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Abstract

We develop parametric inference procedures for large panels of noisy option data in the setting
where the underlying process is of pure-jump type, i.e., evolve only through a sequence of jumps.
The panel consists of options written on the underlying asset with a (different) set of strikes and
maturities available across observation times. We consider the asymptotic setting in which the
cross-sectional dimension of the panel increases to infinity while its time span remains fixed. The
information set is further augmented with high-frequency data on the underlying asset. Given a
parametric specification for the risk-neutral asset return dynamics, the option prices are nonlinear
functions of a time-invariant parameter vector and a time-varying latent state vector (or factors).
Furthermore, no-arbitrage restrictions impose a direct link between some of the quantities that may
be identified from the return and option data. These include the so-called jump activity index as
well as the time-varying jump intensity. We propose penalized least squares estimation in which
we minimize L2 distance between observed and model-implied options and further penalize for the
deviation of model-implied quantities from their model-free counterparts measured via the high-
frequency returns. We derive the joint asymptotic distribution of the parameters, factor realizations
and high-frequency measures, which is mixed Gaussian. The different components of the parameter
and state vector can exhibit different rates of convergence depending on the relative informativeness
of the high-frequency return data and the option panel.
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1 Introduction

Option data provide rich source of information about volatility and jump risks and their pricing. The

availability of option data has significantly increased over the last decade and nowdays for many assets

there are a large number of options traded on them at any given point in time which differ in terms

of their tenor and strike level. Each of these options provide unique source of information for the

conditional risk-neutral distribution of the asset. At the same time, high-frequency return data is

also readily available and can help in the estimation of the realized volatility and jump risks in the

underlying asset.

In Andersen et al. (2015) we proposed inference for the parameters and factor realizations implied

by a parametric model for the risk-neutral dynamics of the asset on the basis of an option panel with

fixed time span and asymptotically increasing cross-sectional dimension. We further augmented the

information set by the inclusion of high-frequency return data which in turn was used for constructing

nonparametric estimates of the spot diffusive volatility. The estimation was then performed under

the assumption that the high-frequency return data is less informative than the option data (when

combined with the parametric model) for the recovery of the latent factor realizations. Under this

assumption, we performed estimation via penalized least squares in which we minimized L2 distance

between model-implied and observed option prices and we further penalized for deviation between

model-implied and nonparametric estimates of the spot diffusive volatility based on the high-frequency

data.

The goal of the current paper is twofold. First, we want to relax the assumption in Andersen et al.

(2015) regarding the relative informativeness of the option and high-frequency return data about the

parameters and factor realizations of the risk-neutral parametric model. Second, we would like to

extend the analysis by including also information from the high-frequency data regarding the jump

component of the asset. We achieve the above goals in the setting of a model of pure-jump type, i.e.,

model in which the dynamics of the asset does not contain a diffusive component. Models of pure-jump

type have been used in prior work to describe the dynamics of various assets such as volatility indices

and exchange rates.

The information in the high-frequency return data about the parametric model for its risk-neutral

dynamics is due to the equivalence of the statistical and risk-neutral probability measures implied by

a no-arbitrage condition (a minimal assumption that is used in most theoretical and empirical asset

pricing work). For a diffusion, it implies that the diffusion coefficient of the price should remain the

same under both probability measures. We utilized this condition in Andersen et al. (2015). For the

jumps in the model, the no-arbitrage conditions are more complicated. For the “big” jumps, we have

essentially no restrictions. This is intuitive as on a given path we might even not detect any “big”
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jumps. Equivalence of statistical and risk-neutral probability measures does impose, however, “similar”

behavior under the two probability laws of the“small” jumps. In particular, the so-called jump activity

should remain the same and the same should hold for the intensity of the “small” jumps. Jump activity

is the infimum over the set of powers for which the power variation of the jumps remains finite (on a

finite interval). It classifies the jump processes according to the “vibrance” of their trajectories. For

example, a jump activity index of less than one implies jumps of finite variation while an activity index

above one implies jumps of infinite variation. The inference for jump activity from high-frequency data

has received a lot of attention in recent work, see e.g., Ait-Sahalia and Jacod (2009), Jing et al. (2011),

Jing et al. (2012), Todorov and Tauchen (2011), Todorov (2015) and Woerner (2003, 2007).

Given the above discussion, we “summarize” the information in the high-frequency return data

about the risk-neutral parametric model for the underlying asset into estimates for the jump activity

and the spot jump intensities at the option observation times. We adopt the approach of Todorov

(2015) based on the empirical characteristic function and we further extend the analysis of that paper

to the recovery of spot jump intensity (Todorov (2015) considers only jump activity estimation).

We derive a central limit theorem (CLT) for our nonparametric high-frequency estimators and we

further show that it holds jointly with a corresponding limit theorem for weighted sums of the option

observation errors. This joint limit theory, in turn, allows us to characterize the limit distribution of

an estimator that incorporates the high-frequency return data and the option data. We note that the

analysis of the current paper can be easily extended to cover alternative high-frequency jump activity

and intensity estimators (e.g., ones that are robust to the presence of a diffusion in the price dynamics)

provided one can derive their asymptotic distribution.

The estimation of the parameters and the factor realizations of the risk-neutral parametric model

is done via penalized least squares. In particular, we minimize L2 distance between observed and

model-implied option prices and we further penalize for deviations of model-implied jump activity and

intensities estimates from their model-free counterparts based on the high-frequency return data. The

different parts of the parameter and state vectors can exhibit different rates of convergence depending

on the relative information content (for our estimation purposes) of the return and option data.

Importantly, the user does not need to take an apriori stand on this. That is, if the returns are more

informative about e.g. jump activity (in the sense of allowing for faster rates of convergence), then

our penalized least squares for this quantity will behave asymptotically as the nonparametric high-

frequency estimator. The reverse will be true when the option data is more informative for the jump

activity parameter - our estimator will behave asymptotically as one build from the option data solely.

In the boundary case where option and return data allow for estimators of jump activity with the

same rate of convergence, we can further weigh optimally the two parts of the objective function (due
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to the return and option data) according to the noisiness of these two sources of information. This is

achieved in a weighted penalized least squares extension of the above method which is free of tuning

parameters.

The rest of the paper is organized as follows. Section 2 introduces our formal model setup for

the underlying asset and the associated option prices written on it. In Section 3, we present the

observation scheme and the asymptotic setup for the inference. Section 4 presents our penalized least

squares estimator and develops the associated asymptotic theory for it. Section 5 extends the results

to the case of weighted penalized least squares. Section 6 concludes. Proofs of the theoretical results

and assumptions are given in Section 7.

2 A Setup for Pure-Jump Modeling of the Option Panel

This section introduces a nonlinear parametric factor model for a panel of options written on an

underlying asset whose price we denote with X. The option specification is based on a parametric

model of pure-jump type for the risk-neutral dynamics of X. We further describe the characteristics of

the underlying price process that are preserved under change from the physical probability measure,

P, to the risk-neutral measure, Q. These measure-preserving characteristics will be utilized later on

in our inference for the parametric model via nonparametric estimates for them from high-frequency

return data.

2.1 Pure-Jump Dynamics of Locally Stable Type

We start with describing the dynamics of the underlying price process, X, which is defined on a

filtered probability space
(
Ω(0),F (0), (F (0)

t )t≥0,P(0)
)
. We will not assume a parametric model for X

under P(0) but instead we will only assume that its P(0) dynamics belongs in a general class of models

of pure-jump type given by,
dXt

Xt−
= αtdt+

∫
x>−1

xµ̃P(dt, dx), (1)

where the drift αt is a process with càdlàg paths and µ̃P(dt, dx) = µ(dt, dx) − νP(dt, dx) is the jump

martingale measure associated with the counting jump measure µ(dt, dx) and its jump compensator

νP(dt, dx). We assume νP(dt, dx) has the following structure

νP(dt, dx) =
(
A+
t−ν

P
+(x)1{x>0} +A−t−ν

P
−(x)1{x<0}

)
dt⊗ dx, (2)

where the stochastic jump intensities for positive and negative jumps, A+
t and A−t , respectively, are

processes with càdlàg paths, and the corresponding Lévy densities, νP+ and νP−, can be approximated

3



around zero by the Lévy density of a stable process, that is,∣∣∣νP±(x)−Aβ|x|−β−1
∣∣∣ ≤ C|x|−β′−1, Aβ =

(
4Γ(2− β)| cos(βπ/2)|

β(β − 1)

)−1

, |x| ≤ x0, β′ < β, (3)

for some constants C > 0 and x0 > 0. The coefficient β coincides with the so-called jump activity

which controls the roughness of trajectories of X. That is, we have for every t:

β ≡ inf{p ≥ 0 :
∑
s≤t
|∆Xs|p <∞}, a.s. (4)

We will restrict attention to the empirically realistic case of 1 < β < 2 which implies paths of infinite

variation.1

The jump specification in (2)-(3) is very flexible and accommodates many parametric jump spec-

ifications used in empirical work. The “stable like” restriction in (3) is only for the behavior of the

jump compensator around zero and we leave the behavior of the latter for the big jumps essentially

unrestricted. Condition (3) is needed for deriving CLT for the estimators of β and A+
t +A−t from high-

frequency return data on X that we propose below. This assumption will be satisfied by the CGMY

model of Carr et al. (2002) as well as models in the class of tempered stable processes of Rosinski

(2007), whose jumps can have, in particular, much thinner tails than those of the stable process. We

further note that we allow in our setup for asymmetry in the jump compensator by having (possibly)

different A+
t and A−t . We also allow for time-varying jump intensities through the time variation of

A+
t and A−t . Thus we can nest in our setup Lévy-driven SDE’s such as the COGARCH model of

Klüppelberg et al. (2004), the pure-jump CGMY model with stochastic volatility in Carr et al. (2003),

and more generally models of pure-jump type within the affine jump-diffusion class of Duffie et al.

(2000).

2.2 Parametric model for the Option Prices

We turn next to specifying the dynamics of X under the so-called risk-neutral measure which in turn

will allow us to determine the theoretical value of the option prices written on X. Assuming that

arbitrage is absent, a risk-neutral probability measure, Q, is guaranteed to exist, see, e.g., Section 6.K

in Duffie (2001), and is locally equivalent to P(0) (under some technical conditions). It transforms

discounted asset prices into local martingales. Specifically, for X under Q, we may write,

dXt

Xt−
= (rt − qt)dt+

∫
x>−1

xµ̃Q(dt, dx), (5)

where rt and qt are the risk free interest rate and dividend yield, respectively, and the martingale

jump measure µ̃Q(dt, dx) is now defined with respect to the risk-neutral compensator, ν̃Q(dt, dx).

1We defer all formal assumptions to Section 7.1.
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It is important to note that, in the absence of arbitrage, there are characteristics of the physical

price process (1), which are preserved under the risk-neutral dynamics in (5). We shall detail such

equivalences and utilize them when designing our estimation methodology below.

Given the risk-neutral probability measure Q, the theoretical value of European-style out-of-the-

money (OTM) options written on X is given by the conditional Q expectation of their discounted

terminal payoff:

Ot,k,τ =

 EQ
t

[
e−

∫ t+τ
t rs ds (Xt+τ −K)+

]
, if K > Ft,t+τ ,

EQ
t

[
e−

∫ t+τ
t rs ds (K −Xt+τ )+

]
, if K ≤ Ft,t+τ ,

(6)

where τ and K are the tenor and strike price of the option, Ft,t+τ denotes the futures price of X at

time t for the maturity date t+ τ , and we let k = ln(K/Ft,t+τ ) denote the log-moneyness. We further

define the Black-Scholes implied variance (BSIV) corresponding to Ot,k,τ by κt,k,τ , which represents a

convenient monotone transformation that is often used to quote option prices in practice.

We shall further assume a parametric model for the risk-neutral law of X. Specifically, let St

denote a p× 1 vector of state variables, or factors, taking values in S ⊂ Rp, and θ0 be the (true) value

of a parameter vector of dimension q × 1. Then, we assume A+
t ≡ ξ1(St,θ0) and A−t ≡ ξ2(St,θ0),

where ξ1( · ) and ξ2( · ) are known functions that are invariant to the parameter θ0.2 In addition, the

risk-neutral jump compensator is parametrized via

νQ(dt, dx) =
(
ξ1(St,θ0)νQ+(x)1{x>0} + ξ2(St,θ0)νQ−(x)1{x<0}

)
dt⊗ dx, (7)

where νQ±(x) ≡ νQ±(x,θ0). It is important to note that, similarly to the spot volatility for Brownian

semimartingales, the stochastic jump intensities, A+
t and A−t are characteristics that are preserved

under the equivalent change of measure from P to Q. Similarly, the jump activity index under Q is

given by β because there is agreement between the null sets of P and Q, see the definition of jump

activity in (4). Therefore, we assume that β is part of the parameter vector θ0. We define the remaining

(q−1)×1 elements by θr0. The parameters β and θr0 will play different roles in the econometric analysis

below.

The density of the probability measure change is given by a stochastic exponential involving the

ratio νQ/νP for which to be well defined we need (see e.g., Lemma III.5.17 in Jacod and Shiryaev

(2003)) ∫
x>0

(√
νQ+(x)−

√
νP+(x)

)2

dx <∞ and

∫
x<0

(√
νQ−(x)−

√
νP−(x)

)2

dx <∞. (8)

The above condition (along with νP ∼ νQ) is necessary and sufficient for equivalence of P and Q in

the Lévy case (where the jump compensator and the drift are time invariant), see e.g., Theorem 33.1

2This is almost universally satisfied in empirical applications. In addition, rt and qt should be known functions of St.
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of Sato (1999). It severely limits the wedge between νQ± and νP± around zero. To better illustrate this,

we consider the CGMY specification for νQ± given by

c±
e−λ±|x|

|x|α+1
, c± > 0, λ± > 0 α < 2. (9)

If νP± is also from a CGMY model, but with possibly different parameters, then given our restriction

in (3), (8) is equivalent to

α = β and c+ = c− = Aβ. (10)

Note, in particular, that we have no restriction for the parameters λ± which govern the behavior of

the jump compensator in the tails. By contrast the parameters that control the behavior of the jump

compensator around zero are unchanged when switching from P to Q. This example illustrates that

νPt and νQt are approximately the same around zero and can be very different outside zero.

Under the parametric model, we may write the BSIV as a function κ(k, τ,Zt,θ), with Zt and θ

denoting particular values of the state and parameter vectors, respectively. We let the parameter vector

take realizations on a compact subset θ ∈ Θ ⊂ Rq. In this setting, we may write κt,k,τ ≡ κ(k, τ,St,θ0),

implying that, conditional on the model parameters, option prices are functions of tenor, moneyness

and the state vector, driving all time variation in the option prices, and which we only require to be

an F (0)-adapted stochastic process. The above option pricing framework extends the corresponding

one in Andersen et al. (2015) and Andersen et al. (2017) by allowing the underlying asset price, X,

to obey pure-jump process specification. Hence, in addition to accommodating affine jump-diffusions,

we also allow for the non-Gaussian pure-jump option pricing models, e.g., the finite moment log-stable

model for the option surface in Carr and Wu (2003).

3 Observation Scheme and High-Frequency Return Measures

We continue next with describing the observation scheme for the option prices and the high-frequency

return data used to augment the option information set. We also introduce the nonparametric esti-

mators from the high-frequency data of the jump activity and jump intensities, which are quantities

that are preserved under an equivalent measure change.

3.1 Option Observation Scheme

The time span of the option panel is given by [0, T ] for some fixed and finite T > 0, and we assume

to have observations available from the option surface at the integer times t = 1, . . . , T . For each

observation date, the setting is similar to that in Andersen et al. (2015) and Andersen et al. (2017).

Specifically, we suppose that the options data cover a wide range of strike prices and tenors (k and τ ,

6



respectively). That is, for each t we observe options {Ot,kj ,τj}j=1,...,Nt , where Nt is some large integer

and the index j is running across the full set of strike and tenor combinations. Moreover, the number

of options for maturity τ is denoted by N τ
t such that by definition Nt =

∑
τ N

τ
t , and we let N τ

t and

Nt be F (0)
t -adapted.

We allow for considerable heterogeneity in the available option panel over time through, for exam-

ple, a varying number of options at a given time t, the available strike-tenor combinations (k, τ), and,

for a given τ , the density, or clustering, of available strikes in the log-moneyness grid. In particular,

we suppose to have ratios N τ
t /Nt ≈ πτt and Nt/N ≈ ςt where πτt and ςt are positive-valued processes,

and with N being an unobserved number, representing the “average size of the cross-section”.3 More-

over, for each combination of t and τ , we let k(t, τ) and k̄(t, τ) denote the minimum and maximum

log-moneyness, respectively, and define the F (0)
t -adapted grid of available strikes as

k(t, τ) < kt,τ (1) < kt,τ (2) < · · · < kt,τ (N τ
t ) < k̄(t, τ), with ∆t,τ (i) = kt,τ (i)− kt,τ (i− 1),

for i = 2, . . . , N τ
t . In analogy with infill asymptotics for high-frequency observations, our asymptotic

scheme sequentially adds new strikes within [k(t, τ), k̄(t, τ)] such that ∆t,τ (i)
P−→ 0 as N → ∞, while

allowing the clustering of strike prices to differ across certain regions of the strike range, that is,

we let N τ
t ∆t,τ (i) ≈ ψt,τ (kt,τ (i)) for some positive valued process ψt,τ (k). This heterogenous setting

accommodates, e.g., the relatively high density of available OTM put options that are “mildly” out-of-

the-money, in contrast to the more sparsely available deep OTM call options. These facets will impact

the precision of the inference for the state vector over time, and the quantities πτt , ςt and ψt,τ (k) appear

explicitly in the asymptotic distribution theory below.

In addition, Tt denotes the tenors available at time t, and the vectors kt = (k(t, τ))τ∈Tt and kt =(
k(t, τ)

)
τ∈Tt indicate the lowest and highest log-moneyness at time t across the available tenors. As

described above, these quantities may vary over time and be random, thus capturing and summarizing

the pronounced shifts in the characteristics of the observed option cross-section that may occur over

the sample.

Next, we stipulate that the BSIVs are observed with error, that is,

κ̂t,k,τ = κt,k,τ + εt,k,τ (11)

where the measurement errors are defined on a space Ω(1) = 
t∈N,k∈R,τ∈ΓRt,k,τ , for Rt,k,τ ∈ R, with

Γ denoting the set of all possible tenors. Moreover, Ω(1) is equipped with a Borel σ-field F (1) as well

as a transition probability P(1)(ω(0), dω(w)) from the original probability space Ω(0) to Ω(1). Then, by

defining the filtration on Ω(1) via F (1)
t = σ(εs,k,τ : s ≤ t), we may write the filtered probability space

3Again, we defer all formal assumptions to Section 7.1.
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as (Ω,F , (Ft)t≥0,P) where Ω = Ω(0) × Ω(1), F = F (0) ×F (1),

Ft = ∩s>tF (0)
s ×F (1)

s , and P(dω(0), dω(1)) = P(0)(dω(0))P(1)(ω(0), dω(1)).

Processes that are defined on Ω(0) and Ω(1) such as Xt and εt,k,τ , respectively, may trivially be viewed as

processes on Ω, and we assume that any local martingale and semimartingale properties are preserved

on the extended space. This decomposition of the probability space may be motivated as follows.

The option errors are defined on an auxiliary space Ω(1), which is equipped with a “large” product

topology to support them, as they may be associated with any strike, point in time and maturity. This

space suffices since, at each point in time, only a countable number of errors appear in the estimation.

Finally, since we want to accommodate dependence between εt,k,τ and the underlying process Xt, we

define the probability measure via a transition probability distribution from Ω(0) to Ω(1).

3.2 High-Frequency Data and Nonparametric Measures

In addition to the panel of options prices, we utilize a second source of information in our estimation,

namely high-frequency data on the underlying asset X, to assist in the recovery of (a part of) the state

and parameter vectors. Specifically, we shall estimate the total jump intensity, At = A+
t +A−t , and the

activity index, β, nonparametrically. To this end, we assume to have an equidistant high-frequency

recording of Xt at times 0, 1/n, . . . , i/n, . . . , T , and we denote the increment size with ∆n = 1/n.

Finally, we define the logarithmic asset price by xt = log(Xt) and the associated log-return by ∆n
i x =

xi/n − x(i−1)/n.

3.2.1 Jump Activity Estimation

We compute the activity index, β, using the estimator in Todorov (2015), which is based on self-

normalized statistics of increments ∆n
i x − ∆n

i−1x, and their empirical characteristic function (ECF).

The use of second-order differences alleviates the impact of the drift and the asymmetry of the jump

intensity. Further, the use of the ECF generates efficiency gains over power variation-based methods,

see e.g., Todorov (2015).

To set the stage, let 1 < kn < bnT/2c be the block size, then the first ingredient of the jump

activity estimator is a local power variation estimate of the total jump intensity At,

V̂i(p) =
1

kn

i−1∑
j=i−kn

∣∣∆n
2jx−∆n

2j−1x
∣∣p , i = kn + 1, . . . , bnT/2c, (12)

which is then used to scale the differenced increments in the construction of the ECF as,

Ĉ(p, u) =
1

bnT/2c − kn

bnT/2c∑
i=kn+1

cos

(
u

∆n
2ix−∆n

2i−1x

(V̂i(p))1/p

)
, u ∈ R+. (13)
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The above statistic differs slightly from its counterpart in Todorov (2015) due to the fact that unlike

that paper, here the summands in V̂i(p) and Ĉ(p, u) use only non-overleaping increments. This results

in some loss of efficiency of our jump activity estimator relative to the one of Todorov (2015) (as we

have fewer summands in Ĉ(p, u) for a given data set). This change, however, allows us to handle the

more general setting in which the intensity around zero can be asymmetric, i.e., we can have A+
t 6= A−t .

The asymptotic properties of Ĉ(p, u) will naturally depend on the properties of V̂i(p). In particular,

for consistency of the latter for the total intensity, At, we require kn →∞, and kn/n→ 0 is similarly

needed to avoid letting time-variation in At generate a bias. Moreover, to develop central limit theory

for the ECF, Todorov (2015) shows that kn/
√
n→ 0 suffices to ensure that the sampling error biases

in V̂i(p) are sufficiently small, and that a bias-correction

C̃(p, u, β) = Ĉ(p, u)− Bn(p, u, β), (14)

where the exact expression for Bn(p, u, β) is provided in Section 7.2, can have a CLT. Next, to fully

utilize the advantages of a characteristic function-based approach, we estimate β in two steps. The

first step consists of constructing a preliminary activity index estimate using the raw ECF,

β̂fs(p, u, v) =
log
(
− log

(
Ĉ(p, u)

))
− log

(
− log

(
Ĉ(p, v)

))
log(u/v)

, (15)

for some u, v ∈ R+ with u 6= v. Now, due to the asymptotic bias in Ĉ(p, u), induced by the sampling

errors in V̂i(p), the rate of convergence of the estimator β̂fs(p, u, v) will be suboptimal. Specifically,

we have β̂fs(p, u, v))− β = Op(1/kn), subject to certain regularity conditions on p and kn. Hence, we

follow Todorov (2015) and construct a second-step estimator based on the bias-corrected ECF as

β̂(p, u, v) =
log
(
− log

(
C̃(p, u, β̂fs)

))
− log

(
− log

(
C̃(p, v, β̂fs)

))
log(u/v)

, (16)

for u, v ∈ R+ with u 6= v, and where β̂fs ≡ β̂fs(p, u, v) is used as short-hand notation.4 We will

show below that the estimator (16) achieves the almost optimal rate of convergence, i.e., its rate is

Op(1/
√
n).

The asymptotic variance of β̂(p, u, v) depends only on β and the pair (u, v) but, due to the self-

normalization of the increments in C̃(p, u, β), it does not depend on the stochastic intensities A±t . The

constants u and v can be chosen in a way that the asymptotic limits of C̃(p, u, β) and C̃(p, v, β) are

sufficiently away from 0 for all possible values of β. We conjecture that more efficient implementations

of the estimator in which u and v are adaptively selected on the basis of a preliminary estimator of β

are also possible, but in order to keep the analysis simple we do not consider such extensions here.

4Note that β̂fs is just one example of a first-stage estimator. Under suitable regularity conditions, we could also apply,
e.g., power variation-based estimators such as those in Ait-Sahalia and Jacod (2009) and Todorov and Tauchen (2011).
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3.2.2 Jump Intensity Estimation

We continue next with constructing nonparametric estimators for the total jump intensity. Unlike the

jump activity, the jump intensity changes in general over time. Given our option observation scheme,

we will need estimates for At at the integer times t = 1, ..., T only. We will construct such estimators

using local blocks consisting of pn differenced and non-overlapping increments that precede the integer

times.

One candidate estimator of At is given by the local power variation V̂i(p) (for an appropriate choice

of i). However, as illustrated in Todorov (2015) (in the context of jump activity), estimators based on

the empirical characteristic function can provide nontrivial efficiency improvements. For this reason

we consider the following

Ât(u) = − 1

uβ̂
log

 1

pn

∑
i∈Int

cos
(
u∆−1/β̂

n (∆n
2ix−∆n

2i−1x)
) , t = 1, ..., T, (17)

where Int = {btn/2c − pn + 1, ..., btn/2c} and pn is a deterministic sequence satisfying pn → ∞ and

pn/n → 0. We note that at the cost of more complicated analysis, we can further extend the above

jump intensity estimator to separately identify A+
t and A−t . We leave such an extension for future

work.

4 Inference for Pure-Jump Models from Option Panels

We now proceed with the core of our econometric analysis. We introduce a new penalized least squares

(PLS) estimator for option panels generated from pure-jump parametric models for the underlying

asset. We motivate the design of the estimator and develop the necessary asymptotic theory for

feasible inference. The PLS estimator utilizes information from the high-frequency returns via the

estimators for the jump activity and the jump intensity and as an intermediary step in the analysis

of the asymptotic distribution of the PLS estimator, we derive a joint CLT for the nonparametric

high-frequency estimators.

4.1 Penalized Least Squares Estimator

In designing our new PLS estimator for option panels from pure-jump models, we use three key

relations from Sections 2 and 3. First, given the signal-plus-noise decomposition of observed BSIVs

in (11), it is natural to estimate the parameter, θ0, and the latent factor realizations, S = {St}Tt=1,

via least squares. Second, and as discussed in Section 2.2 above, the jump activity index, β, and

the total spot jump intensity At = A+
t + A−t are preserved under change of measure from P(0) to Q.

Moreover, these quantities may be recovered nonparametrically from high-frequency return data with
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the estimators presented in Sections 3.2.1 and 3.2.2, and we utilize this additional source of information

in the estimation.

Formally, we let θ0 = (θr0, β) and St = (Srt , At), t = 1, . . . , T , denote decompositions of the latent

parameter and state vector, respectively, and let θ = (θr,B) and Zt = (Zr
t ,At) be corresponding

generic vectors. Then, by defining the T × p matrix of factor realizations as Z = {Z ′t}Tt=1, we write

the objective function, for some finite constants λβ ≥ 0 and λA ≥ 0, as

L (Z,θ) ≡
T∑
t=1

Lt (Zt,θ) + λβnT
(
β̂ − B

)2
, with (18)

Lt (Zt,θ) ≡


Nt∑
j=1

(
κ̃t,kj ,τj − κ(kj , τj ,Zt,θ)

)2
+ λApn

(
Ât −At

)2

 ,

using β̂ ≡ β̂(p, u, v) and Ât ≡ Ât(u) as shorthand notation. The first part of the objective function

is the L2 distance between observed and model-implied option prices (quoted in BSIV). The second

and third parts are penalization terms for the deviation of the model-implied jump activity index and

jump intensities from direct, but noisy, nonparametric measures of them from high-frequency return

data. These penalization terms aid identification and estimation of (parts of) the parameter and state

vectors, which are obtained as follows:

(θ̂, Ŝ) = argmin
θ∈Θ,Z∈ST

L (Z,θ) , S ∈ Rp. (19)

Whereas both Andersen et al. (2015) and Andersen et al. (2017) consider PLS for option panels in

different asymptotic settings, they both assume that the underlying price process contains a diffusion,

i.e., a martingale component driven by a Brownian motion, and they penalize deviation of model-

implied spot volatility from a nonparametric measure of it from high-frequency return data.5 The

major differences of the PLS estimator in the current paper from the one in the above-cited papers

are two.6 First, we incorporate in the estimation (via the penalization terms) information in the

high-frequency data about parts of the parameter and state vectors which are due to the implications

of the equivalence of the P and Q measures regarding the jump distribution. Intuitively, the second

penalization term in (18) can be viewed as the jump counterpart of the penalization for divergence

between mode-implied and high-frequency spot volatility estimates in the diffusion context. The first

penalization term in (18) regarding the jump activity has no diffusive analogue though. The second

5The use of a noisy measure of the state vector (or a part of it) in the design of an estimator also bears resemblance with
the FAVAR approach in Bernanke et al. (2005), who augment a VAR of economic variables with a noisy estimate of a
latent factor that is related to the variables in the system.

6In comparison to Andersen et al. (2015) and Andersen et al. (2017), the scaling 1/Nt has been removed from the objective
function in order to simplify the treatment of the (possibly) different rates of convergence of the parts of the parameter
and state vectors.
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difference between the current work and Andersen et al. (2015) and Andersen et al. (2017) is that

unlike these papers, we do not put any restrictions on the relative information content of the high-

frequency return and option data sets. That is, we allow for arbitrary relations between N , n and kn.

Of course, one should keep in mind that the option data is in general always needed in the estimation

as the high-frequency return data can only help in the estimation of part of the parameter and state

vectors.

Before proceeding to the asymptotic theory for the PLS estimator, we need to develop CLT for

the joint behavior of our nonparametric estimators of β and At, t = 1, . . . , T from the high-frequency

data.

4.2 Preliminary High-Frequency Asymptotics

To state the result for the asymptotic distribution of the nonparametric high-frequency estimators, we

need some additional notation. Define the T × 1 vectors Â = (Ât)
T
t=1, A = (At)

T
t=1 and the T × T

matrix ΨA = diag(Ψ1, . . . ,ΨT ). Note that both Ψβ and ΨA are defined in Section 7.2. Finally, the

convergence of the nonparametric estimators (after centering around their probability limits) is stable.

This is denoted by
L−s−−→. Stable convergence is stronger than the usual notion of convergence and

implies that the convergence holds jointly with any bounded random variable defined on the original

probability space. This stronger form of convergence will play an important role for deriving the

asymptotic distribution of the PLS estimator later on.

Theorem 1. Suppose Assumption 1 holds. Moreover, let the power p as well as the sequences kn and

pn in (12), (13), and (17) satisfy the following conditions:

(R1) pn �
√
n,

(R2) ββ′

2(β−β′) ∨
β−1

2 < p < β
2 ,

(R3) kn � n$ with p
β ∨

1
3 < $ < 1

2 .

Then, it follows  √nT 0

0
√
pn

 β̂ − β

Â−A

 L−s−−→

 Ψβ 01×T

0T×1 ΨA

×
 Yβ

YA

 ,

where Yβ and the T × 1 vector YA are standard Gaussian, defined on an extension of the original

probability space, with each of them independent of each other as well as of F .

Theorem 1 extends results in Todorov (2015) in two directions. First, unlike Todorov (2015), here

we allow for asymmetry in the jump intensity around zero, i.e., we accommodate the setting in which
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A+
t 6= A−t . Second, in addition to estimating β, here we consider also estimates of At at various points

in time. Naturally, the rate of convergence of At is governed by the number of increments pn used in its

estimation which is much smaller than the total number of high-frequency increments on the interval

[0, T ] utilized in the estimation of β. Hence, as expected, β̂ converges at a faster rate than Â. Because

of this, the use of β̂ in the construction of Â has no effect on the limiting result in Theorem 1. We note

that this is very different from the case in which one tries to recover the integrated intensity
∫ T

0 Asds.

The asymptotic distribution of the latter will be driven by the use of β̂ in its construction, and hence

this will generate perfect asymptotic dependence between the integrated jump intensity estimator and

the estimator of the jump activity. In our case such asymptotic degeneracy is avoided by the slower

rate of convergence of the spot jump intensity estimator. The choice of pn in R1 is standard for

estimation of spot quantities (e.g., estimation of the spot diffusive volatility) and balances bias in the

recovery of the spot jump intensity due to the time-variation in the latter and the variance in its

estimation.

The asymptotic distribution of β̂ is Gaussian with constant variance. This is to be expected as

C̃(p, u, β) contains self-normalization which annihilates the effect from the time-variation in A±t on the

limiting distribution of β̂. On the other hand, the asymptotic distribution of Â is mixed Gaussian and

the precision of estimating A depends on its random realization.

Conditions R2 and R3 are exactly as in Todorov (2015) and determine the range of possible choices

for the power and the block size of the local power variation used in the normalization of the differenced

increments which in turn are used in the construction of β̂. In general, a good choice for the block size

is to pick $ as close as possible to 1/2. For the power p, a possible choice is to set it arbitrary close

and above 1/2. In principle, given the participation of the unknown β in the restrictions in R2 and

R3, one can consider an adaptive choice for kn and p. We leave these considerations for future work.

Finally, we point out that Theorem 1 is a key building block in the derivation of the asymptotic

distribution of our PLS estimator. If one is to use an alternative estimator of β andA, e.g., an estimator

adapted to settings in which X might contain a diffusion, then in order to adopt the asymptotic analysis

of Theorem 3 below, all that is needed is an equivalent to Theorem 1 for the alternative nonparametric

high-frequency estimator.

4.3 Consistency of PLS Estimator

We may now use Theorem 1 to establish consistency of θ̂ and Ŝ = (Ŝt)
T
t=1. The formal result is given

in the following theorem.

Theorem 2. Under Assumptions 1-5 as well as R1-R3 in Theorem 1, then for some T ∈ N, it follows
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that (θ̂, (Ŝt)
T
t=1) exists with probability approaching 1, and further that∥∥∥θ̂ − θ∥∥∥ P−→ 0,

∥∥∥Ŝt − St∥∥∥ P−→ 0, t = 1, . . . , T.

Theorem 2 shows that we can consistently recover the risk-neutral model parameters and the state

vector under general conditions. As explained above, one major departure from the equivalent results

in Andersen et al. (2015) and Andersen et al. (2017) arises from the inclusion of information from

high-frequency data about both the parameter and state vectors in the estimation. Of course, if we

set λβ = λA = 0, we will not need Theorem 1 and may exclude the rate conditions R1-R3.

4.4 Asymptotic Distribution of the PLS Estimator

The central limit theory for the parameters and the state vector realizations depends on the relative

informativeness of the options and the high-frequency data, respectively. To highlight this feature, let

us, again, make the decompositions θ̂ = (θ̂r, B̂) and Ŝ = (Ŝr, Â). Moreover, we define n̄ = n∨N and

p̄n = pn ∨N as well as the scaling matrix,

Wn ≡ diag(W n
θr0
,Wn

β ,W
n
Sr ,W

n
A), (20)

where W n
θr0

= ιq−1/
√
N , Wn

β = 1/
√
n̄, W n

Sr = ιT (p−1)/
√
N and W n

A = ιT /
√
p̄n contain information

about the convergence rates of different parts of the parameter and state vectors, and with ιd denoting

a d-dimensional vector of ones. Using this notation, we may now state the limiting distribution result

for our PLS estimator.

Theorem 3. Under Assumptions 1-6 as well as R1-R3 in Theorem 1, we have

W−1
n


θ̂r − θr0
B̂ − β

Ŝr − Sr

Â −A


L−s−−→ I−1Ω1/2 ×


Eθr0

Eβ

ESr

EA

 ,

where Eβ and the (q− 1)× 1, T (p− 1)× 1 and T × 1 vectors Eθr0
, ESr and EA, respectively, consist of

standard Gaussian random variables defined on an extension of the original probability space, with each

of them independent of each other as well as of the filtration F , and where the Hessian and asymptotic

covariance matrices, I and Ω, are defined in (30) and (31) of Section 7.3.

The limiting result in Theorem 3 exhibits different rates of convergence for the various components

of the PLS estimator. In particular, for the estimates of the components of the parameter and state

vectors for which we have no information from the high-frequency return data, i.e., θ̂r and Ŝr, the
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rate of convergence is simply
√
N (recall from Section 3.1 that N denotes the average size of the

option cross-section). On the other hand, the rate of convergence for the jump activity parameter β is

determined by the faster of the
√
N rate associated with utilizing the information from the parametric

model and the option panel and the
√
n rate associated with the nonparametric estimator based on

the high-frequency return data. In that regard, we note that the scaling of the penalization terms in

the objective function in (18) plays an important role as it ensures that the latter have a negligible

effect in the estimation when the high-frequency data is less informative in relative terms than the

option data, i.e., when n << N . In the opposite case, i.e., when n >> N , the scaling of the penalty

term in the objective function ensures that it is the latter that determines the asymptotic behavior

of the jump activity estimator. In the border case when n � N , both the high-frequency return

data and the option data contribute to the asymptotic variance of β and this is reflected in their joint

determination of the terms in I and Ω that correspond to B̂. Similar analysis applies for the estimator

of the jump intensity Â. In this case, the relevant comparison is
√
N convergence from utilizing the

option data versus
√
pn rate of convergence from using the high-frequency data. Since pn/n → 0 by

R1 in Theorem 1, then if N >> n we also have N >> kn. That is, if option data is more efficient for

estimation of β it is also more efficient for the recovery of A. In this case all components of θ̂ and

Ŝ converge at the common rate of
√
N . Similarly, if kn >> N , then we also have n >> N . That

is, in this case the high-frequency data is more informative both for the jump activity and the jump

intensity. In this case, each of the components in the partitioning of the parameter vector and the

vector of the state realizations converges at different rates.

Overall, our PLS estimators of β and A adapts to the situation at hand. When the high-frequency

data is more informative than the option data (kn >> N or n >> N), then the PLS estimator for these

quantities is asymptotically equivalent to their nonparametric high-frequency counterparts. On the

other hand, when the option data (together with the parametric model) carries more information than

the high-frequency return data for either β or A (N >> n or N >> kn), then the corresponding PLS

estimator behaves as if only the option data is used for the estimation of this quantity. Importantly,

the user does not need to take a stand apriori on whether the option or the high-frequency data is more

informative for β orA. This is very convenient from a practical point of view. In the boundary cases of

either N � n or N � kn, both the option and high-frequency return data contribute to the estimation

of (some of) the parameters and state vectors. In this case, one can choose λβ and λA in a way that

takes into account the difference in the variance of the option error and the high-frequency estimators’

asymptotic variances. This provides further gains of efficiency and makes the PLS estimator free of

tuning parameters (other than those needed for the construction of the nonparametric high-frequency

estimators). We present the details of such an adaptive choice for λβ and λA in the next section.
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In a typical application, the state vector will consist of separate states A+
t and A−t (and they in turn

can be further determined by additional factors like in the multi-factor stochastic volatility models).

In this case, if we have kn >> N , then A+
t and A−t will be each estimated at the slower rate of

√
N

and their joint distribution will be degenerate. Their sum, however, At = A+
t +A−t will be estimated

at the faster rate of
√
kn. In our statement of Theorem 3, we reparametrize the state vector in a way

that we avoid degeneracy of the limiting distribution and this allows one to characterize the limiting

distribution of arbitrary transformations of the state vector. The situation here is similar to other

econometric setups, e.g., the case of inference for autoregressive processes around deterministic time

trends.

Finally, the asymptotic distribution of both the parameters and the state vector is in general

mixed Gaussian. That is, the matrixes I and Ω are in general random. This reflects on one hand

the mixed Gaussian distribution for the estimates of A from the high-frequency return data and the

conditional heteroskedasticity in the option observation error on the other hand. Since the convergence

in Theorem 3 is stable, this, however, does not constitute a major difficulty. All that is needed for

feasible inference on the basis of the limit result in Theorem 3 is consistent estimators for I and Ω

which are easy to construct. For brevity we omit the details.

5 Weighted PLS Estimation

Two key components of the PLS estimator are the constants λβ and λA, and we will now propose

suitable selection procedures for these values, period-by-period, that generate efficiency improvements.

Moreover, we discuss how to weight the elements of the L2 part of the objective function in manner

that is analogous to classical weighted least squares. We call the combination of such weighting with

the suitable selection of the λβ and λA the weighted PLS (WPLS) estimator.

First, let Ψ̂β and Ψ̂t, t = 1, . . . , T , be plug-in estimators of Ψβ and Ψt, respectively, which are

defined in Section 7.4, then Ψ̂β
P−→ Ψβ and Ψ̂t

P−→ Ψt readily follows by Theorem 3 in conjunction

with the continuous mapping theorem. Now, since the F-conditional variance of the errors due to the

two penalization terms generally have unknown form, we propose to standardize their contribution to

the objective function with estimates of the F-conditional asymptotic variances of the nonparametric

estimators from high-frequency data, which are provided by Theorem 1, thereby insuring that their

respective contributions to the objective function are similar in scale.

Next, for optimal weighting of the elements in the L2 part of Lt (Zt,θ), we would ideally like

to standardize these using an estimate of the F-conditional variance of the BSIV observation errors

in (11), defined by φt,k,τ in Assumption 6 of Section 7.1. However, despite such a procedure being

feasible, we simplify the analysis and assign identical weights to all options on a given day. Although,
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this procedure neglects potential heteroskedasticity in the strike and tenor dimensions of the option

panel, it may still generate non-trivial efficiency improvements due to pronounced heteroskedasticity

in the F-conditional option error variance over time. Moreover, it ensures that all components of the

(weighted) objective function are on comparable scales. Formally, we use

φ̂t =
1

Nt

Nt∑
j=1

(
κ̃t,kj ,τj − κ(kj , τj , Ŝt, θ̂)

)2
, t = 1, . . . , T, (21)

where Ŝt and θ̂ are based on first-stage PLS estimation. Not surprisingly, φ̂t is a consistent estimator

of the cross-sectional average of φt,k,τ , which is generally random, at a given point in time.

Now, using φ̂t, Ψ̂β and Ψ̂t, we define the WPLS objective function as

Lw (Z,θ) ≡
T∑
t=1

Lwt (Zt,θ) + nT

(
β̂ − B

)2

w(Ψ̂β)
, with (22)

Lwt (Zt,θ) ≡


Nt∑
j=1

(
κ̃t,kj ,τj − κ(kj , τj ,Zt,θ)

)2
w(φ̂t)

+ pn

(
Ât −At

)2

w(Ψ̂t)

 ,

where the function w(x) ≥ ε, for some ε > 0, is a twice differentiable function on R+ with bounded

first and second derivatives. Smooth approximations of x ∨ ε are examples of such functions. Ideally,

we would like to choose w(x) = x, but we rule this case out when developing our general distribution

theory for WPLS to avoid imposing boundedness from below on φt,k,τ as well as on the asymptotic

variances Ψβ and Ψt. However, we consider such a situation as a corollary below.

Given the objective function in (22), the WPLS estimator is defined as

(θ̂w, Ŝw) = argmin
θ∈Θ,Z∈ST

Lw (Z,θ) , S ∈ Rp. (23)

Before proceeding to deriving its asymptotic distribution, it is important to highlight two features of

the WPLS estimator. First, whereas the weighting by (21) is similar to the corresponding procedure

in Andersen et al. (2017), the importance of additionally using Ψ̂β and Ψ̂t are much larger in our

pure-jump setting. This follows from applying different “regularization” devices. The use of noisy

spot variance measures, as in the former, are on a similar scale as the L2 component, even without

re-weighting the observations, since they both reflect “return variance measures”. However, this is not

the case for (18), whose three components reflect return variances, their jump activity index and their

jump intensities. Hence, the use of (23) will result in a more stable estimation procedure (numerically),

in addition to providing asymptotic efficiency gains. Second, it is important to note that the weighting

in (22) is only feasible due to our stable central limit theory in Theorem 3, allowing for estimation

and utilization of weights that asymptotically random. We now present the distribution theory.
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Theorem 4. Suppose the conditions of Theorem 3 hold. Moreover, let θ̂w = (θ̂wr , B̂w) and Ŝw =

(Ŝwr , Âw) denote the WPLS estimators of θ0 = (θr0, β) and S = (Sr,A), respectively, then a conver-

gence result similar to that in Theorem 3 holds as long as I and Ω are replaced with Iw and Ωw,

which are defined in (34) of Section 7.4.

Corollary 1. Suppose the conditions of (4) hold and, in addition, that Ψβ > ε, inft∈1,...,T Ψt > ε, and

inf
t∈1,...,T

inf
τ∈Tt

inf
k∈[k(t,τ),k̄(t,τ)]

φt,k,τ > ε, for some finite ε > 0, with φt,k,τ = φt.

Finally, let w(x) = x, then we have

W−1
n


θ̂wt − θr0
B̂w − β

Ŝwr − Sr

Âw −A


L−s−−→ (Iw)−1/2 ×


Eθr0

Eβ

ESr

EA

 ,

where Eβ and the (q − 1) × 1, T (p − 1) × 1 and T × 1 vectors Eθr0
, ESr and EA, respectively, con-

sist of standard Gaussian random variables defined on an extension of the original probability space,

independent of each other as well as of F , and where I is defined in (34) of Section 7.4

6 Conclusion

In this paper we develop inference techniques for noisy option panels with fixed time span and asymp-

totically increasing cross-sectional dimension in which the option data is generated from a parametric

model for the risk-neutral dynamics of the underlying asset that is of pure-jump type. The informa-

tion set used in the estimation is further augmented by high-frequency return data covering the time

span of the option panel. The return data is used to construct nonparametric measures of the jump

activity parameter and the vector of jump intensity realizations at the integer times of observing the

cross-sections of options in the panel. Estimation of the parameters and the state vector realizations of

the model is done via penalized least squares in which we minimize L2 distance between observed and

model-implied option prices and we further penalize for deviations of jump activity and jump inten-

sity estimates from their nonparametric counterparts based on the high-frequency return data. The

estimates for different components of the parameter and state vectors differ depending on the relative

informativeness of the high-frequency return data (via the nonparametric measures developed from

it) and the option data (via the parametric model), and our PLS estimator adapts to the situation at

hand.
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7 Proofs

This section states the formal assumptions for the theoretical analysis as well as provides proofs of the

asymptotic results in the paper. Before proceeding, however, we introduce some notation. Specifically,

we adopt the shorthand notation κ̂t,kj ,τj ≡ κ̂t,j , εt,kj ,τj ≡ εt,j , κ(kj , τj ,Z,θ) ≡ κj(Z,θ). The Hadamard

product is indicated by ◦; and the matrix norm being used is the Frobenius (or Euclidean) norm, which,

for an m × n dimensional matrix A, may be written as ||A|| =
√∑

i,j a
2
i,j =

√
Tr(AA′). Moreover,

denote by K a generic constant, which may take different values in different places, and we signify

conditional expectations by Eni ( · ) ≡ E( · |Fi∆n). Finally, note that (stochastic) orders sometimes refer

to scalars, vectors, and sometimes to matrices. We refrain from making distinctions.

7.1 Assumptions

Before proceeding to the assumptions, let (E, E) denote an auxiliary measure space on the original

filtered probability space
(
Ω(0),F (0), (F (0)

t )t≥0,P(0)
)
.

Assumption 1 (Price Process). The price process of the underlying asset Xt satisfies the conditions

in (1)-(3) of Section 2.1. Moreover, let qt = {αt, A+
t , A

−
t }, then these processes obey

qt = q0 +

∫ t

0
bqsds+

∫ t

0

∫
E
κ(δq(s, x))ϑ̃(ds, dx) +

∫
E
κ′(δq(s, x))ϑ(ds, dx) (24)

where κ(x) = x is the usual truncation function, for which κ(−x) = −κ(x) and κ′(x) = x− κ(x). The

process (24) and its remaining components satisfy:

(i) |qt|−1 and |qt−|−1 are strictly positive;

(ii) ϑ̃ is the associated martingale measure of ϑ, which is a Poisson measure on R+ × E, having

arbitrary dependence with the jump measure µP, equipped with compensator dt⊗ λ(dx) for some

σ-finite measures λ on E;

(iii) let γk(x) be a deterministic function on R with
∫
R(|γk(x)|r+ι ∧ 1)λ(dx) <∞ for some arbitrarily

small ι > 0 and some 0 ≤ r ≤ β, and furthermore let Tk be a sequence of stopping times

increasing to +∞, then δq(t, x) is assumed to be predictable, left-continuous with right limits in

t, and with |δq(t, x)| ≤ γk(x) for all t ≤ Tk;

(iv) bqt is an Itô semimartingale having dynamics as in (24) with coefficients satisfying conditions

analogous to (ii) and (iii) above.

Assumption 2 (Sampling scheme). As N → ∞, kn → ∞, and n → ∞ with kn/n → 0, as well as

with n̄ = n ∨N and k̄n = kn ∨N , we have for each t = 1, . . . , T and each maturity τ ∈ Tt that
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(i) N τ
t /Nt

P−→ πτt and Nt/N
P−→ %t where πτt and %t are adapted to F (0)

t with inft∈[1,T ],τ∈Tt π
τ
t > 0 and

supt∈[1,T ],τ∈Tt π
τ
t <∞ as well as inft∈[1,T ] %t > 0 and supt∈[1,T ] %t <∞.

(ii) For the grids of strike prices, let ik = min{i ≥ 2 : kt,τ (i) ≥ k}, then uniformly for each k ∈
[k(t, τ), k̄(t, τ)], we have N τ

t ∆t,τ (ik)
P−→ ψt,τ (k) where ψt,τ (k) is some F (0)

t -adapted process with

inf
t∈[1,T ], τ∈Tt, k∈[k(t,τ),k(t,τ)]

ψt,τ (k) > 0, and sup
t∈[1,T ], τ∈Tt, k∈[k(t,τ),k(t,τ)]

ψt,τ (k) <∞.

(iii) Finally, we have the following finite relative limits for N , pn, n, n̄, and p̄n,

N

n̄
→ $1 ≥ 0,

n

n̄
→ $2 ≥ 0,

N

p̄n
→ ζ1 ≥ 0, and

pn
p̄n
→ ζ2 ≥ 0.

Assumption 3 (Identification). For every ε > 0 and θ ∈ Θ, we have, almost surely, for N sufficiently

large,

inf
(
⋂T
t=1{‖Zt−St‖}∩{‖θ−θ0‖≤ε})c

T∑
t=1

Nt∑
j=1

(κ(kj , τj ,St,θ0)− κ(kj , τj ,Zt,θ))2

Nt
> 0.

Assumption 4 (Differentiability). The function κ(τ, k,Z,θ) is twice continuously differentiable its

arguments.

Assumption 5 (Observation error: Consistency). For every ε > 0, t = 1, . . . , T , and any positive-

valued F (0)
T -adapted process ζt(k, τ) on the product space R× Tt, which is continuous in its first argu-

ment, we have for N →∞ and θ ∈ Θ,

sup
{‖Zt−St‖>ε}∪{‖θ−θ0‖>ε}

∑Nt
j=1 ζt(k, τ) (κ(kj , τj ,St,θ0)− κ(kj , τj ,Zt,θ)) εt,kj ,τj∑Nt

j=1 (κ(kj , τj ,St,θ0)− κ(kj , τj ,Zt,θ))2

P−→ 0.

Assumption 6 (Observation error: Central limit theory). For the error process, εt,k,τ , we have,

(i) E(εt,k,τ |F (0)) = 0,

(ii) E(ε2t,k,τ |F (0)) = φt,k,τ , with φt,k,τ being a continuous function in its second argument,

(iii) εt,k,τ and εt′,k′,τ ′ are independent conditional on F (0), whenever (t, k, τ) 6= (t′, k′, τ ′),

(iv) E(|εt,k,τ |4|F (0)) <∞, almost surely.

These assumptions are similar to those in Andersen et al. (2015) and Todorov (2015) for the option

panel and price process, respectively. The main departure is Assumption 2(iii), which is needed to

accommodate a central limit theorem with different rates of convergence for different parts of the

parameter and state vector. Its impact is detailed in Section 4.4.
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7.2 Definitions for the High-frequency Estimators

This section provides additional details for the activity index and jump intensity estimators, both for

their definitions and in developing their joint asymptotic theory.

Exact expression for Bn(p, u, β). First, let Sβ be a β-stable random variable with characteristic

function E(eiuSβ ) = exp(−|u|β) and denote µp,β = (E|Sβ|p)β/p. With this notation, we set

ς(p, u, β) =

cos

 uSβ

µ
1/β
p,β

− C(p, u, β),
|Sβ|p

µ
p/β
p,β

− 1

′ , u ∈ R+,

where the standardized characteristic function C(p, u, β) is defined as

C(p, u, β) = e−Cp,βu
β
, with Cp,β =

[
2pΓ((1 + p)/2)Γ(1− p/β)√

πΓ(1− p/2)

]−β/p
, (25)

and Γ( · ) being the gamma function. Next, for u, v ∈ R+, we then let

ζ(p, u, v, β) = E
(
ς(p, u, β)ς(p, v, β)′

)
,

G(p, u, β) =
β

p
e−Cp,βu

β
Cp,βu

β, H(p, u, β) = G(p, u, β)

(
β

p
Cp,βu

β − β

p
− 1

)
.

Finally, we may write the bias-correction Bn(p, u, β) as

Bn(p, u, β) = H(p, u, β)ζ(2,2)(p, u, u, β)/(2kn). (26)

Exact expressions for Ψβ and ΨA. Using the definitions above, we may readily define the

asymptotic variances for the nonparametric high-frequency measures in Theorem 1 as

Ψβ =
2

log2(u/v)

[
ζ(1,1)(p, u, u, β)

log2(C(p, u, β))C2(p, u, β)
+

ζ(1,1)(p, v, v, β)

log2(C(p, v, β))C2(p, v, β)

− 2
ζ(1,1)(p, u, v, β)

log(C(p, u, β))C(p, u, β) log(C(p, v, β))C(p, v, β)

]
,

(27)

Ψt =
e2At−uβ

u2β

(
1 + e−2βAt−uβ

2
− e−2At−uβ

)
, t = 1, ..., T. (28)

7.3 Definitions for the Hessian and Asymptotic Variance

This section defines the empirical and limiting Hessian matrices, which are used in the proof and

statement of Theorem 3. The definition of asymptotic covariance matrix in Theorem 3 is also given.
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Empirical Hessian matrix. For generic values of S and θ0, Z and θ, respectively, define the

Hessian,

H(Z,θ) ≡


Hθr0

(Z,θ) Hθr0β
(Z,θ) Hθr0S

r(Z,θ) Hθr0A
(Z,θ)

Hθr0β
(Z,θ)′ Hβ(Z,θ) HβSr(Z,θ) HβA(Z,θ)

Hθr0S
r(Z,θ)′ HβSr(Z,θ)′ HSr(Z,θ) HSrA(Z,θ)

Hθr0A
(Z,θ)′ HβA(Z,θ)′ HSrA(Z,θ)′ HA(Z,θ)

 , (29)

whose elements along the diagonal, that is, the (q−1)×(q−1) matrix Hθr0
(Z,θ), the scalar Hβ(Z,θ),

the T (p−1)×T (p−1) matrix HSr(Z,θ), and the T ×T matrix HA(Z,θ), are defined as HSr(Z,θ) ≡
diag

(
HSr1

(Z1,θ), . . . ,HSrT
(ZT ,θ)

)
, HA(Z,θ) ≡ diag (HA1(Z1,θ), . . . ,HAT (ZT ,θ)), and with

Hθr0
(Z,θ) ≡

T∑
t=1

Nt∑
j=1

∇θr0κj(Zt,θ)∇θr0κj(Zt,θ)′,

Hβ(Z,θ) ≡
T∑
t=1

Nt∑
j=1

∇βκj(Zt,θ)∇βκj(Zt,θ)′ + λβnT,

HSrt
(Zt,θ) ≡

Nt∑
j=1

∇Srκj(Zt,θ)∇Srκj(Zt,θ)′,

HAt(Zt,θ) ≡
Nt∑
j=1

∇Aκj(Zt,θ)∇Aκj(Zt,θ)′ + λApn,

for t = 1, . . . , T . The remaining elements of the (q+Tp)× (q+Tp) Hessian matrix (29) have the same

generic structure as the explicated diagonal elements and are, thus, defined analogously.

Limiting Hessian matrix. The limiting Hessian matrix has the same block-wise structure as

(29) and may be written

I = L1 ◦M + L2 ◦Λ, (30)

where the first scaled matrix in the decomposition, L1 ◦M, is defined as

L1 ◦M ≡


Mθr0

√
$1Mθr0β

Mθr0S
r

√
ζ1Mθr0A

√
$1M′

θr0β
$1Mβ

√
$1MβSr

√
$1ζ1MβA

M′
θr0S

r

√
$1M′

βSr MSr
√
ζ1MSrA

√
ζ1M′

θr0A

√
$1ζ1M′

βA

√
ζ1M′

SrA ζ1MA


where, e.g., the (q − 1)× T matrix Mθr0A

=
(
Mθr0A1 , . . . ,Mθr0AT

)
has column vectors

Mθr0At
≡ %t

∑
τ

πτt

∫ k̄(t,τ)

k(t,τ)

1

ψt,τ (k)
∇θr0κ(k, τ,St,θ0)∇Aκ(k, τ,St,θ0)′dk,
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for t = 1, . . . , T . The remaining elements of M are defined similarly, the only change being the

respective gradient arguments. The second term in the decomposition (30), L2 ◦Λ, is given by

L2 ◦Λ ≡ diag
(
0(q−1)×1, $2λβT,0T (p−1)×1, ζ2λAιT

)
,

with, again, 0d and ιd being d-dimensional vectors of zeros and ones, respectively.

Limiting covariance matrix. The (q+ Tp)× (q+ Tp) limiting covariance may be decomposed,

similarly to (30), as

Ω = L1 ◦ C + L2 ◦Λ ◦Ψ, (31)

where, as above, the first scaled matrix in the decomposition, L1 ◦ C, is defined as

L1 ◦ C ≡


Cθr0

√
$1Cθr0β Cθr0Sr

√
ζ1Cθr0A

√
$1C′θr0β $1Cβ

√
$1CβSr

√
$1ζ1CβA

C′θr0Sr
√
$1C′βSr CSr

√
ζ1CSrA

√
ζ1C′θr0A

√
$1ζ1C′βA

√
ζ1C′SrA ζ1CA


where, equivalently, the (q − 1)× T matrix Cθr0A =

(
Cθr0A1 , . . . ,Cθr0AT

)
has column vectors

Cθr0At ≡ %t
∑
τ

πτt

∫ k̄(t,τ)

k(t,τ)

φt,k,τ
ψt,τ (k)

∇θr0κ(k, τ,St,θ0)∇Aκ(k, τ,St,θ0)′dk,

for t = 1, . . . , T , and the remaining elements of L1 ◦ C are defined similarly. The additional term in

the second part of the decomposition (31), Ψ, is given by

Ψ ≡ diag
(
0(q−1)×1, λβΨβ,0T (p−1)×1, λAΨ1, . . . , λAΨT

)
,

where Ψβ and Ψt, for t = 1, . . . , T , are defined as in Theorem 1.

7.4 Definitions for WPLS Estimation

This section defines the plug-in estimators for WPLS objective function in (22). Moreover, it gives

the limiting asymptotic variances for the WPLS estimator in Theorem 4 and Corollary 1.

Expressions for Ψ̂β and Ψ̂A. Letting B̂ and Ât, t = 1, . . . , T by first-stage PLS estimates of β

and At, respectively, then we define the plug-in estimators Ψ̂β and Ψ̂A as

Ψ̂β =
2

log2(u/v)

[
ζ(1,1)(p, u, u, B̂)

log2(C(p, u, B̂))C2(p, u, B̂)
+

ζ(1,1)(p, v, v, B̂)

log2(C(p, v, B̂))C2(p, v, B̂)

− 2
ζ(1,1)(p, u, v, B̂)

log(C(p, u, B̂))C(p, u, B̂) log(C(p, v, B̂))C(p, v, B̂)

]
,

(32)
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Ψ̂t =
e2ÂtuB̂

u2B̂

(
1 + e−2B̂ÂtuB̂

2
− e−2ÂtuB̂

)
, t = 1, ..., T, (33)

whose consistency for Ψβ and Ψt follows by Theorem 3 and the continuous mapping theorem.

Limiting Covariance for WPLS. The limiting Hessian and covariance matrices for the WPLS

estimator have the same block-wise structure as for the PLS in (30) and (31) and may be written as

Iw = L1 ◦Mw + L2 ◦Λw, Ωw = L1 ◦ Cw + L2 ◦Λw ◦Ψw, (34)

respectively. First, for the Hessian, Iw, whose first scaled matrix, L1 ◦Mw, is defined as

L1 ◦Mw ≡


Mw

θr0

√
$1Mw

θr0β
Mw

θr0S
r

√
ζ1Mw

θr0A

√
$1(Mw

θr0β
)′ $1Mw

β

√
$1Mw

βSr
√
$1ζ1Mw

βA

(Mw
θr0S

r)′
√
$1(Mw

βSr)
′ Mw

Sr
√
ζ1Mw

SrA
√
ζ1(Mw

θr0A
)′
√
$1ζ1(Mw

βA)′
√
ζ1(Mw

SrA)′ ζ1Mw
A


where, e.g., the (q−1)×T matrix Mw

θr0A
=
(
Mw

θr0A1
, . . . ,Mw

θr0AT

)
has column vectors that are defined

by Mw
θr0At

= Mθr0At
/w(φt) for t = 1, . . . , T . The remaining elements of Mw are similarly adjusted

versions of the corresponding element in M using the weight 1/w(φt) at each point in time. The

second term in the decomposition of Iw, that is, L2 ◦Λw, is given by

L2 ◦Λw ≡ diag

(
0(q−1)×1,

$2T

w(Ψβ)
,0T (p−1)×1,

ζ2

w(Ψ1)
, . . . ,

ζ2

w(ΨT )

)
.

Next, for the covariance matrix, Ωw, the first part in its decomposition, L1 ◦ Cw, is defined as

L1 ◦ Cw ≡


Cwθr0

√
$1Cwθr0β Cwθr0Sr

√
ζ1Cwθr0A

√
$1(Cwθr0β)′ $1Cwβ

√
$1CwβSr

√
$1ζ1CwβA

(Cwθr0Sr)
′ √

$1(CwβSr)′ CwSr
√
ζ1CwSrA

√
ζ1(Cwθr0A)′

√
$1ζ1(CwβA)′

√
ζ1(CwSrA)′ ζ1CwA


where, similarly, the (q−1)×T matrix Cwθr0A =

(
Cwθr0A1

, . . . ,Cwθr0AT
)

has column vectors that are adjusted

to accounting for the weighting as Cwθr0At = Cθr0A1/w(φt)
2 for t = 1, . . . , T . The remaining elements of

the first part L1 ◦Cw are defined analogously using scaling with 1/w(φt)
2. The additional term in the

second part of the decomposed WPLS covariance matrix in (34), Ψw, is given by

Ψw ≡ diag

(
0(q−1)×1,

Ψβ

w(Ψβ)
,0T (p−1)×1,

Ψ1

w(Ψ1)
, . . . ,

ΨT

w(ΨT )

)
.
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7.5 Auxiliary Results

Lemma 1. Under the conditions for Theorem 3,

1√
N



∑T
t=1

∑Nt
j=1∇θr0κ(kj , τj ,St,θ0)εt,kj ,τj∑T

t=1

∑Nt
j=1∇βκ(kj , τj ,St,θ0)εt,kj ,τj∑N1

j=1∇Srκ(kj , τj ,S1,θ0)ε1,kj ,τj
...∑NT

j=1∇Srκ(kj , τj ,ST ,θ0)εT,kj ,τj∑N1
j=1∇Aκ(kj , τj ,S1,θ0)ε1,kj ,τj

...∑NT
j=1∇Aκ(kj , τj ,ST ,θ0)εT,kj ,τj



L−s−−→ C1/2 ×


Eθr0

Ẽβ

ESr

ẼA



where Eθr0
and EA are defined in Theorem 3, Ẽβ and the T × 1 vector ẼA contain standard Gaussian

random variables, which are independent of each other and of the filtratation F , and the asymptotic

covariance matrix, C, is defined through the Hadamard product in (31).

Proof. Follows by the same arguments as Lemma 1 in Andersen et al. (2015).

Lemma 2. Under the conditions for Theorem 3, then the convergence in Lemma 1 and Theorem 1

holds jointly, and further, the vectors (E′θr0
, Ẽβ,E

′
Sr , Ẽ

′
A)′ and (Yβ,Y

′
A)′ are independent.

Proof. Follows by the same arguments as Lemma 3 in Andersen et al. (2015).

7.6 Proof of Theorem 1

First, it is more convenient to work with the dynamics of x = log(X) throughout the proof, which by

an application of Itô lemma (under P), is given by

dxt = α′tdt+

∫
R
xµ̃P(dt, dx). (35)

Next, for our analysis, it simplifies to work with an alternative representation of x where integration

is defined with respect to a Poisson measure. To this end, we set

νP+(x) = Aβ|x|−β−1 + max{νP+(x)−Aβ|x|−β−1, 0}, for x > 0, (36)

and define νP−(x) analogously. Using Grigelionis representation (Theorem 2.1.2 in Jacod and Protter

(2012)) and upon suitably extending the probability space, we can represent the dynamics of x under
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P as

dxt = α′tdt+

∫
R+×R+×[0,1]×R

1(u ≤ A+
t−, x > 0)1(z ≤ νP+(x)/νP+(x))xµ̃(dt, du, dz, dx)

+

∫
R+×R+×[0,1]×R

1(u ≤ A−t−, x < 0)1(z ≤ νP−(x)/νP−(x))xµ̃(dt, du, dz, dx),

(37)

where µ is an integer-valued random measure on R+ × R+ × [0, 1] × R with compensator defined by

dt⊗ du⊗ dz ⊗ (νP−(x)1{x<0} + νP+(x)1{x>0})dx. Noting that β > 1, we may then write

dxt = α
′′
t dt+

∫
R+×R+×[0,1]×R

1(u ≤ A+
t−, x > 0)1(z ≤ Aβ|x|−β−1/νP+(x))xµ̃(dt, du, dz, dx)

+

∫
R+×R+×[0,1]×R

1(u ≤ A−t−, x < 0)1(z ≤ Aβ|x|−β−1/νP−(x))xµ̃(dt, du, dz, dx) + dYt,

(38)

where α
′′

is a drift term, which is a weighted sum of α and A±, and Y is a “residual” process satisfying

Assumption A in Todorov (2015). Importantly, note that the two jump martingales in (38) have jump

compensators A+
t−

Aβ
|x|β+1 1{x>0} and A−t−

Aβ
|x|β+1 1{x<0}, respectively. These correspond to time-changed

stable processes and, as a result, we can finally write

dxt = α
′′
t dt+ |A+

t−|1/βdS
+
t + |A−t−|1/βdS

−
t + dYt, (39)

where S+ and S− are independent stable processes with Lévy densities
Aβ
|x|β+1 1x>0 and

Aβ
|x|β+1 1x<0,

respectively, and with zero drifts. This representation of x is used in what follows.

We start with β̂ − β where we can follow the same steps provided for the corresponding proof

in Todorov (2015). Note that the setup in Todorov (2015) is more restrictive, assuming A−t = A+
t .

However, due the differencing of the increments of x in the construction of our statistic as well as

the fact that the summands do not overlap (in the sense that they use different increments of x), the

difference between the models here and in Todorov (2015) is irrelevant. Hence, we have

β̂ − β =

bnT c/2∑
i=kn+1

χni + op(
√

∆n), (40)

where we set

χni =
1

log(u/v)

1

bnT c/2− kn

×
[

cos(u∆
−1/β
n µ

−1/β
p,β Sni )− C(p, u, β)

log(C(p, u, β))C(p, u, β)
−

cos(v∆
−1/β
n µ

−1/β
p,β Sni )− C(p, v, β)

log(C(p, v, β))C(p, v, β)

]
, (41)

with µp,β and C(p, v, β) given in Section 7.2, and

Sni =
|A+

(i−2)∆n−|
1/β(∆n

i S
+ −∆n

i−1S
+) + |A−(i−2)∆n−|

1/β(∆n
i S
− −∆n

i−1S
−)

|A(i−2)∆n−|1/β
. (42)
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Next, we turn to the difference Â − A. First, using β̂ − β = Op(
√

∆n) as well as the fact that

E|∆ix| ≤ K∆
1/β−ι
n for some arbitrary small ι > 0 (after appropriate localization), the following bound

holds for each t = 1, ..., T :

1

pn

∑
i∈Int

[
cos
(
u∆−1/β̂

n (∆n
2ix−∆n

2i−1x)
)
− cos

(
u∆−1/β

n (∆n
2ix−∆n

2i−1x)
)]

= Op

(√
∆1−ι
n

)
, ∀ι > 0.

(43)

Now, using Assumption 1 for the residual jump component in (38), Y , as well as for the dynamics of

the drift term in Assumption 1 and the restriction for β′ in the theorem, we have

1

pn

∑
i∈Int

[
cos
(
u∆−1/β

n (∆n
2ix−∆n

2i−1x)
)
− cos

(
u∆−1/β

n A
1/β
(i−2)∆n−S

n
i

)]
= op(1/

√
pn). (44)

Moreover, by the dynamics of the processes A± in Assumption 1, it follows that

1

pn

∑
i∈Int

e−A(i−2)∆n−u
β − e−Atuβ = Op

(
(pn∆n)1/β−ι

)
, ∀ι > 0, (45)

e−A2∆n(bnt/2c−pn)−u
β − e−Atuβ = Op

(
(pn∆n)1/β−ι

)
, ∀ι > 0. (46)

Finally, using the uncorrelatedness of the summands below, we readily have

1

pn

∑
i∈Int

[
cos
(
u∆−1/β

n A
1/β
(i−2)∆n−S

n
i

)
− e−A(i−2)∆n−u

β
]

= Op(1/
√
pn). (47)

By combining the above results and using a Taylor expansion, it follows that

Ât −At =
∑
i∈Int

χnt,i + op(1/
√
pn), t = 1, ..., T, (48)

where we denote

χnt,i =

 − e
A2∆n(bnt/2c−pn)−u

β

uβ
1
pn

[
cos
(
u∆
−1/β
n A

1/β
(i−2)∆n−S

n
i

)
− e−A(i−2)∆n−u

β
]
, if i ∈ Int ,

0, otherwise.
(49)

Therefore, what remains to be proved is that the vector
∑bnT c/2

i=kn+1

(√
nTχni ,

√
pn
(
χnt,i
)T
t=1

)
converges

to the limit in the theorem (without loss of generality, we can, and do, assume n > kn + pn). First,

direct calculations as well as our assumption for the dynamics of A±t imply

En2i−2(χni ) = 0, En2i−2(χnt,i) = 0, (50)

nT

bnT c/2∑
i=kn+1

En2i−2(χni )2 =
nT

bnT c/2− kn
Ψβ, pn

bnT c/2∑
i=kn+1

En2i−2(χnt,i)
2 = Ψt + op

(√
pn∆n

)
, (51)
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√
nT
√
pn

bnT c/2∑
i=kn+1

En2i−2

(
χni χ

n
t,i

)
= Op(

√
pn/n), pn

bnT c/2∑
i=kn+1

En2i−2

(
χns,iχ

n
t,i

)
= 0, s 6= t, (52)

n2

bnT c/2∑
i=kn+1

En2i−2(χni )4 = Op(1/n), p2
n

bnT c/2∑
i=kn+1

En2i−2(χnt,i)
4 = Op(1/pn). (53)

In addition, using the proof of Theorem 1 in Todorov and Tauchen (2012), we have

√
n

bnT c/2∑
i=kn+1

En2i−2[χni (M2i∆n −M(2i−2)∆n
)] = op(1),

√
pn

bnT c/2∑
i=kn+1

En2i−2[χnt,i(M2i∆n −M(2i−2)∆n
)] = op(1),

(54)

for any bounded martingale M defined on the original probability space. Hence, by combining the

above results, we may apply Theorem IX.7.28 of Jacod and Shiryaev (2003) to conclude that the

sequence
∑bnT c/2

i=kn+1

(√
nTχni ,

√
pn
(
χnt,i
)T
t=1

)
converges to the limit in the theorem.

7.7 Proof of Theorem 2

The consistency result follows by applying Theorem 1 in conjunction with the same arguments provided

to establish consistency in Theorem 1 of Andersen et al. (2015).

7.8 Proof of Theorem 3

By utilizing the consistency result in Theorem 2 as well as differentiability of the implied volatility

function, we have that θ̂r, B̂, {Ŝrt }t=1,...,T and {Ât}t=1,...,T with probability approaching one, solve

∑T
t=1

∑Nt
j=1

(
κ̂t,j − κj(Ŝt, θ̂)

)
∇θr0κj(Ŝt, θ̂) = 0∑T

t=1

∑Nt
j=1

(
κ̂t,j − κj(Ŝt, θ̂)

)
∇βκj(Ŝt, θ̂) + λβnT

(
β̂ − B̂

)
= 0,∑N1

j=1

(
κ̂1,j − κj(Ŝ1, θ̂)

)
∇Srκj(Ŝ1, θ̂) = 0,

...∑NT
j=1

(
κ̂T,j − κj(ŜT , θ̂)

)
∇Srκj(ŜT , θ̂) = 0,∑N1

j=1

(
κ̂1,j − κj(Ŝ1, θ̂)

)
∇Aκj(Ŝ1, θ̂) + λApn

(
Â1 − Â1

)
= 0,

...∑NT
j=1

(
κ̂T,j − κj(ŜT , θ̂)

)
∇Aκj(ŜT , θ̂) + λApn

(
ÂT − ÂT

)
= 0.

(55)

Next, by a first-order Taylor expansion for (55), the mean-value theorem and Assumption 2,

(WnH̃Wn)W−1
n


θ̂β − θβ
B̂ − β

Ŝ − S

Â −A

 = Wn


Sθr0
Sβ
SSr .

SA

+ op(Wn), (56)
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where the (q + Tp)× (q + Tp) Hessian matrix H̃ ≡H(S̃, θ̃) is defined by (29) for some intermediate

values of the state vectors S̃ ∈ [Ŝ,S] and parameters θ̃ ∈ [θ̂,θ0], and with score functions given as

Sθr0
≡

T∑
t=1

Nt∑
j=1

εt,j∇θr0κj(St,θ0), Sβ ≡
T∑
t=1

Nt∑
j=1

εt,j∇βκj(St,θ0) + λβnT (β̂ − β),

SSr ≡ (S ′Sr1 , . . . ,S
′
SrT

)′, with SSrt
≡

Nt∑
j=1

εt,j∇Srκj(St,θ0), and

SA ≡ (SA1 , . . . ,SAT )′, with SAt ≡
Nt∑
j=1

εt,j∇Aκj(St,θ0) + λApn(Ât −At).

The op(Wn) term in (56) comes from (higher-order) Taylor expansion effects of the gradient as well

as second order derivatives of the form, e.g., (B̂ − β)
∑T

t=1

∑Nt
j=1 εt,j∇ββκj(St,θ0), which are both

asymptotically negligible in the present setting since T is fixed, see, e.g., the equivalent expansion in

Section 8.3.2 of Andersen et al. (2017). Now, since θ̃
P−→ θ0 and S̃t

P−→ St for t = 1, . . . , T , uniformly,

by Theorem 2, and we have that the mesh of the log-moneyness grid N τ
t ∆t,τ (ik)

P−→ ψt,τ (k) uniformly

on the interval (k(t, τ), k̄(t, τ)), in addition to

N

n̄
→ $1,

n

n̄
→ $2,

N

p̄n
→ ζ1,

pn
p̄n
→ ζ2,

pn
n
→ 0,

by Assumption 2 as well as the function κ(k, τ,Z,θ) being second-order differentiable in their argu-

ments by Assumption 4 for any finite Z and θ, we may combine results to establish convergence for

the Hessian matrix,

WnH̃Wn
P−→ I, (57)

locally uniformly in Z and θ, where the (q + Tp)× (q + Tp) limiting matrix I is defined in (30). To

see this, note that we may write the elements along the diagonal as:

1

N
Hθr0

(Z̃, θ̃) =

T∑
t=1

Nt

N

1

Nt

Nt∑
j=1

∇θr0κj(Z̃t, θ̃)∇θr0κj(Z̃t, θ̃)′
P−→Mθr0

,

1

n̄
Hβ(Z̃, θ̃) =

N

n̄

T∑
t=1

Nt

N

1

Nt

Nt∑
j=1

∇βκj(Z̃t, θ̃)∇βκj(Z̃t, θ̃)′ + λβ
n

n̄
T

P−→ $1Mβ +$2λβT,

1

N
HSrt

(Z̃t, θ̃) =
Nt

N

1

Nt

Nt∑
j=1

∇Srt κj(Z̃t, θ̃)∇Srt κj(Z̃t, θ̃)′
P−→MSrt

,

1

p̄n
HAt(Z̃, θ̃) =

N

p̄n

Nt

N

1

Nt

Nt∑
j=1

∇Aκj(Zt,θ)∇Aκj(Zt,θ)′ + λA
pn
p̄n

P−→ ζ1MAt + ζ2λA,

for t = 1, . . . , T . As equivalent probability limits for the off-diagonal elements follow similarly, the

asymptotic distribution result is established by using (57) in conjunction with Lemmas 1-2 and The-

orem 1 for (56), the continuous mapping theorem and Slutsky’s theorem.
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7.9 Proof of Theorem 4

First, by Theorems 2 and 3, we have the bounds ‖θ̂r − θr0‖ ≤ Op(1/
√
N), ‖B̂ − β‖ ≤ Op(1/

√
n̄),

‖Ŝr − Sr‖ ≤ Op(1/
√
N) and ‖Â −A‖ ≤ Op(1/

√
p̄n). Next, make the decomposition

φ̂t −
1

Nt

Nt∑
j=1

φj,t = φ̂
(1)
t + φ̂

(2)
t + φ̂

(3)
t , with φ̂

(1)
t =

1

Nt

Nt∑
j=1

(ε2j,t − φj,t),

φ̂
(2)
t =

1

Nt

Nt∑
j=1

εj,t

(
κj,t(St,θ0)− κj,t(Ŝt, θ̂)

)
, φ̂

(3)
t =

1

Nt

Nt∑
j=1

(
κj,t(St,θ0)− κj,t(Ŝt, θ̂)

)2

where φj,t = φt,kjτj is used as shorthand notation. Hence, by applying above consistency bounds in

conjunction with Assumption 6, we have |φ̂(2)
t | + |φ̂

(3)
t | ≤ Op(N

ι−1) for some arbitrarily small ι > 0.

Together with Ψ̂β
P−→ Ψβ and Ψ̂t

P−→ Ψt by Theorem 3 and the continuous mapping theorem, we can use

exactly the same arguments as provided for Theorem 5 in Andersen et al. (2017) in conjunction with

WPLS equivalents to the expansions (55) and (56) as well as Theorem 1 to establish the result.
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