ze+Λ̂′ze. Using these, the IVX-based Wald statistic is constructed via the following

asymptotic covariance estimator,

ÃVAR = (Z̃ ′X)−1M(Z̃ ′X), M = nΩ̃zu − nz̄z̄′Ω̂FM , (D.9)

with z̄ being the average of z̃t and Ω̂FM = Ω̂ee − Ω̂euΩ̂
−1
uu Ω̂′eu is a modified long-run covariance

estimator, in the spirit of Phillips & Hansen (1990). Note that the asymptotic covariance estimator

differs slightly from the corresponding in, e.g., Kostakis et al. (2015, (19)) Specifically, we use Ω̃zu in

place of (Z̃ ′Z̃)Σ̂ee and Ω̂ee in place of Σ̂ee. Both changes are motivated by our application to realized

volatility forecasting, where, as Table 1 clearly demonstrates, volatility is very persistent, in contrast to

the application in Kostakis et al. (2015), who consider predictions of stock returns. Hence, a long-run

variance estimator is needed for robust inference in our setting. This issue is acknowledged as well as

discussed on Kostakis et al. (2015, p. 1516). Finally, note that the selection of tuning parameters in

this setting, Cz and β, are follow the latter, see Table 6 for details.
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