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Abstract
We develop a nonparametric test for deciding whether return volatility exhibits time-
varying intraday periodicity using a long time-series of high-frequency data. Our null
hypothesis, commonly adopted in work on volatility modeling, is that volatility fol-
lows a stationary process combined with a constant time-of-day periodic component.
We first construct time-of-day volatility estimates and studentize the high-frequency
returns with these periodic components. If the intraday volatility periodicity is in-
variant over time, then the distribution of the studentized returns should be identical
across the trading day. Consequently, the test is based on comparing the empiri-
cal characteristic function of the studentized returns across the trading day. The
limit distribution of the test depends on the error in recovering volatility from dis-
crete return data and the empirical process error associated with estimating volatility
moments through their sample counterparts. Critical values are computed via easy-
to-implement simulation. In an empirical application to S&P 500 index returns, we
find strong evidence for variation in the intraday volatility pattern driven in part by
the current level of volatility. When market volatility is elevated, the period pre-
ceding the market close constitutes a significantly higher fraction of the total daily
integrated volatility than is the case during low market volatility regimes.

JEL classification: C51, C52, G12.
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tic volatility.
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1 Introduction

Stock returns have time-varying volatility and this has important theoretical as well as

practical ramifications. Most existing work on volatility has modeled it as a stationary

process. However, there is both theoretical (see, e.g., [1, 25]) and empirical evidence (see,

e.g., [2, 3]) for the presence of intraday periodicity in volatility. To illustrate this phe-

nomenon, on Figure 1, we plot the average level of the S&P 500 index return volatility

as a function of time-of-day. As seen from the figure, the intraday periodic component of

volatility is nontrivial. Indeed, the average volatility at the market close is about three

times the average volatility around lunch.
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Figure 1: Intraday Volatility Periodicity for the S&P 500 Index. The plot presents

smoothed estimates of the average time-of-day volatility, normalized by the trading day

volatility. Details regarding the construction of the series are provided in Section 5.

High-frequency data is increasingly used, as it offers very significant efficiency gains

for measuring and forecasting volatility, see, e.g., [5]. The pronounced periodic pattern
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exhibited in Figure 1 has strong implications regarding the appropriate methodology for

studying volatility using the intraday return data. The usual approach in the literature

assumes that the time-of-day component of volatility is constant across days and then

standardizes the high-frequency returns by the corresponding estimates, see, e.g., [2, 3],

[9] and [35] among many others. However, this only annihilates the intraday volatility

component from the returns, if the latter remains time-invariant. The goal of the current

paper is to test this (null) hypothesis within a general nonparametric setting. Moreover, if

the null hypothesis is rejected, we provide techniques that can help identify the sources of

variation in the intraday periodic component. The statistical analysis is conducted using

a long span of high-frequency return data.

The major challenges in designing the test stem from the fact that volatility is not

directly observed and both the stationary and periodic component of volatility can change

over the course of the day. We take advantage of the long time span as well as the short

distance between the intraday observations to circumvent these latency problems. We

first estimate the average periodic component of volatility from the high-frequency returns.

Then we standardize the returns with these estimated time-of-day volatility components.

Under the null hypothesis, this studentization of the returns is sufficient to annihilate the

periodic volatility component. Therefore, the studentized high-frequency returns should

have the exact same distribution regardless of time-of-day, if the null is true. In contrast,

this is violated under the alternative hypothesis, where the studentized return distribution

is given by a convolution of the distributions for the stationary volatility component and the

standardized (time-varying) periodic volatility component. As a result, the distribution of

the studentized returns depends on the time-of-day, when the periodic volatility component

varies over time.

Given the discrepancy in the distributional properties of the studentized returns under
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the null and alternative hypotheses, our test statistic is designed to measure the distance

between the studentized return distribution for different parts of the trading day. In par-

ticular, we rely on a weighted L2 norm of the difference in the real parts of the empirical

characteristic functions of the studentized returns. We use only the real parts of the

empirical characteristic functions, because the high-frequency returns are approximately

conditionally normally distributed, when conditioning on the information at the beginning

of the return interval.

Under the null hypothesis, the limiting distribution of our test statistic depends on the

error in recovering volatility from the returns as well as the empirical process error asso-

ciated with estimating population moments of volatility using their sample counterparts.

The contribution of the first of these errors to the limiting distribution is a distinctive

feature of our test, setting it apart from other estimation and testing problems involving

joint in-fill and long-span asymptotics for high-frequency return data, where this error is

negligible asymptotically. The reason for the added complication is that, due to the nature

of the testing problem at hand, we only use a limited number of high-frequency returns per

day in forming the statistic. Hence, we cannot derive the limiting distribution assuming

that volatility, effectively, is observed, which is a convenient simplification in determining

the asymptotic properties of existing joint in-fill and long-span inference procedures. As a

consequence, the limit distribution of our test statistic is non-standard, but its quantiles

are readily evaluated through simulation.

We implement our new testing procedure on high-frequency return data for the S&P

500 index. Even after excluding trading days comprising scheduled macroeconomic an-

nouncements, our test rejects the null hypothesis of a time-invariant intraday periodicity in

volatility. Additional analysis shows that a significant driver of the variation in the periodic

volatility component is the concurrent level of volatility, as proxied by the VIX volatility
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index at the market open. Upon separating the trading days into regimes of low, medium,

and high volatility, according to the level of the VIX, we find that our test rejects signifi-

cantly less on these three subsamples. Specifically, when volatility is elevated, the period

before the market close contributes a substantially higher fraction of the total integrated

daily volatility compared with regimes featuring lower volatility.

Our paper is related to several strands of earlier work. First, there is a large literature

on detecting and modeling periodicity in discrete time series. Examples include [14], [20],

[22], [27], [32], [34] and [36]. Second, there is a sizable literature that estimates (assumed)

constant intraday volatility patterns. This includes empirical work by [2, 3], [21], [23]

and [38]. The (constant) intraday periodicity is further explicitly modeled or accounted

for in papers estimating volatility models and detecting jumps, such as [9], [13], [17] and

[28]. [24] study the commonality in the intraday periodicity across many assets. Finally,

[15] assume that the stationary volatility component is constant within the day and test

whether the periodic volatility component can explain the full dynamic evolution across

each day. We reiterate that a common feature of the above literature is the assumed

invariance for the periodicity of volatility, while the goal of the current paper is to test

this underlying assumption of existing work, and to explore potential sources of deviation

from this hypothesis. Third, [4] consider testing for changes in the periodic component of

volatility at a specific (known) point in time and in a parametric volatility setting (both

for the stationary and periodic components). Unlike that paper, the analysis here is fully

nonparametric and we can test for changes in the periodic component, which can happen at

unknown times and be stochastic. Fourth, our paper is related to a voluminous statistical

literature that tests for the equality of two distributions by using a weighted L2 distance

between the associated empirical characteristic functions. Applications of this approach

for testing dependence between two variables can be found in, e.g., [7, 8], [16], [19] and
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[33]. The empirical characteristic function has also been used to study serial dependence

in time series by [26] and to test for Gaussianity in stationary time series by [18]. The

major difference between this strand of the literature and the current paper is that the

variables, whose distributions are compared, are not directly observable and need to be

“filtered” from the data, and this filtering procedure affects the limiting distribution of the

test statistic.

The rest of the paper is organized as follows. Section 2 presents the setting and in-

troduces the statistics for assessing stochastic time-variation in the periodicity of intraday

volatility. In Section 3 we derive the asymptotic limit theory for these statistics, and we

then apply it for developing a feasible testing procedure for whether the intraday volatility

pattern is time-invariant. Section 4 summarizes the results obtained from a large-scale sim-

ulation study, and Section 5 presents an empirical implementation of the testing procedure.

Section 6 concludes. All formal assumptions and proofs are deferred to a Supplementary

Appendix.

2 Setup and Estimation of Periodic Volatility

The (log) price process X is defined on some filtered probability space
(
Ω,F , (Ft)t≥0 ,P

)
.

Consistent with the absence of arbitrage, it follows an Itô semimartingale of the form,

dXt = at dt + σ̃t dWt +

∫
R
xµ(dt, dx) , (1)

where at is the drift, Wt a Brownian motion, σ̃t the (diffusive) stochastic volatility, µ the

counting measure for jumps in X with compensator bt dt ⊗ F (dx), where bt is a càdlàg

process and F : R → R+. Our main focus is the stochastic volatility component. Beyond

the customary stationary part, we assume it contains a periodic component with a cycle

6



spanning one unit of time. Specifically, σ̃2
t = σ2

t fbtc,t−btc for some stationary process σt and

time-of-day function f : N+ × [0, 1] → R+ with fbtc,0 = fbtc,1, where the time unit is one

day.

In the standard setting, adopted in most current work, f is deterministic and depends

only on the time-of-day, t − btc. In fact, high-frequency data is increasingly used as it

offers very significant efficiency gains for measuring and forecasting volatility, see e.g., [5]..

However, it is plausible that the periodic component might vary with the concurrent level

of (the stationary component of) volatility, as well as the occurrence of events such as

prescheduled macroeconomic announcements and, more generally, any shifts in the orga-

nization and operation of the financial markets. The goal of the current paper is to test

whether the time-of-day periodic component of volatility changes over time.

The inference will be based on discrete observations of the processX at equidistant times

0, 1
n
, 2
n
, ..., T , where the integer T represents the time span, and the integer n indicates the

number of times we sample within a unit interval. We denote the length of the sampling

interval by ∆n = 1/n and the high-frequency increments of X by ∆n
t,κX = X((t−1)n+bκnc)/n−

X((t−1)n+bκnc−1)/n, for t ∈ N+ and κ ∈ (0, 1]. The asymptotic setting involves n → ∞ and

T →∞, where, intuitively, the increasing sampling frequency assists in the nonparametric

identification of the level of stochastic volatility from discrete observations of X, and the

long time span allows us to separate the stationary and periodic components of volatility.

Our estimate for the time-of-day component of volatility is given by,

f̂κ =
n

T

π

2

T∑
t=1

|∆n
t,κX||∆n

t,κ−∆X|1{Ant,κ}, Ant,κ = {|∆n
t,κX| ≤ vn ∩ |∆n

t,κ−∆n
X| ≤ vn}, (2)

for vn = α∆$
n with $ ∈ (0, 1/2) and α > 0. Under appropriate conditions, f̂κ converges

in probability to E(ft,κ σ
2
t+κ), for t ∈ N+. Therefore, up to the constant E(σ2

t ), f̂κ provides

an estimate for the periodic component of volatility, when the latter is time-invariant.
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We test for invariance of the intraday component of volatility by comparing the distri-

bution of estimates for volatility deseasonalized by f̂κ over different parts of the trading

day. Under the null hypothesis, these distributions are identical, while they differ under the

alternative. The inference for the distribution of volatility at different parts of the day will

be based on the result in [35] that (the real part of) the empirical characteristic function of

the high-frequency increments in X is an estimate for the Laplace transform of stochastic

volatility. Therefore, we introduce,

L̂nκ(u) =
1

T

T∑
t=1

cos

(√
2un∆n

t,κX/

√
f̂κ

)
, u ∈ R+ , (3)

and, as shown in the next section, L̂nκ converges in probability (in a functional sense) to,

Lκ(u) = E
[
e−u ft,κ σ

2
t+κ /E[ft,κ σ2

t+κ]
]
, for t ∈ N+ and κ ∈ (0, 1] . (4)

3 Testing for Time-Invariant Periodicity of Volatility

We proceed with the formal asymptotic results for L̂nκ, which in turn will allow us to

construct a feasible test for detecting time-varying intraday volatility periodicity.

3.1 Infeasible Limit Theory

Our results will be based on the function L̂nκ(u) in u, and the functional convergence results

below take place in the Hilbert space L2(w),

L2(w) =

{
f : R+ → R

∣∣∣∣ ∫
R+

|f(u)|2w(u) du < ∞
}
, (5)

for some positive-valued continuous weight function w with exponential tail decay. As

usual, we denote the inner product and the norm on L2(w) by 〈·, ·〉 and || · ||, respectively.

Convergence in probability for L̂nκ is established in the following theorem.
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Theorem 1. Suppose Assumptions 1-3 in the Supplementary Appendix hold with K = {κ},

for some κ ∈ (0, 1], and $ ∈ [1
8
, 1

2
). Then, as n→∞ and T →∞, we have,

L̂nκ
P−→ Lκ . (6)

The intuition behind the above result is the following. First, f̂κ is an estimate of

E(ft,κσ
2
t+κ). Second, over small time intervals, we have ∆n

t,κX ≈ σ̃
t−1+

bκnc
n

∆n
t,κW . From

here, the result in Theorem 1 follows by a Law of Large Numbers.

Theorem 1 requires both n → ∞ and T → ∞, but imposes no restriction on their

relative rate of growth. We emphasize that the above result is functional, i.e., we recover

the Laplace transform Lκ as a function of u. As is well known, the Laplace transform

of a positive-valued random variable uniquely identifies its distribution. Therefore, any

differences in Lκ for different times-of-day (different values of κ) must stem from time vari-

ation in the periodic component of volatility. In this case, studentizing the high-frequency

increments by the time-of-day estimate

√
f̂κ will not be enough to eliminate the intraday

periodic component.

We next derive a Central Limit Theorem (CLT) for the difference in L̂nκ, for two different

values of κ, under the null hypothesis.

Theorem 2. Suppose Assumptions 1-3 in the Supplementary Appendix hold with K =

{κ, κ′} and ft,κ ≡ fκ (constant time-of-day periodicity) for t ∈ N+. Let $ ∈ [1
8
, 2

5
]. Then,

for any κ, κ′ ∈ (0, 1], as n→∞ and T →∞ with T ∆n → 0, we have,

√
T
(
L̂nκ − L̂nκ′

)
L−→ N(0, K), (7)

where K is a covariance integral operator characterized by,

Kh(z) =

∫
R+

k(z, u)h(u)w(u) du, ∀h ∈ L2(w), (8)
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with kernel k(z, u) =
∑∞

j=−∞ E [d1(z)dj+1(u)] and,

dt(u) = cos

(√
2uσ2

t−1+κZt

)
− cos

(√
2uσ2

t−1+κ′Z
′
t

)
− uL′(u)

π

2

(
σ2
t−1+κ |Zt||Z̃t| − σ2

t−1+κ′ |Z ′t||Z̃ ′t|
)
,

(9)

for {Zt}, {Z̃t}, {Z ′t} and {Z̃ ′t} being sequences of independent standard normal random

variables defined on an extension of the original probability space and independent of F .

The limit result has some notable features. First, the rate of convergence is controlled

by the time span of the data. The limit result requires T ∆n → 0, that is, we sample slightly

faster than we increase the time span of the data. This is a standard condition in joint in-fill

and long-span asymptotic settings. It ensures that certain biases associated with measuring

volatility from discrete observations on X are negligible. Second, L̂nκ − L̂nκ′ is based on the

difference of functions of increments over different parts of the day. Consequently, the

asymptotic covariance operator K depends only on the autocovariance of the differential

between transforms of volatility at different times-of-day. As a result, the persistence in

dt(u) is typically small, even if σ2
t contains a very persistent stationary component. To

illustrate, suppose σ2
s is constant during the day, i.e., for s ∈ [t − 1, t] and t ∈ N+. Then

we have E(d1(z)dj+1(u)) = 0 for j 6= 0. The implication is that, even if volatility is highly

persistent (which is true empirically), we do not require a large time span for reliable

recovery of Lκ − Lκ′ . This is unlike the situation, where one seeks to recover Lκ and Lκ′

separately, as the precision of those estimates will be compromised by strong volatility

persistence.

Third, the asymptotic limit in Theorem 2 reflects two sources of error. The first is

associated with uncovering the latent stochastic variance σ2
t from high-frequency data.

The second is the empirical process error capturing the deviation of sample averages for
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transforms of volatility from their unconditional means. This is unlike most existing joint

in-fill and long span asymptotic limit results, in which the error from recovering the latent

volatility is asymptotically negligible. The reason is that here, unlike in previous work,

we do not integrate functions of the high-frequency data over the full trading day, but

rather rely on only a fixed number of high-frequency increments each day. The main er-

ror in measuring volatility from high-frequency returns of X stems from the increments of

the Brownian motion over the small sampling intervals. We allow for these increments to

be correlated with the innovations of σ2, that is, the so-called leverage effect is accommo-

dated. Nevertheless, since the length of the high-frequency intervals shrinks asymptotically,

this dependence has an asymptotically negligible effect on the limit result in Theorem 2.

Hence, for the purposes of the CLT of L̂nκ − L̂nκ′ , our asymptotic setting becomes equiv-

alent to conducting inference from observations of
(
Zt
√
fκσ2

t−1+κ, Z̃t
√
fκσ2

t−1+κ

)
t∈N+

and(
Z ′t

√
fκ′σ2

t−1+κ′ , Z̃
′
t

√
fκ′σ2

t−1+κ′

)
t∈N+

, where {Zt}, {Z̃t}, {Z ′t} and {Z̃ ′t} are i.i.d. sequences

of standard normals independent from the volatility process. This situation mirrors some

features of the CLT for measuring quantities associated with the jump part of X, such as

their quadratic variation, see, e.g., [29]. In that case, only the increments of the Brownian

motion over the intervals containing the jumps drive the asymptotics. In our case, because

we study time-of-day volatility patterns, we similarly rely on only a finite number of high-

frequency increments per day. Unlike the high-frequency analysis of jumps, however, we

also have T →∞ and, consequently, we have an additional source of error driving the CLT,

namely the empirical process error associated with the recovery of unconditional moments

of volatility from the corresponding sample averages.

Given Theorems 1 and 2, our test statistic is quite intuitive. It is given by the weighted

squared difference of the estimates for the volatility Laplace transforms over the two distinct
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periods across the trading day,

TSn,T (κ, κ′) = T ||L̂nκ − L̂nκ′ ||2 ≡ T

∫
R+

(
L̂nκ(u)− L̂nκ′(u)

)2

w(u) du, κ, κ′ ∈ (0, 1] . (10)

The asymptotic behavior of TSn,T (κ, κ′) under the null hypothesis follows directly from the

CLT in Theorem 2. It is stated formally in Corollary 1.

Corollary 1. Under the conditions of Theorem 2, we have,

TSn,T (κ, κ′)
L−→ Z(κ, κ′),

where Z(κ, κ′) is a weighted sum of independent chi-squared distributions with one degree

of freedom, defined on an extension of the original probability space and independent from

F . The weights are given by the eigenvalues of the covariance operator K, defined in

Theorem 2.

When the alternative hypothesis is true, i.e., when the time-of-day periodic component

of volatility varies over time, then Lκ and Lκ′ differ and, from Theorem 1, we conclude

that TSn,T (κ, κ′) diverges to infinity.

3.2 Feasible Inference and Construction of the Test

The feasible version of our test statistic will be based on the limit results in Theorem 2 and

Corollary 1. For implementation, we need to obtain an estimate of the covariance operator

K from the data. To this end, we first construct the feasible counterpart of dt(u) given by

d̂t,n(u) = d̂κt,n(u)− d̂κ′t,n(u) with,

d̂κt,n(u) = cos

(√
2un∆n

t,κX/

√
f̂κ

)
+ (|uL̂′κ(u)| ∧ e−0.5)

π

2

n|∆n
t,κX||∆n

t,κ−∆n
X|

f̂κ
1{Ant,κ}, (11)
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for u ∈ R+ and κ ∈ (0, 1] and with,

L̂′κ(u) = − 1

T

T∑
t=1

sin

(√
2un∆n

t,κX/

√
f̂κ

) √
n∆n

t,κX√
2uf̂κ

1{|∆n
t,κX|≤vn}. (12)

In defining d̂κt,n(u), we impose a small sample correction by using |uL̂′κ(u)| ∧ e−0.5 instead

of u L̂′κ(u). This is because we have supu∈R |uL′κ(u)| ≤ e−1, so it follows that the above

correction has no asymptotic effect.

Given d̂κt,n(u), the feasible kernel-type estimator of the covariance operator is given by,

KTf (s) =

∫
R+

kT (s, u)f(u)w(u) du , (13)

where kT is given by,

kT (u, s) =
1

T

T∑
t=1

d̂t,n (u) Γ d̂t,n (s) , (14)

and Γ is the linear operator defined by,

Γ d̂t,n (s) = h(0) d̂t,n (s) +
T∑
j=1

h

(
j

BT

)(
d̂t−j,n (s) + d̂t+j,n (s)

)
, (15)

with the convention that dt,n (s) = 0 if t ≤ 0 or t > T , and h is a kernel which satisfies the

regularity conditions given in the Supplementary Appendix.

To conduct feasible inference for TSn,T (κ, κ′), we require estimates for the eigenvalues

of the operator K. Since K is a Hilbert-Schmidt operator, it follows that the eigenvalues of

K converge to zero. The limiting distribution of TSn,T (κ, κ′) depends on all the eigenvalues

of the covariance operator K. However, since the eigenvalues converge to zero, it is natural

to approximate the distribution of Z(κ, κ′) through estimates for only the pT largest ones,

where pT is a sequence of positive integers that asymptotically diverge to infinity. This is

what we do below.
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Our estimates for the eigenvalues of K will be based on its estimate KT . By construc-

tion, kT is a degenerate kernel and, thus, it has only finitely many non-zero eigenvalues.

Furthermore, the range of KT is spanned by d̂1,n(u), ..., d̂T,n(u), so the eigenfunctions are

of the form ψ̂j(u) = 1
T

∑T
t=1 βj,t d̂t,n(u), for a sequence of coefficients {βj,t} and j = 1, ..., T .

The estimated eigenvalues are then obtained by solving the following equation,

KT ψ̂j (u) = λ̂j ψ̂j(u), j = 1, ..., T. (16)

Solving for these eigenvalues is equivalent to finding the eigenvalues of the matrix C, whose

(i, j)’th element equals cij = 1
T

∫
R+
d̂j,n(u) Γ d̂i,n(u)w(u) du, for i, j = 1, ..., T . Then the

eigenvalues of C, denoted λ̂1, ..., λ̂T , are natural estimators of λ1, ..., λT . Based on these

estimated eigenvalues, we construct the following approximation of the limiting distribution

in Corollary 1,

ẐT (κ, κ′) =

pT∑
i=1

λ̂i χ
2
i , (17)

where {χ2
i }i≥1 denotes the sequence of χ2(1) distributed random variables from Corollary 1.

The following theorem shows that the limiting distribution of our test statistic can be

approximated by ẐT (κ, κ′).

Theorem 3. Suppose Assumptions 1-4 in the Supplementary Appendix hold with K =

{κ, κ′} and ft,κ ≡ fκ (constant time-of-day periodicity) for t ∈ N+. Let $ ∈
[

1
4
, 3

8

]
and

n→∞, T →∞ with T ∆n → 0. Suppose BT →∞ and pT →∞ such that,

B2
T

T
→ 0 and pT

(
B−6
T

∨ B2
T

T

)
→ 0. (18)

We then have,

ẐT (κ, κ′)− Z(κ, κ′)
P−→ 0. (19)
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The sequence BT controls the number of lags of d̂t,n(u) we use in the construction of

our estimator for the covariance operator KT . The choice of BT naturally depends on the

persistence of the underlying series. In standard time series applications, see, e.g., [6], it

typically takes values like BT = O(T 1/3) or BT = O(T 1/5). Given our earlier discussion,

dt(u) will display limited persistence, and we can therefore reliably estimate K with only

a relatively small number of lags included in the construction of KT .

The second condition in equation (18) puts an upper bound on the rate of growth

of pT which, we recall, controls the number of the largest eigenvalues of KT included in

constructing ẐT (κ, κ′). Because the smallest eigenvalues of K are estimated with less

precision, we determine the upper bound on pT via the magnitude of the error KT − K.

This error, in turn, stems from the sampling error in inferring K as well as the bias due

to using only BT autocovariances of d̂t,n(u) (and their smoothing with the kernel h) in the

construction of KT . As we later document, the eigenvalues of K typically die out very fast

and, hence, the test has very limited sensitivity with respect to the choice of pT .

With the feasible approximation ẐT (κ, κ′) of Z(κ, κ′), we are now ready to formally

define our test. For some κ, κ′ ∈ (0, 1] with κ 6= κ′, the null and alternative hypotheses are

given by,

H0 : {Lκ = Lκ′} and HA : {Lκ 6= Lκ′}, (20)

where the equality and inequality are to be understood in the L2(w) sense. Define next,

cvαn,T (κ, κ′) = Q1−α(ẐT (κ, κ′)|F) , (21)

where Qα(Z) denotes the α-quantile of a generic random variable Z. cvαn,T (κ, κ′) is com-

puted numerically using the estimated eigenvalues {λ̂i}i=1,...,pT and the simulation of a

sequence of i.i.d. χ2(1) distributed random variables. We then have the following result.
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Corollary 2. Suppose Assumptions 1-4 in the Supplementary Appendix hold with K =

{κ, κ′} and the sequences BT and pT satisfy condition (18). The test defined by the critical

region {TSn,T (κ, κ′) > cvαn,T (κ, κ′)} has asymptotic size α under the null and asymptotic

power one under the alternative, i.e.,

P
(
TSn,T (κ, κ′) > cvαn,T (κ, κ′)

∣∣H0

)
−→ α, P

(
TSn,T (κ, κ′) > cvαn,T (κ, κ′)

∣∣HA

)
−→ 1. (22)

3.3 Extensions

3.3.1 Averaging Multiple Time-of-Day Intervals

One natural extension is to compare the average Laplace transforms of volatility over two

distinct sets of time-of-day intervals. This has the benefit of reducing the measurement

error, and hence increases the power of the test. Of course, the averaging ignores the

potential differences in the Laplace transforms that we average. Therefore, this procedure

is most advantageous for intervals in which the periodic volatility component is similar,

even if it is time-varying. This is naturally satisfied for adjacent intervals during the

trading day, e.g., neighboring five-minute intervals within one hour. In fact, since the

periodic component of volatility is assumed to be Hölder of order 1/2 (see Supplementary

Appendix), the distance between the Laplace transforms of the deseasonalized volatilities

over high-frequency intervals within neighborhoods of asymptotic size of order o(1/
√
T )

of the time-of-day κ and κ′ will be o(1/
√
T ). Therefore, the averaging of the Laplace

transforms over these blocks of high-frequency data will continue to provide a valid test for

the null hypothesis of equality between Lκ and Lκ′ , but with more power relative to the

original test in Corollary 2.

We formalize this extension of our test without a formal proof, as it follows straight-

forwardly from our earlier results. For simplicity, we restrict attention to the case where
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the number of high-frequency intervals, over which averaging is performed, remains fixed,

that is, it does not increase with the sampling frequency. The location of the elements in

the two sets on (0, 1] may change with the sampling frequency (but deviates from fixed

points on (0, 1] by terms which are o(1/
√
T )). Denote two disjoint finite sets of num-

bers in (0, 1] by Kn and K′n. The typical example of such a set, Kn , takes the form

Kn =
{
bκnc
n
, bκnc+1

n
, ..., bκnc+kn

n

}
, for some fixed integer k ≥ 1. This corresponds to using

several high-frequency increments located in the vicinity of κ during the trading day. We

then define,

L̂nK(u) =
1

|Kn|
∑
κ∈Kn

L̂nκ(u) , (23)

with |Kn| denoting the cardinality of the set Kn. The test statistic is now generalized to,

T Sn,T (Kn,K′n) = ||L̂nK − L̂nK′ ||2 . (24)

We define the counterpart of dκt,n(u) by,

dKt,n(u) =
1

|Kn|
∑
κ∈Kn

dκt,n(u) . (25)

The extension of the test is then based on the critical region {TSn,T (Kn,K′n) > cvαn,T (Kn,K′n)},

where cvαn,T (Kn,K′n) = Q1−α(ẐT (Kn,K′n)|F) with ẐT (Kn,K′n) constructed from dKt,n(u) and

dK
′

t,n(u), exactly as ẐT (κ, κ′) is constructed from dκt,n(u) and dκ
′
t,n(u).

3.3.2 Incorporating Additional Information

We can further extend the analysis by considering conditioning information,

L̂nκ,B(u) =
1

T

T∑
t=1

1{Bt−1} cos

(√
2un∆n

t,κX/

√
f̂κ,B

)
, (26)
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for

f̂κ,B =
n

T

π

2

T∑
t=1

|∆n
t,κX||∆n

t,κ−∆X| 1{Ant,κ ∩ Bt−1} , (27)

where {Bt}t∈N+ is a sequence of Ft-adapted random sets. Provided appropriate ergodicity

and mixing conditions hold, L̂nκ,B(u) converges in probability to,

Lκ,B = E
[
e−uft,κσ

2
t+κ/E[ft,κσ2

t+κ1{Bt−1}] 1Bt−1

]
, for t ∈ N+ , (28)

and the CLT of Theorem 2 continues to apply with dt(u) replaced by,

dBt (u) = 1{Bt−1}

[
cos

(√
2uσ2

t−1+κZt

)
− cos

(√
2uσ2

t−1+κ′Z
′
t

)]
− 1{Bt−1} uL′(u)

π

2

(
σ2
t−1+κ|Zt||Z̃t| − σ2

t−1+κ′ |Z ′t||Z̃ ′t|
)
.

(29)

We can similarly define TSBn,T (κ, κ′) and d̂Bt,n(u) from TSn,T (κ, κ′) and d̂t,n(u), and then

conduct tests on the basis of TSBn,T (κ, κ′) and critical regions constructed exactly as in

Corollary 2. We omit formal proofs of these extensions, as they follow directly from our

results in Sections 3.1 and 3.2.

The above generalization may be used to estimate Laplace transforms conditional on

specific events, e.g., level of volatility or the occurrence of a prescheduled announcement.

This enables us to investigate potential sources of variation in the periodic component of

volatility.

4 Simulation Study

In this section, we assess the finite sample properties of the proposed test through a Monte

Carlo study. We rely on the following two-factor affine jump-diffusion with an intraday
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periodic volatility component,

Xt = X0 +

∫ t

0

√
Ṽs dWs +

Nt∑
s=1

Zs, Ṽt = fbtc,t−btc

(
V

(1)
t + V

(2)
t

)
,

dV
(i)
t = κi(θ − V (i)

t ) dt + ξi

√
V

(i)
t dB

(i)
t , i = 1, 2 ,

(30)

where W , B(1) and B(2) are independent standard Brownian motions, Nt is a Poisson

process with intensity λJ , and Zt is normally distributed with mean zero and variance

σ2
j . This representation captures the main features of the U.S. equity market index. In

accordance with [11], we fix the model parameters as follows, (κ1, κ2, θ, ξ1, ξ2, λJ , σ
2
j ) =

(0.0128, 0.6930, 0.4068, 0.0954, 0.7023, 0.2, 0.19, 0.932).

To explore the size of the test under the null hypothesis, ft,κ ≡ fκ (constant time-of-

day periodicity), we set fκ equal to the average time-of-day effect obtained in our empirical

application, displayed in Figure 1. Under the alternative hypothesis, ft,κ varies with t.

Consistent with our empirical findings in Section 5, we let ft,κ be a function of the stationary

component of volatility, Vt , for investigating the power of the test. Thus, we stipulate,

ft,κ =


f lκ, if Vt ≤ Q0.25(Vt),

fmκ , if Vt ∈ (Q0.25(Vt), Q0.75(Vt)),

fhκ , if Vt ≥ Q0.75(Vt),

t ∈ N+, (31)

where f lκ, f
m
κ , and fhκ equal our empirical estimates for the time-of-day periodic volatility

component after conditioning on whether, at the start of the trading day, the VIX volatility

index – an option-based indicator of future volatility – belongs to the respective empirical

VIX quantile, namely (0, Q0.25(V IX)], (Q0.25(V IX), Q0.75(V IX)) and [Q0.75(V IX),∞).

Specifically, we compute nf̂i∆n,B/
∑n

i=1 f̂i∆n,B on the real data for each of the three regions

B above, and then apply a Nadaraya-Watson kernel regression with a Gaussian kernel and

bandwidth corresponding to a five-minute window, to obtain estimates for the standardized
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periodic component of volatility conditional on the value of the VIX index. The resulting

periodic volatility components are displayed on Figure 2.

09:00 10:00 11:00 12:00 13:00 14:00 15:00

0

0.5

1

1.5

2

2.5

Figure 2: Periodic Volatility Components used in the Monte Carlo. The dashed line corre-

sponds to f lκ, the dotted line to fmκ , and the solid line to fhκ .

In the Monte Carlo we set n = 77, corresponding to sampling every five minutes across

a 6.5 hour trading day and discarding the first 5-minute interval. Given the imprecision

associated with evaluation of our test statistic for high values of u, we truncate the integral

in equation (10) at umax, which is set to satisfy 1
n

∑n
i=1 L̂i∆n(umax) = 0.05. The weight

function, w, corresponds to the density of a normal distribution with mean zero and variance

such that
∫ umax
−∞ w(u)du = 0.995. Next, we use the following data-driven truncation for the

jumps, vn = 3.5
√
BVbtc−1 ∧RVbtc−1 ∆

3/8
n , where BV and RV are the bipower variation

(see, e.g., [10]) and realized volatility estimators defined as,

BVt =
π

2

n∑
i=2

|∆n
t,i−1X||∆n

t,iX|, RVt =
n∑
i=1

|∆n
t,iX|2, t ∈ N+ . (32)

RVt is a measure of the total quadratic variation of X over [t− 1, t], while BVt is a jump-
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robust counterpart, estimating the diffusive component of the return variation,
∫ t
t−1

σ̃2
sds.

For estimation of the covariance operator, we set BT = bT 1/5c and we use the Bartlett

kernel for h. Finally, the critical values of the test are calculated on the basis of 10,000,000

simulations for the χ2(1) random variables appearing in ẐT (κ, κ′). Exactly as in the empir-

ical application, we perform the test over intervals of 30 minutes, i.e., K in equation (23)

equals the fraction of the trading day represented by half an hour.

The Monte Carlo results under the null hypothesis are given in Table 1. We notice the

marginal sensitivity with respect to the number of eigenvalues included in the computation

of the critical values beyond pT = 2. Similarly, the performance of the test is remarkably

similar for different sample sizes, T , and empirical rejection rates are very close to the

nominal level of the test.

pT

T 1 2 3 4 5 6

250 0.054 0.046 0.045 0.044 0.044 0.044

500 0.067 0.057 0.055 0.055 0.055 0.055

1000 0.055 0.050 0.049 0.048 0.047 0.047

1500 0.059 0.053 0.048 0.047 0.047 0.047

2000 0.055 0.048 0.047 0.047 0.047 0.047

2500 0.069 0.062 0.061 0.060 0.060 0.060

Table 1: Monte Carlo Results under the Null Hypothesis, ft,κ ≡ fκ. The table reports

empirical rejection rates of the test of nominal size 0.05 using 1, 000 simulations. Kn and

K′n correspond to 8:40-9.10 and 12:30-13.30, respectively.

Turning to the power of the test, we provide simulation results for the alternative
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hypothesis in Table 2. We note that the power of the test depends on which time intervals

are compared. This is not surprising given that the time variation in the periodic volatility

component differs substantially across time-of-day, as depicted in Figure 2. The largest

discrepancies in the periodic component across volatility regimes occur towards the end

of the trading day, and our test picks this up, even for moderate sample sizes. The test

struggles more with identifying time variation in the periodic component of volatility in

the morning versus the middle of the day, because the marginal distribution of volatility

is less distinct across those times-of-day. Furthermore, while power declines slightly as the

number of eigenvalues included in calculating the critical values increases, the discrepancies

in power, looking beyond the second eigenvalue, are small. Finally, as expected, the power

increases as the sample size grows.

8:40 - 9.10 vs 12:30- 13.30 8:40 - 9.10 vs 14:30 - 15.00

pT pT

T 1 2 3 4 5 6 1 2 3 4 5 6

250 0.093 0.075 0.064 0.062 0.061 0.061 0.322 0.292 0.278 0.269 0.267 0.266

500 0.139 0.100 0.086 0.076 0.075 0.074 0.623 0.588 0.571 0.562 0.555 0.554

1000 0.168 0.126 0.106 0.099 0.096 0.094 0.918 0.903 0.901 0.893 0.890 0.887

1500 0.229 0.173 0.149 0.140 0.135 0.133 0.993 0.990 0.989 0.989 0.989 0.988

2000 0.339 0.285 0.266 0.251 0.240 0.232 1.000 0.998 0.998 0.998 0.998 0.998

2500 0.410 0.347 0.308 0.292 0.286 0.279 0.999 0.999 0.999 0.999 0.999 0.999

Table 2: Monte Carlo Results under the Alternative Hypothesis, ft,κ 6= fκ. The table

reports empirical rejection rates for the test at nominal size 0.05 using 1000 simulations.
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5 Empirical Application

Our empirical analysis is based on high-frequency data for the E-mini S&P 500 futures

contract, spanning the period January 1, 2005, till January 30, 2015. After removing

partial trading days from the sample, we end up with a total of 2, 516 days. Each day, we

sample every five minutes over the period 8.35-15.00 CST, which generates 77 returns per

day. For part of the analysis, we also make use of the VIX volatility index, recorded at the

start of each trading day.

In the implementation of the test, the truncation, the weight function and the tuning

parameters of KT are set exactly as in the Monte Carlo study. In addition, as in the

simulation study, we implement the test over half hour intervals with the exception of

the first period, which spans an interval of 20 minutes (8:40-9:00 CST). Table 3 reveals

that the null hypothesis is rejected, except when the test involves intervals which are very

close within the trading day. The failure of the test to reject for adjacent periods is not

mechanical, as the respective estimates for the empirical Laplace transforms, L̂nK and L̂nK′ ,

have only a minor overlap in terms of the underlying high-frequency data (mainly a five-

minute interval which is due to the staggering of returns in the computation of f̂κ for

κ ∈ Kn and κ ∈ K′n). Instead, this empirical finding is a manifestation of the fact that,

although there is a time-variation in the periodic component of volatility, it is quite similar

for adjacent intervals. Overall, these results provide strong evidence that the intraday

periodicity in volatility is time varying.

One possible explanation for the overwhelming rejection of the null hypothesis is that

the intraday volatility pattern is different for days with scheduled release of macroeconomic

news. There are numerous such announcements during the trading hours. We focus on

the release of news from the Federal Open Market Committee (FOMC), which are regu-
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9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

8:40 - 9:00 0.149 0.417 0.428 0.129 0.004 0.004 0.004 0.000 0.000 0.000 0.000 0.000

9:00 - 9:30 0.386 0.061 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

9:30 - 10:00 0.148 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10:00 - 10:30 0.483 0.007 0.000 0.003 0.000 0.000 0.000 0.000 0.000

10:30 - 11:00 0.074 0.018 0.018 0.000 0.001 0.000 0.000 0.000

11:00 - 11:30 0.279 0.504 0.032 0.035 0.001 0.000 0.000

11:30 - 12:00 0.687 0.253 0.274 0.043 0.000 0.000

12:00 - 12:30 0.084 0.226 0.009 0.000 0.000

12:30 - 13:00 0.417 0.315 0.000 0.003

13:00 - 13:30 0.070 0.000 0.000

13:30 - 14:00 0.023 0.119

14:00 - 14:30 0.498

Table 3: Unconditional Test Results. The table reports the results from the unconditional

test of Section 3.2 over the period 1 January, 2005 to 30 January, 2015. Critical values are

computed using pT = 3. Top row indicates the beginning of each half-hour interval.

larly scheduled for 1pm CST every six weeks. Other noteworthy announcements during

trading hours include the ISM Manufacturing and Non-Manufacturing Indices as well as

the Consumer Sentiment report. Unreported results show that these releases have a much

smaller impact on the intraday volatility pattern than the FOMC announcement. Hence,

for brevity, we only analyze the latter here. In total, we have 96 FOMC announcements in

our sample, and we label these “FOMC days.” Figure 3 depicts estimates for the periodic

volatility component on FOMC and non-FOMC days. The estimates for the periodic com-

ponent on non-FOMC days are almost identical to those for the full sample displayed on

Figure 1, while the corresponding estimates on FOMC days display a sharp increase imme-

diately after the announcement. This elevation in volatility is accompanied by heightened

24



trading volume, as diverse groups of investors assess the impact of the news for asset prices,

and the economy more generally.

Time of Day (CST)
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Figure 3: Intraday Volatility Periodicity with and without FOMC Announcements. The

figure plots smoothed nf̂i∆n,B/
∑n

i=1 f̂i∆n,B with Gaussian kernel and bandwidth of 5-minute

interval for B being FOMC days (dashed line) and non-FOMC days (solid line).

Given this evidence, we conducted our test for constant periodicity in volatility exclud-

ing the FOMC days. The test results are very similar to those for the whole sample, re-

ported in Table 3, and, importantly, the strong rejection of the null hypothesis is preserved

(results not reported to conserve space). In summary, scheduled macro announcements

cannot explain the variation in the periodic component of volatility.

Additional in-depth analysis of the sources of variation in the intraday periodic volatility

component is outside the scope of the current paper. Nonetheless, we illustrate how our

approach facilitates direct exploration of this question. The basic rationale from economic

theory concerning the observed intraday U-shape in volatility is as follows. The opening

hours represent a price discovery phase where overnight news arrivals and large customer
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orders submitted to different dealers need to be analyzed and processed by the agents in

the market. Heterogeneous asset positions and beliefs, asymmetric information, and diverse

orders interact to generate elevated volatility, but often only moderately high volume. The

latter is due to the fact that large orders tend to be broken up and processed throughout

the trading day to avoid excessive price pressure. The typical incentive scheme for order

execution relies on the average trade price achieved for the order relative to some metric

like the volume-weighted average price (VWAP) across the trading day. As a consequence,

risk-averse dealers will prefer to trade later in the day, when the initial bulk of news and

the direction of the order flow have been absorbed into the price, and the price impact

typically is lower. Risk aversion will induce agents to postpone some trades until later in

the day, unless they are based on short-lived information that must be acted on quickly

before others do so or before the information becomes public and prices adjust. Since the

tendency to postpone a fraction of the non-informational trades will be common across

dealers there, naturally, will be a concentration of uninformed order flow towards the end

of the day. Recognizing this feature of the market dynamic, the price impact per trade will

be low towards the end of the trading day. As a result, we expect to see highly elevated

trading accompanied by some increase in volatility in the final hour of regular trading. This

line of reasoning further implies that a period of elevation in the stationary component of

volatility should push the intensity of trading and the return volatility further back towards

the end of the trading day.

Consequently, we now explore whether the level of volatility affects the shape of the

intraday volatility pattern. As a proxy for the latent return volatility at the start of the

trading day, we rely on the value of the VIX volatility index. In the left panel of Fig-

ure 4, we plot the estimated intraday volatility pattern in high- and low-volatility regimes.

Specifically, we identify the high volatility regime as the set of days in the sample in which
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the VIX index at market open is between its 75th and the 95th quantiles across the sam-

ple period. Similarly, the low volatility regime is the set of days in which the VIX index

at market open is between the 5th and the 25th quantiles. We exclude days of very low

and very high VIX values (below the 5th and above the 95th quantiles) to guard against

the effect of extreme outliers. From Figure 4 we see that the two intraday patterns are

roughly identical around noon, differ substantially around the opening and close, with the

periodic component in the low volatility regime being almost flat towards the market close

as opposed to its steep counterpart in the high volatility regime.

On the right panel of Figure 4, we plot the ratio of the estimated time-of-day effects

in the two volatility regimes relative to the one based on the whole sample. As seen from

the plot, the periodic component in the high volatility regime is very close to the average

one. This is because the high volatility regime contributes, in relative terms, more than

the low volatility regime to the estimation of the average time-of-day periodic component.

On the other hand, the difference in the average estimate for the periodic component of

volatility and the one recovered in the low volatility regime is substantial, particularly in

the period before market close. This implies that the periodic component of volatility will

be severely overstated during periods of low volatility, when relying on the usual procedure

of standardizing returns by the average estimates for the time-of-day effect.

The exploratory analysis above does suggest that the level of volatility is an important

source of variation in the intraday volatility pattern. We now test formally whether the

dependence of the intraday volatility pattern on the volatility regime can explain the high

rejection rates of our test (even on non-FOMC days) by incorporating the additional infor-

mation for the VIX index and following the procedure in Section 3.3. To account for the

fact that the Laplace transforms have been shifted downward, we adjust the choice of umax

so that it accurately reflects the “effective” sample size. Formally, we set u∗max = umax/T
2
adj,
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Figure 4: Intraday Volatility Periodicity and Volatility. The left panel plots the smoothed

values for nf̂i∆n,B/
∑n

i=1 f̂i∆n,B using a Gaussian kernel and bandwidth of five minutes, for

B indicating high VIX (solid line) or low VIX (dashed line). The right panel displays the

smoothed ratio 5f̂i∆n,B/f̂i∆n using a Gaussian kernel and bandwidth of ten minutes, for

B indicating high VIX (solid line) or low VIX (dashed line). The low (high) VIX state

corresponds to the interval between the 5th and 25th (75th and 95th) empirical quantiles

of the VIX index. FOMC days are excluded from the computation.

where T ∗adj = T/Tobs reflects how much larger the full sample is relative to the one based

on the conditioning information. The results from the tests for the high and low volatility

regimes are reported in Table 4 (similar results hold also for a median volatility regime).

From Table 4, we conclude that accounting for the level of volatility captures a nontrivial

part of the time variation in the intraday volatility periodicity. However, controlling for the

volatility level alone is clearly not sufficient to capture the behavior of volatility during the

first 90 and the last 30 minutes of the trading day in the low volatility regime. Determining

what drives the periodicity during these periods is an important question that we leave for

future research.
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9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

Low volatility

8:40 - 9:00 0.071 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.114

9:00 - 9:30 0.800 0.050 0.001 0.040 0.020 0.001 0.001 0.001 0.001 0.007 0.738

9:30 - 10:00 0.128 0.006 0.073 0.046 0.005 0.003 0.001 0.007 0.016 0.376

10:00 - 10:30 0.156 0.808 0.703 0.183 0.113 0.080 0.293 0.225 0.013

10:30 - 11:00 0.222 0.562 0.955 0.613 0.591 0.723 0.438 0.000

11:00 - 11:30 0.741 0.291 0.243 0.203 0.491 0.487 0.010

11:30 - 12:00 0.713 0.473 0.377 0.836 0.529 0.005

12:00 - 12:30 0.677 0.657 0.863 0.590 0.000

12:30 - 13:00 0.956 0.850 0.822 0.000

13:00 - 13:30 0.734 0.813 0.000

13:30 - 14:00 0.762 0.000

14:00 - 14:30 0.002

High volatility

8:40 - 9:00 0.778 0.478 0.684 0.096 0.028 0.004 0.101 0.010 0.008 0.511 0.002 0.229

9:00 - 9:30 0.437 0.649 0.151 0.034 0.008 0.308 0.031 0.019 0.808 0.003 0.442

9:30 - 10:00 0.805 0.424 0.123 0.035 0.534 0.107 0.064 0.868 0.018 0.456

10:00 - 10:30 0.129 0.018 0.003 0.230 0.017 0.004 0.712 0.002 0.177

10:30 - 11:00 0.413 0.075 0.544 0.232 0.230 0.425 0.056 0.242

11:00 - 11:30 0.541 0.242 0.588 0.942 0.119 0.447 0.065

11:30 - 12:00 0.026 0.498 0.733 0.005 0.838 0.007

12:00 - 12:30 0.183 0.095 0.584 0.020 0.883

12:30 - 13:00 0.663 0.037 0.273 0.111

13:00 - 13:30 0.038 0.468 0.013

13:30 - 14:00 0.003 0.746

14:00 - 14:30 0.009

Table 4: Conditional Test Results. The table reports results from the test of Section 3.3

over the period 1 January, 2005 to 30 January, 2015. The conditioning set is non-FOMC

days and VIX belonging to one of two states: low (between 5th and 25th quantile of its

empirical distribution) and high (between the 75th and 95th quantile). Critical values are

computed using pT = 3. Top row indicates the beginning of each half-hour interval.
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6 Conclusion

In this paper we develop a novel test for deciding whether the intraday periodic component

of volatility is time-invariant, using a long span of high-frequency data. The test is based

on forming estimates of the average value of the periodic component of volatility and then

standardizing by it the high-frequency returns. We exploit a weighted L2 norm of the

distance between the empirical characteristic functions of the studentized high-frequency

returns at different times of the day to separate the null and alternative hypotheses. The

analysis is extended to allow for testing the hypothesis on conditioning sets which can

aid identifying the sources of time variation in the volatility periodicity. Our empirical

application reveals that intraday volatility periodicity changes (stochastically) over time,

with the shifts partially explained by the level of volatility.
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independence. Journal of Multivariate Analysis, 97:1742–1756, 2006.

[8] N. K. Bakirov, M. L. Rizzo, and G. J. Székely. Measuring and testing dependence by
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Appendix A: Assumptions and Notation

In the assumptions and proofs we will denote with C a positive and finite constant that

does not depend on ∆n and T , and can change from line to line. We will further use

throughout the shorthand notation Vt = σ2
t .

Assumption 1. We have supt∈R+
E|at|8 + supt∈R+

E|bt|4 + supt∈R+
E|Vt|8 < ∞ as well as

F (R) <∞ and
∫
R |x|

4F (dx) <∞, and further

inf
t∈N+

inf
κ∈(0,1]

ft,κ > ε and sup
t∈N+

sup
κ∈(0,1]

ft,κ < ε, (A.1)

for some non-random 0 < ε < ε <∞.

Assumption 2. The following smoothness in expectation conditions hold for 0 < s ≤ t:

E|at − as|2 + E|bt − bs|2 + E|σ̃t − σ̃s|2 + E|Vt − Vs|2 ≤ C|t− s|, (A.2)

for some positive and finite constant C that does not depend on t and s.

Assumption 3. For a given finite set K of numbers in (0, 1], denote with Yt =
{
ft,κσ

2
t+κ

}
κ∈K

and suppose that it is a function of a Markov process {Ỹt}t∈N+. We then assume that

{Ỹt}t∈N+ is stationary, ergodic and α-mixing with αt = o(t−16/3) when t→∞, and where

αt = sup{|P (A ∩ B)− P(A)P (B) | : A ∈ G0, B ∈ Gt},

for G0 = σ
(
Ỹs, s ≤ 0

)
and Gt = σ

(
Ỹs, s ≥ t

)
.

Assumption 4. The kernel function h used for constructing KT satisfies the following

conditions: h : R → [−1, 1], h(0) = 1, h(x) = h(−x), h is continuous and is further

continuously differentiable in a neighborhood of zero with the potential exception at zero

where h′±(0) exist and are bounded.
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Appendix B: Proofs

B.1 Auxiliary Results and Notation

Throughout the proofs we will assume without loss of generality that E(Vt) = 1. Further-

more, to improve the readability of the proofs we introduce the following notation:

V n
t,κ = Vt−1+(bκnc−2)/n, fκ = E (ft,κVt+κ) , κ ∈ (0, 1], t = 1, ..., T, (B.3)

and we will use similar notation for fnt,κ, and if the latter does not depend on t (the null

hypothesis for our test), we will further simplify notation to fnκ . We next denote with Xc

and Xd the continuous and discontinuous parts of X:

Xc
t = X0 +

∫ t

0

asds+

∫ t

0

σ̃sdWs, Xd
t =

∫ t

0

∫
R
xµ(ds, dx). (B.4)

With this notation, we set

dt,n(u) = cos
(√

2un
√
V n
t,κ∆

n
t,κW

)
− cos

(√
2un

√
V n
t,κ′∆

n
t,κ′W

)
− π

2
uL′(u)

(
V n
t,κn|∆n

t,κW ||∆n
t,κ−∆n

W | − V n
t,κ′n|∆n

t,κ′W ||∆n
t,κ′−∆n

W |
)
,

(B.5)

f̆κ =
1

T

π

2

T∑
t=1

n|∆n
t,κX

c||∆n
t,κ−∆n

Xc|, f̃κ =
1

T

π

2

T∑
t=1

fnt,κV
n
t,κn|∆n

t,κW ||∆n
t,κ−∆n

W |. (B.6)

L̃′κ(u) = − 1

T

T∑
t=1

sin
(√

2un
√
V n
t,κ∆

n
t,κW

)√n√V n
t,κ∆

n
t,κW√

2u
. (B.7)

Lemma 1. Suppose Assumptions 1-3 hold with K = {κ, κ′} and let supt∈R+
E(|at|q) +

supt∈R+
E(σqt ) <∞ for some q ≥ 8. Then, for p ∈ [1, 4] and κ ∈ (0, 1] and with $ > 1

2
− 1

p
,

we have

E|f̂κ − f̆κ|p ≤ C∆−pn [∆q(1/2−$)+2p$
n ∨∆1+p/2+p$

n ∨∆p+1−2p/q
n ], (B.8)
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E|f̆κ − f̃κ|p ≤ C∆
p
2

∧ q−p
q

n , (B.9)

E|f̃κ − fκ|2 ≤ CT−1, E|uL̃′κ(u)− uL′κ(u)|2 ≤ C(|u| ∨ 1)T−1, (B.10)

for some positive and finite constant C that does not depend on u.

Proof. For the first bound in (B.8), we make use of the following algebraic inequality

||∆n
t,κX||∆n

t,κ−∆n
X|1{Ant,κ} − |∆

n
t,κX

c||∆n
t,κ−∆n

Xc|| ≤ Cv2
n1{|∆n

t,κX
c|≥vn ∪ |∆n

t,κ−∆n
Xc|≥vn}

+ |∆n
t,κX

c||∆n
t,κ−∆n

Xd|1{|∆n
t,κ−∆n

Xd|≤2vn} + |∆n
t,κX

d||∆n
t,κ−∆n

Xc|1{|∆n
t,κX

d|≤2vn}

+ |∆n
t,κX

c||∆n
t,κ−∆n

Xc|1{|∆n
t,κX

c|≥ vn
2
∪ |∆n

t,κ−∆n
Xc|≥ vn

2
∪ |∆n

t,κX
d|≥ vn

2
∪ |∆n

t,κ−∆n
Xd|≥ vn

2
}

+ |∆n
t,κX

d||∆n
t,κ−∆n

Xd|1{|∆n
t,κX

d|≤2vn ∩ |∆n
t,κ−∆n

Xd|≤2vn}.

(B.11)

By Markov inequality and Burkholder-Davis-Gundy inequality and taking into account the

integrability condition for a and σ̃ as well as making use of F (R) <∞, we have

E|∆n
t,κX

c|q ≤ C∆q/2
n , P

(
|∆n

t,κX
c| ≥ vn

)
≤ C∆q(1/2−$)

n , P(∆n
t,κX

d 6= 0) ≤ C∆n. (B.12)

From here, by application of Hölder’s inequality, we have

E
(
|∆n

t,κX
c|p|∆n

t,κ−∆n
Xd|p1{|∆n

t,κ−∆n
Xd|≤2vn}

)
≤ C∆1+p/2+p$

n , (B.13)

E
(
|∆n

t,κX
d|p|∆n

t,κ−∆n
Xc|p1{|∆n

t,κX
d|≤2vn}

)
≤ C∆1+p/2+p$

n , (B.14)

E
(
|∆n

t,κX
c|p|∆n

t,κ−∆n
Xc|p1{|∆n

t,κX
c|≥ vn

2
∪ |∆n

t,κ−∆n
Xc|≥ vn

2
}

)
≤ C∆

q
2
−(q−2p)$

n , (B.15)

E
(
|∆n

t,κX
c|p|∆n

t,κ−∆n
Xc|p1{|∆n

t,κX
d|≥ vn

2
∪ |∆n

t,κ−∆n
Xd|≥ vn

2
}

)
≤ C∆

p+ q−2p
q

n . (B.16)

Next, |∆n
t,κX

d||∆n
t,κ−∆n

Xd| is nonzero only if there are jumps in both intervals and further

by Markov’s inequality we have Pτ
(∫ τ+∆n

τ

∫
R µ(ds, dx) ≥ 1

)
≤ CEτ (

∫ τ+∆n

τ
bsds) for any τ .
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From here, using successive conditioning, Assumption 2, the above inequality and Hölder’s

inequality, we have

E
(
|∆n

t,κX
d|p|∆n

t,κ−∆n
Xd|p1{|∆n

t,κX
d|≤2vn ∩ |∆n

t,κ−∆n
Xd|≤2vn}

)
≤ C∆2+2p$

n . (B.17)

Combining the above bounds, we get the result in (B.8). For the second bound in (B.9),

we use the algebraic inequality

||∆n
t,κX

c||∆n
t,κ−∆n

Xc| − fnt,κV n
t,κ|∆n

t,κW ||∆n
t,κ−∆n

W ||

≤
∣∣∆n

t,κX
c −
√
fnt,κV

n
t,κ∆

n
t,κW

∣∣|∆n
t,κ−∆n

Xc|

+
∣∣∆n

t,κ−∆n
Xc −

√
fnt,κV

n
t,κ∆

n
t,κ−∆n

W
∣∣∣∣√V n

t,κ∆
n
t,κW

∣∣.
(B.18)

For r ∈ [2, q], by application of Burkholder-Davis-Gundy inequality, inequality in means

and making use of the integrability of at, σt as well as the smoothness in expectation of σt

and ft, we have

E
∣∣∆n

t,κX
c −
√
fnt,κV

n
t,κ∆

n
t,κW

∣∣r ≤ C∆1+r/2
n . (B.19)

From here the result follows by an application of Hölder’s inequality (raising the term

|∆n
t,κ−∆n

Xc|p or
∣∣√V n

t,κ∆
n
t,κW

∣∣p to power q).

For the first of the bounds in (B.10), we make use of the decomposition

f̃κ − fκ =
1

T

π

2

T∑
t=1

fnt,κV
n
t,κ

(
n|∆n

t,κW ||∆n
t,κ−∆n

W | − 2

π

)
+

1

T

T∑
t=1

(fnt,κV
n
t,κ − fκ). (B.20)

Successive application of the Burkholder-Davis-Gundy inequality, given the integrability

condition for σt, gives

E
∣∣∣∣ T∑
t=1

fnt,κV
n
t,κ

(
n|∆n

t,κW ||∆n
t,κ−∆n

W | − 2

π

)∣∣∣∣p ≤ CT p/2. (B.21)
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Applying Lemma VIII.3.102 of [2] and Hölder’s inequality and taking into account the

integrability assumptions for σt as well as for the mixing coefficient of Yt, we have

E
∣∣∣∣ T∑
t=1

(fnt,κV
n
t,κ − fκ)

∣∣∣∣2 ≤ C
T∑
k=0

(T − k)
√
αk ≤ KT. (B.22)

Combining the above two results, we get the first bound in (B.10). The second one is

approved in an analogous way.

Lemma 2. Suppose the setting of Lemma 1 and in addition ft,κ ≡ fκ (constant time-of-

day) for t ∈ N+. Let 0 < ε < infκ∈[0,1] fκ/4 and assume q ≥ 8 and $ ≥ 2/q. Then, we

have

E
∣∣uL̂′κ(u)1{|f̂κ|>ε} − uL̃

′
κ(u)

∣∣ ≤ C(|u| ∨ 1)

[
1√
T

∨√
∆n

∨
∆

(q−4)( 1
2
−$)

n

]
, (B.23)

where the positive and finite constant C does not depend on u.

Proof. The derivation is done on the basis of the following bound:∣∣∣∣ sin(√2un∆n
t,κX/

√
f̂κ

) √
n∆n

t,κX√
f̂κ

1{|∆n
t,κX|≤vn ∩ |f̂κ|>ε}

− sin
(√

2un
√
V n
t,κ∆

n
t,κW

)√
n
√
V n
t,κ∆

n
t,κW

∣∣∣∣
≤ C

∣∣√n∆n
t,κX1{|∆n

t,κX|≤vn} −
√
n
√
fnκV

n
t,κ∆

n
t,κW

∣∣+ C1{|f̂κ|≤ε}
√
n
√
V n
t,κ|∆n

t,κW |

+ C
√
n
√
V n
t,κ|∆n

t,κW |
(√

u
∣∣√n∆n

t,κX
c −
√
n
√
fnκV

n
t,κ∆

n
t,κW

∣∣+ 1{|∆n
t,κX

d|>0}

)
+ C|f̂κ − fnκ |

(√
n
√
V n
t,κ|∆n

t,κW |+
√
unV n

t,κ|∆n
t,κW |2

)
,

(B.24)

for a positive and finite constant C that does not depend on u. Applying Cauchy-Schwarz

inequality

E
[√

n
√
V n
t,κ|∆n

t,κW |
(∣∣√n∆n

t,κX
c −
√
n
√
fnκV

n
t,κ∆

n
t,κW

∣∣+ 1{|∆n
t,κX

d|>0}

)]
≤ C

√
∆n.

(B.25)
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Applying Burkholder-Davis-Gundy inequality and making use of F (R) <∞, we get

E
∣∣√n∆n

t,κX1{|∆n
t,κX|≤vn} −

√
n
√
fnκV

n
t,κ∆

n
t,κW

∣∣ ≤ C(∆(q−1)(1/2−$)
n ∨

√
∆n). (B.26)

By application of Hölder’s inequality as well as the results of Lemma 1 (and using $ ≥ 2
q

and q ≥ 8), we have

E
[
|f̂κ − fnκ |

(√
n
√
V n
t,κ|∆n

t,κW |+ nV n
t,κ|∆n

t,κW |2
)

+ 1{|f̂κ|≤ε}
√
n
√
V n
t,κ|∆n

t,κW |
]
≤ C

(
∆

(q−4)( 1
2
−$)

n

∨√
∆n

∨ 1√
T

)
.

(B.27)

Combining the estimates in (B.25)-(B.27) with the bound in (B.24) we get the result of

the lemma.

B.2 Proof of Theorem 1

We make the decomposition

cos

(√
2un∆n

t,κX/

√
f̂κ

)
− cos

(√
2un

√
fnt,κV

n
t,κ∆

n
t,κW/

√
fκ

)
=

3∑
j=1

χ
(j)
t,n(u, κ), (B.28)

where

χ
(1)
t,n(u, κ) = cos

(√
2un∆n

t,κX/

√
f̂κ

)
− cos

(√
2un

√
fnt,κV

n
t,κ∆

n
t,κW/

√
f̂κ

)
,

χ
(2)
t,n(u, κ) = cos

(√
2un

√
fnt,κV

n
t,κ∆

n
t,κW/

√
f̂κ

)
− cos

(√
2un

√
fnt,κV

n
t,κ∆

n
t,κW/

√
f̃κ

)
,

χ
(3)
t,n(u, κ) = cos

(√
2un

√
fnt,κV

n
t,κ∆

n
t,κW/

√
f̃κ

)
− cos

(√
2un

√
fnt,κV

n
t,κ∆

n
t,κW/

√
fκ

)
.

The proof will then consist of analysis of the separate terms in the decomposition. Using

the inequalities | cos(x)− cos(y)| ≤ 2| sin(x−y
2

)| ≤ |x− y| ∧ 2 we can bound χ
(1)
t,n as follows

|χ(1)
t,n(u, κ)| ≤ 1{∆n

t,κX
d 6=0 ∪ f̂κ<ε} + C

√
un|∆n

t,κX
c −
√
fnt,κV

n
t,κ∆

n
t,κW |, (B.29)
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where ε is some constant satisfying 0 < ε < infκ∈[0,1] fκ/4, and ε and C do not depend on

u. From here, applying Burkholder-Davis-Gundy inequality, the smoothness in expectation

assumption for σt and ft, the integrability assumptions for at, bt and σt and Lemma 1, we

have for q ≥ 4

||χ(1)
t,n(u, κ)|| = Op

(√
∆n

∨
∆

(q−2)( 1
2
−$)

n

∨ 1

T

)
. (B.30)

Turning next to χ
(2)
t,n(u, κ), we have the following bound (note that f is bounded from

above)

|χ(2)
t,n(u, κ)| ≤ 1{f̂κ<ε ∪ f̃κ<ε} + C

√
un
√
V n
t,κ|∆n

t,κW ||f̂κ − f̃κ|, (B.31)

for a positive and a finite constant C that does not depend on u. From here by application

of Hölder’s inequality, the integrability conditions for σt, the result of Lemma 1, and since

q ≥ 6 and $ ≥ 1
q

(q is the constant of Lemma 1), we have

||χ(2)
t,n(u, κ)|| = Op

(√
∆n

∨
∆

(q−3)( 1
2
−$)

n

∨ 1

T

)
. (B.32)

For χ
(3)
t,n(u, κ), we have

|χ(3)
t,n(u, κ)| ≤ C(|u| ∨ 1)(

√
n
√
fnt,κV

n
t,κ|∆n

t,κW | ∨ 1)|f̃κ − fκ|, (B.33)

for a positive and a finite constant C that does not depend on u. Then, by application of

Cauchy-Schwarz inequality and Lemma 1, we have 1√
T
||χ(3)

t,n(u, κ)|| = Op(1).

Finally, using Assumptions 1-3 and applying Lemma VIII.3.102 of [2] and Hölder’s

inequality, we have

E

∣∣∣∣∣
∣∣∣∣∣
T∑
t=1

[
cos

(√
2un

√
fnt,κV

n
t,κ∆

n
t,κW/

√
fκ

)
− E

(
e−uft+κVt+κ/E(ft+κVt+κ)

)]∣∣∣∣∣
∣∣∣∣∣
2

≤ CT, (B.34)

for a positive and a finite constant C that does not depend on u.
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Combining the above bounds, we get the consistency result of the theorem. For further

use, we note also that

||χ(1)
t,n(u, κ)||+ ||χ(2)

t,n(u, κ)|| = op(1/
√
T ), (B.35)

provided T∆n → 0 and $ ≤ q−4
2q−6

. Under this same condition we also have L̂nκ − Lκ =

Op(1/
√
T ).

B.3 Proof of Theorem 2

The proof consists of two lemmas.

Lemma 3. Under the conditions of Theorem 2, we have

√
T

∣∣∣∣∣
∣∣∣∣∣L̂nκ(u)− L̂nκ′(u)− 1

T

T∑
t=1

dt,n(u)

∣∣∣∣∣
∣∣∣∣∣ P−→ 0. (B.36)

Proof of Lemma 3. We denote 0 < ε < infκ∈[0,1] fκ/4 and make the following decompo-

sition

cos

(√
2un∆n

t,κX/

√
f̂κ

)
− cos

(√
2un

√
V n
t,κ∆

n
t,κW

)
=

5∑
j=1

χ
(j)
t,n(u, κ), (B.37)

where, using the fact that ft,κ = fκ, we denote

χ
(1)
t,n(u, κ) = cos

(√
2un∆n

t,κX/

√
f̂κ

)
− cos

(√
2un

√
fnκV

n
t,κ∆

n
t,κW/

√
f̂κ

)
,

χ
(2)
t,n(u, κ) = cos

(√
2un

√
fnκV

n
t,κ∆

n
t,κW/

√
f̂κ

)
− cos

(√
2un

√
fnκV

n
t,κ∆

n
t,κW/

√
f̃κ

)
,

χ
(3)
t,n(u, κ) =

1

2
sin
(√

2un
√
V n
t,κ∆

n
t,κW

)√
2un

√
V n
t,κ∆

n
t,κW

(
f̃κ − fnκ
fnκ

)
,
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χ
(4)
t,n(u, κ) = −1

2
sin
(√

2un
√
V n
t,κ∆

n
t,κW

)√
2un

√
V n
t,κ∆

n
t,κW

(
f̃κ − fnκ
fnκ

)
1{|f̃κ|≤ε},

χ
(5)
t,n(u, κ) =

1

2
g
(√

2un
√
fnκV

n
t,κ∆

n
t,κW ; ḟκ

)(
f̃κ − fnκ

)2

1{|f̃κ|>ε},

with ḟκ being an intermediary value between f̃κ and fnκ , and further

g(a;x) = − cos

(
a√
x

)
a2

4x3
− sin

(
a√
x

)
3a

4x5/2
. (B.38)

We can write

χ(3)
n (u, κ) ≡ 1

T

T∑
t=1

χ
(3)
t,n(u, κ) + uL′(u)

1

T

T∑
t=1

(π
2
V n
t,κn|∆n

t,κW ||∆n
t,κ−∆n

W | − 1
)

=
(
− uL̃′κ(u) + uL′(u)

) 1

T

T∑
t=1

(π
2
V n
t,κn|∆n

t,κW ||∆n
t,κ−∆n

W | − 1
)
.

(B.39)

With this notation, we finally have

L̂nκ(u)− L̂nκ′(u)− 1

T

T∑
t=1

dt,n(u) =
1

T

∑
j=1,2,4,5

T∑
t=1

(
χ

(j)
t,n(u, κ)− χ(j)

t,n(u, κ′)
)

+ χ(3)
n (u, κ)− χ(3)

n (u, κ′).

(B.40)

The proof consists of showing the asymptotic negligibility of the terms 1√
T
||
∑T

t=1 χ
(j)
t,n(u, κ)||

for j = 1, 2, 4, 5 as well as the negligibility of χ(3)
n (u, κ) for arbitrary κ ∈ (0, 1]. For j = 1, 2,

this was already established in the proof of Theorem 1 under the condition for $ of the

theorem. For χ
(4)
t,n(u, κ), since ε < infκ∈[0,1] fκ, we have

|χ(4)
t,n(u, κ)| ≤ C

√
un
√
V n
t,κ|∆n

t,κW ||f̃κ − fnκ |2, (B.41)

for some positive and finite C that does not depend on u. Similarly, χ
(5)
t,n can be bounded

as follows

|χ(5)
t,n(u, κ)| ≤ C

(
unV n

t,κ|∆n
t,κW |2 +

√
unV n

t,κ|∆n
t,κW |

)
|f̃κ − fnκ |2, (B.42)
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with C as above. Therefore,

1√
T

∣∣∣∣ T∑
t=1

χ
(4)
t,n(u, κ)

∣∣∣∣+
1√
T

∣∣∣∣ T∑
t=1

χ
(5)
t,n(u, κ)

∣∣∣∣
≤ C|f̃κ − fnκ |2

1√
T

T∑
t=1

(
nV n

t,κ|∆n
t,κW |2 +

√
nV n

t,κ|∆n
t,κW |

)
,

(B.43)

for some positive and finite C that does not depend on u. From here, since

1

T

T∑
t=1

(
nV n

t,κ|∆n
t,κW |2 +

√
nV n

t,κ|∆n
t,κW |

)
= Op(1),

and utilizing the result of Lemma 1, we have 1√
T
||
∑T

t=1 χ
(4)
t,n(u, κ)||+ 1√

T
||
∑T

t=1 χ
(5)
t,n(u, κ)|| =

op(1).

We are left with χ(3)
n (u, κ). Using Lemma 1 and Cauchy-Schwarz inequality, we have

E||χ(3)
n (u, κ)|| ≤ C

T
, (B.44)

for some positive and finite C that does not depend on u. The asymptotic negligibility of
√
T ||χ(3)

n (u, κ)|| then readily follows.

To state the next lemma, we will need some additional notation which we now introduce.

We decompose

dt,n(u) = ξ
(1)
t,n(u) + ξ

(2)
t,n(u), (B.45)

where

ξ
(1)
t,n(u) = cos

(√
2un

√
V n
t,κ∆

n
t,κW

)
− e−uV nt,κ − cos

(√
2un

√
V n
t,κ′∆

n
t,κ′W

)
+ e

−uV n
t,κ′

+ uL′(u)V n
t,κ′

(
n
π

2
|∆n

t,κ′W ||∆n
t,κ−∆n

W | − 1
)
− uL′(u)V n

t,κ

(
n
π

2
|∆n

t,κW ||∆n
t,κ−∆n

W | − 1
)
,

ξ
(2)
t,n(u) = e−uV

n
t,κ − e−uV

n
t,κ′ + uL′(u)

(
V n
t,κ − V n

t,κ′

)
.
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Fix a positive integer l and denote for t = 1, ..., T :

ξ̃
(2)
t,n,l(u) =

l−1∑
k=0

(
Et(ξ(2)

t+k,n(u))− Et−1(ξ
(2)
t+k,n(u))

)
. (B.46)

With this notation we set

d̃t,n,l(u) = ξ
(1)
t,n(u) + ξ̃

(2)
t,n,l(u), (B.47)

and denote the difference

Rn
T,l(u) =

1

T

T∑
t=1

(
dt,n(u)− d̃t,n,l(u)

)
. (B.48)

Using the decomposition

T∑
t=1

l∑
k=0

(
Etξ(2)

t+k,n(u)− Et−1ξ
(2)
t+k,n(u)

)
=

l∑
k=0

(
T∑
t=1

Etξ(2)
t+k,n(u)−

T−1∑
t=0

Etξ(2)
t+k+1,n(u)

)
,

(B.49)

we have

Rn
T,l(u) =

1

T

T−1∑
t=0

Etξ(2)
t+l,n(u)− 1

T

l−1∑
k=1

(
ET ξ(2)

T+k,n(u)− E0ξ
(2)
k,n(u)

)
. (B.50)

Using the mixing condition for Yt, the integrability assumption for Vt, and Lemma VIII.3.102

of [2], we have
√
E|Et(ξ(2)

t+k,n(u))|2 ≤ Kα
3/8
k (E|ξ(2)

t+k,n(u)|8)1/8. Therefore, since αk = o(k−8/3)

as k →∞, by Fatou’s lemma, the limit d̃t,n,∞ = ξ
(1)
t,n + ξ̃

(2)
t,n,∞ is finite almost surely, where

ξ̃
(2)
t,n,∞ := lim

l→∞
ξ̃

(2)
t,n,l =

∞∑
k=0

(
Et(ξ(2)

t+k,n)− Et−1(ξ
(2)
t+k,n)

)
, (B.51)

and the same holds for

Rn
T,∞ := lim

l→∞
Rn
T,l =

1

T

∞∑
k=1

(
E0(ξ

(2)
k,n)− ET (ξ

(2)
T+k,n)

)
. (B.52)
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Finally, we set

ξ
(2)
t (u) = e−uVt+κ − e−uVt+κ′ + uL′(u) (Vt+κ − Vt+κ′) ,

and define ξ̃
(2)
t,l (u) and ξ̃

(2)
t,∞(u) from it exactly as we defined ξ̃

(2)
t,n,l(u) and ξ̃

(2)
t,n,∞(u) from

ξ
(2)
t,n(u).

Lemma 4. Under Assumptions 1-3 with K = {1}, as n→∞ and T →∞ with T∆n → 0,

we have
1√
T

T∑
t=1

d̃t,n,∞
L−→ N(0, K) and

√
T ||RT,∞||

P−→ 0. (B.53)

Proof of Lemma 4. By dominated convergence, we have Et−1

(
d̃t,n,∞(u)

)
= 0 and

E
(
||d̃t,n,∞||2

)
<∞, and therefore the array {d̃t,n,∞}t∈N+ is a martingale difference sequence

and we can apply Theorem C of [3] to establish the CLT result. In particular, it suffices to

show that the following is true:

1

T

T∑
t=1

Et−1

(
||d̃t,n,∞||2

)
P−→ Trace(K), (B.54)

1

T

T∑
t=1

Et−1

(
||d̃t,n,∞||2+ι

)
P−→ 0, for some ι ∈ (0, 1), (B.55)

1

T

T∑
t=1

Et−1

(
〈d̃t,n,∞, ei〉〈d̃t,n,∞, ej〉

)
P−→ 〈Kei, ej〉, ∀i, j ∈ N+, (B.56)

where {ei}i∈N+ is an orthonormal basis in L2(w). We have

Et−1||ξ(1)
t,n ||2 = Et−1||ηu(V n

t,κ, V
n
t,κ′)||2, (B.57)

where for two positive constants C1 and C2, we denote ηu(C1, C2) =
√

E (ηu(C1, C2)2) with

ηu(C1, C2) = cos
(√

2uC1Z1

)
− e−uC1 − cos

(√
2uC2Z2

)
+ e−uC2

− uL′(u)
(
C1

(π
2
|Z1||Z̃1| − 1

)
− C2

(π
2
|Z2||Z̃2| − 1

))
,

(B.58)
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for some independent standard normal random variables Z1, Z̃1, Z2 and Z̃2. From here, we

have

Et−1||d̃t,n,∞||2 = Et−1

(
||ηu(V n

t,κ, V
n
t,κ′)||2 + ||ξ̃(2)

t,n,∞||2
)

+ 2Et−1

(
〈ξ(1)
t,n , ξ̃

(2)
t,n,∞〉

)
. (B.59)

Using successive conditioning, we can write

Et−1

(
ξ

(1)
t,n(u)ξ̃

(2)
t,n,∞(u)

)
= Et−1

(
ξ

(1)
t,n(u)

∑
ι=κ,κ′

∞∑
k=0

[
E
t−1+

bιnc
n

(ξ
(2)
t+k,n(u))

− E
t−1+

bιnc−2
n

(ξ
(2)
t+k,n(u))

])
.

(B.60)

For ι = κ, κ′ and k ≥ 0, we have for some positive and finite C:

E
∣∣∣ξ(1)
t,n(u)

(
E
t−1+

bιnc
n

ξ
(2)
t+k,n(u)− E

t−1+
bιnc−2
n

ξ
(2)
t+k,n(u)

)∣∣∣
≤
√
E(ξ

(1)
t,n(u))2

√
E
(
E
t−1+

bιnc
n

ξ
(2)
t+k,n(u)

)2

− E
(
E
t−1+

bιnc−2
n

ξ
(2)
t+k,n(u)

)2

=

√
E(ξ

(1)
t,n(u))2

√
E
(
E
t−1+

bιnc
n

ξ
(2)
t+k,n(u)

)2

− E
(
E
t−1+

bιnc
n

ξ
(2)
t+k+2∆n,n

(u)
)2

≤ C(|u| ∨ 1)

√
E
[
E bιnc

n

(ξ
(2)
1+k,n(u)− ξ(2)

1+k+2∆n,n
(u))E bιnc

n

(ξ
(2)
1+k,n(u) + ξ

(2)
1+k+2∆n,n

(u))
]

≤ C(|u| ∨ 1)
(
E(ξ

(2)
1+k,n(u)− ξ(2)

1+k+2∆n,n
(u))2

)1/4

×
(
E
((

E bιnc
n

ξ
(2)
1+k,n(u)

)2

+
(
E bιnc

n

ξ
(2)
1+k+2∆n,n

(u)
)2
))1/4

≤ C(|u|3/2 ∨ 1)∆1/4
n α

3
16
k

(
E|ξ(2)

1,n(u)|8
)1/16

≤ C(|u|2 ∨ 1)∆1/4
n α

3
16
k ,

(B.61)

where for the first inequality we have made use of Cauchy-Schwarz inequality, for the second

equality we use the stationarity of Vt (and hence of its conditional expectation), for the third

inequality we made again use of the stationarity of Vt as well as the integrability assumption
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for Vt, for the forth inequality we used Cauchy-Schwarz and Jensen’s inequality, and for

the remaining inequalities, we made use of the integrability and smoothness in expectation

conditions for Vt, as well as Lemma VIII.3.102 of [2].

From here, since by Assumption 3, αk = o(k−16/3) for k →∞, we have

E|ξ(1)
t,n(u)ξ̃

(2)
t,n,∞(u)| ≤ C(|u|2 ∨ 1)∆1/4

n , (B.62)

for some positive and finite C that does not depend on u, and therefore

1

T

T∑
t=1

∫
R

(
Et−1

(
ξ

(1)
t,n(u)ξ̃

(2)
t,n,∞(u)

))
w(u)du = op(1). (B.63)

Using the mixing condition for Yt, Lemma VIII.3.102 of [2], Lebesgue’s dominated conver-

gence theorem as well as Assumptions 1-2, we have

E
∣∣∣||ηu(V n

t,κ, V
n
t,κ′)||2 − ||ηu(Vt+κ, Vt+κ′)||2 + ||ξ̃(2)

t,n,∞||2 − ||ξ̃
(2)
t,∞||2

∣∣∣ ≤ C

n
, (B.64)

for some positive and finite C that does not depend on u. Furthermore, given the square

integrability of Vt, the assumption that Ỹt is a Markov process (and hence the condi-

tional expectation of a transformation of it is a function of the process at the time of the

conditioning), and by an application of an ergodic theorem, we have

1

T

T∑
t=1

Et−1

(
||ηu(Vt+κ, Vt+κ′)||2 + ||ξ̃(2)

t,∞||2
)

P−→ E
(
||ηu(Vt+κ, Vt+κ′)||2 + ||ξ̃(2)

t,∞||2
)
, (B.65)

provided E(||ξ̃(2)
t,∞||2) <∞. The latter is guaranteed by the mixing condition for Yt, use of

Lemma VIII.3.102 of [2] and Lebesgue’s dominated convergence theorem upon making use

of the inequality

|ξ̃(2)
t,l (u)|2 ≤

l−1∑
k,p=0

|Et(ξ(2)
t+k(u))− Et−1(ξ

(2)
t+k(u))||Et(ξ(2)

t+p(u))− Et−1(ξ
(2)
t+p(u))|, (B.66)
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which in turn implies for some positive and finite C that does not depend on u

E|ξ̃(2)
t,l (u)|2 ≤ C

l−1∑
k,p=0

(α
3/8
k α3/8

p ) ≤ C. (B.67)

To show (B.54), we therefore need to show that

E
(
||ηu(Vκ, Vκ′)||2 + ||ξ̃(2)

1,∞||2
)

= Trace(K). (B.68)

For this, using dominated convergence, it suffices to show

E
(
||ηu(Vκ, Vκ′)||2

)
+ lim

l→∞
E
(
||ξ̃(2)

1,l ||
2
)

= Trace(K). (B.69)

We have

E
(
|ξ̃(2)

1,l (u)|2
)

=
l−1∑
k,p=0

E
[
E1(ξ

(2)
1+k(u))

(
E1(ξ

(2)
1+p(u))− E0(ξ

(2)
1+p(u))

)]

=
l−1∑
k,p=0

E
[
ξ

(2)
1+k(u)

(
E1(ξ

(2)
1+p(u))− E0(ξ

(2)
1+p(u))

)]

=
l−1∑
k,p=0

E[ξ
(2)
k (u)E0(ξ(2)

p (u))]−
l∑

k,p=1

E[ξ
(2)
k (u)E0(ξ(2)

p (u))]

= E[ξ
(2)
0 (u)]2 + 2

l−1∑
k=1

E
[
ξ

(2)
0 (u)ξ

(2)
k (u)

]
−

l−1∑
k=1

E[ξ
(2)
k (u)E0(ξ

(2)
l (u))]−

l∑
p=1

E[ξ
(2)
l (u)E0(ξ(2)

p (u))],

(B.70)

where for the first equality we made use of successive conditioning and for the second

inequality we made use of the stationarity of the sequence {ξ(2)
t (u)ξ

(2)
t+s(u)}t≥0 and arbitrary

fixed s ≥ 0. We now bound the last two terms in the above inequality. Using Lemma

VIII.3.102 of [2] and our integrability assumption for Vt, we have√
E|E0(ξ

(2)
p (u))|2 ≤ Cα3/8

p

(
E(ξ

(2)
0 (u))8

)1/8

, p ≥ 0, (B.71)
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for some positive and finite C that does not depend on u. Therefore, with C as above, we

have
l−1∑
k=1

|E[ξ
(2)
k (u)E0(ξ

(2)
l (u))]| ≤

l−1∑
k=1

√
E|E0(ξ

(2)
k (u))|2E|E0(ξ

(2)
l (u))|2

≤ C
(
E(ξ

(2)
0 (u))8

)1/8

α
3/8
l

l−1∑
k=1

α
3/8
k ,

(B.72)

l∑
p=1

|E[ξ
(2)
l (u)E0(ξ(2)

p (u))]| ≤
l∑

p=1

√
E|E0(ξ

(2)
l (u))|2E|E0(ξ

(2)
p (u))|2

≤ C
(
E(ξ

(2)
0 (u))8

)1/8

α
3/8
l

l∑
p=1

α3/8
p .

(B.73)

From here, taking into account the rate of decay of αk, we have

lim
l→∞

E
(
||ξ̃(2)

1,l ||
2
)

= Trace(K̃) ≡
∫ ∞

0

k̃(u, u)w(u)du, (B.74)

where the operator K̃ has kernel k̃(z, u) =
∑∞

j=−∞ E[d̃1(z)d̃j(u)] and we denote

d̃t(u) =
(
e−uVt−1+κ − e−uVt−1+κ′

)
− uL′(u)(Vt−1+κ − Vt−1+κ′).

From here the result in (B.69) and hence (B.54) readily follows. The convergence in (B.56)

is shown analogously.

We are left with establishing (B.55). First, using the integrability condition for Vt as

well as the mixing assumption for St and applying Lemma VIII.3.102 of [2], we have

E|E0(ξ
(2)
k,n(u))|2+ι ≤ Cα

1− 2+ι
8

k

(
E|ξ(2)

k,n(u)|8
) 2+ι

8
, (B.75)

for some constant C that does not depend on u and any ι ∈ (0, 6). From here, by inequality

in means, the exponential decay of the weight function w in the tails, since αk = o(k−8/3),

and by the monotone convergence theorem, we have for C as above

E||d̃t,n,∞||2+ι ≤ C, for some ι ∈ (0, 1), (B.76)
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and from here the result in (B.55) follows trivially.

We continue with the bound for Rn
T,∞(u). Using monotone convergence, the bound in

(B.71) above as well as the rate of decay condition for the mixing coefficient αk, we have

E||Rn
T,∞|| ≤

C

T
, (B.77)

for some positive and finite C, and therefore
√
T ||Rn

T,∞|| = op(1).

Combining Lemmas 3 and 4, the result of the theorem follows.

B.4 Proof of Corollary 1

Let Y = N(0, K), with the operator K given in equation (8). By the spectral theorem

for compact self-adjoint operators (see [4]) it follows that there exists a complete set of

eigenfunctions (εi) in L2(w) and associated (real) eigenvalues λ1 ≥ λ2 ≥ ... ≥ 0 such that

Kεi = λiεi. (B.78)

Moreover, the eigenfunctions form an orthonormal basis for L2(w). By Parseval’s identity,

it then follows that

||Y ||2 =
∞∑
i=1

λi

(
〈Y, εi〉√
λi

)2

, (B.79)

Theorem 2 implies that 〈Y, εi〉 is normally distributed with mean zero and variance 〈Kεi, εi〉.

The result then follows upon showing that Cov(〈Y, εi〉, 〈Y, εj〉) = λiδi,j, where δi,j is Kro-
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necker’s delta. Thus, for any i, j ∈ N+, we have

Cov(〈Y, εi〉, 〈Y, εj〉) = E
[∫

R+

Y (u)εi(u)w(u)du

∫
R+

Y (u)εj(u)w(u)du

]
= E

[∫
R+

∫
R+

Y (u)Y (t)εi(u)w(u)εj(t)w(t)dudt

]
=

∫
R+

∫
R+

E [Y (u)Y (t)] εi(u)w(u)εj(t)w(t)dudt

=

∫
R+

∫
R+

k(u, t)εi(u)w(u)εj(t)w(t)dudt

=

∫
R+

∫
R+

k(u, t)εi(u)w(u)εj(t)w(t)dudt

=

∫
R+

∫
R+

λiεi(t)εj(t)w(t)dt = λjδi,j,

where the last equality follows by the definition of the eigenvalues of K (see equation

(B.78)).

B.5 Proof of Theorem 3

We will first proof the following Lemma about the error in the kernel KT .

Lemma 5. Suppose Assumptions 1-4 hold with K = {κ, κ′}, and with ft,κ ≡ fκ (constant

time-of-day) for t ∈ N+. Then, for $ ∈
[

2
q
, q−5

2q−8

]
, for q the constant of Lemma 1, and as

n→∞ and T →∞, we have

||KT −K||HS = Op

(
B−6
T

∨ BT

T

∨
B2
T∆n

)
. (B.80)

Proof of Lemma 5. We have

||KT −K||2HS =

∫
R+

∫
R+

|kT (u, s)− k(u, s)|2w(u)w(s)duds. (B.81)
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Our goal will be to decompose suitably kT (u, s)− k(u, s) and bound the second moments

in this decomposition. We first we introduce some auxiliary notation. We set

γ0(u, s) = E(d0(u)d0(s)), γk(u, s) = E[d1(u)dk+1(s) + dk+1(u)d1(s)], k ≥ 1,

γ̂n0 (u, s) =
1

T

T∑
t=1

d̂t,n(u)d̂t,n(s), γ̂nk (u, s) =
1

T − k

T∑
t=1

[d̂t,n(u)(d̂t−k,n(s) + d̂t+k,n(s))], k ≥ 1,

and the corresponding quantities in which d̂t,n(u) are replaced with dt,n(u) are denoted with

γnk (u, s). With this notation, we can decompose

kT (u, s)− k(u, s) =

BT∑
j=1

γj(u, s)

(
T − j
T

h

(
j

BT

)
− 1

)
−

∞∑
j=BT+1

γj(u, s)

+

BT∑
j=1

T − j
T

h

(
j

BT

)(
γ̂nj (u, s)− γj(u, s)

)
.

(B.82)

By conditioning on the sigma algebra of the original probability space, we have

E[d1(z)dj(u)] = E[d̃1(z)d̃j(u)], for j > 1, (B.83)

where d̃t(u) is defined in the proof of Theorem 2 and using again the notation of that proof,

we can write

E[d0(z)d0(u)] = E(ηz,u(Vκ, Vκ′)). (B.84)

From here, using Lemma VIII.3.102 of [2], Hölder’s inequality and the fact that E|Vt|8 <∞,

we have

|E(d1(z)dj+1(u))| ≤ Cα
3/4
j

(
E|d1(z)|8E|d1(u)|8

)1/8
, j ≥ 0, (B.85)

for positive and finite C that does not depend on u, z and j. Similarly, for k ∈ [0, j] by

considering separately the cases j − k < k and j − k ≥ k, we have

|E (dt,n(u)dt−j,n(s)dt−k(u)dt−j−k,n(s))| ≤ C
√
α(j−k)∨j

(
E|d0,n(u)|8E|d0,n(s)|8

)1/4
, (B.86)
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for positive and finite C that does not depend on u, s, j and k. Finally, for k ≥ j + 1 and

j ≥ 0

|E ((dt,n(u)dt−j,n(s)− γj(u, s))dt−k(u)dt−j−k,n(s))|

≤ C
√
α(k−j)∨j

(
E|d0,n(u)|8E|d0,n(s)|8

)1/4
,

(B.87)

where C is a positive and finite constant that does not depend on u, s, j and k. Using the

first of the above bounds as well as the continuous differentiability of h in a neighborhood

of zero, we get ∣∣∣∣ ∑
|j|>BT

E[d1(u)dj+1(s)]

∣∣∣∣2 ≤ CB−6
T

(
E|d1(u)|8E|d1(s)|8

)1/4
, (B.88)

∣∣∣∣∣
BT∑
j=1

γj(u, s)

(
T − j
T

h

(
j

BT

)
− 1

)∣∣∣∣∣
2

≤ CB−6
T

(
E|d1(u)|8E|d1(s)|8

)1/4
. (B.89)

For j = 0, 1, ..., T − 1, we have

E|γnj (u, s)− γj(u, s)|2 ≤
C

T − j

(
j∑

k=0

√
α(j−k)∨k +

T−j−1∑
k=j+1

√
α(k−j)∨j + jα

3/2
j

)

×
(
E|d0,n(u)|8E|d0,n(s)|8

)1/4
,

(B.90)

where in the above three bounds C is a constant that does not depend on j, T , u and s.

Taking into account Assumption 3, with C as above, we have

E|γnj (u, s)− γj(u, s)|2 ≤ C
j

T

√
αbj/2c

(
E|d0,n(u)|8E|d0,n(s)|8

)1/4
. (B.91)

Hence, using the boundedness of h and Assumption 3,∣∣∣∣∣
BT∑
j=0

T − j
T

h

(
j

BT

)(
γnj (u, s)− γj(u, s)

)∣∣∣∣∣
2

≤ C
BT

T

(
E|d0,n(u)|8E|d0,n(s)|8

)1/4
, (B.92)

for some positive and finite C that does not depend on u and s.
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We proceed with the difference γ̂nj (u, s) − γnj (u, s). If we denote 0 < ε < infκ∈[0,1] fκ/4

and ε > 2 supκ∈[0,1] fκ, then it suffices to analyze this difference on Ωn =
{
ω : f̂κ, f̂κ′ ∈ [ε, ε]

}
,

since P(Ωn) → 1 from the results of Lemma 1. We will do so henceforth without further

mention. Making use of supu∈R+
|uL′(u)| ≤ e−1, we have for some positive and finite C

that does not depend on u:∣∣∣(|uL̂′κ(u)| ∧ e−0.5)n|∆n
t,κX||∆n

t,κ−∆n
X|1{Ant,κ}/f̂κ + uL′(u)nV n

t,κ|∆n
t,κW ||∆n

t,κ−∆n
W |
∣∣∣

≤ CnV n
t,κ|∆n

t,κW ||∆n
t,κ−∆n

W ||f̂κ − fnκ |

+ Cn||∆n
t,κX||∆n

t,κ−∆n
X|1{Ant,κ} − f

n
κV

n
t,κ|∆n

t,κW ||∆n
t,κ−∆n

W ||

+ CnV n
t,κ|∆n

t,κW ||∆n
t,κ−∆n

W |||uL̂′κ(u)| ∧ e−0.5 + uL′(u)|.

(B.93)

Therefore, with C as above, we have

|d̂t,n(u)−dt,n(u)| ≤ C(|u|∨1)(ζ
(1)
t,κ ζκ(u)+ζ

(1)
t,κ′ζκ′(u)+ζ

(2)
t ), |dt,n(u)| ≤ C(ζ

(1)
t,κ +ζ

(1)
t,κ′), (B.94)

where we denote

ζ
(1)
t,κ = nV n

t,κ|∆n
t,κW ||∆n

t,κ−∆n
W |+

√
n
√
V n
t,κ|∆n

t,κW |,

ζ
(2)
t = n||∆n

t,κX||∆n
t,κ−∆n

X|1{Ant,κ} − f
n
κV

n
t,κ|∆n

t,κW ||∆n
t,κ−∆n

W ||,

ζκ(u) = |f̂κ − fnκ |+ ||uL̂′κ(u)| ∧ e−0.5 + uL′(u)|,

and we note that by application of Lemmas 1 and 2 and for q ≥ 8 (q is the constant of

Lemma 1), we have

||ζκ(u)|| = Op

(
1√
T

∨√
∆n

∨
∆

(q−4)( 1
2
−$)

n

)
. (B.95)
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We can bound

BT∑
j=0

|γ̂nj (u, s)− γnj (u, s)| ≤ 1

T −BT

T∑
t=1

|d̂t,n(u)− dt,n(u)|
BT∑

j=−BT

|dt−j,n(s)|

+
1

T −BT

T∑
t=1

|dt,n(u)|
BT∑

j=−BT

|d̂t−j,n(s)− dt−j,n(s)|

+
1

T −BT

T∑
t=1

|d̂t,n(u)− dt,n(u)|
BT∑

j=−BT

|d̂t−j,n(s)− dt−j,n(s)|.

(B.96)

Using inequality in means as well as the fact that E|Vt|4 <∞, we have

E

(
1

T −BT

T∑
t=1

ζ
(1)
t,αζ

(1)
t−j,β

)2

≤ C, j = −BT , ..., 0, ..., BT , (B.97)

where α, β = κ, κ′. To proceed further, we bound the k-th moments of ζ
(2)
t . Using successive

conditioning, Hölder’s inequality as well as the fact that E|bt|4 <∞, we have

nkE[|∆n
t,κX||∆t,κ−∆nX|1{Ant,κ}1{∆n

t,κX
d 6=0, ∆n

t,κ−∆n
Xd 6=0}]

k

≤ ∆k(2$−1)
n P

(
∆n
t,κX

d 6= 0 and ∆n
t,κ−∆n

Xd 6= 0
)
≤ C∆

1+ 3
4

+k(2$−1)
n .

(B.98)

Applying successive conditioning, the smoothness in expectation condition for σt, Hölder’s

inequality as well as the integrability conditions for at, bt and σt, we have

nkE[|∆n
t,κX||∆t,κ−∆nX|1{Ant,κ}1{∆n

t,κX
d=0, ∆n

t,κ−∆n
Xd 6=0}]

k ≤ C∆
1+ k

2
(2$−1)

n , k ∈ [1, 2], (B.99)

nkE[|∆n
t,κX||∆t,κ−∆nX|1{Ant,κ}1{∆n

t,κX
d 6=0, ∆n

t,κ−∆n
Xd=0}]

k ≤ C∆
1+ k

2
(2$−1)

n , k ∈ [1, 2].

(B.100)

Using these bounds, Hölder’s inequality, the smoothness in expectation condition for σt as

well as the integrability conditions for at and σt, we have

E|ζ(2)
t |k ≤ C

[
∆

7
4

+k(2$−1)
n ∨∆

1+ k
2

(2$−1)
n ∨∆

(q−2k)( 1
2
−$)

n ∨∆
k
2

∧ q−k
q

n

]
, k ∈ [1, 2], (B.101)
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where q is the constant of Lemma 1. Using E|Vt|8 < ∞ and applying Hölder’s inequality,

we have

E|ζ(2)
t ζ(1)

s,ι | ≤ C
√

∆n, E|ζ(2)
t ζ(2)

s | ≤ C
√

∆n, ι = κ, κ′, ∀s, t ≥ 0, (B.102)

provided (q − 4)
(

1
2
−$

)
≥ 1

2
. Therefore,

E

(
1

T −BT

T∑
t=1

[
ζ

(2)
t

BT∑
j=−BT

ζ
(1)
t−j,ι + ζ

(1)
t,ι

BT∑
j=−BT

ζ
(2)
t−j

])
≤ CBT

√
∆n, (B.103)

E

(
1

T −BT

T∑
t=1

[
ζ

(2)
t

BT∑
j=−BT

ζ
(2)
t−j

])
≤ CBT

√
∆n. (B.104)

where ι = κ, κ′. Combining these results, we get altogether∣∣∣∣∣
∣∣∣∣∣
BT∑
j=0

T − j
T

h

(
j

BT

)(
γ̂nj (u, s)− γnj (u, s)

)∣∣∣∣∣
∣∣∣∣∣
2

= Op(B
2
T∆n). (B.105)

Combining the bounds in (B.88)-(B.89), (B.92) and (B.105), we have altogether the result

of the lemma.

We can decompose,

Z(κ, κ′)− ẐT (κ, κ′) =
∞∑

i=pT+1

λiχ
2
i +

pT∑
i=1

(
λi − λ̂i,T

)
χ2
i . (B.106)

By assumption we have that pT → ∞ as T → ∞. Hence, Parseval’s identity implies that∑∞
i=pT+1 λiχ

2
i = op(1). Furthermore, by Theorem 4.4 in [1] it follows that

sup
j≥1
|λ̂j,T − λj| ≤ ||KT −K||HS. (B.107)

Therefore, we have

|Z(κ, κ′)− ẐT (κ, κ′)| ≤
pT∑
i=1

∣∣∣λi − λ̂i,T ∣∣∣χ2
i + op(1)

≤ sup
j≥1
|λ̂j,T − λj|

pT∑
i=1

χ2
i + op(1) = op(1),

(B.108)
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where for the last bound, we made use of the result of Lemma 5 and the rate condition for

pT in the theorem.

B.6 Proof of Corollary 2

The result under the null hypothesis follows from Corollary 1 and Theorem 3 and applica-

tion of portmanteau theorem.

Under the alternative hypothesis, one can easily show using the integrability conditions

of the theorem and using some of the bounds in the proof of Lemma 5 that we have

|ẐT (κ, κ′)| = Op(BT ). Furthermore, from the proof of Theorem 1, under the conditions of

the theorem, we have T ||L̂κ− L̂′κ||2 = Op(T ). These two results yield the asymptotic power

of one by taking into account that BT/T → 0.
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