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Abstract

We provide unifying inference theory for parametric nonlinear factor models based on a panel of
noisy observations. The panel has a large cross-section and a time span that may be either small or
large. Moreover, we incorporate an additional source of information provided by noisy observations
on some known functions of the factor realizations. The estimation is carried out via penalized
least squares, i.e., by minimizing the L2 distance between observations from the panel and their
model-implied counterparts, augmented by a penalty for the deviation of the extracted factors
from the noisy signals for them. When the time dimension is fixed, the limit distribution of the
parameter vector is mixed Gaussian with conditional variance depending on the path of the fac-
tor realizations. On the other hand, when the time span is large, the convergence rate is faster
and the limit distribution is Gaussian with a constant variance. In this case, however, we incur
an incidental parameter problem since, at each point in time, we need to recover the concurrent
factor realizations. This leads to an asymptotic bias that is absent in the setting with a fixed time
span. In either scenario, the limit distribution of the estimates for the factor realizations is mixed
Gaussian, but is related to the limiting distribution of the parameter vector only in the scenario
with a fixed time horizon. Although the limit behavior is very different for the small versus large
time span, we develop a feasible inference theory that applies, without modification, in either case.
Hence, the user need not take a stand on the relative size of the time dimension of the panel.
Similarly, we propose a time-varying data-driven weighting of the penalty in the objective function,
which enhances efficiency by adapting to the relative quality of the signal for the factor realizations.
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1 Introduction

We develop unified inference theory for parametric nonlinear factor models from panels of noisy ob-

servations which have an asymptotically increasing cross-sectional dimension and a time span that

is either fixed or increasing. In particular, we provide inference for the time-invariant parameters of

the model as well as the period-by-period latent factor realizations. Importantly, although the limit

theories for the fixed and increasing time span scenarios are very different, our feasible implementation

is identical across the two cases, enabling empirical work that is robust to the relative length of the

time series. The theory is presented in the context of an option panel, i.e., a collection of option

prices observed across time and written on a given underlying asset. Our option prices are recorded

over a sample period, where each observation date typically will have a different set of option strikes

and tenors (times-to-maturity) available. With the rapid increase of trading in derivatives over recent

years, such option panels are readily accessible and provide a unique source of information regarding

the state of the economy and the pricing of volatility and tail risk in financial markets. Moreover,

with suitable adaptation, our theory is applicable for analysis of economic systems with similar panel

structures, such as household and firm data or term structure and large-scale macro DSGE models.

Given a specific parametric model, the theoretical value of an option is a nonlinear function of the

(known) option strike and tenor as well as of the (unknown) time-invariant parameters and the latent

state vector (factor) realization.1 Under correct specification, the observed option price equals the

model-implied theoretical value plus an observation error, centered at zero. Therefore, unknown pa-

rameters and factor realizations can be estimated by minimizing the L2 distance between observed and

model-implied option prices (i.e., nonlinear least squares). We further utilize nonparametric volatility

measures based on high-frequency data of the underlying asset and penalize deviations of model-

implied volatilities (determined by the factor realizations) from their nonparametric high-frequency

estimates in the objective function. We refer to this estimation approach as penalized least squares

(PLS). In alternative applications, penalization of this form may be useful if the latent factors can be

associated directly with economic variables that are observed with measurement error.

Andersen et al. (2015a) develop the inference theory for PLS and a fixed time span. In this setting,

both the parameters and factor realizations are estimated at rate
√
N , where N denotes the average

number of options per observation date. The limiting distribution is mixed Gaussian, i.e., it is Gaussian

1As is common, we rely on a fully parametric specification of the risk-neutral return distribution. This ensures a tractable
representation for which we are able to develop comprehensive estimation and inference techniques, in spite of the highly
nonlinear dependence of the option prices on the underlying latent state variables (or factors), and the strong dependence
in the option prices across nearby strikes and tenors as well as in the time series dimension. In addition, without an
explicit dynamic representation of the risk-neutral distribution, it is hard to impose fundamental no-arbitrage conditions
on the system. Importantly, a battery of diagnostic tests are available to guard against model misspecification, following
the procedures of Andersen et al. (2015a).
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conditional on the observed path of the factors. In particular, this enables the approach to convey

explicitly how the precision of the estimates for the option prices and factor realizations changes from

period-to-period, depending on the level of volatility of the underlying asset, the option coverage over

the strike ranges and tenors, the size of the measurement errors, etc.

In this paper, we develop the asymptotic theory for the case where the time span of the panel

may increase at a rate equal to that of the cross-section. This scenario induces a so-called incidental

parameter problem (Neyman and Scott (1948) and Lancaster (2000)). As the time span increases, the

quantities to estimate (the factor realizations in our setting) also increase. For the long time span (T

large), we show that the rate of convergence of the parameter vector rises to
√
NT . Unlike for the

fixed time span, the limiting distribution for the parameters is now Gaussian. In addition, due to the

incidental parameter problem, there is an asymptotic bias of order Op(1/N). We propose model-based

de-biasing, which allows for feasible inference on the parameters. On the other hand, the rate of

recovery for the factor realizations remains
√
N and the asymptotic limit is still mixed Gaussian. We

derive the joint asymptotic distribution of the parameters and the factor realizations. This is critical

for exploring various economic hypotheses. For example, this allows for testing model performance

across different time periods of interest, e.g., calm versus turbulent market conditions.

Despite the fact that the behavior of our PLS estimator is very different in the fixed and increasing

time span scenarios – both in terms of rate of convergence and limiting distribution – we show that

feasible inference can be performed in an identical manner for either of the two asymptotic schemes,

provided it suitably accommodates features of both limit theories. The reason is that the estimate

of the asymptotic bias for the long span case is asymptotically negligible if the time span actually

is fixed. Likewise, estimates for the dependence between the parameters and factor realizations in

the fixed span case become asymptotically negligible in the long span setting. Finally, the estimates

for the conditional variance of the parameters automatically represent long-run asymptotic variance

estimates in the long span case. The above results depend critically on the fact that the limit theory

is F-conditionally stable (F denotes the sigma-algebra of the underlying probability space). Among

other things, this implies that we can apply standard normalization techniques for the construction of

confidence intervals and testing, even when the asymptotic variances are random in the limit. From a

practical point of view, this set of findings is important because the applied econometrician need not

take a stand on whether the time span of the panel is of a length that justifies appealing to one limit

theory versus the other – the procedure automatically adapts to the relevant features of the data.

Another novel aspect of our inference procedure is the use of extra information on the latent factor.

This is reminiscent of the factor augmented vector autoregression (FAVAR) proposed by Bernanke

et al. (2005). In our context, the signal for the factor realization takes the form of a high-frequency
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nonparametric estimator of volatility. The asymptotic role of the penalization based on this volatility

estimator depends on the relative size of the option cross-section versus the sampling frequency of the

underlying asset price. This determines the relative (asymptotic) efficiency in recovering the volatility

from options and high-frequency data, respectively. If the former is more efficient, the specification

of the penalization term ensures it has no asymptotic impact while, if the latter is more efficient, the

penalization will play an asymptotic role. Therefore, the user need not take a stand on whether the

option or high-frequency data are more efficient for recovering volatility. As for the span of the panel,

the procedure simply adapts to the situation at hand.

To further improve efficiency, we extend the estimation to weighted penalized least squares. We do

so by forming a consistent estimate for the option observation error variance across each cross-section

from a first-stage PLS estimate of the parameters and factor realizations. We then weight the squared

(pricing) errors in the objective function by the estimated option error variance and the penalization

term by a measure of its (conditional) asymptotic variance. Again, the approach applies for both

the fixed and long span case, without modification. It allows the relative weight of the penalization

in the objective function to shift over the days in the sample, reflecting the time-variation in the

informativeness of the option versus high-frequency data.

Our main theoretical contributions can be summarized as follows. First, we analyze nonlinear

panel models in the joint asymptotic setting where the time and cross-sectional dimensions can grow

at the same rate in the presence of stochastic latent factors (fixed effects). Second, we augment the

estimation by including noisy factor signals in the form of nonparametric high-frequency volatility

estimates. Third, we derive the joint asymptotic limit of the latent factors, the parameters and the

high-frequency volatility estimates in the various asymptotic setups (T fixed or increasing up to the

rate of N) which is mixed Gaussian. Fourth, and perhaps most importantly, we show that feasible

inference can be conducted in a way that works irrespective of whether T is fixed or increasing.

The above contributions can be compared with prior work in the following way. First, Andersen

et al. (2015a) (see also Andrews (2005) and Kuersteiner and Prucha (2013)) consider only the fixed

time span case. Second, Hahn and Kuersteiner (2002), Hahn and Newey (2004), Arellano and Hahn

(2007), Arellano and Bonhomme (2009), Hahn and Kuersteiner (2011) and Fernandez-Val and Weidner

(2016) consider only the case when T and N grow at the same rate, while Gagliardini and Gourieroux

(2014) study the case of T growing at a slower rate than N . These papers do not allow for noisy factor

signals in the estimation nor do they consider the joint asymptotic behavior of factor realizations and

parameters. Third, Bai and Ng (2002) and Bai (2003) consider estimation of linear factor models.

The major difference from that strand of work is that our factor loadings (i.e., the sensitivity of option

prices to factors) are “structural,” i.e., driven by a parameter vector of fixed size, while Bai and Ng
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(2002) and Bai (2003) treat them as unknown, unrestricted coefficients. Hence, in their case, the

number of parameters (factor loadings) grows in proportion to the cross-sectional dimension of the

panel. This implies a very different asymptotic behavior of the factor estimates depending on the

relative size of T versus N . In particular, when T is fixed, Bai (2003) shows that relatively strong

assumptions, including homoskedasticity of the observation error, are necessary for consistent factor

extraction. Finally, our paper relates to Gagliardini et al. (2011), who consider estimation using data

on options as well as the underlying asset. Their asymptotic setup is different as they treat the case of

N fixed and depend importantly on (exact) nonparametric inference from the underlying asset data.2

We conduct numerical experiments to assess the practical relevance of the developed limit theory.

We rely on a popular two-factor stochastic volatility model for the underlying asset price and con-

sider strike and tenor configurations that mimic typical option data sets. The findings illustrate the

advantages of our unified inference framework. For the factor extraction, we find the “stabilization”

of the standard error, captured in the long-span asymptotic setting, to become effective across widely

different horizons for different factors. Thus, neither the fixed nor long span asymptotics is satisfactory

across all factors simultaneously. In addition, we find fairly strong dependence in the extraction error

for the factor realizations. Such dependence is of higher order in the long-span asymptotic setup and

is, thus, ignored if the associated asymptotic is used. Finally, the asymptotic biases, which arise only

in the long-span asymptotic setting, play a nontrivial role for some parameters, even over relatively

short time spans. As noted, our feasible unified inference procedure adapts by accommodating those

features of the fixed or long span asymptotics that are relevant for the situation at hand.

The rest of the paper is organized as follows. In Section 2, we introduce the parametric nonlinear

factor model for the option panel, the option observation scheme and the nonparametric high-frequency

volatility estimator. In Section 3, we derive the asymptotic behavior of the PLS estimator in the long

time span case. Section 4 develops unified feasible inference theory for panels with long and short time

spans. In Section 5, we extend the analysis to weighted penalized least squares. Section 6 contains

numerical experiments, illustrating the gains from the unified inference in the context of a popular

parametric asset pricing model. Section 7 concludes. The Appendix in Section 8 contains the formal

assumptions for the theoretical analysis as well as the proofs.

2There is a large body of earlier empirical option pricing work, see e.g., Bates (2003), Christoffersen and Jacobs (2004),
Eraker (2004), Pan (2002) and the survey by Garcia et al. (2010). The emphasis of these studies, however, is on extracting
information from a limited (fixed N) number of options, which differs fundamentally from our intention of using the full
set of available options, leading to the setup involving an asymptotically increasing cross-section. Moreover, unlike our
analysis, the fixed cross-section typically necessitates parametric assumptions for the observation error and a parametric
specification for the factor evolution.
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2 Setup

We start our analysis by introducing the nonlinear factor model for the panel of option prices. We

then describe the observation scheme for the options as well as the high-frequency return data for the

nonparametric volatility measurement.

2.1 A Parametric Nonlinear Factor Model for the Option Panel

The options are written on an underlying process, denoted by X, which is defined on a filtered proba-

bility space
(
Ω(0),F (0), (F (0)

t )t≥0,P(0)
)
. The process X is governed by the following general dynamics,

dXt

Xt−
= αt dt +

√
Vt dW

P
t +

∫
x>−1

x µ̃P(dt, dx) , (1)

where αt and Vt are càdlàg; W P
t is a P(0)-Brownian motion; µP is a random measure counting the jumps

in X, with compensator ν̃ P(dt, dx) = atdt⊗νP(dx) for some process at and Lévy measure νP(dx), and

with associated martingale measure µ̃P = µP − ν̃ P. We denote expectations under P(0) by E( · ). This

formulation is very general; essentially all parametric models in the literature satisfy equation (1).

The so-called jump activity is bounded by the parameter r, i.e., we have,∫
R

(|x|r ∧ 1)νP(dx) <∞, (2)

for some r ∈ [0, 1) and we define x∧ y = min(x, y). The leading case is r = 0, corresponding to jumps

of finite activity, which have been predominantly used in prior work, while values of r > 0 allow for

infinitely active jumps. The parameter r appears explicitly in our asymptotic results.

Under no-arbitrage, a risk-neutral probability measure, Q, is guaranteed to exist, see, e.g., Section

6.K in Duffie (2001), and is locally equivalent to P(0). It transforms discounted asset prices into (local)

martingales. In particular, for X under Q, we have,

dXt

Xt−
= (rt − δt) dt +

√
Vt dW

Q
t +

∫
x>−1

x µ̃Q(dt, dx) , (3)

where rt is the risk-free interest rate and δt is the dividend yield, WQ
t denotes a Q-Brownian motion,

and the jump martingale measure is defined with respect to a risk-neutral compensator ν̃Q(dt, dx).

The theoretical values of derivatives written on X equal their expected discounted payoffs under

the risk-neutral measure, Q. In particular, if we denote the prices of European-style out-of-the-money

(OTM) options on X at time t by Ot,k,τ , we have,

Ot,k,τ =

 EQ
t

[
e−

∫ t+τ
t rs ds (Xt+τ −K)+

]
, if K > Ft,t+τ ,

EQ
t

[
e−

∫ t+τ
t rs ds (K −Xt+τ )+

]
, if K ≤ Ft,t+τ ,

(4)
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where τ is the tenor, K is the strike price, Ft,t+τ is the futures price of the underlying asset, X, at

time t for the future date t+ τ , and k = ln(K/Ft,t+τ ) is the log-moneyness.3

We model the risk-neutral probability measure parametrically, rendering the option prices nonlinear

functions of k and τ as well as a parameter vector and a latent state vector.4 In particular, under the

risk-neutral model, the diffusive volatility and jump processes are governed by a (latent) state vector,

or factors, so that Vt = ξ1(St) and ν̃Q(dt, dx) = ξ2(St) ⊗ νQ(dx), where νQ(dx) is a Lévy measure;

ξ1(·) and ξ2(·) are known functions; and St denotes the p × 1 state vector taking values in S ⊂ Rp.

Importantly, we only require St to be an F (0)
t -adapted stochastic process, whose dynamics need not

be specified explicitly for the purposes of our analysis.5 We further assume that the model-implied

option prices, quoted in terms of Black-Scholes implied variance (BSIV), are given by the functions

κ(k, τ,Z,θ), where k and τ denote the moneyness and tenor of the option, and Z and θ denote a

particular value of the state and parameter vectors, respectively. The parameter vector is of dimension

q× 1 and takes values θ ∈ Θ, with Θ being a compact subset of Rq. We denote the true values of the

latent factors at time t by St and the true value of the parameter vector by θ0. We note that the only

time-dependence of the option prices is through the value of the state vector.6 Our primary interest

in this paper is inference for θ0 and the factor realizations {St}t≥0.

The above framework for option pricing nests most continuous-time models used in empirical

work, including the affine jump-diffusion class of Duffie et al. (2000).7 The only requirement for

implementation of our inference procedures is knowledge of the function κ(k, τ,Z,θ), either in closed-

form, up to numerical integration, or via simulation.8 We stress, in particular, that we do allow for

risk-neutral specifications in which there is dependence between the latent state vector St and either

WQ
t or the jump measure µQ. That is, we accommodate the so-called leverage effect, working through

either the diffusive or the jump component of Xt, or both.

2.2 Observation Scheme

The time span of the panel is [0, T ], and we have observations from the option surface at given integer

times t = 1, . . . , T . For each date, the options cover a significant range of strikes k and several tenors,

3Note that by including the subscript t in the notation of the option price, we allow for the option price to change from
one day to another, even when the log-moneyness of the option, k, stays the same.

4Our focus is on the option panel, which is fully characterized through a model for the risk-neutral probability. We impose
no assumptions on the P dynamics beyond what is implied by our model for the Q dynamics and no-arbitrage.

5For convenience, we assume the functions ξ1(·) and ξ2(·) do not depend on the parameter vector. This is almost universally
satisfied in empirical applications. In addition, rt and δt should be known functions of the state vector St.

6Thus, we implicitly assume stationarity of the risk-neutral distribution of the state vector.
7We only assume that the diffusion coefficient and the jump intensity of X are governed by a finite-dimensional state
vector under the risk-neutral probability measure, but make no such assumption for the statistical measure.

8In our numerical exercise below, it takes 0.001 seconds to evaluate an entire option cross-section on a given trading day,
and 0.06 seconds to optimize over the factors on a single day, i.e., to perform the optimization in equation (10) below on
a single day.
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τ . Specifically, at time t, we observe the option prices {Ot,kj ,τj}j=1,...,Nt for some (large) integer Nt,

where the index j runs across the full set of strikes and tenors available on that day. The number of

options for the maturity τ is denoted N τ
t , so Nt =

∑
τ N

τ
t , where N τ

t and Nt are F (0)
t -adapted.

Given the heterogeneity of the available option data, we allow the panel to be unbalanced, so both

the total number of options and the available strike-tenor combinations (k, τ) are free to vary across

time. In particular, we assume,
N τ
t

Nt
≈ πτt and

Nt

N
≈ ςt, (5)

where πτt and ςt are positive-valued processes, and N is an unobserved non-random number, repre-

senting the “average size of the cross-section”. We refer to Section 8.1 of the Appendix for a formal

statement regarding the nature of the approximations in (5).

For each pair, (t, τ), we denote the minimum and maximum log-moneyness by k(t, τ) and k(t, τ),

respectively. At time t and tenor τ , we define the F (0)
t -adapted moneyness grid as,

k(t, τ) = kt,τ (1) < kt,τ (2) . . . < kt,τ (N τ
t ) = k(t, τ),

and we further set ∆t,τ (i) = kt,τ (i)− kt,τ (i− 1), for i = 2, ..., N τ
t . Our asymptotic scheme sequentially

adds new strikes to the existing ones within [k(t, τ), k(t, τ)], so that ∆t,τ (i) shrinks towards zero,

asymptotically, while allowing for the strikes to cluster relatively more densely within certain regions

of the range, i.e.,

∆t,τ (i) ≈ 1

N τ
t

ψt,τ (kt,τ (i)), i = 2, ..., N τ
t , (6)

where ψt,τ (k) is some positive valued process. Again, we defer a formal characterization of the ap-

proximation in equation (6) to the Appendix.

Finally, Tt denotes the tenors available at a given point in time t, and the vectors kt = (k(t, τ))τ∈Tt

and kt =
(
k(t, τ)

)
τ∈Tt indicate the lowest and highest log-moneyness at time t across the available

tenors. These quantities may vary over time and be random, thus accommodating pronounced shifts

in the observed option cross-section along these dimensions over the sample.

The above setting allows for a great deal of intertemporal heterogeneity in the observation scheme.

For example, the tenors need not be identical across days, and we allow for a different number of

options in the panel across days, maturities and moneyness. Also, intuitively, the relative number of

options at a given time will impact the precision of the inference for the state vector compared to other

dates. Likewise, the relative number of options across the maturities and the local “sparseness” of the

strikes impact the quality of inference for parameters and state variables differentially depending on

their sensitivity to tenor and moneyness. The quantities ςt, π
τ
t and ψt,τ (k) capture these facets of the

panel configuration, and they appear explicitly in the asymptotic distribution theory below.
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We stipulate that option prices, quoted in terms of BSIV, are observed with error, i.e., we have,

κ̃t,k,τ = κt,k,τ + εt,k,τ , (7)

where we use the shorthand κt,k,τ = κ(k, τ,St, θ0) and the observation (measurement) errors, εt,k,τ , are

defined on a space Ω(1) = 

t∈N,k∈R,τ∈Γ

At,k,τ , for At,k,τ = R, with Γ denoting the set of all possible tenors.

Ω(1) is equipped with the product Borel σ-field F (1), with transition probability P(1)(ω(0), dω(1)) from

the original probability space Ω(0) – on which X is defined – to Ω(1). We define the filtration on Ω(1)

via F (1)
t = σ (εs,k,τ : s ≤ t). Then, the filtered probability space (Ω,F , (Ft)t≥0,P) is given as follows,

Ω = Ω(0)×Ω(1), F = F (0)×F (1), Ft = ∩s>tF (0)
s ×F (1)

s , P(dω(0), dω(1)) = P(0)(dω(0))P(1)(ω(0), dω(1)).

We assume the extension has the property that any local martingale and semimartingale remain

a local martingale and semimartingale (with the same characteristics) on the extended probability

space. Formally, this is assured if the extension is “very good”.9

Intuitively, we motivate this representation by the following considerations. The option errors are

defined on the space Ω(1). We equip this space with the simple product topology as, at any point in

time, only a countable number of them appear in our estimation. Since we want to allow the errors

and the underlying process X to be dependent, we define the probability measure via a transition

probability distribution from Ω(0) to Ω(1). Importantly, we assume that the observation errors are

F (0)-conditionally centered and possibly heteroskedastic of unknown form, i.e.,

E(εt,k,τ |F (0)) = 0, and E(ε2t,k,τ |F (0)) = φt,k,τ for some φt,k,τ .

We refer to the Appendix for additional assumptions on the observation error process, but note that

these are satisfied in the case of “modulated” observation noise, i.e., for εt,k,τ =
√
φt,k,τ ζt,k,τ , where

φt,k,τ is F (0)
t -adapted and ζt,k,τ is defined on Ω(1) and is independent from F (0).10

2.3 Volatility Estimation from High-Frequency Asset Prices

We conclude this section by introducing the second source of information, consisting of high-frequency

data on the underlying asset X. These data are used only for nonparametric estimation of the volatility

process which, in turn, assist in the recovery of the state vector (or at least part of it). To this end, we

assume to have an equidistant high-frequency recording of X with grid size ∆n = 1/n, i.e., we observe

X at times 0, 1/n, . . . , i/n, . . . , T + 1. The log-price is denoted by xt = log(Xt) and, similarly, its

9That is, ω(0) →
∫

1{A}(ω
(0), ω(1))P(1)(ω(0), dω(1)) is F (0)

t - measurable for all A ∈ F (1) (see Definition II.7.1 of Jacod
and Shiryaev (2003)).

10We also note that we allow the quantities associated with the sampling scheme, k, k and Nt, to be random and depend
on F (0). Due to the assumption E(εt,k,τ |F (0)) = 0, this does not cause “endogeneity” biases in the estimation.
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increment by ∆n
i x = xi/n − x(i−1)/n. Using this, our nonparametric volatility estimator at time t is

defined as

V̂ n
t =

n

kn

∑
i∈Int

(∆n
i x)21{|∆n

i x|≤α∆$
n }, Int = [tn+ 1, ..., tn+ kn], (8)

for some α > 0, $ ∈ (0, 1/2), and kn ∈ N with kn < n. This constitutes the spot counterpart of the

integrated truncated variation estimator of Mancini (2001). For satisfactory finite sample performance,

it is critical to determine α adaptively, based on a preliminary tuning-free estimate of volatility, such as

the bipower variation of Barndorff-Nielsen and Shephard (2004, 2006) or the median realized volatility

of Andersen et al. (2012).

The limit theory for the PLS estimator is directly impacted by the degree of information about

spot volatility embedded in the high-frequency data relative to the option prices. Asymptotically, this

is determined by the rate at which we acquire information from the high-frequency asset returns versus

the option cross-section. We summarize this feature of the system through the assumption,

kn
N
→ % for some real number % ≥ 0 .

Note that we allow % = 0, but not % =∞. This is consistent with the empirical findings, where short-

dated option prices are invariably found to be very useful in pinning down the level of volatility, while

the high-frequency spot estimator can be quite noisy. Nonetheless, we do expect the high-frequency

data to provide auxiliary information, corresponding to a limiting ratio % > 0.

3 Inference for Panels with Long Time Span

This section provides our econometric analysis for the scenario where the large cross-sectional di-

mension of the panel is accompanied by a large time span. Given the observation equation (7), we

estimate the system using least squares. However, we further penalize the deviation of the model-

implied volatility from its nonparametric high-frequency counterpart during estimation, so we refer

to our approach as penalized least squares. Section 3.1 introduces the formal estimation criterion

and establishes consistency. We then provide the notation required for the associated limit theory in

Section 3.2, before presenting the limit distribution results in Section 3.3. Finally, Section 3.4 derives

results for the estimation of the factor dynamics from the extracted factor realizations.

3.1 The PLS Estimator and Consistency

Our setup is in some respects similar to that of the classical dynamic nonlinear panel models, see,

e.g., Hahn and Newey (2004) and Hahn and Kuersteiner (2011), with the latent factors playing the

role of the fixed effects. As in this strand of work, we do not model the dynamics of the latent factors

9



parametrically. Consequently, given our assumption for the observation error in equation (7), it is

natural to estimate the parameters and the fixed effects (latent factors) via least squares. We further

augment the objective function by a penalty term which reflects information in the high-frequency

volatility estimator, V̂ n
t , about the latent factors St.

11

Formally, we define the T × p matrix of factor realizations by Z = {Z ′t}Tt=1 and use this to write

the objective function, for some finite constant λ ≥ 0, as,12

L (Z,θ) ≡
T∑
t=1

Lt (Zt,θ) , with (9)

Lt (Zt,θ) ≡


Nt∑
j=1

(
κ̃t,kj ,τj − κ(kj , τj ,Zt,θ)

)2
Nt

+ λ
kn
Nt

(
V̂ n
t − ξ1(Zt)

)2

 .

The first part of the objective function is the L2-distance between observed and model-implied option

prices. The second is a penalization term for the deviation of the model-implied spot volatility estimate

from a direct, but noisy, measure of spot volatility obtained from high-frequency return data, V̂ n
t .13

We recall that Vt = ξ1(St). The use of a noisy observation of the state vector (or part of it) in the

estimation procedure is reminiscent of the FAVAR approach, proposed by Bernanke et al. (2005).14

Similarly to FAVAR, the penalization in equation (9) serves to improve the identification of the latent

factors which, as we show later, may contribute to an improvement in efficiency.

To characterize the properties of our PLS estimator, it is convenient to concentrate out the factor

realizations, i.e., we set,

Ŝ(θ) = argmin
Z∈ST

L (Z,θ) , θ ∈ Θ, S ∈ Rp, (10)

and the resulting estimator, then, takes the form,

θ̂ = argmin
θ∈Θ

L
(
Ŝ(θ),θ

)
, Ŝ = Ŝ(θ̂). (11)

In the case when N →∞ and T is fixed, the asymptotic properties of the estimator (Ŝ′, θ̂) have been

derived in Andersen et al. (2015a). In this section, we consider the case where both N and T increase

asymptotically. We start with the consistency result.

11Note that our option pricing model does contain a parametric assumption for the evolution of St. However, this is for its
behavior under the risk-neutral measure Q only. We avoid specifying the P dynamics of St parametrically in this paper
(this is an interesting extension that can be pursued in future work). As discussed in Andersen et al. (2015a), this has
the distinct advantage of robustness with respect to the modeling of the risk premia, i.e., the P−Q wedge.

12Note that, in Section 5, we will generalize the PLS estimator by allowing λ to be time-varying and random, which will
lead to efficiency improvements.

13Recall from equation (8) that we standardized the estimator V̂ nt by kn. This is the reason we multiply the penalization
term in equation (9) by kn. It is merely a matter of normalization.

14Bernanke et al. (2005) augment a VAR of economic variables with a noisy observation of a latent factor, related to the
variables in the VAR system, to exploit auxiliary information regarding the factor realizations.
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Theorem 1. Let Assumptions 1-6 hold. Assume N → ∞, T → ∞ with T/N → γ for some finite

γ ≥ 0, ∆n → 0 and kn → ∞ with kn
N → % for some % ≥ 0. In addition let $ ∈

(
1

4−r ,
1
2

)
and

kn
√

∆n → 0. Then, we have,

sup
t=1,...,T

||Ŝt − St||
P−→ 0 and θ̂

P−→ θ0. (12)

We note that consistency holds under very general conditions for the tuning parameters of the high-

frequency volatility estimator, $ and kn. Of course, these conditions are absent if the penalization

term is left out of the objective function, i.e., when λ = 0.

3.2 Auxiliary Notation for the Limiting Distribution

We now turn towards the limit distribution of the parameter and factor estimates. As discussed

in the introduction, the model parameters will be estimated at the rate
√
NT , but are subject to an

asymptotic bias due to the incidental parameter problem, while the factor (or state vector) realizations

converge at the slower
√
N rate. In addition, given the multiple and potentially interacting sources

of unobserved heterogeneity, the PLS estimator clearly will not utilize the optimal weighting of the

observations during estimation. As a consequence, the limiting covariance matrices in the asymptotic

distribution take the common sandwich form, albeit with a number of inherent features of the system

impacting the representation. To state the result in an interpretable format, we require additional

notation, which we introduce now.

In what follows, all partial derivatives of κ that appear below are assumed to exist, as implied by

our assumptions in Section 8.1. The first-order derivatives with respect to the parameter and state

vectors are given by the q × 1 and p× 1 vectors,

D(k, τ,Z,θ) =
∂

∂θ
κ(k, τ,Z,θ), G(k, τ,Z,θ) =

∂

∂Z
κ(k, τ,Z,θ),

respectively, and, similarly, their first and second derivatives with respect to the state vector Z are

denoted by D(S)(k, τ,Z,θ), G(S)(k, τ,Z,θ), D(SS)(k, τ,Z,θ) and G(SS)(k, τ,Z,θ) (of dimensions

q × p, p× p, q × p2 and p× p2, respectively), and the corresponding derivatives with respect to θ are

denoted by D(θ)(k, τ,Z,θ) and G(θ)(k, τ,Z,θ) (of dimension q × q and p× q).
To simplify notation, for each pair (kj , τj), we set κ̃j,t ≡ κ̃t,kj ,τj , κj(Z,θ) ≡ κ(kj , τj ,Z,θ), and

simplify the notation for the partial derivatives of the latter analogously. Furthermore, when we

evaluate κj(Z,θ) at the true vector (S′t,θ
′
0), we denote it by κj,t,0, and the notation for the partial

derivatives of κj(Z,θ) is simplified in the same manner, if evaluated at (S′t,θ
′
0). Similarly, for the

penalty term,

C(Z) ≡ ∂

∂Z
ξ1(Z) and C(S)(S) ≡ ∂2

∂ZZ ′
ξ1(Z),

11



denote the p× 1 gradient vector and p× p higher-order gradient matrix, respectively, and we will use

the shorthand notation Ct,0 = C(St) and C
(S)
t,0 = C(S)(St).

The differential rate of convergence implies that the parameters can be treated as fixed and known,

when deriving the limit distribution for the estimates of the factor realizations. As a result, the quan-

tities determining the limiting conditional covariance matrix for the latter take a fairly conventional

form. The main complication arises from the fact that the usual component stemming from the least

squares criterion is supplemented by a contribution from the penalization term. The relevant matrices

for the factor realizations are given in the next three equations. First, define the p× p matrix,

IS,t =
∑
τ

πτt

∫ k̄(t,τ)

k(t,τ)

1

ψt,τ (k)
G (k, τ,St,θ0)G (k, τ,St,θ0)′ dk , (13)

which represents an outer product of gradient type term for the least squares criterion. Notice that

the relative number of options at each tenor (πτt ) and the relative denseness, or clustering, of options

across certain segments of the strike range (ψt,τ (k)) enter explicitly in the expression.

A corresponding p × p matrix, reflecting the outer product of the gradient for the penalization

term, is given by,

PS,t ≡
λ%

ςt
×Ct,0C ′t,0, (14)

where the relative number of options available on that date (ςt) and the relative informativeness of

the high-frequency volatility estimator relative to the option data (%) enter the expression.

Finally, we define the p × p asymptotic covariance matrices ΩS,t and ΨS,t, which further include

the variance of the observation error for the option BSIV (φt,k,τ ), respectively the variance of the

nonparametric volatility estimator (2V 2
t ),

ΩS,t =
1

ςt

∑
τ

πτt

∫ k̄(t,τ)

k(t,τ)

1

ψt,τ (k)
φt,k,τG (k, τ,St,θ0)G (k, τ,St,θ0)′ dk, ΨS,t = 2

λ2%

ς2
t

V 2
t Ct,0C

′
t,0.

We turn next to the expressions required to capture the asymptotic behavior of the estimates for the

model parameters, θ0. They are more complex and involve interaction terms among the factors and

parameters as well as the features of the system determining the magnitude of the asymptotic bias.

We start by defining the q × q information matrix for the parameter vector,

Iθ,t =
∑
τ

πτt

∫ k̄(t,τ)

k(t,τ)

1

ψt,τ (k)
D (k, τ,St,θ0)D (k, τ,St,θ0)′ dk, (15)

and the p× q cross information matrix,

IS,θ,t =
∑
τ

πτt

∫ k̄(t,τ)

k(t,τ)

1

ψt,τ (k)
G (k, τ,St,θ0)D (k, τ,St,θ0)′ dk. (16)
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In turn, these are used to define,

Rt,0 ≡ −(IS,t + PS,t)
−1IS,θ,t and Ut(k, τ,Z,θ) ≡D(k, τ,Z,θ) +R′t,0G(k, τ,Z,θ), (17)

the first of which is the influence function of the gradient with respect θ, and Ut(k, τ,Z,θ) partials

out the effect of the state variables on D(k, τ,Z,θ). This corresponds to demeaning the score of θ,

in analogy to eliminating time and individual effects in large linear panel data models. As above, we

denote the first and second derivative with respect to Z as well as the first derivative with respect to

θ of Ut(k, τ,Z,θ) by U
(S)
t (k, τ,Z,θ), U

(SS)
t (k, τ,Z,θ), and U

(θ)
t (k, τ,Z,θ), respectively. In analogy

with our simplified notation for a pair (kj , τj), we set Uj,t(Z,θ) = Ut(kj , τ,Z,θ), and, when evaluated

at the true vector (S′t,θ
′
0), we further write Uj,t,0. Similar simplifications are made to the notation for

the partial derivatives of Ut(k, τ,Z,θ). With this notation in hand, we define the q × q information

matrix,

IU,t =
∑
τ

πτt

∫ k̄(t,τ)

k(t,τ)

1

ψt,τ (k)
Ut (k, τ,St,θ0)Ut (k, τ,St,θ0)′ dk , (18)

the q × q matrices Pθ,t = R′t,0PS,tRt,0, Ψθ,t = R′t,0ΨS,tRt,0 , and,

ΩU,t =
1

ςt

∑
τ

πτt

∫ k̄(t,τ)

k(t,τ)

1

ψt,τ (k)
φt,k,τUt (k, τ,St,θ0)Ut (k, τ,St,θ0)′ dk ,

ΩS,U,t =
1

ςt

∑
τ

πτt

∫ k̄(t,τ)

k(t,τ)

1

ψt,τ (k)
φt,k,τG (k, τ,St,θ0)Ut (k, τ,St,θ0)′ dk ,

which all appear, directly or indirectly, in the limiting distributions developed subsequently. Finally,

we let X be generic notation for any of the matrices IU ,Pθ,ΩU , and Ψθ, which we define by,

X =

 plimT→∞
1
T

∑T
t=1 X t, if T →∞,

1
T

∑T
t=1 X t, if T is fixed.

(19)

These matrices are guaranteed to exist by our assumptions.15

3.3 Limiting Distribution of the PLS Estimator

The representation of the asymptotic distribution for the parameters and factor realizations involves

the notion of stable convergence (denoted by
L−s−−→). It means that the convergence holds jointly with

any bounded random variable defined on the original probability space. This feature is fundamental

in establishing the following limiting distribution result.

15Typical option data sets contain deterministic cycles in the configuration of the available tenors. This feature renders
quantities such as IU,t non-stationary. However, considering

∑
t∈Tm IU,t, for Tm denoting a period covering one calendar

month, such non-stationarities vanish, and standard laws of large numbers suffice for validation of equation (19).
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Theorem 2. Let Assumptions 1-8 hold. Assume N → ∞, T → ∞ with T/N → γ for some finite

γ ≥ 0, ∆n → 0 and kn →∞ with kn
N → % for some finite % ≥ 0. In addition, let,

$ ∈
(

1

2(2− r)
,
1

2

)
, kn

√
∆n → 0,

√
Tkn

(
kn∆n ∨∆(2−r)$

n

)
→ 0,

∆
(2− r

2
)$−1

n

kn
→ 0. (20)

Then we have,

√
TN

(
θ̂ − θ0 −BT,N

)
L−s−−→ (IU + Pθ)

−1 (ΩU + Ψθ)
1/2 ×Eθ , (21)

where Eθ is a q× 1 standard Gaussian vector, defined on an extension of the original probability space

and independent from F , and the asymptotic bias is given by,

BT,N = (IU + Pθ)
−1 ×

2∑
j=1

(
B(j)
T,N,1 −B(j)

T,N,2 −B(j)
T,N,3

)
,

whose components are defined in Section 8.3. In addition, for arbitrary t1, ..., th ∈ N, we have,

√
N


Ŝt1 − St1

...

Ŝth − Sth

 L−s−−→ diag


(IS,t1 + PS,t1)−1(ΩS,t1 + ΨS,t1)1/2

...

(IS,th + PS,th)−1(ΩS,th + ΨS,th)1/2

×


ESt1
...

ESth

 , (22)

where ESt1 , ...,ESth is a sequence of standard Gaussian vectors, defined on an extension of the original

probability space, with each of them independent of each other, of Eθ, as well as of F , and the

convergence in equation (22) holds jointly with that in equation (21).

We now provide some discussion of this limit result. First, the rate of convergence of the parameter

vector is
√
NT , so both the increase in the cross-section and time dimension of the panel help in the

recovery of the parameters. By contrast, the factor realizations are estimated at the rate
√
N . This

is quite intuitive as increasing the time span of the panel does not provide extra information for the

factor realization at a given point in time.16 The asymptotic limit distributions of the parameters

and factor realizations are fundamentally different. For the former, it is Gaussian with a constant

limiting variance, as is common in econometric applications. On the other hand, it is mixed Gaussian

for the estimates of the factor realizations, i.e., it is Gaussian only when conditioned on the filtration

of the original probability space, and the covariance matrix depends explicitly on the latter. That

is, IS,t + PS,t and ΩS,t + ΨS,t, which appear in the limiting distribution of the factor realizations in

equation (22), are stochastic. This implies that the precision in recovering the factor realizations is

time-varying and depends on unobserved random quantities associated with the cross-section of option

16We note that this could occur if there were pathwise restrictions on the dynamic evolution of the factors. However,
existing dynamic factor models do not feature such restrictions.
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data at that particular point in time. For example, periods of elevated volatility may be associated

with a larger variance of the observation errors (captured by the function φ), and hence noisier recovery

for the factor realizations.

We can contrast the limiting behavior above with the case of a panel with fixed time span, but

asymptotically increasing cross-section. In this scenario, both the parameter vector and factor realiza-

tions have mixed Gaussian limiting distributions (see also Lemma 1 below). Furthermore, unlike here,

the parameter and state vector estimates display asymptotic dependence in the fixed time span case.

This dependence becomes asymptotically negligible when the time span is long, since the parameter

vector is now recovered at a faster rate.

We note that, given the non-standard mixed Gaussian distribution of the factors, we need a stronger

notion of convergence in equation (22) – stable convergence – than what is typically derived in econo-

metric applications, in order to specify the joint asymptotic behavior of the parameters and factors.

The stable convergence is also required to accommodate the penalization with the high-frequency

volatility estimator and characterize jointly the asymptotic behavior of the option error and the error

coming from the high-frequency volatility estimation. To the best of our knowledge, the joint asymp-

totic behavior of the factor and parameter estimates in the nontrivial case, where the F-conditional

limiting variance of the factors is stochastic, has not been derived in earlier work on large panels, with

both N and T diverging. Such results are indispensable for deriving the properties of test statistics

for joint model fit across a time period of interest, involving jointly the estimates for the factors,

parameters and high-frequency volatility.17

A further distinguishing feature of the long versus fixed span case is the presence of an asymptotic

bias in the parameter estimation, the explicit form of which is given in the Appendix. This bias

reflects the effect of uncertainty in the recovery of the factor realizations on the parameter estimation.

Intuitively, although the errors in the estimation of the factor realizations average out over time, and

thus do not slow down the recovery rate of the parameters, the nonlinearity of the model, both in

parameters and the state vector, induces an asymptotic bias of order 1/N in the parameter estimates.

Therefore, if T << N (γ = 0 in Theorem 2), this bias does not affect the central limit theorem for the

parameter vector, i.e., the bias term in the limit result (21) is of higher order. On the other hand, if

T � N , the asymptotic bias does have a non-negligible effect on the limit distribution of the parameter

estimate. The form of the bias terms resembles those in the classical panel data literature, see e.g.,

Hahn and Newey (2004) and Hahn and Kuersteiner (2011), with the difference here arising from the

stochastic nature of the terms, the infill asymptotic setting in the cross-section as well as the penalty

term in the estimation due to the factor signal from the high-frequency data. Finally, we remark that

17We refer to Jacod and Shiryaev (2003) for more details regarding the notion of stable convergence.
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the limit results in equations (21) and (22) are infeasible because the asymptotic variance and bias

term are based on population quantities. In the next section, we show that they are straightforward

to estimate consistently from the data, thus enabling feasible inference.

In terms of the asymptotic role of the penalization, we have two cases. When kn/N → 0, the

penalization has no first-order asymptotic effect, while for kn/N → % > 0, the penalization impacts the

asymptotic distribution of the estimators for both the parameters and factor realizations. The penalty

condition provides a restriction on the factor realization, namely that the model-implied estimate of

volatility ξ1(St) should be close to the nonparametric estimate of volatility Vt. The option panel allows

us to recover the factor realizations at the rate
√
N (as implied by (22)). On the other hand, the rate

of convergence of the high-frequency volatility estimate is
√
kn (recall, kn is the local window for the

high-frequency data used to construct the volatility estimator). Therefore, when kn/N → 0, the option

data are more efficient in recovering the volatility, rendering penalization during estimation suboptimal

asymptotically.18 On the other hand, when kn/N → % > 0, the nonparametric high-frequency volatility

estimate and the option-based are equally efficient, in terms of rate of convergence, and hence the

penalization may have an asymptotic effect. This explains why, in our objective function, the penalty

term is multiplied by λ knNt . This ensures that the penalty becomes asymptotically negligible exactly

when it is suboptimal to utilize high-frequency return data for estimation. Importantly, the user

does not need to take a stand on which data source, options or high-frequency data, is more efficient

for recovering spot volatility. Our PLS procedure automatically adapts to the scenario at hand.

Nevertheless, the user still needs to pick the constant λ. In Section 5, we propose a data-dependent

choice for this parameter, which boosts the efficiency of the inference.

Above, we rule out the possibility that kn/N → ∞, i.e., that the high-frequency data are more

efficient than the options (in terms of rate of convergence) in recovering spot volatility.19 This case

would heighten the asymptotic role of the penalization term. In fact, we have distinct scenarios

depending on the dimension of the state vector and the role of its components in determining spot

volatility. For example, in the one-factor stochastic volatility model of Duffie et al. (2000), the state

vector equals the level of (spot) volatility. Hence, when kn/N →∞, the rate of convergence of the state

vector will be the faster
√
kn in lieu of the

√
N implied by our limit result (22), and the asymptotic

bias for the parameter vector in equation (21) vanishes. In a more general parametric model with

multiple factors, one of which is spot volatility, all components of the state vector, except for spot

volatility, will be estimated at the rate
√
N , while the stochastic volatility will be estimated at the

18Even though it is suboptimal (asymptotically) to use penalization within this scenario, its presence may greatly facilitate
the identification of the state vector in finite samples.

19The “limiting” case of kn/N →∞ implies that part of the state vector is observed by the econometrician. This scenario
can be of interest in other applications of factor augmentation than the volatility measurement case considered here.
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faster
√
kn rate. Since kn/N →∞ is implausible on empirical grounds, at least for assets with liquid

option markets, we do not pursue this case any further.

The relative growth conditions (20) are necessary for our limiting result, although they are required

only if the penalty term is present in the objective function, i.e., if λ > 0. In assessing the implications

of these conditions, the following points are useful. First, to avoid unnecessary truncation, it is optimal

to follow the convention in the literature and set $ very close to 1/2. Second, the higher the kn, the

faster the rate of convergence of the high-frequency estimator. Therefore, we prefer the largest value of

kn for which condition (20) is satisfied. In the typical case of finite activity jumps, i.e., when r = 0 (the

value of r is typically known from the specification of the risk-neutral model), and provided $ is set

arbitrarily close to 1/2, the binding constraints in condition (20) are kn
√

∆n → 0 and
√
Tknkn∆n → 0.

Hence, the optimal feasible choice of kn depends on the relative size of T and 1/∆n. If T is not very

large, we can set kn � 1 /∆
1/2−ι
n for some arbitrary small ι > 0, guaranteeing the optimal feasible rate

for estimating spot volatility from the high-frequency data. On the other hand, if T is of the same order

as 1/∆n, the optimal feasible rate is kn � 1 /∆
1/3−ι
n . From a practical perspective, this means that

for panels with a large time span relative to the sampling frequency for the returns, we need to pick

a smaller sized local window for volatility estimation, slowing its rate of convergence, but reducing its

bias. Given the discussion in the previous paragraph, if this implies that the high-frequency volatility

estimator becomes comparatively noisy (kn /Nt is small), then the penalty term may have only an

asymptotically vanishing impact on our estimation.

Finally, in cases where the observation errors become negligible, we may have ΩU as well as ΩS,t

vanish for some or all t. Some of our limit results would then become degenerate. In fact, in the

extreme case when options are observed with no error, we obtain exact error-free recovery for the

parameter vector and the sequence of factor realizations. Given the large percentage bid-ask spreads

observed on option markets, we deem such scenarios empirically implausible.

3.4 On the Estimation of the Factor Dynamics

The limit result (22) allows us to quantify the precision in recovering the factor realizations, which is

useful in a number of contexts. For example, as discussed in Andersen et al. (2015a), asset pricing

models impose pathwise restrictions on the relation between derivative securities and the underlying

asset, and our limit result enables us to test these formally. Another important use of the extracted

factors is for the estimation of the underlying factor dynamics. However, for that application, the

limit result (22) is insufficient since we need to analyze the impact of the errors on the recovery of the

factors over a long time span. The following theorem provides the requisite result.

Theorem 3. Let Assumptions 1-8 hold. Assume N → ∞, T → ∞ with T/N → γ for some finite

17



γ ≥ 0, ∆n → 0 and kn →∞ with kn
N → % for some finite % ≥ 0 as well as condition (20) of Theorem 2.

Then, for any continuously differentiable function g : Rp×Rp → Rd with bounded derivative, we have,

1√
T

T∑
t=2

(
g(Ŝt, Ŝt−1)− g(St,St−1)

)
= op(1). (23)

We note from Theorem 2 that Ŝt − St = Op(1/
√
N). In spite of that, the error in recovering the

factor realizations on the statistic in equation (23) is only op(1), even in the case where T and N

increase at the same rate. The reason is that the error in recovering the factor realizations on different

days across the sample effectively gets averaged out in the time series mean in equation (23), thus

mitigating its impact on the statistic sufficiently to establish the limiting result.

Under standard stationarity conditions for St and further assumptions guaranteeing a central limit

theorem (e.g., mixing conditions), 1√
T

∑T
t=2(g(St,St−1) − E(g(St,St−1))) will converge to a normal

random variable. Theorem 3 ensures that the recovery of the state vector from the option panel (and

high-frequency asset returns) has no asymptotic effect on the long span limit result, i.e., it is valid

even after replacing the state vector realizations by their estimates.

If the dynamics for the state vector takes a parametric form and St is a Markov process under the

physical probability measure, an attractive choice of g, capable of generating asymptotically efficient

estimates for the parameters of the state vector dynamics (with a
√
T rate of convergence), is based

on the conditional characteristic function, namely g (St,St−1)) = eiu
′St − Et−1(eiu

′St).

The use of the extracted factors for estimation of the state vector dynamics, using the above

theorem, is reminiscent of the implied state inference of Pan (2002) and Pastorello et al. (2003). These

papers employ a finite set of options to invert for the state vector, and then conduct inference based

on the option-implied factor realizations using method of moments or maximum likelihood techniques.

The major difference between these procedures and our approach is that we allow for observation

errors in the option prices, while letting the number of options increase asymptotically. Because of

this difference in the asymptotic setup, we find that, in contrast to Pan (2002) and Pastorello et al.

(2003), the estimation of the risk-neutral parameters has no first order asymptotic effect on the state

vector extraction - the risk-neutral parameters are estimated at the rate
√
NT , while the parameters

of the P dynamics of St are estimated at the slower rate of
√
T .

Finally, in an asymptotic setup with T →∞ and T/N → 0 (and without using noisy information

for the factor realizations), Gagliardini and Gourieroux (2014) model the dynamics of the state vector

parametrically. They perform joint estimation of the parameters for the nonlinear factor model (θ in

our setting) and for those driving the dynamics of the state vector (for which we make no parametric

assumption) via maximum likelihood, and they establish asymptotic independence between the two

sets of parameters (and rates of convergence of
√
NT and

√
T , respectively). However, their approach
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excludes the challenging case of T � N which can be the pertinent asymptotic scheme for many

practical applications.

4 Unified Feasible Inference with Short and Long Time Span

We now develop feasible inference techniques for the parameter vector and the factor realizations that

enable us to construct empirical confidence intervals and conduct tests. We cover both the cases of a

panel with a fixed or increasing time span. We begin with a lemma that restates the limit distribution

of the PLS estimator for the fixed time span, originally derived in Andersen et al. (2015a), in a manner

that facilitates comparison with our limit results for the case of a large time span.

Lemma 1. Under the conditions of Theorem 2, but with fixed time span, i.e., T fixed, then,

√
TN

(
θ̂ − θ0

)
L−s−−→ (IU + Pθ)

−1(ΩU + Ψθ)
1/2 ×Eθ,

where Eθ is a q × 1 vector of standard Gaussian variables, independent of each other and of F .

Furthermore, we have,

√
N


Ŝ1 − S1

...

ŜT − ST

 L−s−−→ (AVARS)1/2 ×


ES1

...

EST

 , AVARS = diag


AVARS1

...

AVARST

+ ACOVS ,

where ESt, t = 1, . . . , T is a sequence of standard Gaussian vectors, defined on an extension of the

original probability space, independent of F , but dependent on each other and on Eθ. Moreover, the

diagonal elements of asymptotic covariance matrix decomposes as AVARSt =
∑4

i=1 AVARSt,i where,

AVARSt,1 = (IS,t + PS,t)
−1(ΩS,t + ΨS,t)(IS,t + PS,t)

−1,

AVARSt,2 = Rt,0AVARθR
′
t,0/T, AVARθ = (IU + Pθ)

−1(ΩU + Ψθ)(IU + Pθ)
−1

AVARSt,3 = (IS,t + PS,t)
−1(ΩS,U,t + ΨS,tRt,0) (IU + Pθ)

−1R′t,0/T, AVARSt,4 = AVAR′St,3.

Finally, the matrix containing the off-diagonal elements is defined as,

ACOVS =


0p×p R1,0AVARθR

′
2,0/T . . . R1,0AVARθR

′
T,0/T

R2,0AVARθR
′
1,0/T 0p×p

...
...

. . .

RT,0AVARθR
′
1,0/T . . . 0p×p

 .

We note that the quantities IU , Pθ, ΩU and Ψθ are random, as T is fixed (recall equation (19)).

Therefore, the limit distribution of the parameter vector is now mixed Gaussian and has no asymptotic
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bias. Note also that the expression for the asymptotic variance of the parameter vector looks identical

to the one in equation (21). However, when T is fixed, the asymptotic variance is a random quantity.

Only in the asymptotic (T →∞) limit will the latter coincide with the one for the long time span. On

the other hand, the limiting variance of the factor realizations differs from the long span asymptotic

case. In particular, the F-conditional limiting variance in equation (22) corresponds to AVARSt,1

in Lemma 1 above, while the additional terms {AVARSt,j}j=2,3,4 reflect the asymptotic role of the

parameter estimation on the factor extraction. Note that {AVARSt,j}j=2,3,4 are all of order 1/T and,

as a result, they become asymptotically negligible when T increases asymptotically, as detailed in the

previous section. Likewise, ACOVS in Lemma 1 reflects the asymptotic dependence in the recovery

of the factor realizations at different points in time. This dependence is due to parameter uncertainty

and, since it is of the order 1/T , negligible in the long time span scenario.

Despite the distinct differences in the limiting behavior of the PLS estimator, we are able to devise

a feasible central limit theory that covers both the fixed and long time span setting. The formal result

is provided by the following theorem, where N̄ = 1
T

∑T
t=1Nt denotes the average number of options

per cross-section.20

Theorem 4. Under the conditions of Theorem 2 but with T either fixed or T →∞,√
TN̄

((
ÎU + P̂θ

)−1 (
Ω̂U + Ψ̂θ

)(
ÎU + P̂θ

)−1
)−1/2 (

θ̂ − θ0 − B̂T,N

)
L−→ Eθ,

where Eθ is a q×1 vector of standard Gaussian variables, independent of each other, and the estimators

ÎU , P̂θ, Ω̂U , Ψ̂θ and B̂T,N are defined in Section 8.5. Furthermore, for the state vector,√
N̄
(
ÂVARSt

)−1/2 (
Ŝt − St

)
L−→ ESt ,

where ESt is a sequence of p×1 vectors of standard Gaussian variables. The estimator of the asymptotic

covariance matrix, ÂVARSt is, similarly, deferred to the Appendix.

Based on the result of Theorem 4, we can conduct feasible inference regardless of whether the time

span is fixed or asymptotically increasing. This is important from a practical point of view, as the user

need not take a stand on whether the time span of the panel renders Lemma 1 or Theorem 2 more

appropriate for the case at hand. In designing the feasible inference theory, we accommodate features

of the limiting distributions of both asymptotic schemes. Several key features of the limit results for

the fixed and increasing time span case are critical in this regard. First, the stable convergence for the

factor realizations and for the parameter vector in the fixed span case enables us to apply a Slutsky

20Thus, N̄ can be viewed as the feasible counterpart to N , recall equation (5). We note that one does not need N̄ for
feasible implementation of the limit results of Theorem 4. This can be easily checked by inspection of the formulas for
the asymptotic biases and variances in the Appendix.
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type result, despite the fact that the probability limits of quantities such as ÎU may be random.

Second, the estimates for the asymptotic variance of the parameter vector in the long span case and

for the F-conditional asymptotic variance in the fixed time span case are identical. Third, the estimate

of the asymptotic bias is asymptotically negligible for a fixed time span. Finally, the estimate for the

asymptotic dependence between the estimates of the parameter vector and factor realizations is of

higher asymptotic order for the long time span case.

5 Weighted Penalized Least Squares

We now propose a weighted counterpart to the PLS estimator, which provides efficiency gains and

enables us to choose suitable values for λ, period-by-period (recall equation (9)). In analogy to the

reasoning for the classical weighted least squares estimator, we should weight the options according to

the variance of their observation error (in our case, the F-conditional variance). This implies weighting

each option price by an estimate of the F-conditional variance φt,k,τ . While this is feasible, we simplify

matters by assigning all options on a given day an identical weight. This may result in loss of efficiency

due to potential heteroskedasticity in the strike and tenor dimension of the option error variance at

a given point in time. Nevertheless, it still provides non-trivial efficiency improvements due to the

pronounced heteroskedasticity of the F-conditional option error variance over time.

Similarly, for efficiency improvements, we should weight the penalization term period-by-period.

Unlike the option observation error, whose F-conditional variance may be estimated by a preliminary

PLS estimator, the error of the nonparametric volatility estimator has an unknown F-conditional

variance, which cannot be estimated without further assumptions. However, we can instead weight the

penalization by an estimate for the F-conditional asymptotic variance of the nonparametric volatility

estimator. The latter is given by 2V 2
t , and, as a result, it is trivial to construct a consistent estimator

for it. Intuitively, since the asymptotic distribution of the nonparametric variance estimator is F-

conditionally Gaussian with a F-conditional variance of 2V 2
t , this is asymptotically equivalent to

weighting with the F-conditional variance of the variance estimator.21

More formally, we define Lw (Z,θ) ≡
∑T

t=1 Lwt (Zt,θ) with

Lwt (Zt,θ) ≡

 1

Nt

Nt∑
j=1

(
κ̃t,kj ,τj − κ(kj , τj ,Zt,θ)

)2
w(φ̂t)

+
kn
Nt

(
V̂ n
t − ξ1(Zt)

)2

w(2(V̂ n
t )2)

 , (24)

where

φ̂t =
1

Nt

Nt∑
j=1

(
κ̃t,kj ,τj − κ(kj , τj , Ŝt, θ̂)

)2
, t = 1, ..., T, (25)

21Again, the stable convergence is critical for proving the limit effect from the weighting.
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and w(x) is a twice continuously differentiable function on R+ with bounded first and second deriva-

tives. Moreover, w(x) ≥ ε for some ε > 0. An example of such a function is a smooth approximation

of x∨ε. As expected, the above estimator φ̂t is consistent for the cross-sectional average F-conditional

option variance at time t (generally a random number). Ideally, we would pick the weight function

w(x) = x but we rule this out for technical reasons.22 Even so, with the class of weight functions w,

described above, we may get arbitrary close to the identity function.

Given the above definitions, the resulting weighted penalized least squares (WPLS) estimator is

defined as

Ŝw(θ) = argmin
Z∈ST

Lw (Z,θ) , θ ∈ Θ,

and

θ̂w = argmin
θ∈Θ

Lw
(
Ŝw(θ),θ

)
, Ŝw = Ŝw(θ̂w).

In the next theorem, we characterize its limiting distribution in the long span case, with similar

extensions for the feasible central limit theorem readily applying to this scenario as well.

Theorem 5. Suppose the conditions of Theorem 2 hold. Then, convergence results for θ̂w and

(Ŝwt1 , ..., Ŝ
w
tk

) similar to those in (21) and (22) apply, as long as the quantities for their asymptotic

bias and variances are replaced with their weighted analogues, defined in Section 8.6.

We note that, for our WPLS estimator, we do not impose any assumptions regarding the type of

heteroskedasticity in the option observation error. This is unlike the classical weighted least squares,

see, e.g., White (1982) and Robinson (1987), where heteroskedasticity is modeled as either a known

or unknown function of observables. We do assume, however, that the F-conditional option error

variance is a smooth function of log-moneyness k. Then, our asymptotic setup of increasingly denser

observations, across a given strike range for a specific point in time and tenor, generates consistent

estimates of the F-conditional option error variance by local (in moneyness) cross-sectional averaging.

The theorem above is stated for a general weight function w. It is optimal to set w close to the

identity function. If the option error variance φt,k,τ is independent of k and τ , while φt,k,τ and Vt are

bounded from below and the option panel is balanced, then we obtain the optimally weighted penalized

least squares. The limit results are now greatly simplified and take a familiar form, as evident from

the corollary below.

Corollary 1. Suppose the conditions of Theorem 5 hold and, in addition,

inf
t∈R+

inf
τ∈Tt

inf
k∈[k(t,τ),k(t,τ)]

φt,k,τ > ε, and inf
t∈R+

Vt > ε for some finite ε > 0, φt,k,τ = φt .

22However, under stronger conditions on the boundedness of φt,k,τ and Vt from below, we may accommodate the case
w(x) = x.
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Finally, suppose ςt = 1 for all t. Then, if w(x) = x for x > ε, the asymptotic distribution of θ̂w and

Ŝw is characterized as follows.

√
TN

(
θ̂w − θ0 −Bw

T,N

)
L−s−−→ (IwU + Pw

θ )−1/2 ×Eθ, (26)

where Eθ is a q× 1 standard Gaussian vector, defined on an extension of the original probability space

and independent from F , and the asymptotic bias has the form,

Bw
T,N = − (IwU + Pw

θ )−1
(
B(1,w)
T,N,3 + B(2,w)

T,N,3

)
.

In addition, for arbitrary t1, ..., th ∈ N, we have,

√
N


Ŝwt1 − St1

...

Ŝwth − Sth

 L−s−−→ diag


(IwS,t1 + Pw

S,t1)−1/2

...

(IwS,th + Pw
S,th

)−1/2

×


ESt1
...

ESth

 , (27)

where ESt1 , ...,ESth is a sequence of standard Gaussian vectors, defined on an extension of the original

probability space, with each of them independent of each other, of Eθ, as well as of F , and the conver-

gence in (27) holds jointly with that in (26). Finally, all the quantities describing the two asymptotic

distributions, IwU , Pw
θ , IwS,th, Pw

S,th
, and Bw

T,N , are defined in Section 8.6.

One convenient aspect of the WPLS estimator is that we need not choose the weight assigned to

the penalty term in the objective function. In particular, the tuning parameter λ in the original PLS

criterion is replaced by the time-varying ratio of the option variance and the asymptotic variance of

the nonparametric variance estimator. As a result, the WPLS estimator alters the objective function

period-to-period, adapting to the relative precision of the option pricing and high-frequency volatility

estimator. From a practical point of view, this is attractive since the precision of these measures vary

substantially over time. The WPLS procedure ensures that the weight of the two components in the

objective function reflects their relative information content.

6 Numerical Experiments

We now undertake numerical experiments to assess the practical relevance of our unified inference

techniques. For this purpose, we rely on a representation that nests many existing models and captures

the complex dynamic features of option panels quite well. It takes the form of a two-factor jump-

diffusive stochastic volatility model for the risk-neutral distribution,

dXt

Xt−
= (rt − δt) dt +

√
V1,t dW

Q
1,t +

√
V2,t dW

Q
2,t +

∫
R2

(ex − 1) µ̃Q(dt, dx),

dV1,t = κ1 (v1 − V1,t) dt + σ1

√
V1,t dB

Q
1,t + µv

∫
R2

x2 1{x<0} µ
Q(dt, dx),

dV2,t = κ2 (v2 − V2,t) dt + σ2

√
V2,t dB

Q
2,t,

(28)
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where (WQ
1,t,W

Q
2,t, B

Q
1,t, B

Q
2,t) is a four-dimensional Brownian motion with WQ

1,t ⊥⊥ WQ
2,t, WQ

1,t ⊥⊥
BQ

2,t, and WQ
2,t ⊥⊥ BQ

1,t, while corr
(
WQ

1,t, B
Q
1,t

)
= ρd,1 and corr

(
WQ

2,t, B
Q
2,t

)
= ρd,2. The risk-neutral

compensator for the jump measure is given by

νQt (dx, dy) =
{(
c−(t)1{x<0}λ−e

−λ−|x| + c+(t)1{x>0}λ+e
−λ+x

)}
dx,

c−(t) = c−1 V1,t− + c−2 V2,t−, c+(t) = c+
0 + c+

1 V1,t− + c+
2 V2,t− .

We exploit the parameter estimates for the model from Andersen et al. (2015b), reproduced in Table 1.

Of course, these are extracted from actual option panels, thus reflecting the risk-neutral dynamics,

and not necessarily the actual statistical (or physical) probability measure. In fact, option prices are

known to embody sizable risk premiums, so to generate the actual evolution of the simulated system, we

modify the above specification of the volatility processes to more closely resemble the actual observed

volatility dynamics, i.e., we account for the risk premiums embedded in the risk-neutral parameter

estimates. In particular, we increase κ2 to 0.69, implying that a shock to V2,t has a (shorter) half-life

of one year, and we limit the magnitude of the jumps in Vt to not exceed 0.40.

Table 1: Parameter Values for model (28) used in Numerical Experiments

Parameter Value Parameter Value Parameter Value

ρ1 −0.762 κ2 0.169 c+
2 52.795

v1 0.004 σ2 0.129 λ− 16.943

κ1 12.831 c+
0 2.315 λ+ 51.818

σ1 0.247 c−1 69.208 µv 6.262

ρ2 −0.945 c+
1 13.161

v2 0.059 c−2 97.656

In terms of the option observation scheme, we follow the Monte Carlo setup of Andersen et al.

(2015a), but explore the impact of the time dimension of the panel through experiments with different

time spans. Specifically, consistent with standard practice, we sample option data every fifth day (time

is measured in business days). At each observation date, we obtain option prices at four separate

maturities: τ = 10, τ = 45, τ = 120 and τ = 252 days. For each tenor, we have 50 OTM option

prices for an equi-spaced log-moneyness grid, covering the range [−4, 1] · σ
√
τ , where σ is the current

at-the-money BSIV. This implies a time-varying coverage in terms of moneyness, depending on the

level of market volatility, roughly mimicking the characteristics of actual option panels. For the option
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error, we assume εt,k,τ = σt,k,τZt,k,τ , where Zt,k,τ are standard normal variables, independent across

time, moneyness and tenor, while σt,k,τ = 0.5ψk/Q0.995. For the latter, ψk represents the estimate of

the relative bid-ask spread from a kernel regression on actual S&P 500 index options, as reported in

Andersen et al. (2015a), and Q0.995 denotes the 0.995-quantile of the standard normal distribution.

This noise structure allows for significant fluctuations in the (conditional) noise variance as a function

of both the level of volatility and moneyness.23

Overall, our simulations involve N = 200 options per day, and we experiment with a span ranging

from 1 to 20 years. Since we sample once per week, this generates panels of about 50 to 1, 000

cross sections, each containing 200 option observations. For simplicity, we do not penalize with a

high-frequency volatility estimator and abstain from weighting the option observations.

We first consider the effect of the time span on the recovery of the factor realizations. Figure 1

plots the estimate for the standard error associated with the recovery of V1 and V2. We consider

observations recorded in the last week of the first year of the sample, as this period is present for all

time spans explored in our experiments. For ease of interpretation, we report the relative standard

error by dividing the standard error estimate by the true value of the factor (which is random). From

Theorem 2 and Lemma 1, we recall that, regardless of the time span, the rate of convergence of the

factor extraction is
√
N . Moreover, we reiterate that we keep N fixed in our experiments (mimicking

what occurs in practice) and that the limit distribution is mixed Gaussian. These features are reflected

in Figure 1. Indeed, the interquantile range of the relative standard error does not shrink with the

length of the span. This is due to the fact that the limiting variance of the error in the factor recovery

depends on the realized (random) path of the state vector. In addition, the error in recovering the

factor realizations tends to be higher for the shorter time spans. This reflects the effect of parameter

uncertainty captured by the terms {AVARSt,j}j=2,3,4 in Lemma 1. As the time span grows, this effect

diminishes, and the quantiles for the relative standard error stabilize and become insensitive to any

further lengthening of the span. Interestingly, this occurs at different horizons for the two factors.

For V1, the “stabilization” of the standard error around its long span value is complete after about

6 − 7 years. For V2, however, this occurs only after 15 − 16 years. The reason is that the second

factor is far more persistent than the first and, hence, it is harder to achieve a proper separation

between its realization and long-run parameter-driven properties. Another noteworthy discrepancy is

the relatively larger error in the recovery of V1 and the significant heterogeneity in the precision across

samples. This is largely due to the erratic behavior of V1, which stems from the random occurrence of

large jumps implied by the dynamic specification for this factor.

23In the absence of parametric assumptions on the actual factor dynamics (as in our theoretical treatment), the Gaussian
specification of the option errors implies that the optimally weighted least squares estimator constitutes the maximum
likelihood estimator.
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Figure 1: Relative Standard Errors for Factors. Standard errors are computed for the factor realization
from the last week of the first year in the sample. Standard errors are divided by the absolute value
of the true value of the factor realization. The straight line in each of the plots corresponds to the
median and the shaded area to the inter-quantile range, both computed from 100 draws of the process
(V1,t, V2,t).

We next study the intertemporal persistence of the error in the extraction of the factor realizations

across the sample. In Figure 2, we plot estimates for this error serial correlation over the last two

weeks of the first year in the simulation. Theorem 2 and Lemma 1 imply that this dependence

stems exclusively from the finite time span. That is, the intertemporal error correlation is due to

imprecision in the estimation of the parameter vector and, as we increase the span, the effect of the

latter vanishes asymptotically. Indeed, for both factors, the correlation shrinks as we increase the

time span. Nonetheless, the persistence of the error in the recovery of V2 remains fairly high, even

for a panel covering 20 years. This is consistent with the evidence from Figure 1, where we noted

that estimation errors for the model parameters have a strong effect on the recovery of this factor,

even for panels with a long span. If the econometrician relies on our long span asymptotic result, he

or she would be ignoring this nontrivial persistence in the error of the factor extraction. In contrast,

our unified approach, advocated in Theorem 4, automatically accommodates this feature and more

accurately conveys the degree of temporal dependence in the errors of the recovered factors.
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Figure 2: Persistence of the Error in Factor Extraction. The plots display correlation between the
errors in extracting factors over the last two weeks in the first year of the sample. The straight line
in each of the plots corresponds to the median and the shaded area to the inter-quantile range, both
computed from 100 draws of the process (V1,t, V2,t).
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We conclude with a discussion of the bias and standard error in parameter estimation. Figure 3

provides relative estimates for these quantities (by dividing them by their true values). To conserve

space, we present results for a subset of the parameters only, as the findings for the remaining parame-

ters are qualitatively similar. Contrary to the short time span scenario, the long span limit distribution

of the parameter vector is Gaussian, i.e., the limiting variance is independent of the sample path. We

note that, for the shorter time spans, the interquantile ranges of the relative standard errors tend to

be quite wide but, unlike the case for the factors, they continue to shrink as the time span grows and

eventually become negligible. We also see a large reduction in the bias for some parameters as the span

lengthens. However, since we keep N fixed, the estimate for the bias converges to a constant as the

span grows. As for the factor recovery, the “transformation” of the features of the limiting distribution,

induced by the transition from the fixed to long span asymptotics, occurs at different times across the

parameters. The relative bias is larger for the parameters determining the positive jumps (c+
1 and c+

2 )

and smaller for the parameters controlling the mean reversion of the volatility factors (κ1 and κ2).

The same ranking applies for the relative standard error of the parameters. Comparing the bias to the

standard error, we also observe a nontrivial variation across the parameters. For the longest span of

20 years, the bias is approximately of the same size as the standard error for c−1 and negligible relative

to the standard error for κ2. Thus, ignoring the bias, i.e., performing inference according to the fixed

span asymptotics, will imply poor performance for tests involving parameters such as c−1 for time spans

as short as 5 years, again corroborating the benefit of relying on the unified inference procedures.

7 Conclusion

In this paper we develop unified inference theory for parametric nonlinear factor models based on a

panel of noisy observations augmented with direct, albeit imperfect, measures of a known transforma-

tion of the factors. The panel has a large cross-sectional dimension while its time span is either fixed

or increasing. The estimation is done via penalized least squares, with the penalty term controlling

the size of the deviation between noisy observations and model-implied values for the known trans-

formation of the factor realizations. Even though the limit distributions of the parameter vector and

the factor realizations differ substantially in the fixed and increasing time span settings, we develop a

feasible inference procedure that accommodates the critical features of the asymptotic distribution in

either setup. We further propose a data-driven method for the weighting of the penalty term in the

objective function, reflecting the relative information content of the noisy factor signals.

Numerical analysis demonstrates the practical relevance of our unified inference approach, as it

avoids exclusive reliance on either the fixed or long time span asymptotics in any given application.

In the scenarios explored, to a varying degree, we identify features of the limiting distribution that are
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Figure 3: Relative Standard Error and Bias for Parameters. Standard errors and biases are divided by
the absolute value of the true value of the parameter reported in Table 1. The straight line in each of
the plots corresponds to the median and the shaded area to the inter-quantile range, both computed
from 100 draws of the process (V1,t, V2,t).
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captured best by the fixed span asymptotics (e.g., the intertemporal persistence of the error in factor

recovery) and others that fall much closer to the long span asymptotics (e.g., the relative importance

of bias in the parameter estimates). Our approach allows the data to determine the relative weight

that is afforded the two asymptotic schemes for different aspects of the inference.
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8 Appendix with Definitions, Assumptions and Proofs

In the proofs, we will use the following function:

fd(x) = 1 + xd, x ∈ R+, d ≥ 0. (29)

The matrix norm being used throughout is the Frobenius (or Euclidean) norm, that is, for an m× n
dimensional matrix A, we denote ||A|| =

√∑
i,j a

2
i,j =

√
Tr(AA′). Let us also denote with Q the

set in which (Tt,kt,kt) takes values, and we further set T = supt∈R+
Tt. Moreover, K is a generic

constant, which may take different values in different places, and E0( · ) and V0( · ) denote E
(
· |F (0)

T

)
and V

(
·|F (0)

T

)
, respectively. Note that (stochastic) orders sometimes refer to scalars, vectors, and

sometimes to matrices. Finally, we will in the proofs of the main asymptotic results refer to various

auxiliary lemmas, which are collected and established in Section 8.7.

8.1 Assumptions

Assumption 1. The process X in (1) satisfies:

(i) For every p > 0, we have supt∈R+
E(|αt|p) < ∞, supt∈R+

E(|Vt|p) < ∞ and supt∈R+
E(|at|p) < ∞,

and further
∫
x>−1(| log(1 + x)|r ∨ | log(1 + x)|p)νP(dx) <∞, for some r ∈ [0, 1) and every p ≥ r.

(ii) For every t ∈ R+ and s ∈ R+ and p ≥ 2, we have |Et(Vt+s − Vt)| + Et|Vt+s − Vt|p ≤ Kp
t,s|t − s|

with supt∈R+
E|Kp

t,s|q <∞ for q > 0 arbitrarily high.

Assumption 2. (i) As N →∞ and T →∞ with T/N → γ for some finite γ ≥ 0, we have

sup
t∈[1,T ], τ∈Tt

∣∣∣∣N τ
t

Nt
− πτt

∣∣∣∣ P−→ 0,
√
N sup

t∈[1,T ]

∣∣∣∣Nt

N
− ςt

∣∣∣∣ P−→ 0, (30)

where (πτt )τ∈Tt and ςt are F (0)
t -adapted with inft∈R+, τ∈Tt π

τ
t > 0 and supt∈R+, τ∈Tt π

τ
t < ∞ as well as

inft∈R+ ςt > 0 and supt∈R+
ςt <∞.

(ii) Moreover, for the grids of strike prices, with ik = min {i ≥ 2 : kt,τ (i) ≥ k}, for k ∈ [k(t, τ), k(t, τ)],

we have

sup
t∈R+

sup
τ∈Tt

sup
k∈[k(t,τ),k(t,τ)]

√
N τ
t |N τ

t ∆t,τ (ik)− ψt,τ (k)| P−→ 0, (31)

where (ψt,τ (k))k∈[k(t,τ),k(t,τ)], τ∈Tt is some F (0)
t -adapted process with

inf
t∈R+, τ∈Tt, k∈[k(t,τ),k(t,τ)]

ψt,τ (k) > 0, and sup
t∈R+, τ∈Tt, k∈[k(t,τ),k(t,τ)]

ψt,τ (k) <∞,

and, for its derivative, we have supt∈R+, τ∈Tt, k∈[k(t,τ),k(t,τ)] ψ
′
t,τ (k) <∞.

(iii) Finally, we have kn/N − % = O(1/
√
N).
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Assumption 3. For some d ≥ 0, we have:

(i) For every ε > 0 , there exists δ > 0, such that for S ∈ S,

inf
(Tt,kt,kt)∈Q

inf
||θ−θ0||≥ε ∪ ||Z−S||≥ε

∑
τ∈Tt

πτt

×
∫ k(t,τ)

k(t,τ)

1

ψt,τ (k)
(κ(k, τ,Z,θ)− κ(k, τ,S,θ0))2 dk > δfd(||S||). (32)

(ii) For every δ > 0 , there exist ε > 0, such that

inf
(Tt,kt,kt)∈Q

inf
τ∈Tt, k∈[k(t,τ),k(t,τ)]

(κ(k, τ,Z,θ)− κ(k, τ,S,θ0))2 ≤ δfd(||S||) =⇒ ||S −Z|| < ε. (33)

Assumption 4. For S, Z ∈ S, θ, θ′ ∈ Θ, k, k′ ∈ R, and τ ≤ T , we have for some d ≥ 0 and K > 0:

|κ(k, τ,S,θ)|2 ≤ Kfd(||S||), |κ(k, τ,S,θ)− κ(k′, τ,S,θ)|2 ≤ Kfd(||S||)|k − k′|, (34)

|κ(k, τ,S,θ)− κ(k, τ,S,θ′)|2 ≤ Kfd(||S||)||θ − θ′||, (35)

|κ(k, τ,S,θ)− κ(k, τ,Z,θ)|2 ≤ K(1 + ||S||d + ||Z||d)||S −Z||. (36)

Assumption 5. For the error process, εt,k,τ , we have,

(i) E
(
εt,k,τ |F (0)

)
= 0 ,

(ii) εt,k,τ and εt′,k′,τ ′ are independent conditional on F (0) , whenever (t, k, τ) 6= (t′, k′, τ ′),

(iii) E
(
|εt,k,τ |q|F (0)

)
= φ

(q)
t,k,τ , where (φ

(q)
t,k,τ )k∈[k(t,τ),k(t,τ)], τ∈Tt is F (0)

t -adapted with

sup
t∈R+, τ∈Tt, k∈[k(t,τ),k(t,τ)]

φ
(q)
t,k,τ <∞ for every finite q > 0

In addition, the derivative of φt,k,τ ≡ φ
(2)
t,k,τ in its second argument satisfies

sup
t∈R+, τ∈Tt, k∈[k(t,τ),k(t,τ)]

∣∣∣ ∂
∂k
φt,k,τ

∣∣∣ <∞.
Assumption 6. The process St is stationary and ergodic with E||St||q <∞ for every finite q > 0. In

addition, X = plimT→∞
1
T

∑T
t=1 X t exists for X t being one of the matrices IU,t, ΩU,t, IwU,t and Ωw

U,t,

defined in Sections 3.2 and 8.6.

Assumption 7. The functions κ(k, τ,Z,θ) and ξ1(Z) are four times continuously differentiable in

their arguments. Moreover, there exist constants K > 0 and d > 0 such that for S ∈ S, θ ∈ Θ, k ∈ R,

and τ ≤ T ,

||G(k, τ,S,θ)||+ ||G(S)(k, τ,S,θ)||+ ||G(SS)(k, τ,S,θ)|| ≤ Kfd(||S||), (37)

||G(SSS)(k, τ,S,θ)||+ ||G(θ)(k, τ,S,θ)||+
∣∣∣∣ ∂
∂k
G(k, τ,S,θ)

∣∣∣∣ ≤ Kfd(||S||), (38)

|ξ1(S)|+ ||C(S)||+ ||C(S)(S)||+ ||C(SS)(S)|| ≤ Kfd(||S||), (39)

and the bounds in (37)-(38) continue to hold with G replaced by D.
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Assumption 8. Denote the eigenvalues of IS,t + PS,t with 0 ≤ λt,1 ≤ λt,2... ≤ λt,p. Then, we have

λt,1 > Kfd(||St||) for some K > 0 and d > 0. In addition, Iθ,t and IU,t are positive definite for all t.

As in Section 3.2, we will use the shorthand notation εj,t, φ
(q)
j,t , and φj,t for every pair (kj , τj).

8.2 Proof of Theorem 1

After removing the part of the objective function that does not depend on the parameter and state

vectors, we have

(Ŝ′1, ..., Ŝ
′
T , θ̂

′) = argmin
Z∈ST , θ∈Θ

(
L(1)(Z,θ) + L(2)(Z,θ) + L(3)(Z,θ)

)
,

where L(i)(Z,θ) =
∑T

t=1 L
(i)
t (Zt,θ) for i = 1, 2, 3, with

L(1)
t (Zt,θ) = 1

Nt

∑Nt
j=1(κ(kj , τj ,St,θ0)− κ(kj , τj ,Zt,θ))2,

L(2)
t (Zt,θ) = 2

Nt

∑Nt
j=1 εj,t(κ(kj , τj ,St,θ0)− κ(kj , τj ,Zt,θ)),

L(3)
t (Zt,θ) = λ knNt [2(V̂ n

t − Vt)(Vt − ξ1(Zt)) + (Vt − ξ1(Zt))
2],

and we note that L(3)
t (Zt,θ) does not depend on θ. We start by introducing some sets, which we will

use throughout the proof. First, define

Ω
(1)
T =

ω :

∣∣∣∣∣∣ 1

Nt

Nt∑
j=1

(ε2j,t − φj,t)

∣∣∣∣∣∣ < 1

2

1

Nt

Nt∑
j=1

φj,t, for t = 1, ..., T

 .

We then have

P((Ω
(1)
T )c) ≤

T∑
t=1

P

∣∣∣∣∣∣ 1

Nt

Nt∑
j=1

(ε2j,t − φj,t)

∣∣∣∣∣∣ ≥ 1

2

1

Nt

Nt∑
j=1

φj,t

 ,

for which, using Burkholder-Davis-Gundy inequality and our integrability assumptions for φj,t in A5,

it follows that P((Ω
(1)
T )c)→ 0. Similarly, for

Ω
(2)
T =

ω :

∣∣∣∣∣∣ 1

Nt

Nt∑
j=1

(|εj,t| − φ(1)
j,t )

∣∣∣∣∣∣ < 1

2

1

Nt

Nt∑
j=1

φ
(1)
j,t , for t = 1, ..., T

 ,

we have P((Ω
(2)
T )c)→ 0. Next, define

Ω
(3)
T (ι) =

{
ω : sup

t=1,...,T
||St|| < T ι

}
.

Then, using the integrability assumptions for St in A6, we have P((Ω
(3)
T (ι))c) → 0, for every fixed

ι > 0. Finally, we define

Ω
(4)
T (δ) =

{
ω : sup

t=1,...,T
λ
kn
N
|V̂ n
t − Vt| < δ

}
, δ > 0.
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Now, using part (b) of Lemma 8, we readily have P((Ω
(4)
T (δ))c)→ 0, for every fixed δ > 0.

Pick a constant ι ∈ (0, 1/10) and denote φ = supt∈R+, τ∈Tt, k∈[k(t,τ),k(t,τ)] φt,k,τ . Then, from A3(ii),

there exist ε > 0 such that if ||St −Z|| ≥ ε, then

L(1)
t (Z,θ) >

(
15

4
φ
∨ 6φ

ι2

∨
10K sup

θ∈Θ
||θ||fd(||St||)

)
,

where K is the constant showing in the second bound of A4 (for the first two lower bounds, note that

15
4 φ and 9φ

2

ι2
are finite constants, and, for the last bound, recall that Θ is a compact set).

We will first show that on a set with probability approaching one, we have supt=1,...,T ||Ŝt−St|| < ε.

Without further mentioning, in doing this, we will work on the set Ω
(1)
T ∩ Ω

(4)
T

(
(6φ/ι)1/2

)
, whose

probability approaches one. Suppose that for some t = 1, ..., T , we have ||Ŝt−St|| ≥ ε. Then, since by

the Cauchy-Schwartz inequality, L(2)
t (Ŝt, θ̂) ≤ 2

√
L(1)
t (Ŝt, θ̂)

√
1
Nt

∑Nt
j=1 ε

2
j,t, and since L(1)

t (Z,θ) > 6φ
ι2

,

this shows that

L(1)
t (Ŝt, θ̂) + L(2)

t (Ŝt, θ̂) > (1− ι)L(1)
t (Ŝt, θ̂).

Moreover, using the algebraic inequality 2|xy| ≤ x2 + y2 and the definition of the set Ω
(4)
T (δ), we have

L(3)
t (Ŝt, θ̂) ≥ −6φ

ι . Altogether, we get L(1)
t (Ŝt, θ̂) + L(2)

t (Ŝt, θ̂) + L(3)
t (Ŝt, θ̂) > (1− 2ι)L(1)

t (Ŝt, θ̂).

Now, we will evaluate L(1)
t (St, θ̂) + L(2)

t (St, θ̂) + L(3)
t (St, θ̂). First, using the second bound of A4,

we have

|L(1)
t (St, θ̂)| = |L(1)

t (St, θ̂)− L(1)
t (St,θ0)| ≤ 2K sup

θ∈Θ
||θ||fd(||St||),

and, as a result, taking into account the lower bound of L(1)
t (Ŝt, θ̂), we get L(1)

t (St, θ̂) ≤ 1
5L

(1)
t (Ŝt, θ̂).

Next, we have L(2)
t (St, θ̂) ≤ L(1)

t (St, θ̂) + 1
Nt

∑Nt
j=1 ε

2
j,t by the algebraic inequality stated above, and,

hence, using the definition of Ω
(1)
T , the triangle inequality, and the lower bound of L(1)

t (Ŝt, θ̂), we have

L(1)
t (St, θ̂) + L(2)

t (St, θ̂) ≤ 2

5
L(1)
t (Ŝt, θ̂) +

3

2
φ ≤ 4

5
L(1)
t (Ŝt, θ̂).

Since L(3)
t (St, θ̂) = 0 and ι < 1/10, we have

L(1)
t (St, θ̂) + L(2)

t (St, θ̂) + L(3)
t (St, θ̂) < L(1)

t (Ŝt, θ̂) + L(2)
t (Ŝt, θ̂) + L(3)

t (Ŝt, θ̂),

which is a contradiction since Ŝt = Ŝt(θ̂) and Ŝ(θ) = argminZ∈ST L (Z,θ). Therefore, with proba-

bility approaching one, we must have supt=1,...,T ||Ŝt − St|| < ε. As a result, (Ŝ′1, ..., Ŝ
′
T , θ̂

′) is asymp-

totically equivalent to the solution of the optimization in which each Zt satisfies ||St − Zt|| < ε. For

specificity, we denote the latter with (S̃′1, ..., S̃
′
T , θ̃

′) and show next that this solution is consistent.

We start by defining the set

Ω
(5)
T (δ) =

{
ω : sup

t=1,...,T
sup

||St−Zt||≤ε
sup
θ∈Θ

∣∣∣∣L(1)
t (Zt,θ)

−
∑
τ∈Tt

N τ
t

Nt

∫ k(t,τ)

k(t,τ)

1

ψt,τ (k)
(κ(k, τ,Zt,θ)− κ(k, τ,St,θ0))2dk

∣∣∣∣ < δ

}
,
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and, using A2 and A4, we have Riemann sum convergence and hence P(Ω
(3)
T ( 1

3d) ∩ (Ω
(5)
T (δ))c) → 0,

for every fixed δ > 0.

We next split the set Zt : ||Zt−St|| < ε into subsets Si
t satisfying ||Zt−Z ′t|| < ε/T ι for Zt, Z

′
t ∈ Si

t.

The asymptotic order of the number of these sets, NSt , is T pι. Similarly, we split Θ (recall this set

is compact) into subsets Θi satisfying ||θ − θ′|| < ε/T ι for θ, θ′ ∈ Θi. The asymptotic order of the

number of these sets, NΘ, is T qι. Then, using boundedness of φ
(1)
j,t , the bounds in A4, as well as the

integrability assumption for St in A6, we have with

Ω
(6)
T (δ) =

{
ω : sup

t=1,...,T
sup

i=1,...,NΘ, j=1,...,NSt

sup
θ,θ′∈Θi, Zt,Z′t∈S

j
t

|L(2)
t (Zt,θ)− L(2)

t (Z ′t,θ
′)| < δ

}

that P(Ω
(2)
T ∩ (Ω

(6)
T (δ))c)→ 0, for every fixed δ > 0.

Next, for every set Si
t, we pick a point in it and denote this by Zi

t . Similarly, let θi denote an

arbitrary point that belongs to the set Θi. With this notation, we introduce

Ω
(7)
T (δ) =

{
ω : sup

t=1,...,T
sup

i=1,...,NΘ

sup
j=1,...,NSt

|L(2)
t (Zj

t ,θ
i)| < δ

}
, δ > 0.

We then have

P
(

(Ω
(7)
T (δ))c

)
≤

T∑
t=1

NΘ∑
i=1

NSt∑
j=1

P
(
|L(2)
t (Zj

t ,θ
i)| > δ

)
.

By applying the Burkholder-Davis-Gundy inequality, using the integrability assumptions for φ
(k)
j,t and

arbitrary k as well as for St (in A5 and A6), and the fact that every Zj
t has a distance of at most ε

from the true value of the state vector St, we have

P
(
|L(2)
t (Zj

t ,θ
i)| > δ

)
≤ K/N ξ, for some arbitrarily big ξ > 0,

where K depends on δ and ξ. Then, taking into account the asymptotic orders of NΘ and NSt , we

therefore have P((Ω
(7)
T (δ))c)→ 0, for every fixed δ > 0.

With the results above, we are ready to establish the consistency of (S̃′1, ..., S̃
′
T , θ̃

′). Fix some ζ > 0

arbitrarily small. From A2 and A3(i), we know that on a set with probability approaching one, there

is a corresponding δ > 0, such that

inf
(Tt,kt,kt)∈Q

inf
||θ−θ0||≥ζ ∪ ||Z−S||≥ζ

∑
τ∈Tt

N τ
t

Nt

∫ k(t,τ)

k(t,τ)

1

ψt,τ (k)
(κ(k, τ,Z,θ)− κ(k, τ,S,θ0))2 dk > δfd(||S||).

Let ι ∈ (0, 1/4), then for some

ω ∈ Ω
(2)
T ∩ Ω

(3)
T (

1

3d
) ∩ Ω

(4)
T (
√
δι) ∩ Ω

(5)
T (δι) ∩ Ω

(6)
T (δι) ∩ Ω

(7)
T (δι),
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if ||θ−θ0|| > ζ, we have L(1)(Z,θ)+L(2)(Z,θ)+L(3)(Z,θ) > Tδ(1−4ι) > 0 by applying the triangle

inequality repeatedly over t = 1, . . . , T while L(1)(S,θ0) + L(2)(S,θ0) + L(3)(S,θ0) = 0. This shows

that θ̃ is consistent for θ0.

Now, suppose for some t = 1, ..., T , we have ||S̃t − St|| > ζ. Then, exactly as before, for

ω ∈ Ω
(2)
T ∩ Ω

(3)
T (

1

3d
) ∩ Ω

(4)
T (
√
δι) ∩ Ω

(5)
T (δι) ∩ Ω

(6)
T (δι) ∩ Ω

(7)
T (δι),

where ι ∈ (0, 1/4), we have L(1)
t (S̃t, θ̃) + L(2)

t (S̃t, θ̃) + Lt(3)(S̃t, θ̃) > δfd(||St||)(1− 4ι). On the other

hand, given the consistency of θ̃ and the second bound in A4, on a set with probability approaching

one, we have L(1)
t (St, θ̃) +L(2)

t (St, θ̃) +L(3)
t (St, θ̃) ≤ 2L(1)

t (St, θ̃) + 1
Nt

∑Nt
j=1 ε

2
j,t <

1
2δfd(||St||)(1− 3ι).

This contradicts the definition of S̃t, and, as a result, we must have ||S̃t−St|| ≤ ζ for any t = 1, ..., T .

Hence, altogether, this establishes consistency of (S̃′1, ..., S̃
′
T , θ̃

′).

8.3 Definitions and Proof of Theorem 2

Before proceeding to the proof of Theorem 2, we start with providing expressions for the bias terms.

8.3.1 Definitions

The six bias terms in Theorem 2 are explicitly defined as:

B(1)
T,N,1 =

1

TN

T∑
t=1

N

Nt

1

Nt

Nt∑
j=1

φj,t

(
U

(S)
j,t,0(IS,t + PS,t)

−1Gj,t,0

)
,

B(1)
T,N,2 =

1

TN

T∑
t=1

1

Nt

Nt∑
j=1

U
(S)
j,t,0(IS,t + PS,t)

−1 (ΩS,t + ΨS,t) (IS,t + PS,t)
−1Gj,t,0,

B(1)
T,N,3 =

1

2TN

T∑
t=1

1

Nt

Nt∑
j=1

Uj,t,0 ×

{
N

N2
t

Nt∑
`=1

φ`,t

(
G′`,t,0(IS,t + PS,t)

−1G
(S)
j,t,0(IS,t + PS,t)

−1G`,t,0

)

+ 2λ2V 2
t

knN

N2
t

(
C ′t,0(IS,t + PS,t)

−1G
(S)
j,t,0(IS,t + PS,t)

−1Ct,0

)}
,

B(2)
T,N,1 =

1

TN

T∑
t=1

2λ2V 2
t

knN

N2
t

R′t,0C
(S)
t,0 (IS,t + PS,t)

−1Ct,0,

B(2)
T,N,2 =

λ

TN

T∑
t=1

kn
Nt
R′t,0C

(S)
t,0 (IS,t + PS,t)

−1 (ΩS,t + ΨS,t) (IS,t + PS,t)
−1Ct,0,

B(2)
T,N,3 =

λ

2TN

T∑
t=1

kn
Nt
R′t,0Ct,0 ×

{
N

N2
t

Nt∑
`=1

φ`,t

(
G′`,t,0(IS,t + PS,t)

−1C
(S)
t,0 (IS,t + PS,t)

−1G`,t,0

)
,

+ 2λ2V 2
t

knN

N2
t

(
C ′t,0(IS,t + PS,t)

−1C
(S)
t,0 (IS,t + PS,t)

−1Ct,0

)}
.
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8.3.2 Proof of Theorem 2

With probability approaching one for θ in a sufficiently small neighborhood of θ0 and given the proof

of Theorem 1, {Ŝt(θ)}t=1,...,T solve the first order condition

Mt(θ) ≡ 1

Nt

Nt∑
j=1

(
κ̃j,t − κ

(
kj , τj , Ŝt(θ),θ

)) ∂

∂S
κ
(
kj , τj , Ŝt(θ),θ

)
+ λ

kn
Nt
× ∂

∂S
ξ1(Ŝt(θ))

(
V̂ n
t − ξ1(Ŝt(θ))

)
= 0, t = 1, ..., T. (40)

Henceforth, we use the shorthand convention κ̂j,t(θ) = κj(Ŝt(θ),θ). With this in hand, the first-order

condition for θ̂ is given by

T∑
t=1

1

Nt

Nt∑
j=1

(
κ̃j,t − κ̂j,t(θ̂))

) ∂

∂θ
κ̂j,t(θ̂) + λ

kn
Nt

T∑
t=1

∂

∂θ
ξ1(Ŝt(θ̂))

(
V̂ n
t − ξ1(Ŝt(θ̂))

)
= 0. (41)

A first-order Taylor expansion around the true parameter vector yields H̃T,N (θ̂ − θ0) = A, where

A =
1

T

T∑
t=1

1

Nt

Nt∑
j=1

(κ̃j,t − κ̂j,t(θ0))
∂

∂θ
κ̂j,t(θ0) + λ

kn
Nt

1

T

T∑
t=1

∂

∂θ
ξ1

(
Ŝt(θ0)

) (
V̂ n
t − ξ1

(
Ŝt(θ0)

))
,

and the q × q Hessian matrix is given by

H̃N,T,n =
1

T

T∑
t=1

1

Nt

Nt∑
j=1

∂

∂θ
κ̂j,t(θ̃)

∂

∂θ′
κ̂j,t(θ̃)− 1

T

T∑
t=1

1

Nt

Nt∑
j=1

(
κ̃j,t − κ̂j,t(θ̃)

) ∂2

∂θ∂θ′
κ̂j,t(θ̃)

+ λ
kn
Nt

1

T

T∑
t=1

∂

∂θ
ξ1

(
Ŝt(θ̃)

) ∂
∂θ′

ξ1

(
Ŝt(θ̃)

)
− λkn

Nt

1

T

T∑
t=1

∂2

∂θ∂θ′
ξ1

(
Ŝt(θ̃)

) (
V̂ n
t − ξ1

(
Ŝt(θ̃)

))
≡ H̃(1)

N,T,n − H̃
(2)
N,T,n + H̃

(3)
N,T,n − H̃

(4)
N,T,n,

for some θ̃ ∈ (θ0, θ̂). Next, write the derivatives in the q × 1 vector A as

∂

∂θ
κ̂j,t(θ0) = Uj,t

(
Ŝt(θ0),θ0

)
+

(
∂Ŝt(θ0)

∂θ′
−Rt,0

)′
Gj

(
Ŝt(θ0),θ0

)
, (42)

∂

∂θ
ξ1

(
Ŝt(θ0)

)
= R′t,0C

(
Ŝt(θ0)

)
+

(
∂Ŝt(θ0)

∂θ′
−Rt,0

)′
C
(
Ŝt(θ0)

)
,

which are used to make the decomposition A ≡ A1 +A2 +A3 +A4, where

A1 ≡
1

T

T∑
t=1

1

Nt

Nt∑
j=1

εj,tUj,t
(
Ŝt(θ0),θ0

)
, A2 ≡

1

T

T∑
t=1

1

Nt

Nt∑
j=1

(κj (St,θ0)− κ̂j,t(θ0))Uj,t
(
Ŝt(θ0),θ0

)
,

A3 ≡ λ
kn
Nt

1

T

T∑
t=1

(
R′t,0C

(
Ŝt(θ0)

))(
V̂ n
t − ξ1(Ŝt(θ0))

)
,
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A4 ≡
1

T

T∑
t=1

1

Nt

Nt∑
j=1

{
εj,t +

(
κj (St,θ0)− κj

(
Ŝt(θ0),θ0

))}(∂Ŝt(θ0)

∂θ′
−Rt,0

)′
Gj

(
Ŝt(θ0),θ0

)
+ λ

kn
Nt

1

T

T∑
t=1

(
∂Ŝt(θ0)

∂θ′
−Rt,0

)′
C
(
Ŝt(θ0)

) (
V̂ n
t − ξ1(Ŝt(θ0))

)
.

To decompose A1 even further, use a third-order Taylor expansion to write

Uj,t
(
Ŝt(θ0),θ0

)
= Uj,t,0 +U

(S)
j,t,0

(
Ŝt(θ0)− St

)
+

1

2
U

(SS)
j,t,0 ×

{(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)}
(43)

+
1

6

{
∂

∂S′
U

(SS)
j,t

(
S̃t(θ0),θ0

)}
×
{(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)}
,

for some S̃t(θ0) ∈ (Ŝt(θ0),St) and t = 1, . . . , T , utilizing that the function κ(·) is four times continu-

ously differentiable in its arguments by A7. Hence, inserting (43) into A1,

√
TNA1 =

√
TNA11 +

√
TNA12 +

√
TNA13 (44)

where the right-hand-side terms are defined as

A11 =
1

TN

T∑
t=1

N

Nt

Nt∑
j=1

εj,tUj,t,0, A12 =
1

TN

T∑
t=1

N

Nt

Nt∑
j=1

εj,tU
(S)
j,t,0

(
Ŝt(θ0)− St

)
,

A13 =
1

2TN

T∑
t=1

N

Nt

Nt∑
j=1

εj,tU
(SS)
j,t,0 ×

{(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)}

+
1

6TN

T∑
t=1

N

Nt

Nt∑
j=1

εj,t

{
∂U

(SS)
j,t

(
S̃t(θ0),θ0

)
∂S′

}{(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)}
.

Moreover, for A2, we make an additional third-order Taylor expansion in the state vector,

κj
(
Ŝt(θ0),θ0

)
= κj

(
St,θ0

)
+G′j,t,0

(
Ŝt(θ0)− St

)
+
(
Ŝt(θ0)− St

)′
G

(S)
j,t,0

(
Ŝt(θ0)− St

)
/2

+
(
Ŝt(θ0)− St

)′{ ∂

∂S′
G

(S)
j

(
S̃t(θ0),θ0

)}{(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)}
/6,

where, again, S̃t(θ0) ∈ (Ŝt(θ0),St), and we use it together with (43) to make a similar decomposition,

√
TNA2 = −

√
TNA21 −

√
TNA22 −

√
TNA23, (45)

with the right-hand-side terms defined as

A21 =
1

TN

T∑
t=1

N

Nt

Nt∑
j=1

{
G′j,t,0

(
Ŝt(θ0)− St

)}
Uj,t,0,

A22 =
1

TN

T∑
t=1

N

Nt

Nt∑
j=1

{
G′j,t,0

(
Ŝt(θ0)− St

)}
U

(S)
j,t,0

(
Ŝt(θ0)− St

)
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+
1

2TN

T∑
t=1

N

Nt

Nt∑
j=1

{(
Ŝt(θ0)− St

)′
G

(S)
j,t,0

(
Ŝt(θ0)− St

)}
Uj,t,0,

A23 =
1

2TN

T∑
t=1

N

Nt

Nt∑
j=1

{
Gj

(
S̃t(θ0),θ0

)′(
Ŝt(θ0)− St

)}
U

(SS)
j,t,0 ×

{(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)}

+
1

6TN

T∑
t=1

N

Nt

Nt∑
j=1

{
Gj

(
S̃t(θ0),θ0

)′(
Ŝt(θ0)− St

)}
×

{
∂U

(SS)
j,t

(
S̃t(θ0),θ0

)
∂S′

}

×
{(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)}
+

1

6TN

T∑
t=1

N

Nt

Nt∑
j=1

Uj,t,0
(
Ŝt(θ0)− St

)′{∂G(S)
j

(
S̃t(θ0),θ0

)
∂S′

}{(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)}

+
1

2TN

T∑
t=1

N

Nt

Nt∑
j=1

{(
Ŝt(θ0)− St

)′
G

(S)
j,t,0

(
Ŝt(θ0)− St

)}
U

(S)
j,t,0

(
Ŝt(θ0)− St

)
+

1

6TN

T∑
t=1

N

Nt

Nt∑
j=1

{(
Ŝt(θ0)− St

){ ∂

∂S′
G

(S)
j

(
S̃t(θ0),θ0

)}{(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)}}
×U (S)

j,t,0

(
Ŝt(θ0)− St

)
,

where a corresponding first-order Taylor expansion,

κj
(
Ŝt(θ0),θ0

)
= κj

(
St,θ0

)
+Gj

(
S̃t(θ0),θ0

)′(
Ŝt(θ0)− St

)
,

have been applied for some terms in A23.

For A3, we apply a third-order Taylor expansion and the mean-value theorem to decompose

ξ1(Ŝt(θ0)) = ξ1(St) +C(St)
′(Ŝt(θ0)− St

)
+ (Ŝt(θ0)− St

)′
C(S)(St)

(
Ŝt(θ0)− St

)
/2

+ (Ŝt(θ0)− St
)′{ ∂

∂S′
C(S)

(
S̃t(θ0)

)}{(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)}
/6,

as well as a second-order Taylor expansion of C
(
Ŝt(θ0)

)
,

C
(
Ŝt(θ0)

)
= Ct,0 +C

(S)
t,0

(
Ŝt(θ0)− St

)
+

{
∂

∂S′
C(S)

(
S̃t(θ0)

)}{(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)}
/2,

which leads to the following decomposition

√
TNA3 =

√
TNA31 −

√
TNA32 +

√
TNA33 −

√
TNA34, (46)

where the right-hand-side terms are defined as

A31 =
λ

T

T∑
t=1

kn
Nt
R′t,0Ct,0

(
V̂ n
t − Vt

)
, A32 =

λ

T

T∑
t=1

kn
Nt
R′t,0Ct,0

(
C ′t,0

(
Ŝt(θ0)− St

))
,
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A33 =
λ

T

T∑
t=1

kn
Nt
R′t,0C

(S)
t,0

(
Ŝt(θ0)− St

) (
V̂ n
t − ξ1(St)

)
− λ

T

T∑
t=1

kn
Nt
R′t,0C

(S)
t,0

(
Ŝt(θ0)− St

) (
C ′t,0

(
Ŝt(θ0)− St

))
− λ

2T

T∑
t=1

kn
Nt
R′t,0Ct,0

(
(Ŝt(θ0)− St

)′
C

(S)
t,0

(
Ŝt(θ0)− St

))
,

A34 =
λ

6T

T∑
t=1

kn
Nt
R′t,0C

(
Ŝt(θ0)

)
×

(
(Ŝt(θ0)− St

)′{∂C(S)(S̃t(θ0))

∂S′

}{(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)})

− λ

2T

T∑
t=1

kn
Nt

(
R′t,0

{
∂C(S)

(
S̃t(θ0)

)
∂S′

}{(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)})(
V̂ n
t − ξ1(St)

)
+

λ

2T

T∑
t=1

kn
Nt

(
R′t,0

{
∂C(S)

(
S̃t(θ0)

)
∂S′

}{(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)})(
C ′t,0

(
Ŝt(θ0)− St

))
+

λ

2T

T∑
t=1

kn
Nt
R′t,0

(
C

(S)
t,0

(
Ŝt(θ0)− St

))(
(Ŝt(θ0)− St

)′
C

(S)
t,0

(
Ŝt(θ0)− St

))
+

λ

4T

T∑
t=1

kn
Nt

(
R′t,0

{
∂C(S)

(
S̃t(θ0)

)
∂S′

}{(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)})
×
(

(Ŝt(θ0)− St
)′
C

(S)
t,0

(
Ŝt(θ0)− St

))
.

We note that the Taylor expansion of the gradient C
(
Ŝt(θ0)

)
has not been inserted into the first term

in A34 involving ∂C(S)(S̃t(θ0))/∂S′, since this will be shown below to be asymptotically negligible.

Now, we add A21 and A32 and define the resulting sum as

A5 ≡ A21 +A32 =
1

T

T∑
t=1

 1

Nt

Nt∑
j=1

(
Dj,t,0 +R′t,0Gj,t,0

)
G′j,t,0 + λ

kn
Nt
R′t,0Ct,0C

′
t,0

(Ŝt(θ0)− St
)
.

With the above decompositions, we are ready to proceed with the proof, which is organized as a

sequence of lemmas. We first show the convergence in probability of the Hessian H̃N,T,n in Lemma 2.

Second, we have a CLT for A11 +A31 by an application of Lemma 7 in conjunction with the ergodicity

assumption for St and the convergence in probability results in A6. Third, we show in Lemma 3 that

A12 −A22 +A33 converges to the asymptotic bias (when appropriately scaled). In Lemmas 4-6, we

show the asymptotic negligibility of A13, A23, A34, A4 and A5. Finally, we apply Lemma 12 to show

the joint convergence of the parameter and state vectors.
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In the lemmas below, we will make use of the following additional notation:

Ft,N,n ≡
1

Nt

Nt∑
j=1

εj,tGj,t,0 + λ
kn
Nt
Ct,0

(
V̂ n
t − Vt

)
≡ F (1)

t,N,n + F
(2)
t,N,n,

ÎS,t(Z,θ) ≡ 1

Nt

Nt∑
j=1

Gj

(
Z,θ

)
Gj

(
Z,θ

)′ − 1

Nt

Nt∑
j=1

(
κ̃j,t − κj

(
Z,θ

))
G

(S)
j

(
Z,θ

)
,

P̂S,t(Z) ≡ λkn
Nt
C
(
Z
)
C
(
Z
)′ − λkn

Nt
C(S)

(
Z
) (
V̂ n
t − ξ1

(
Z
))
,

ÎS,θ,t(Z,θ) ≡ 1

Nt

Nt∑
j=1

Gj

(
Z,θ

)
Dj

(
Z,θ

)′ − 1

Nt

Nt∑
j=1

(
κ̃j,t − κj

(
Z,θ

))
G

(θ)
j

(
Z,θ

)
.

With this notation, we use a first-order Taylor expansion to write

Ŝt(θ0)− St =
(
ÎS,t(S̃t(θ0),θ0) + P̂S,t(S̃t(θ0))

)−1
Ft,N,n, t = 1, . . . , T,

for some S̃t(θ0) ∈
(
St, Ŝt(θ0)

)
, provided that the inverse above exists. Finally, we will also use the

following simplifying notation

LS,t = IS,t + PS,t, L̃S,t = ÎS,t(S̃t(θ0),θ0) + P̂S,t(S̃t(θ0)). (47)

Lemma 2. Under the conditions of Theorem 2, we have∥∥H̃N,T,n − IU −Pθ

∥∥ P−→ 0.

Proof. The probability limit for the Hessian is established by considering each term from the decom-

position H̃N,T,n = H̃
(1)
N,T,n − H̃

(2)
N,T,n + H̃

(3)
N,T,n − H̃

(4)
N,T,n. First, for H̃

(1)
N,T , we have

∂

∂θ
κ̂j,t(θ̃) = Uj,t

(
Ŝt(θ̃), θ̃

)
+

(
∂Ŝt(θ̃)

∂θ′
−Rt,0

)′
Gj

(
Ŝt(θ̃), θ̃

)
,

similarly to (42). Now, using A7, Theorem 1 and Lemma 9 (c), we have

H̃
(1)
N,T,n −

1

T

T∑
t=1

1

Nt

Nt∑
j=1

Uj,t,0U
′
j,t,0 = op(1).

Moreover, applying A2 and A7, it follows that

1

T

T∑
t=1

1

Nt

Nt∑
j=1

Uj,t,0U
′
j,t,0 −

1

T

T∑
t=1

IU,t = op(1),

and, from here, using the convergence in probability results of A6, we finally have

H̃
(1)
N,T,n = IU + op(1). (48)
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Next, for H̃
(2)
N,T,n, we make the decomposition,

H̃
(2)
N,T,n =

1

T

T∑
t=1

1

Nt

Nt∑
j=1

(
κj
(
St,θ0

)
− κ̂j,t(θ̃)

) ∂2

∂θ∂θ′
κ̂j,t(θ̃)

+
1

T

T∑
t=1

1

Nt

Nt∑
j=1

εj,t

(
∂2

∂θ∂θ′
κ̂j,t(θ̃)− ∂2

∂θ∂θ′
κ̂j,t(θ0)

)

+
1

T

T∑
t=1

1

Nt

Nt∑
j=1

εj,t
∂2

∂θ∂θ′
κ̂j,t(θ0) ≡ H̃(2)

N,T,n,1 + H̃
(2)
N,T,n,2 + H̃

(2)
N,T,n,3,

where ∂2

∂θ∂θ′ κ̂j,t(θ0) denotes the derivative ∂2

∂θ∂θ′ κ̂j,t(θ0) in which Ŝt(θ0) is replaced with St. This term

contains a second-order derivative of Ŝ(θ), which can be evaluated using implicit function differentia-

tion. Then, using A7 and Lemmas 9 (a) and (c), we have∣∣∣∣∣
∣∣∣∣∣ ∂2

∂θ∂θ′
κ̂j,t(θ0)

∣∣∣∣∣
∣∣∣∣∣ ≤ Kfd(||St||),

∣∣∣∣∣
∣∣∣∣∣ ∂2

∂θ∂θ′
κ̂j,t(θ̃)− ∂2

∂θ∂θ′
κ̂j,t(θ0)

∣∣∣∣∣
∣∣∣∣∣ ≤ Kη̂t,N,nfd(||St||),

where the nonnegative process η̂t,N,n satisfies supt=1,...,T η̂t,N,n = op(1). From here, using A6 and A7

as well as the uniform consistency supt=1,...,T ||Ŝt(θ̃) − St|| = op(1) and ||θ̃ − θ0|| = op(1), we get

||H̃(2)
N,T,n,1|| = op(1). Similarly, using the second bound above and since 1

T

∑T
t=1

1
Nt

∑Nt
j=1 |εj,t|fd(||St||)

is Op(1) (by applying A5 and A6), we have ||H̃(2)
N,T,n,2|| = op(1). Finally, for the third term, H̃

(2)
N,T,n,3,

we may use part (a) of Lemma 8 and readily conclude that ||H̃(2)
N,T,n,3|| = op(1).

Next, for H̃
(3)
N,T,n, we write

∂

∂θ
ξ1

(
Ŝt(θ̃)

)
= R′t,0C

(
St
)

+R′t,0(C(Ŝt(θ̃))−C(St)) +

(
∂Ŝt(θ̃)

∂θ′
−Rt,0

)′
C
(
Ŝt(θ̃)

)
.

Then, using arguments similar to those for the term H̃
(1)
N,T,n, we have

H̃
(3)
N,T,n −

1

T

T∑
t=1

Pθ,t = op(1),
1

T

T∑
t=1

Pθ,t = Pθ + op(1),

and, as a result, H̃
(3)
N,T,n = Pθ + op(1).

For the last term, H̃
(4)
N,T,n, make the decomposition,

H̃
(4)
N,T,n = λ

kn
Nt

1

T

T∑
t=1

∂2

∂θ∂θ′
ξ1

(
Ŝt(θ̃)

) (
V̂ n
t − ξ1(St)

)
+ λ

kn
Nt

1

T

T∑
t=1

∂2

∂θ∂θ′
ξ1

(
Ŝt(θ̃)

) (
ξ1(St)− ξ1

(
Ŝt(θ̃)

))
≡ H̃(4)

N,T,n,1 + H̃
(4)
N,T,n,2.

We then use A7, the uniform consistency supt=1,...,T ||Ŝt(θ̃) − St|| = op(1) and ||θ̃ − θ0|| = op(1) as

well as part (b) of Lemma 8, to conclude ||H̃(4)
N,T,n,1|| = op(1) and ||H̃(4)

N,T,n,2|| = op(1).
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Lemma 3. Under the conditions of Theorem 2, we have

√
TN

∥∥A12 −A22 +A33 −
(
IU + Pθ

)
BT,N

∥∥ P−→ 0.

Proof. First, recall that

(
IU + Pθ

)
BT,N =

2∑
j=1

(
B(j)
T,N,1 −B(j)

T,N,2 −B(j)
T,N,3

)
.

Then, using a first-order Taylor expansion, we may write

A12 =
1

TN

T∑
t=1

N

Nt

Nt∑
j=1

εj,tU
(S)
j,t,0L

−1
S,tFt,N,n

+
1

TN

T∑
t=1

N

Nt

Nt∑
j=1

εj,tU
(S)
j,t,0

(
L̃−1
S,t −L−1

S,t

)
Ft,N,n ≡ A121 +A122.

From part (a) of Lemma 9, ||L̃−1
S,t −L−1

S,t|| ≤ Kη̂t,N,n × fd(||St||) where the nonnegative process η̂t,N,n

satisfies supt=1,...,T η̂t,N,n = op(1). Therefore, for the second term in the decomposition, using the

triangle inequality as well as Lemma 9 (a) and Lemma 10, we have

√
TN ‖A122‖ ≤

K√
TN

sup
t=1,...,T

|η̂t,N,n|
T∑
t=1

∥∥∥∥∥∥ 1√
Nt

Nt∑
j=1

εj,tU
(S)
j,t,0

∥∥∥∥∥∥×
∥∥∥√NFt,N,n∥∥∥× fd(||St||) P−→ 0.

For the first term, A121, we write

A121 =
1

TN

T∑
t=1

N

N2
t

Nt∑
j=1

φj,tU
(S)
j,t,0L

−1
S,tGj,t,0 +

1

TN

T∑
t=1

N

N2
t

Nt∑
j=1

(ε2j,t − φj,t)U
(S)
j,t,0L

−1
S,tGj,t,0

+
1

TN

T∑
t=1

N

N2
t

Nt∑
j,`=1; j 6=`

εj,tε`,tU
(S)
j,t,0L

−1
S,tG`,t,0

+
λ

TN

T∑
t=1

kn
Nt

N

Nt

Nt∑
j=1

εj,tU
(S)
j,t,0 ×

{
L−1
S,tCt,0

(
V̂ n
t − ξ1(St)

)}
≡ B(1)

T,N,1 +A1211 +A1212 +A1213.

Now, sinceU
(S)
j,t,0, IS,t, PS,t andG`,t,0 are all adapted to F (0)

t , and since the noise satisfies the regularity

conditions in A5, we have E0(A1211) = 0 and E0(A1212) = 0. Moreover, using again A5 and A6 as

well as successive conditioning, we can write

V0

(√
TNA1211

)
=

1

TN

T∑
t=1

(
N

Nt

)2 1

N2
t

Nt∑
j=1

E0

((
ε2j,t − φj,t

)2)(
U

(S)
j,t,0L

−1
S,tGj,t,0

)(
U

(S)
j,t,0L

−1
S,tGj,t,0

)′
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≤ K

TN

T∑
t=1

(
N

Nt

)2 1

N2
t

Nt∑
j=1

(φ
(4)
j,t + φ2

j,t)
(
U

(S)
j,t,0L

−1
S,tGj,t,0

)(
U

(S)
j,t,0L

−1
S,tGj,t,0

)′
= Op

(
N−2

)
,

where the last equality follows from the assumed integrability properties of the (F (0)-conditional)

moments of the observation error and the state vector. Similar arguments provide

V0

(√
TNA1212

)
=

1

TN

T∑
t=1

(
N

Nt

)2 1

N2
t

Nt∑
j,`=1; j 6=`

E0

(
ε2j,tε

2
`,t

) (
U

(S)
j,t,0L

−1
S,tG`,t,0

)(
U

(S)
j,t,0L

−1
S,tG`,t,0

)′
=

1

TN

T∑
t=1

(
N

Nt

)2 1

N2
t

Nt∑
j,`=1; j 6=`

φj,tφl,t

(
U

(S)
j,t,0L

−1
S,tG`,t,0

)(
U

(S)
j,t,0L

−1
S,tG`,t,0

)′
= Op

(
N−1

)
.

These conditional moment results imply the following stochastic bounds, ‖A1211‖ = Op(N
−1) and

‖A1212‖ = Op(N
−1/2). For A1213, we can use successive conditioning and A5 for the noise to get

V0

(√
TNA1213

)
≤ KE0

N
T

T∑
t=1

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

Nt

Nt∑
j=1

εj,tU
(S)
j,t,0

∣∣∣∣∣∣
∣∣∣∣∣∣
2

×
∣∣∣∣∣∣∣∣knN L−1

S,tCt,0

(
V̂ n
t − ξ1(St)

)∣∣∣∣∣∣∣∣2
 .

Now, we apply Lemma 10 with r1 = 0, r2 = 2, r3 = 2 (taking into account that k2
n∆n → 0) and A6

and A7, to get V0

(√
TNA1213

)
= Op(1/N) and hence

√
TN‖A1213‖ → 0. Altogether,

√
TN

∥∥∥A12 −B(1)
T,N,1

∥∥∥ P−→ 0.

Turning to the second main term, A22, we define the two terms in its definition as A221 and A222 (i.e.,

we have A22 ≡ A221 +A222), and we further decompose A221 using addition and subtraction as

A221 =
1

TN

T∑
t=1

1

Nt

Nt∑
j=1

U
(S)
j,t,0

{
L−1
S,t (ΩS,t + ΨS,t)L−1

S,t

}
Gj,t,0

+
1

TN

T∑
t=1

1

Nt

Nt∑
j=1

U
(S)
j,t,0

{
N
(
Ŝt(θ0)− St

)(
Ŝt(θ0)− St

)′ −L−1
S,t (ΩS,t + ΨS,t)L−1

S,t

}
Gj,t,0

≡ B(1)
T,N,2 +A2211.

We have ‖(TN)1/2A2211‖ = op(
√
T/N) by making use of the integrability assumptions for the state

vector in A6 and A7, and then applying Lemma 11. For A222, apply a first-order Taylor expansion as

well as further addition and subtraction to make the decomposition,

A222 =
1

2TN

T∑
t=1

N

Nt

Nt∑
j=1

{
F ′t,N,nL−1

S,tG
(S)
j,t,0L

−1
S,tFt,Nn

}
Uj,t,0

+
1

2TN

T∑
t=1

N

Nt

Nt∑
j=1

{
F ′t,N,n

(
L̃−1
S,t −L−1

S,t

)
G

(S)
j,t,0L

−1
S,tFt,Nn

}
Uj,t,0
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+
1

2TN

T∑
t=1

N

Nt

Nt∑
j=1

{
F ′t,N,nL̃

−1
S,tG

(S)
j,t,0

(
L̃−1
S,t −L−1

S,t

)
Ft,Nn

}
Uj,t,0

≡ A2221 +A2222 +A2223,

whose second term, A2222, may be bounded by the triangle inequality and Lemma 9 (a) as

√
TN ‖A2222‖ ≤

K√
TN

sup
t=1,...,T

|η̂t,N,n|
T∑
t=1

∥∥∥√NFt,N,n∥∥∥2
fd(||St||)

 1

Nt

Nt∑
j=1

∥∥∥G(S)
j,t,0L

−1
S,t

∥∥∥× ‖Uj,t,0‖
 .

Then, using part (a) of Lemma 9 and Lemma 10, we have
√
TN ‖A2222‖

P−→ 0, and similar arguments

may be used to show
√
TN ‖A2223‖

P−→ 0. Returning to the first term in the decomposition of A222,

that is, to A2221, we make a further decomposition of its term inside the braces,

(
L−1
S,tFt,N,n)′G

(S)
j,t,0

(
L−1
S,tFt,N,n) =

1

N2
t

Nt∑
`=1

φ`,t

(
L−1
S,tG`,t,0

)′
G

(S)
j,t,0

(
L−1
S,tG`,t,0

)
+ 2λ2V 2

t

kn
N2
t

(
L−1
S,tCt,0

)′
G

(S)
j,t,0

(
L−1
S,tCt,0

)
+

1

N2
t

Nt∑
`=1

(
ε2`,t − φ`,t

) (
L−1
S,tG`,t,0

)′
G

(S)
j,t,0

(
L−1
S,tG`,t,0

)
+

1

N2
t

Nt∑
`,g=1; ` 6=g

ε`,tεg,t

(
L−1
S,tG`,t,0

)′
G

(S)
j,t,0

(
L−1
S,tGg,t,0

)
+ λ2 kn

N2
t

{
kn

(
V̂ n
t − ξ1(St)

)2
− 2V 2

t

}(
L−1
S,tCt,0

)′
G

(S)
j,t,0

(
L−1
S,tCt,0

)
+ 2λ

kn
N2
t

(
V̂ n
t − ξ1(St)

) Nt∑
`=1

ε`,t

(
L−1
S,tG`,t,0

)′
G

(S)
j,t,0

(
L−1
S,tCt,0

)
≡ Ã22211 + Ã22212 + Ã22213 + Ã22214 + Ã22215 + Ã22216,

where, for brevity, we have dropped the dependence on t and j from the notation used for the six

terms on the right-hand-side. By definition, we have

1

2TN

T∑
t=1

N

Nt

Nt∑
j=1

{
Ã22211 + Ã22212

}
Uj,t,0 = B(1)

T,N,3.

Moreover, note that the corresponding terms for Ã22213, Ã22214, and Ã22216 exactly mirror the structure

of the terms A1211, A1212, and A1213, respectively. Hence, by applying arguments that are similar to

the analyses of those terms, we get∥∥∥∥∥∥ 1

2
√
TN

T∑
t=1

N

Nt

Nt∑
j=1

{
Ã22213 + Ã22214 + Ã22216

}
Uj,t,0

∥∥∥∥∥∥ P−→ 0.
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For the term Ã22215, we use the integrability assumptions in A6 and A7 in conjunction with Lemma 11

to show ∥∥∥∥∥∥ 1

2
√
TN

T∑
t=1

N

Nt

Nt∑
j=1

Ã22215Uj,t,0

∥∥∥∥∥∥ P−→ 0.

Combining all the results for the terms in the decomposition of A22, we have

√
TN

∥∥∥A22 −B(1)
T,N,2 −B(1)

T,N,3

∥∥∥ P−→ 0.

For the last main term, A33, we write

A33 =
λ

T

T∑
t=1

kn
Nt
R′t,0C

(S)
t,0

(
Ŝt(θ0)− St

) (
V̂ n
t − ξ1(St)

)
− λ

T

T∑
t=1

kn
Nt
R′t,0C

(S)
t,0

(
Ŝt(θ0)− St

) (
C ′t,0

(
Ŝt(θ0)− St

))
− λ

2T

T∑
t=1

kn
Nt
R′t,0Ct,0

(
(Ŝt(θ0)− St

)′
C

(S)
t,0

(
Ŝt(θ0)− St

))
≡ A331 −A332 −A333.

Then, as the analyses of A331, A332, and A333 exactly mirror those for the terms A12, A221, and A222,

respectively, we have by similar arguments,

√
TN

∥∥∥A331 −B(2)
T,N,1

∥∥∥ P−→ 0,
√
TN

∥∥∥A332 −B(2)
T,N,2

∥∥∥ P−→ 0,
√
TN

∥∥∥A331 −B(2)
T,N,3

∥∥∥ P−→ 0,

concluding the proof.

Lemma 4. Under the conditions of Theorem 2, we have

√
TN

(
‖A13‖+ ‖A23‖+ ‖A34‖

) P−→ 0.

Proof. First, decompose A13 as

A13 =
1

2TN

T∑
t=1

N

Nt

Nt∑
j=1

εj,tU
(SS)
j,t,0 ×

{(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)}

+
1

6TN

T∑
t=1

N

Nt

Nt∑
j=1

εj,t

{
∂U

(SS)
j,t

(
S̃t(θ0),θ0

)
∂S′

}{(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)
⊗
(
Ŝt(θ0)− St

)}
≡ A131 +A132.

Now, for the first these terms, A131, we invoke Lemma 10 with r1 = 2, r2 = 1, r3 = 0 (noting that

kn∆n → 0), to establish the bound ||A131|| = Op(N
−3/2).

Next, using the triangle inequality and addition and subtraction, A132 may be bounded as

√
TN ‖A132‖ ≤

√
N

6
√
T

T∑
t=1

∥∥∥∥∥∥ 1

Nt

Nt∑
j=1

εj,t
∂U

(SS)
j,t,0

∂S′

∥∥∥∥∥∥×
∥∥∥(Ŝt(θ0)− St

)∥∥∥3
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+

√
N

6
√
T

T∑
t=1

∥∥∥∥∥∥ 1

Nt

Nt∑
j=1

εj,t

(
∂U

(SS)
j,t

(
S̃t(θ0),θ0

)
∂S′

−
∂U

(SS)
j,t,0

∂S′

)∥∥∥∥∥∥×
∥∥∥(Ŝt(θ0)− St

)∥∥∥3

≡ A1321 +A1322.

As above, we use Lemma 10 with r1 = 3, r2 = 1, r3 = 0 to establish the boundA1321 = Op(
√
T (k

5/2
n ∆n∨

1)/N3/2). For A1322, we work on a set on which supt=1,...,T ||S̃t(θ0) − St|| ≤ ε for some ε > 0. This

set has probability approaching one since supt=1,...,T ‖S̃t(θ0) − St‖
P−→ 0 and, as a result, focusing on

it is no restriction. Using A7, we have on this set∥∥∥∥∥∂U
(SS)
j,t

(
S̃t(θ0),θ0

)
∂S′

−
∂U

(SS)
j,t,0

∂S′

∥∥∥∥∥ ≤ Kfd(||St||)||S̃t(θ0)− St||.

Hence, we may bound A1322 by K supt=1,...,T ||S̃t(θ0)− St|| × (A13221 +A13222), where

A13221 =

√
N√
T

T∑
t=1

 1

Nt

Nt∑
j=1

φ
(1)
j,t fd(||St||)

× ∥∥∥(Ŝt(θ0)− St
)∥∥∥3

,

A13222 =

√
N√
T

T∑
t=1

∣∣∣∣∣∣ 1

Nt

Nt∑
j=1

(|εj,t| − φ(1)
j,t )fd(||St||)

∣∣∣∣∣∣×
∥∥∥(Ŝt(θ0)− St

)∥∥∥3
.

Now, for A13221, we use Lemma 10 with r1 = 3, r2 = r3 = 0, to show A1321 = Op(
√
T (k

5/2
n ∆n∨1)/N).

For the second term A13222, we can apply an analogous result to the one in Lemma 10 in which εj,t is

replaced by |εj,t| − φ(1)
j,t , with r1 = 3, r2 = 1, r3 = 0 to get A13222 = Op(

√
T (k

5/2
n ∆n ∨ 1)/N3/2). This

plus the fact that supt=1,...,T ‖S̃t(θ0)− St‖
P−→ 0 as well as

√
Tk

3/2
n ∆n → 0 and kn/N = O(1), implies

A1322 = op(1). Thus, altogether,
√
TN ‖A132‖ = op(1) and hence also

√
TN ‖A13‖ = op(1).

Similar arguments are used to derive the bounds
√
TN ||A23|| = Op(

√
T (k3

n∆n ∨ 1)/N3/2) and
√
TN ||A34|| = Op(

√
T (k

5/2
n ∆n∨1)/N), and, since

√
Tk

3/2
n ∆n → 0 and kn/N = O(1), we may combine

results to show
√
TN ||A23||+

√
TN ||A34|| = op(1). This concludes the proof.

Lemma 5. Under the conditions of Theorem 2, we have

√
TN‖A4‖

P−→ 0.

Proof. First, define

A4 ≡
1

T

T∑
t=1

1

Nt

Nt∑
j=1

εj,t

(
∂Ŝt(θ0)

∂θ′
−Rt,0

)′
Gj

(
Ŝt(θ0),θ0

)
+

1

T

T∑
t=1

1

Nt

Nt∑
j=1

(
κj (St,θ0)− κj

(
Ŝt(θ0),θ0

))(∂Ŝt(θ0)

∂θ′
−Rt,0

)′
Gj

(
Ŝt(θ0),θ0

)
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+
λ

T

T∑
t=1

kn
Nt

(
∂Ŝt(θ0)

∂θ′
−Rt,0

)′
C
(
Ŝt(θ0)

) (
V̂ n
t − ξ1(St)

)
+
λ

T

T∑
t=1

kn
Nt

(
∂Ŝt(θ0)

∂θ′
−Rt,0

)′
C
(
Ŝt(θ0)

) (
ξ1(St)− ξ1(Ŝt(θ0))

)
≡ Â41 + Â42 + Â43 + Â44.

For Â41, we apply a second-order Taylor expansion,

Gj

(
Ŝt(θ0),θ0

)
= Gj,t,0 +G

(S)
j,t,0

(
Ŝt(θ0)− St

)
+

{
∂G

(S)
j

(
S̃t(θ0),θ0

)
∂S′

}{
(Ŝt(θ0)− St

)
⊗ (Ŝt(θ0)− St

)}
, (49)

where S̃t(θ0) ∈ (Ŝt(θ0),St), and make the decomposition,

Â41 =
1

T

T∑
t=1

1

Nt

Nt∑
j=1

εj,t

(
∂Ŝt(θ0)

∂θ′
−Rt,0

)′
Gj,t,0

+
1

T

T∑
t=1

1

Nt

Nt∑
j=1

εj,t

(
∂Ŝt(θ0)

∂θ′
−Rt,0

)′
G

(S)
j,t,0

(
Ŝt(θ0)− St

)
+

1

T

T∑
t=1

1

Nt

Nt∑
j=1

εj,t

(
∂Ŝt(θ0)

∂θ′
−Rt,0

)′{
∂G

(S)
j

(
S̃t(θ0),θ0

)
∂S′

}{
(Ŝt(θ0)− St

)
⊗ (Ŝt(θ0)− St

)}
≡ A41 + Â411 + Â412.

Then, for Â411, we use the triangle inequality as well as part (c) of Lemma 9 to bound

√
TN

∥∥∥Â411

∥∥∥ ≤ K sup
t=1,...T

|η̂t,n| ×
√
N√
T

T∑
t=1

fd(||St||)

∥∥∥∥∥∥ 1

Nt

Nt∑
j=1

εj,tG
(S)
j,t,0

∥∥∥∥∥∥×
∥∥∥Ŝt(θ0)− St

∥∥∥ ,
where η̂t,n is the variable in Lemma 9, for which we have supt=1,...T |η̂t,n| = op(1). Now, we apply

Lemma 10 with r1 = r2 = 1, r3 = 0 and conclude
√
TN

∥∥∥Â411

∥∥∥ = op(
√
T/
√
N). For Â412, we may

restrict attention to the set on which supt=1,...,T ||S̃t(θ0)− St|| ≤ ε for some ε > 0. The probability of

this set is approaching one and, hence, this is no restriction. On this set, using A7, we have∣∣∣∣∣
∣∣∣∣∣∂G

(S)
j

(
S̃t(θ0),θ0

)
∂S′

−
∂G

(S)
j

(
St,θ0

)
∂S′

∣∣∣∣∣
∣∣∣∣∣ ≤ Kfd(||St||)||S̃t(θ0)− St||.

By applying this bound as well as part (c) of Lemma 9 and Lemma 10 with r1 = 2, r2 = 1, r3 =

0, we readily get
√
TN

∥∥∥Â412

∥∥∥ = op(
√
T/N). Moreover, by collecting the above results, we have

√
TN‖Â41 −A41‖

P−→ 0. The corresponding results

√
TN‖Â42 −A42‖+

√
TN‖Â43 −A43‖+

√
TN‖Â44 −A44‖ = op(

√
T/
√
N),
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where A42, A43, and A44 are defined as

A42 ≡ −
1

T

T∑
t=1

1

Nt

Nt∑
j=1

(
G′j,t,0

(
Ŝt(θ0)− St

))(∂Ŝt(θ0)

∂θ′
−Rt,0

)′
Gj,t,0,

A43 ≡
λ

T

T∑
t=1

kn
Nt

(
∂Ŝt(θ0)

∂θ′
−Rt,0

)′
Ct,0

(
V̂ n
t − ξ1(St)

)
,

A44 ≡
λ

T

T∑
t=1

kn
Nt

(
∂Ŝt(θ0)

∂θ′
−Rt,0

)′
Ct,0

((
Ŝt(θ0)− St

)′
Ct,0

)
,

respectively, are shown in exactly the same way. Hence, the proof will be concluded by establishing

that
√
TN

(
A41 +A42 +A43 +A44

)
= op(1).

Defining Ĝt ≡ ∂Ŝt(θ0)/∂θ′ −Rt,0 and using a first-order Taylor expansion, we decompose

A41 +A42 +A43 +A44 =
1

T

T∑
t=1

Ĝ′t

{
1

Nt

Nt∑
j=1

εj,tGj,t,0 + λ
kn
Nt
Ct,0

(
V̂ n
t − ξ1(St)

)

−

(
1

Nt

Nt∑
j=1

Gj,t,0G
′
j,t,0 + λ

kn
Nt
Ct,0C

′
t,0

)(
Ŝt(θ0)− St

)}

=
1

T

T∑
t=1

Ĝ′t

{(
L̃S,t −

1

Nt

Nt∑
j=1

Gj,t,0G
′
j,t,0 − λ

kn
Nt
Ct,0C

′
t,0

)(
Ŝt(θ0)− St

)}
.

Moreover, using the definition of L̃S,t, we make the decomposition,

L̃S,t −
1

Nt

Nt∑
j=1

Gj,t,0G
′
j,t,0 − λ

kn
Nt
Ct,0C

′
t,0 =

1

Nt

Nt∑
j=1

(
Gj

(
S̃t(θ0),θ0

)
Gj

(
S̃t(θ0),θ0

)′ −Gj,t,0G
′
j,t,0

)
+ λ

kn
Nt

(
C
(
S̃t(θ0)

)
C
(
S̃t(θ0)

)′ −Ct,0C ′t,0)− λknNt
C(S)

(
S̃t(θ0)

) (
V̂ n
t − ξ1

(
S̃t(θ0)

))
− 1

Nt

Nt∑
j=1

(
κ̃j,t − κj

(
S̃t(θ0),θ0

))
G

(S)
j

(
S̃t(θ0),θ0

)
≡ L̃S,t,1 + L̃S,t,2 + L̃S,t,3 + L̃S,t,4.

Starting with L̃S,t,1, we apply a first-order Taylor expansion and write

L̃S,t,1 =
1

Nt

Nt∑
j=1

Gj,t,0

(
Ŝt(θ0)− St

)′
G

(S)
j (S̆t(θ0),θ0

)
+

1

Nt

Nt∑
j=1

G
(S)
j (S̆t(θ0),θ0

)(
Ŝt(θ0)− St

)
G′j,t,0

+
1

Nt

Nt∑
j=1

G
(S)
j (S̆t(θ0),θ0

)(
Ŝt(θ0)− St

)(
Ŝt(θ0)− St

)′
G

(S)
j (S̆t(θ0),θ0

)
,

for some S̆t(θ0) ∈ (S̃t(θ0),St). From here, we may apply exactly the same steps as for the analysis

of Â411 and conclude that
√
TN

∥∥∥ 1
T

∑T
t=1 Ĝ

′
tL̃S,t,1

(
Ŝt(θ0)− St

)∥∥∥ = op(
√
T/
√
N). Similar arguments
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provide
√
TN

∥∥∥∥∥ 1

T

T∑
t=1

Ĝ′t(L̃S,t,2 + L̃S,t,3 + L̃S,t,4)
(
Ŝt(θ0)− St

)∥∥∥∥∥ = op(
√
T/
√
N).

Hence, altogether, we have
√
TN ‖A41 +A42 +A43 +A44‖ = op(1), concluding the proof.

Lemma 6. Under the conditions of Theorem 2, we have

√
TN‖A5‖

P−→ 0.

Proof. We start by decomposing A5 as

A5 =
1

T

T∑
t=1

 1

Nt

Nt∑
j=1

Dj,t,0G
′
j,t,0 − I ′S,θ,t

(Ŝt(θ0)− St
)

+
1

T

T∑
t=1

R′t,0

 1

Nt

Nt∑
j=1

Gj,t,0G
′
j,t,0 − IS,t

(Ŝt(θ0)− St
)

+
λ

T

T∑
t=1

(
kn
Nt
− %

ςt

)
R′t,0Ct,0C

′
t,0

(
Ŝt(θ0)− St

)
+

1

T

T∑
t=1

(
I ′S,θ,t +R′t,0

(
IS,t + PS,t

)) (
Ŝt(θ0)− St

)
≡ A51 +A52 +A53 +A54.

Then, by the definition of Rt,0, we have A54 = 0. Next, define

ht,N,n(Z,θ) =
∂

∂Z ′
ÎS,t(Z,θ) +

∂

∂Z ′
P̂S,t(Z),

and use a second-order Taylor expansion for the equation that solves Ŝt(θ0) to write

Ft,N,n + L̄S,t(Ŝt(θ0)− St) +
1

2
ht,N,n(S̃t(θ0),θ0)(Ŝt(θ0)− St)⊗ (Ŝt(θ0)− St) = 0,

where, as before, S̃t(θ0) is an intermediate value between Ŝt(θ0) and St, and

L̄S,t =
1

Nt

Nt∑
j=1

Gj,t,0G
′
j,t,0 −

1

Nt

Nt∑
j=1

εj,tG
(S)
j,t,0 + λ

kn
Nt
Ct,0C

′
t,0 − λ

kn
Nt
C

(S)
t,0 (V̂ n

t − Vt).

With this notation, we split Ŝt(θ0)− St = Ŝ
(1)
t + Ŝ

(2)
t + Ŝ

(3)
t , where Ŝ

(1)
t = L−1

S,tFt,N,n,

Ŝ
(2)
t = (L̄−1

S,t −L−1
S,t)Ft,N,n, Ŝ

(3)
t =

1

2
L̄−1
S,tht,N,n(S̃t(θ0),θ0)(Ŝt(θ0)− St)⊗ (Ŝt(θ0)− St).

By applying this decomposition, we write A51 =
∑3

j=1A51j . Furthermore, using A2 and A7, we have∣∣∣∣∣∣
∣∣∣∣∣∣ 1

Nt

Nt∑
j=1

Dj,t,0G
′
j,t,0 − I ′S,θ,t

∣∣∣∣∣∣
∣∣∣∣∣∣+

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

Nt

Nt∑
j=1

Gj,t,0G
′
j,t,0 − I ′S,t

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ Kη̂t,N,n fd(||St||)√

N
.
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Hence, by taking the above into account, applying part (b) of Lemma 9 and Lemma 10, we readily

establish that ||A512 + A513|| = op(1/N). We now turn to A511, for which, using A5, part (c) of

Lemma 8, and for n sufficiently high (so that kn/n < 1), we have

‖E(Ft,N,n|F (0)
t )‖ ≤ Kt,n

(
∆(2−r)$
n ∨ kn∆n

)
,

where Kt,n has finite absolute moments and is adapted to F (0)
t . From here, we have

1

T

T∑
t=1

 1

Nt

Nt∑
j=1

Dj,t,0G
′
j,t,0 − I ′S,θ,t

L−1
S,tE(Ft,N,n|F (0)

t ) = Op

(
1√
N

(
∆(2−r)$
n ∨ kn∆n

))
,

and, in addition, using Lemma 10 on a set with probability approaching one (that is, on the set in

which we have supt=1,...,T η̂t,N,n < 1), it follows that

E

 1

T

T∑
t=1

 1

Nt

Nt∑
j=1

Dj,t,0G
′
j,t,0 − I ′S,θ,t

L−1
S,t(Ft,N,n − E(Ft,N,n|F (0)

t ))

2

≤ K

TN2
.

Finally, taking into account that
√
T (kn∆n∨∆

(2−r)$
n )→ 0, we, thus, get

√
TN ||A51|| = op(1). Similar

arguments provide
√
TN ||A52||+

√
TN ||A53|| = op(1), concluding the proof.

8.4 Proof of Theorem 3

First, by using Theorem 1 and applying a first-order Taylor expansion, we have

||Ŝt − Ŝt(θ0)|| ≤
∣∣∣∣∂Ŝt(θ̃)

∂θ′
∣∣∣∣× ||θ̂ − θ0||,

and, from here, by invoking Lemma 9 (c) in conjunction with θ̂− θ0 = Op(1/
√
TN) and the fact that

the function g has a bounded derivative, we additionally have

1√
T

T∑
t=2

(g(Ŝt, Ŝt−1)− g(Ŝt(θ0), Ŝt−1(θ0)) = Op(1/
√
N).

Next, by using the first-order Taylor expansion for Ŝt(θ0) − St, we may decompose decompose the

sum 1√
T

∑T
t=1(g(Ŝt(θ0), Ŝt−1(θ0))− g(St,St−1)) into G1 +G2, where

G1 =
1√
T

T∑
t=2

g′1(S̃t, S̃t−1)L−1
S,tFt,N,n +

1√
T

T∑
t=2

g′2(S̃t, S̃t−1)L−1
S,t−1Ft−1,N,n,

with g′1 and g′2 being the derivative of g with respect to the first and second argument, respectively.

Moreover, G2 is defined as the difference 1√
T

∑T
t=1(g(Ŝt(θ0), Ŝt−1(θ0)) − g(St,St−1)) −G1. For G1,

using successive conditioning and the boundedness of g′1 and g′2, we have

E||G1||2 ≤ K/N.
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For G2, we use Lemma 9 (a), the fact that E||Ft,N,n|| ≤ K/
√
N as well as the boundedness of the first

derivative g′, to show

E||G2|| ≤ K
√
T/N × op(1).

Finally, by combining the results above, we get the claim in (23).

8.5 Definitions and Proofs for Section 4

To develop and establish the feasible central limit theory in Section 4, this section first introduces the

necessary notation to establish both Lemma 1 and Theorem 4 before proceeding to the proofs.

8.5.1 Definitions

First, in analogy with Iθ,t and IS,θ,t, defined in the main text, write

ΩS,θ,t =
1

ςt

∑
τ

πτt

∫ k̄(t,τ)

k(t,τ)

1

ψt,τ (k)
φt,k,τG (k, τ,St,θ0)Dt (k, τ,St,θ0)′ dk,

Ωθ,t =
1

ςt

∑
τ

πτt

∫ k̄(t,τ)

k(t,τ)

1

ψt,τ (k)
φt,k,τD (k, τ,St,θ0)Dt (k, τ,St,θ0)′ dk,

and define the Tp× q vector R0 = (R1,0,R2,0, . . . ,RT,0)′ as well as

I =

I11 I12

I21 I22

 , P =

 P11 0Tp×q

0q×Tp 0q×q

 , Ω =

Ω11 Ω12

Ω21 Ω22

 Ψ =

 Ψ11 0Tp×q

0q×Tp 0q×q


where I22 = Iθ ≡ T−1

∑T
t=1 Iθ,t, Ω22 = Ωθ ≡ T−1

∑T
t=1 Ωθ,t,

I11 ≡ diag (IS,1,IS,2, . . . ,IS,T ) , Ω11 ≡ diag (ΩS,1,ΩS,2, . . . ,ΩS,T ) ,

P11 ≡ diag (PS,1,PS,2, . . . ,PS,T ) , Ψ11 ≡ diag (ΨS,1,ΨS,2, . . . ,ΨS,T ) ,

I12 = I ′21 ≡ (IS,θ,1,IS,θ,2, . . . ,IS,θ,T )′ /
√
T , Ω12 = Ω′21 ≡ (ΩS,θ,1,ΩS,θ,2, . . . ,ΩS,θ,T )′ /

√
T .

This simplified notation is used to prove Lemma 1.

Next, for the feasible central limit theory, we first denote N̄ = 1
T

∑T
t=1Nt, %̄ = kn/N̄ , as well as

ς̄t = Nt/N̄ . With this notation, write V̂t = ξ1(Ŝt), Ĉt = C(Ŝt), and Ĉ
(S)
t = C(S)(Ŝt). We then define

P̂S,t =
λρ̄

ς̄t
× ĈtĈ ′t, and Ψ̂S,t = 2

λ2%̄

ς̄2
t

V̂ 2
t ĈtĈ

′
t.

Similarly, we denote the gradient vector estimators by D̂j,t ≡ D(kj , τj , Ŝt, θ̂), Ĝj,t ≡ G(kj , τj , Ŝt, θ̂),

Ĝ
(S)
j,t ≡ G(S)(kj , τj , Ŝt, θ̂), and D̂

(S)
j,t ≡D(S)(kj , τj , Ŝt, θ̂), as well as the Hessian-type estimators

ÎS,t ≡
1

Nt

Nt∑
j=1

Ĝj,tĜ
′
j,t, ÎS,θ,t ≡

1

Nt

Nt∑
j=1

Ĝj,tD̂
′
j,t, Ω̂S,t ≡

1

ς̄tNt

Nt∑
j=1

(
κ̃j,t − κj

(
Ŝt, θ̂

))2
Ĝj,tĜ

′
j,t,
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which, in turn, are used to define

R̂t ≡ −
(
ÎS,t + P̂S,t

)−1ÎS,θ,t, Ûj,t ≡ D̂j,t + R̂′tĜj,t, Û
(S)
j,t = D̂

(S)
j,t + R̂′tĜ

(S)
j,t ,

together with P̂θ,t = R̂′tP̂S,tR̂t, Ψ̂θ,t = R̂′tΨ̂S,tR̂t,

ÎU,t ≡
1

Nt

Nt∑
j=1

Ûj,tÛ
′
j,t and Ω̂U,t ≡

1

ς̄tNt

Nt∑
j=1

(
κ̃j,t − κj

(
Ŝt, θ̂

))2
Ûj,tÛ

′
j,t.

The asymptotic covariance matrix terms are, then, estimated as

X̂ = T−1
T∑
t=1

X̂ t for X̂ t = {ÎU,t, P̂θ,t, Ω̂U,t, Ψ̂θ,t}

and, similarly, the asymptotic bias terms as

B̂T,N =
(
ÎU + P̂θ

)−1
×

2∑
j=1

(
B̂(j)
T,N,1 − B̂(j)

T,N,2 − B̂(j)
T,N,3

)
, where

B̂(1)
T,N,1 =

1

TN̄

T∑
t=1

N̄

Nt

1

Nt

Nt∑
j=1

(
κ̃j,t − κj

(
Ŝt, θ̂

))2
(
Û

(S)
j,t

(
ÎS,t + P̂S,t

)−1
Ĝj,t

)
,

B̂(1)
T,N,2 =

1

TN̄

T∑
t=1

1

Nt

Nt∑
j=1

Û
(S)
j,t

(
ÎS,t + P̂S,t

)−1 (
Ω̂S,t + Ψ̂S,t

)(
ÎS,t + P̂S,t

)−1
Ĝj,t,

B̂(1)
T,N,3 =

1

2TN̄

T∑
t=1

1

Nt

Nt∑
j=1

Ûj,t×{
N̄

N2
t

Nt∑
`=1

(
κ̃l,t − κl

(
Ŝt, θ̂

))2
(
Ĝ′`,t

(
ÎS,t + P̂S,t

)−1
Ĝ

(S)
j,t

(
ÎS,t + P̂S,t

)−1
Ĝ`,t

)

+ 2λV̂ 2
t

knN̄

N2
t

(
Ĉ ′t

(
ÎS,t + P̂S,t

)−1
Ĝ

(S)
j,t

(
ÎS,t + P̂S,t

)−1
Ĉt

)}
,

B̂(2)
T,N,1 =

1

TN̄

T∑
t=1

2λ2V̂ 2
t

knN̄

N2
t

R̂tĈ
(S)
t

(
ÎS,t + P̂S,t

)−1
Ĉt,

B̂(2)
T,N,2 =

λ

TN̄

T∑
t=1

kn
Nt
R̂′tĈ

(S)
t

(
ÎS,t + P̂S,t

)−1 (
Ω̂S,t + Ψ̂S,t

)(
ÎS,t + P̂S,t

)−1
Ĉt,

B̂(2)
T,N,3 =

λ

2TN̄

T∑
t=1

kn
Nt
R̂′tĈt×{

N̄

N2
t

Nt∑
`=1

(
κ̃`,t − κ`

(
Ŝt, θ̂

))2
(
Ĝ′`,t

(
ÎS,t + P̂S,t

)−1
Ĉ

(S)
t

(
ÎS,t + P̂S,t

)−1
Ĝ`,t

)

+ 2λV̂ 2
t

knN̄

N2
t

(
Ĉ ′t

(
ÎS,t + P̂S,t

)−1
Ĉ

(S)
t

(
ÎS,t + P̂S,t

)−1
Ĉt

)}
.
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Finally, let us define

Ω̂S,U,t ≡
1

ς̄tNt

Nt∑
j=1

(
κ̃j,t − κj

(
Ŝt, θ̂

))2
Ĝj,tÛ

′
j,t.

such that the covariance matrix for the state vector at time t = 1, . . . , T , may be estimated as

ÂVARSt = ÂVARSt,1 + ÂVARSt,2 + ÂVARSt,3 + ÂVARSt,4, where

ÂVARSt,1 = (ÎS,t + P̂S,t)
−1(Ω̂S,t + Ψ̂S,t)(ÎS,t + P̂S,t)

−1,

ÂVARSt,2 = R̂t,0(ÎU + P̂θ)
−1(Ω̂U + Ψ̂θ)(ÎU + P̂θ)

−1R̂′t,0/T,

ÂVARSt,3 = (ÎS,t + P̂S,t)
−1(Ω̂S,U,t + Ψ̂S,tR̂t,0)

(
ÎU + P̂θ

)−1
R̂′t,0/T,

ÂVARSt,4 = R̂t,0

(
ÎU + P̂θ

)−1
(Ω̂′S,U,t + R̂′t,0Ψ̂S,t)(ÎS,t + P̂S,t)

−1/T.

8.5.2 Proof of Lemma 1

First, define L = I + P . Then, by the joint stable central limit theory in (Andersen et al., 2015a,

Theorems 2 and 6), the vector ((Ŝ1 − S1)′, (Ŝ1 − S2)′, . . . , (ŜT − ST )′, (θ̂ − θ)′)′ converges stably in

law to a mean zero mixed Gaussian distribution with (random) asymptotic covariance matrix

AVAR ≡ L−1 (Ω + Ψ)L−1,

when appropriately scaled by
√
N for the factor realizations and by

√
NT for the parameter vector.

Next, by rules for the inverse of partitioned matrices, we can show that

L−1 =

L−1
11 + L−1

11 L12

(
L22 −L′21L−1

11 L12

)−1 L′21L−1
11 −L−1

11 L12

(
L22 −L′21L−1

11 L12

)−1

−
(
L22 −L′21L−1

11 L12

)−1 L21L−1
11

(
L22 −L′21L−1

11 L12

)−1

 ,

since L22 −L21L−1
11 L12 is non-singular by A6 and A8. By definition, −L−1

11 L12 ≡ R0/
√
T . Further-

more, we may write

L22 −L′21L−1
11 L12 =

1

T

T∑
t=1

Iθ,t − I ′S,θ,t (IS,t + PS,t)
−1 IS,θ,t =

1

T

T∑
t=1

IU,t + Pθ,t ≡ IU + Pθ,

using simple algebra for the second equality. This implies

L−1 =

L−1
11 +R0 (IU + Pθ)

−1R′0/T R0 (IU + Pθ)
−1 /
√
T

(IU + Pθ)
−1R′0/

√
T (IU + Pθ)

−1

 .

Next, let us compute the q×q partial asymptotic covariance matrix for
√
TN(θ̂−θ), which we denote

by AVARθ. Using matrix multiplication and simple algebra,

AVARθ = (IU + Pθ)
−1R′0 (Ω11 + Ψ11)R0 (IU + Pθ)

−1 /T + (IU + Pθ)
−1R′0Ω12 (IU + Pθ)

−1 /
√
T
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+ (IU + Pθ)
−1 Ω21R0 (IU + Pθ)

−1 /
√
T + (IU + Pθ)

−1 Ω22 (IU + Pθ)
−1

≡ (IU + Pθ)
−1 (ΩU + Ψθ) (IU + Pθ)

−1 .

Similarly, for the partial asymptotic covariance matrix of
√
N((Ŝ1−S1)′, (Ŝ1−S2)′, . . . , (ŜT −ST )′)′,

denoted by AVARS , it follows that

AVARS =
(
L−1

11 +R0 (IU + Pθ)
−1R′0/T

)
(Ω11 + Ψ11)

(
L−1

11 +R0 (IU + Pθ)
−1R′0/T

)
+R0 (IU + Pθ)

−1 Ω21

(
L−1

11 +R0 (IU + Pθ)
−1R′0/T

)
/
√
T

+
(
L−1

11 +R0 (IU + Pθ)
−1R′0/T

)
Ω12 (IU + Pθ)

−1R′0/
√
T

+R0 (IU + Pθ)
−1 Ω22 (IU + Pθ)

−1R′0/T

= L−1
11 (Ω11 + Ψ11)L−1

11 + L−1
11

((
Ω11R0 + Ω12

√
T
)

+ Ψ11R0

)
(IU + Pθ)

−1R′0/T

+R0 (IU + Pθ)
−1
((
R′0Ω11 + Ω21

√
T
)

+R′0Ψ11

)
L−1

11 /T +R0 ×AVARθ ×R′0/T,

implying that we may write the asymptotic covariance matrix for
√
N(Ŝt − St), t = 1, . . . , T , as

AVARSt = AVARSt,1 + AVARSt,2 + AVARSt,3 + AVARSt,4,

where AVARSt,j , for j = 1, 2, 3, 4, are defined in the lemma. Since L11 is block-diagonal, this readily

provides the representation of AVARS , where ACOVS is defined from the off-diagonal block elements

of matrix R0 ×AVARθ ×R′0/T , concluding the proof.

8.5.3 Proof of Theorem 4

Let us first consider the fixed T case for θ̂, that is, the case when γ = 0. Here, we may readily invoke

Lemma 1 and (Andersen et al., 2015a, Theorem 3 and 6) to show X̂ P−→ X for X = {IU ,Pθ,ΩU ,Ψθ}
as N → ∞. Next, for the bias correction, we need to show that

√
TN̄B̂T,N = op(1). However, since

asymptotic negligibility of the various components of the bias correction term follows analogously, we

will only show that
√
TN̄B̂(1)

T,N,1 = op(1). For the latter, it suffices to prove

1

Nt

Nt∑
j=1

(
εj,t +

(
κj
(
St,θ0

)
− κj

(
Ŝt, θ̂

)))2
(
Û

(S)
j,t

(
ÎS,t + P̂S,t

)−1
Ĝj,t

)
= Op(1) (50)

From (Andersen et al., 2015a, Theorem 1) we have ‖Ŝt − St‖
P−→ 0, ∀t = 1, . . . , T , and ‖θ̂ − θ0‖

P−→ 0.

Therefore, we may work on a set where ‖Ŝt − St‖ ≤ ε1 and ‖θ̂t − θ0‖ ≤ ε2, for some arbitrarily small

ε1, ε2 > 0, which has probability approaching one. On this set, we have∣∣∣κj(St,θ0

)
− κj

(
Ŝt, θ̂

)∣∣∣2 ≤ Kfd (‖St‖) ‖Ŝt − St‖,
∥∥∥Û (S)

j,t −U
(S)
j,t

∥∥∥2
≤ Kfd (‖St‖) ‖Ŝt − St‖, (51)
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and, similarly, ‖Ĝj,t − Gj,t‖2 ≤ Kfd (‖St‖) ‖Ŝt − St‖ using A4 and A7. When we combine these

inequalities with A5, A6, and A8, the consistency results for ÎS,t and P̂S,t in (Andersen et al., 2015a,

Theorem 3 and 6), as well as the Cauchy-Schwarz inequality, this establishes (50), and the desired

result
√
TN̄B̂(1)

T,N,1 = op(1) follows by T/N → 0. Since the remaining bias correction terms are op(1)

by similar arguments, the fixed T result follows by the stable central limit theorem in Lemma 1.

Next, for the large T case, that is, when γ > 0, we will show that√
TN̄

(
B(1)
T,N,1 − B̂(1)

T,N,1

)
= op(1),

since consistency of the asymptotic covariance estimators, ÎU , P̂θ, Ω̂θ, and Ψ̂θ as well as of the

remaining bias correction terms follow analogously. We make the following decomposition,√
TN̄

(
B(1)
T,N,1 − B̂(1)

T,N,1

)
≡ B̄(1)

T,N,11 + B̄(1)
T,N,12, where

B̄(1)
T,N,11 ≡

1√
TN̄

T∑
t=1

N̄

N2
t

Nt∑
j=1

(
φj,t −

(
κ̃j,t − κj

(
Ŝ, θ̂

))2
)(
U

(S)
j,t,0L

−1
S,tGj,t,0

)
,

B̄(1)
T,N,12 ≡

1√
TN̄

T∑
t=1

N̄

N2
t

Nt∑
j=1

(
κ̃j,t − κj

(
Ŝ, θ̂

))2 (
Û

(S)
j,t,0L̂

−1
S,tĜj,t,0 −U (S)

j,t,0L
−1
S,tGj,t,0

)
,

with L̂S,t ≡ ÎS,t + P̂S,t. First, by applying the condition A2 and the continuous mapping theorem,

we readily have supt∈R+
|N̄/Nt − 1/ςt|

P−→ 0. Next, we expand

φj,t −
(
κ̃j,t − κj

(
Ŝ, θ̂

))2
=
(
φj,t − ε2j,t

)
−
(
κj
(
S,θ

)
− κj

(
Ŝ, θ̂

))2
+ 2εj,t

(
κj
(
S,θ

)
− κj

(
Ŝ, θ̂

))
, (52)

and decompose B̄(1)
T,N,11 =

∑3
i=1 B̄

(1)
T,N,11i, corresponding to the contribution from the three right-hand-

side terms above. Since B̄(1)
T,N,111 is identical to A1211 in the proof of Lemma 3, ‖B̄(1)

T,N,111‖ ≤ Op(N−1)

follows by the same arguments. Moreover, and similarly to the fixed T case, since supt=1,...,T ‖Ŝt −
St‖

P−→ 0 and θ̂t
P−→ θ0 by Theorem 1, we may readily work on a set where ‖Ŝt − St‖ ≤ ε1 and

‖θ̂t − θ0‖ ≤ ε2, for some arbitrarily small and positive ε1 and ε2, which has probability approaching

one. Hence, by applying A4, A6, and A7, we have

∥∥∥B̄(1)
T,N,112

∥∥∥ ≤ sup
t=1,...,T

‖Ŝt − St‖
K√
TN̄

T∑
t=1

fd (‖St‖)
N̄

N2
t

Nt∑
j=1

∥∥∥U (S)
j,t,0L

−1
S,tGj,t,0

∥∥∥ = op

(
(T/N)1/2

)
.

Moreover, by combining these two bounds with the Cauchy-Schwarz inequality, ‖B̄(1)
T,N,113‖ = op(1).

As a result, we have ‖B̄(1)
T,N,11‖ = op(1). For the second main term, B̄(1)

T,N,12, we may write

Û
(S)
j,t,0L̂

−1
S,tĜj,t,0 −U (S)

j,t,0L
−1
S,tGj,t,0 =

(
Û

(S)
j,t,0 −U

(S)
j,t,0

)
L̂−1
S,tĜj,t,0 +U

(S)
j,t,0

(
L̂−1
S,t −L−1

S,t

)
Ĝj,t,0

+U
(S)
j,t,0L

−1
S,t

(
Ĝj,t,0 −Gj,t,0

)
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by addition and subtraction. Moreover, since we work on a set where ‖Ŝt−St‖ ≤ ε1 and ‖θ̂t−θ0‖ ≤ ε2,

we may invoke the inequalities in (51). When these inequalities are applied in conjunction with the

decomposition in (52), the regularity conditions in A5, and part (a) of Lemma 9, we have

∥∥∥B̄(1)
T,N,12

∥∥∥ ≤ sup
t=1,...,T

(
‖Ŝt − St‖+ η̂t,N,n

) K√
TN̄

T∑
t=1

fd (‖St‖)
N̄

N2
t

Nt∑
j=1

∥∥∥U (S)
j,t,0L

−1
S,tGj,t,0

∥∥∥
where the nonnegative process η̂t,N,n satisfies supt=1,...,T η̂t,N,n = op(1). Hence, ‖B̄(1)

T,N,12‖ ≤ op(1), as

above, and, by the triangle inequality, this establishes√
TN̄

∥∥∥B(1)
T,N,1 − B̂(1)

T,N,1

∥∥∥ = op(1).

As consistency of the remaining bias and covariance estimators follow analogously, the large T result

follows by combining Theorem 2, the continuous mapping theorem and Slutsky’s theorem.

Finally, the feasible central limit theory for the state vector, Ŝt, follows, as above, by invoking

Lemma 1 and the corresponding consistency results in (Andersen et al., 2015a, Theorem 3 and 6) for

the components of ÂVARSt when γ = 0. Furthermore, since we may readily show that

ÂVARSt,1
P−→ AVARSt,1,

4∑
i=2

ÂVARSt,i = op(1),

when γ > 0, using the same arguments as for θ̂, this concludes the proof.

8.6 Definitions for Section 5 and Proofs of Theorem 5 and Corollary 1

This section first defines the necessary asymptotic bias and variance terms to state the central limit

theorem for the weighted PLS case, and then proceeds to establish Theorem 5 and Corollary 1.

8.6.1 Definitions for Section 5

Let us define the weighted PLS analogues of the various components in Theorem 2. First, write,

Pw
S,t ≡ (1/λw(2V 2

t ))PS,t, Ψw
S,t ≡ (1/λw(2V 2

t ))2ΨS,t, Ωw
S,t = ΩS,t/w(φt)

2, Xw
t ≡ X t/w(φt),

for X t = {Iθ,t,IS,t,IS,θ,t}, and Rw
t,0 ≡ −(IwS,t + Pw

S,t)
−1IwS,θ,t. Then, let us define,

Uw
t (k, τ,Z,θ) = D(k, τ,Z,θ) +

(
Rw
t,0

)′
G(k, τ,Z,θ),

such that we may, correspondingly, write,

IwU,t =
1

w(φt)

∑
τ

πτt

∫ k̄(t,τ)

k(t,τ)

1

ψt,τ (k)
Uw
t (k, τ,St,θ0)Uw

t (k, τ,St,θ0)′ dk,
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Ωw
U,t =

1

ςtw(φt)2

∑
τ

πτt

∫ k̄(t,τ)

k(t,τ)

1

ψt,τ (k)
φt,k,τU

w
t (k, τ,St,θ0)Uw

t (k, τ,St,θ0)′ dk,

Ωw
S,U,t =

1

ςtw(φt)2

∑
τ

πτt

∫ k̄(t,τ)

k(t,τ)

1

ψt,τ (k)
φt,k,τG (k, τ,St,θ0)Uw

t (k, τ,St,θ0)′ dk,

as well as the matrices Pw
θ,t =

(
Rw
t,0

)′Pw
S,tR

w
t,0 and Ψθ,t,=

(
Rw
t,0

)′
Ψw
S,tR

w
t,0. Moreover, let

Xw = plim
T→∞

1

T

T∑
t=1

Xw
t , Xw = {IwU ,Pw

θ ,Ω
w
U ,Ψ

w
θ }.

Next, let us denote the q × p derivative of Uw
t (k, τ,Z,θ) with respect to Z as U

(S,w)
t (k, τ,Z,θ).

Similar to the case without weighting, when a (higher-order) gradient is evaluated at (S′t,θ
′
0), we use

the notation Uw
j,t,0. Finally, the corresponding asymptotic bias term may be defined as

Bw
T,N = (IwU + Pw

θ )−1 ×
2∑
j=1

(
B(j,w)
T,N,1 −B(j,w)

T,N,2 −B(j,w)
T,N,3

)
, where

B(1,w)
T,N,1 =

1

TN

T∑
t=1

N

Nt

1

w(φt)2Nt

Nt∑
j=1

φj,t

(
U

(S,w)
j,t,0 (IwS,t + Pw

S,t)
−1Gj,t,0

)
,

B(1,w)
T,N,2 =

1

TN

T∑
t=1

1

w(φt)Nt

Nt∑
j=1

U
(S,w)
j,t,0 (IwS,t + Pw

S,t)
−1
(
Ωw
S,t + Ψw

S,t

)
(IwS,t + Pw

S,t)
−1Gj,t,0,

B(1,w)
T,N,3 =

1

2TN

T∑
t=1

1

w(φt)Nt

Nt∑
j=1

Uw
j,t,0×{

N

(w(φt)Nt)2

Nt∑
`=1

φ`,t

(
G′`,t,0(IwS,t + Pw

S,t)
−1G

(S)
j,t,0(IwS,t + Pw

S,t)
−1G`,t,0

)
+

2V 2
t

w(2V 2
t )2

knN

N2
t

(
C ′t,0(IwS,t + Pw

S,t)
−1G

(S)
j,t,0(IwS,t + Pw

S,t)
−1Ct,0

)}
,

B(2,w)
T,N,1 =

1

TN

T∑
t=1

2V 2
t

w(2V 2
t )2

knN

N2
t

(
Rw
t,0

)′
C

(S)
t,0 (IwS,t + Pw

S,t)
−1Ct,0,

B(2,w)
T,N,2 =

1

TN

T∑
t=1

kn
w(2V 2

t )Nt

(
Rw
t,0

)′
C

(S)
t,0 (IwS,t + Pw

S,t)
−1
(
Ωw
S,t + Ψw

S,t

)
(IwS,t + Pw

S,t)
−1Ct,0,

B(2,w)
T,N,3 =

1

2TN

T∑
t=1

kn
w(2V 2

t )Nt

(
Rw
t,0

)′
Ct,0×{

N

(w(φt)Nt)2

Nt∑
`=1

φ`,t

(
G′`,t,0(IwS,t + Pw

S,t)
−1C

(S)
t,0 (IwS,t + Pw

S,t)
−1G`,t,0

)
,

+
2V 2

t

w(2V 2
t )

knN

N2
t

(
C ′t,0(IwS,t + Pw

S,t)
−1C

(S)
t,0 (IwS,t + Pw

S,t)
−1Ct,0

)}
.
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8.6.2 Proof of Theorem 5

First, let us make the decomposition

φ̂t −
1

Nt

Nt∑
j=1

φj,t = φ̂
(1)
t + φ̂

(2)
t + φ̂

(3)
t , φ̂

(1)
t =

1

Nt

Nt∑
j=1

(ε2j,t − φj,t), (53)

φ̂
(2)
t =

2

Nt

Nt∑
j=1

εj,t(κj,t(St,θ0)− κj,t(Ŝt, θ̂)), φ̂
(3)
t =

1

Nt

Nt∑
j=1

(κj,t(St,θ0)− κj,t(Ŝt, θ̂))2. (54)

Then, using a second-order Taylor expansion, the regularity conditions in A7, the uniform consistency

bounds for the state vector ||Ŝt − St|| ≤ η̂t,N,nfd(||St||)/
√
N , where supt=1,...,T η̂t,N,n = Op(1), as well

as ||θ̂ − θ0|| = Op(1/
√
NT ) in conjunction with A5, we may readily conclude

|φ̂(2)
t |+ |φ̂

(3)
t | ≤ η̂t,N,nfd(||St||)/N1−ι, (55)

for some arbitrarily small ι > 0. We now make the same decomposition of terms as in the proof of

Theorem 2, but we divide A1, A2, and the first part of A4 by w(φ̂t), and for A3 as well as the second

part of A4, we replace λ with 1/w(2(V̂ n
t )2). The corresponding terms are denoted with hats.

To proceed, we will make use of the following algebraic inequality, which follows from a second-order

Taylor expansion and the properties of the weight function w:∣∣∣∣ 1

w(y)
− 1

w(x)
+
w′(x)

w(x)2
(y − x)

∣∣∣∣ ≤ K|y − x|2, x, y ∈ R+. (56)

Specifically, we will apply this inequality with y = φ̂t and x = 1
Nt

∑Nt
j=1 φj,t for Â1, Â2 and the first

part of Â4, and, similarly, with y = 2(V̂ n
t )2 and x = 2V 2

t for Â3 as well as the second part of Â4. If

we denote with Aw
1 and Aw

2 the analogues of Â1 and Â2, respectively, in which w(φ̂t) is replaced with

w( 1
Nt

∑Nt
j=1 φj,t), and, similarly, with Aw

3 and Aw
4 the analogues of Â3 and Â4 in which w(2(V̂ n

t )2) is

also replaced with w(2V 2
t ), then we only need to show the asymptotic negligibility of

√
NT (Âi−Aw

i )

for i = 1, 2, 3, 4. The analysis of the four terms follows by the above bounds, by applying Lemmas 8

and 10 as well as by using arguments similar to those for Theorem 2. The only nontrivial part is the

analysis of the differences
√
NT (Â11 −Aw

11) and
√
NT (Â31 −Aw

31). In particular, using the algebraic

inequality in (56), the nontrivial part of the first of them is

1√
NT

T∑
t=1

N

Nt

Nt∑
j=1

εj,tUj,t,0
w′( 1

Nt

∑Nt
j=1 φj,t)

w2( 1
Nt

∑Nt
j=1 φj,t)

φ̂
(1)
t ,

and, by applying A5, the boundedness of w from below, the boundedness of w′, as well as the definition

of φ̂
(1)
t , we have that its F (0)-conditional variance is bounded by K

NT

∑T
t=1

N2

N4
t

∑Nt
j=1 ||Uj,t,0||2. This

readily shows asymptotic negligibility of the term.
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Next, the nontrivial component of
√
NT (Â31 −Aw

31) is

4λVt

√
N√
T

T∑
t=1

kn
Nt
R′t,0Ct,0

w′(2V 2
t )

w2(2V 2
t )

(V̂ n
t − Vt)2.

Then, by applying Lemma 10 in conjunction with A2 for the ratio Nt/N , we easily get that this term

is of order Op(1/kn), establishing asymptotic negligibility, thereby concluding the proof.

8.6.3 Proof of Corollary 1

First, since the support of φt and the process Vt is above ε > 0, we can equivalently work with weight

function w(x) = x. For this choice of w, we have

Pw
S,t =

ρ

2ςtV 2
t

Ct,0C
′
t,0, IwU,t =

1

φt

∑
τ

πτt

∫ k̄(t,τ)

k(t,τ)

1

ψt,τ (k)
Uw
t (k, τ,St,θ0)Uw

t (k, τ,St,θ0)′ dk,

as well as IwS,t = IS,t/φt, Ψw
S,t = Pw

S,t/ςt, Ωw
S,t = IwS,t/ςt and Ωw

U,t = IwU,t/ςt. Then, using A2 and

these definitions, we have

B(1,w)
T,N,1 =

1

TN

T∑
t=1

1

ςtφtNt

Nt∑
j=1

U
(S,w)
j,t,0 (IwS,t + Pw

S,t)
−1Gj,t,0 + op((TN)−1/2),

B(1,w)
T,N,2 =

1

TN

T∑
t=1

1

ςtφtNt

Nt∑
j=1

U
(S,w)
j,t,0 (IwS,t + Pw

S,t)
−1Gj,t,0,

implying that their contribution to the asymptotic bias will cancel, and, similarly, for the corresponding

terms B(2,w)
T,N,1 − B(2,w)

T,N,2. Hence, the final result follows by setting ςt = 1 and applying Theorem 5 as

well as the definitions in Section 8.6.1 with w(x) = x, concluding the proof.

8.7 Auxiliary Results

In what follows, we will use the simplifying notation Wt ≡W P
t and write Eni (·) for E(·|Fi∆n).

Lemma 7. Let A1, A2 and A5 hold. Assume N →∞, T →∞ with T/N → γ for some finite γ ≥ 0,

∆n → 0 and kn →∞. In addition, let

$ ∈
(

1

2(2− r)
,
1

2

)
, kn

√
∆n → 0,

√
Tkn(kn∆n ∨∆(2−r)$

n )→ 0. (57)

Denote a p1-dimensional vector Mj,t, and a p2-dimensional vector Mt, with p1, p2 ≥ 1, which are both

adapted to F (0)
t , for j = 1, ..., Nt and t ∈ N. Assume we have

1

T

T∑
t=1

N

N2
t

Nt∑
j=1

φj,tMj,tM
′
j,t

P−→M1,
1

T

T∑
t=1

2V 2
t MtM

′
t

P−→M2, (58)
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and further ||Mj,t|| ≤M t with supt E|M t|4+ι <∞, and supt E||Mt||4+ι <∞ for some ι > 0. Then

1√
T

T∑
t=1

 √
N
Nt

∑Nt
j=1 εj,tMj,t

√
kn

(
V̂ n
t − Vt

)
Mt

 L−s−−→M1/2 × Y , M =

 M1 0p1×p2

0p2×p1 M2

 (59)

where Y is a (p1 + p2)× 1 vector of standard Gaussian random variables, independent of each other,

defined on an extension of the original probability space and independent of F .

Proof. We start with some preliminary estimates for V̂ n
t −Vt. First, by application of Itô’s lemma, we

have

dxt = α̃tdt+
√
VtdWt +

∫
x>−1

log(1 + x)µ̃P(ds, dx), (60)

where

α̃t = αt −
1

2
Vt − at

∫
x>−1

(log(1 + x)− x)νP(dx). (61)

In what follows, we denote the continuous and discontinuous parts of x by xc and xd. We next

decompose V̂ n
t − Vt into

V̂ n
t − Vt = V̂ n,1

t + V̂ n,2
t + V̂ n,3

t , (62)

V̂ n,1
t =

n

kn

∑
i∈Int

(
|∆n

i x|21{|∆n
i x|≤α∆$

n } − V(i−1)∆n
|∆n

iW |2
)
, (63)

V̂ n,2
t =

1

kn

∑
i∈Int

(V(i−1)∆n
− Vt), V̂ n,3

t =
1

kn

∑
i∈Int

(n|∆n
iW |2 − 1)V(i−1)∆n

. (64)

For V̂ n,1
t , we use the following algebraic inequality∣∣∣|∆n

i x|21{|∆n
i x|≤α∆$

n } − |∆
n
i x

c|2
∣∣∣ ≤ 2|∆n

i x
c|2(1{|∆n

i x
c|≥α

2
∆$
n } + 1{|∆n

i x
d|≥α

2
∆$
n })

+ 2|∆n
i x

d|2(1{|∆n
i x

c|≥α∆$
n } + 1{|∆n

i x
d|≤2α∆$

n }) + 2|∆n
i x

c||∆n
i x

d|1{|∆n
i x

d|≤2α∆$
n }.

(65)

Hence, using bounds for increments of Itô semimartingales (the Burkholder-Davis-Gundy inequality

and Lemmas 2.15-2.18 in Jacod and Protter (2012)) and the Hölder inequality, we have

Eni−1

∣∣∣|∆n
i x|21{|∆n

i x|≤α∆$
n } − |∆

n
i x

c|2
∣∣∣p ≤ Kt,n∆1+(2p−r)$

n , ∀p ≥ 1. (66)

|Eni−1(|∆n
i x

c|2 − V(i−1)∆n
(∆n

iW )2)| ≤ Kt,n∆2
n, (67)

Eni−1

∣∣|∆n
i x

c|2 − V(i−1)∆n
(∆n

iW )2
∣∣p ≤ Kt,n∆p+1−ι

n , ∀p ≥ 2 and ∀ι > 0, (68)

where E|Kt,n|q < K for some sufficiently high q. Using these inequalities and successively applying

the Burkholder-Davis-Gundy inequality, we have for some arbitrary small ι > 0,

|Et(V̂ n,1
t )| ≤ Kt,n∆(2−r)$

n , Et
∣∣V̂ n,1
t

∣∣ ≤ Kt,n∆
1
2
−ι

n , Et
∣∣V̂ n,1
t

∣∣p ≤ Kt,n
∆

1+(2p−r)$−p
n

kp−1
n

, ∀p ≥ 2, (69)
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where, again, E|Kt,n|q < K for some sufficiently high q.

Turning next to V̂ n,2
t , we may write

V̂ n,2
t =

kn−1∑
j=1

kn − j
kn

(V(tn+j)∆n
− V(tn+j−1)∆n

). (70)

Now, by using the inequalities

E|Eni−1(Vi∆n − V(i−1)∆n
)|p ≤ K∆p

n, E|Vi∆n − V(i−1)∆n
|p ≤ K∆

p
2

∧
1

n , ∀p ≥ 1, (71)

we, then, have by application of the Burkholder-Davis-Gundy inequality and Jensen’s inequality that∣∣Et(V̂ n,2
t )

∣∣ ≤ Kt,nkn∆n, Et|V̂ n,2
t |p ≤ Kt,n(kn∆n)

p
2

∧
1, ∀p > 0, (72)

where E|Kt,n|q < K for some sufficiently high q.

By combining (69) and (72), and upon using successive conditioning and Cauchy-Schwartz inequal-

ity, we have

√
kn√
T

T∑
t=1

Et(V̂ n,1
t )Mt = Op

(√
Tkn∆(2−r)$

n

)
,

√
kn√
T

T∑
t=1

Et(V̂ n,2
t )Mt = Op

(√
Tknkn∆n

)
, (73)

√
kn√
T

T∑
t=1

[(V̂ n,1
t − Et(V̂ n,1

t ))Mt] = Op

(
∆

(4−r)$
2
− 1

2
n

)
, (74)

√
kn√
T

T∑
t=1

[(V̂ n,2
t − Et(V̂ n,2

t ))Mt] = Op

(
kn
√

∆n

)
. (75)

Given our restrictions on $ and kn in (57), the above quantities are all asymptotically negligible.

Hence, we are left with the analysis of
∑T

t=1χt, where we set

χt =
1√
T

(√
N
Nt

∑Nt
j=1 εj,tMj,t

√
knV̂

n,3
t Mt

)′
,

and note that χt is Ft+1/2-adapted, provided n is sufficiently big, and, additionally, E||χt|| = Op(1).

We will show that
∑T

t=1χt
L−s−−→ M1/2 × Y . For this, we will make use of Theorem VIII.5.42 of

Jacod and Shiryaev (2003). First, however, we define FTk = F (0)
bkT c+1/2 × σ({εt,j}j=1,...,NbkTc,t=1,...bkT c)

(FTk should also contain subscripts N and n, but since we are considering a joint limit in which both

T → ∞ as well as n → ∞ and N → ∞, we will suppress this dependence). For n sufficiently high,

we have χk ∈ FTk . Now, note that we have FTαT ⊂ F
T+1
αT+1

for αT = 1/
√
T because of our nesting

assumption regarding the option observation grid, i.e., we add option observations to the existing ones

as T →∞. Finally, we trivially have F = ∨TFTαT . This implies that the nesting condition VIII. 5.37

in Jacod and Shiryaev (2003) on the filtration is satisfied. Hence, using Theorem VIII.5.42 of Jacod
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and Shiryaev (2003) (applied for a fixed time t = 1 and with Xn
1 in Theorem VIII.5.42 of Jacod and

Shiryaev (2003) set equal to
∑T

t=1 χt), we only need to show that the following conditions hold:
∑T

t=2 E(χt|FTt−1)
P−→ 0,∑T

t=2

{
E(χtχ

′
t|FTt−1)− E(χt|FTt−1)E(χ′t|FTt−1)

} P−→M,∑T
t=2 E(||χt||2+ι|FTt−1)

P−→ 0, for some ι > 0.

(76)

The first of these results holds trivially as we have

√
N

Nt

Nt∑
j=1

E(εj,tMj,t|F (0)) = 0, E(V̂ n,3
t Mt|Ft) = 0, (77)

and εj,t are F (0)-conditionally independent.

Next, using successive conditioning, the bound E|Es(V 2
t − V 2

s )|2 ≤ K|t− s|2 for 0 ≤ s ≤ t and the

Cauchy-Schwartz inequality, we have

T∑
t=2

Et−1/2

(
χtχ

′
t

)
=

1

T

T∑
t=2

Et−1/2

(
N
N2
t

∑Nt
j=1(φj,tMj,tM

′
j,t)
)

0p1×p2

0p2×p1 2Et−1/2(V 2
t MtM

′
t)

+Op(kn∆n). (78)

The second limit result in (76), then, follows from the convergence in probability result in (58), assumed

in the lemma, and the following two bounds

1

T

T∑
t=2

 N
N2
t

Nt∑
j=1

(φj,tMj,tM
′
j,t)− Et−1/2

 N

N2
t

Nt∑
j=1

(φj,tMj,tM
′
j,t)

 = Op

(
1√
T

)
,

1

T

T∑
t=2

(V 2
t MtM

′
t − Et−1/2(V 2

t MtM
′
t)) = Op

(
1√
T

)
,

(79)

which, in turn, follow from bounding their respective second moments.

We turn next to the the third limit in (76). First, since εj,t are F (0)-conditionally independent and

centered from A5, we have, by applying successive conditioning and using the integrability assumption

for Mj,t of the lemma, that

E
∣∣∣∣∣∣∣∣ 1√

N t

Nt∑
j=1

εj,tMj,t

∣∣∣∣∣∣∣∣4 ≤ E

K

Nt

Nt∑
j=1

φ
(4)
j,t ||Mj,t||4

 ≤ K. (80)

Moreover, by the Burkholder-Davis-Gundy inequality and inequality in means, we also have

Et|
√
knV̂

n,3
t |p ≤

K

kn

∑
i∈Int

|V(i−1)∆n
|p, ∀p ≥ 2, (81)
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and, hence,

Et||
√
knV̂

n,3
t Mt||4 ≤

K

kn

∑
i∈Int

V 4
(i−1)∆n

||Mt||4. (82)

Combining the above two bounds, we have E||χt||4 ≤ K/T 2, from which the third limit in (76) follows.

From here, by combining (73)-(75) and (76), we get the convergence result in (59).

Lemma 8. Let A1, A2 and A5 hold. Assume N →∞, T →∞ with T/N → γ for some finite γ ≥ 0,

∆n → 0 and kn → ∞. In addition, let $ ∈
(

1
4−r ,

1
2

)
and kn

√
∆n → 0. Denote p1 × p2 matrices

Mj,t and Mt, with p1, p2 ≥ 1, which are adapted to F (0)
t , for j = 1, ..., Nt and t ∈ N and for which

||Mj,t|| ≤M t with supt E|M t|4+ι <∞ and supt E||Mt||4+ι <∞ for some ι > 0. Then, we have

(a) supt=1,...,T

∥∥∥N−1
t

∑Nt
j=1 εj,tMj,t

∥∥∥ P−→ 0;

(b) supt=1,...,T

∥∥∥λ knNt (V̂ n
t − Vt

)
Mt

∥∥∥ P−→ 0;

(c) |E(V̂ n
t − Vt)| ≤ Kt,n(∆

(2−r)$
n ∨ kn∆n) for Kt,n adapted to F (0)

t and E|Kt,n|p < Kp for every p > 0

and finite Kp.

Proof. Part (a). For arbitrary ε > 0, it readily follows that

P

 sup
t=1,...,T

∥∥∥∥N−1
t

Nt∑
j=1

εj,tMj,t

∥∥∥∥ > ε

∣∣∣∣F (0)
T

 ≤ T∑
t=1

P

∥∥∥∥N−1
t

Nt∑
j=1

εj,tMj,t

∥∥∥∥ > ε

∣∣∣∣F (0)
T

 . (83)

Then, by applying Chebyshev’s inequality, the Burkholder-Davis-Gundy inequality, and using the fact

that the random variables εj,t are F (0)-conditionally independent, we have

P

∥∥∥∥N−1
t

Nt∑
j=1

εj,tMj,t

∥∥∥∥ > ε

∣∣∣∣F (0)
T

 ≤ K

N3
t

Nt∑
j=1

φ
(4)
j,t ||Mj,t||4. (84)

From here, applying the integrability assumptions for ||Mj,t|| in the lemma and for φ
(4)
j,t in A5, we get

the desired result.

Part (b). Similarly to the proof of part (a), we have for arbitrary ε > 0

P

(
sup

t=1,...,T

∥∥∥∥λknNt

(
V̂ n
t − Vt

)
Mt

∥∥∥∥ > ε

)
≤

T∑
t=1

P
(
λ
kn
Nt

∣∣V̂ n
t − Vt

∣∣ ‖Mt‖ > ε

)
. (85)

Now, using the decomposition of V̂ n
t − Vt = V̂ n,1

t + V̂ n,2
t + V̂ n,3

t , introduced in the proof of previous

lemma, we may write

P
(
λ
kn
Nt

∣∣V̂ n
t − Vt

∣∣ ‖Mt‖ > ε

)
≤

3∑
j=1

P
(
λ
kn
Nt

∣∣V̂ n,j
t

∣∣ ‖Mt‖ >
ε

3

)
. (86)
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Then, by invoking the bounds derived in the proof of Lemma 7, Chebyshev’s inequality, and the fact

that kn/N = O(1) as well as T/N is asymptotically bounded, we have

P
(
λ
kn
Nt

∣∣V̂ n,1
t

∣∣ ‖Mt‖ >
ε

3

)
≤ K

(
∆

(4−r)$−1
n

T

)
, (87)

P
(
λ
kn
Nt

∣∣V̂ n,2
t

∣∣ ‖Mt‖ >
ε

3

)
≤ Kk2

n∆n

T
, (88)

P
(
λ
kn
Nt

∣∣V̂ n,3
t

∣∣ ‖Mt‖ >
ε

3

)
≤ K

T 1+ι/2
, for some ι > 0, (89)

where the constant K in the above inequalities depends on ε. From here, taking into account of the

fact that kn
√

∆n → 0 and $ > 1
4−r , the result in part (b) follows.

Part (c). The result follows immediately from combining the bounds in (73) and (77) in the proof

of the previous lemma.

Lemma 9. Under the conditions of Theorem 2, and for some positive-valued process {η̂t,N,n}t≥0 with

supt=1,...,T η̂t,N,n = op(1) as well as positive K and d:

(a) For some S̃1, S̃2, ..., S̃T and θ̃ with supt=1,...,T ||S̃t − St|| = op(1) and ||θ̃ − θ0|| = op(1), we have∥∥∥∥(ÎS,t(S̃t, θ̃) + P̂S,t(S̃t)
)−1
−L−1

S,t

∥∥∥∥ ≤ Kη̂t,N,nfd(||St||).
(b) For L̄S,t = 1

Nt

∑Nt
j=1Gj,t,0G

′
j,t,0 − 1

Nt

∑Nt
j=1 εj,tG

(S)
j,t,0 + λ knNtCt,0C

′
t,0 − λ knNtC

(S)
t,0 (V̂ n

t − Vt), we have

∥∥∥L̄−1
S,t −L−1

S,t

∥∥∥ ≤ K
 η̂t,N,n√

N
+

∣∣∣∣ 1

Nt

Nt∑
j=1

εj,tG
(S)
j,t,0

∣∣∣∣+ λ
kn
Nt
|V̂ n
t − Vt|

 fd(||St||).

(c) For any θ̃ such that ||θ̃ − θ0|| = op(1), we have∥∥∥∥∥∂Ŝt(θ̃)

∂θ′
−Rt,0

∥∥∥∥∥ ≤ Kη̂t,N,nfd(||St||).
Proof. Part (a). Given the uniform consistency of (S̃1, ..., S̃T ), it is no restriction to work on a set

(whose probability approaches 1) on which supt=1,...,T ||S̃t − St|| ≤ ε for some arbitrarily small ε > 0.

We will assume this to be the case for the rest of the proof, without further mentioning. Also, in the

proof, η̂t,N,n will be a generic positive-valued sequence with supt=1,...,T η̂t,N,n = op(1), and which may

change from line to line. Similarly, K and d are positive numbers, which may change from line to line.
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We start by defining ÎS,t(S̃t, θ̃) = ÎS,t,1 + ÎS,t,2 and P̂S,t(S̃t) = P̂S,t,1 + P̂S,t,2. Then, using the

triangle inequality, the difference ÎS,t,1 − IS,t may be bounded as

∥∥∥ÎS,t,1 − IS,t
∥∥∥ ≤ ∥∥∥∥ 1

Nt

Nt∑
j=1

Gj,t,0G
′
j,t,0 − IS,t

∥∥∥∥+

∥∥∥∥ 2

Nt

Nt∑
j=1

(
Gj

(
S̃t, θ̃

)
−Gj,t,0

)
G′j,t,0

∥∥∥∥
+

∥∥∥∥ 1

Nt

Nt∑
j=1

(
Gj

(
S̃t, θ̃

)
−Gj,t,0

)(
Gj

(
S̃t, θ̃

)
−Gj,t,0

)′ ∥∥∥∥
≡ ÎS,t,11 + ÎS,t,12 + ÎS,t,13.

(90)

First, for ÎS,t,11, using A2 and A7, we have ||ÎS,t,11|| ≤ K√
N
η̂t,N,nfd(||St||). Applying, again, A7 and

the uniform consistency of (S̃1, ..., S̃T ) and θ̃, we have ||ÎS,t,12||+ ||ÎS,t,13|| ≤ Kη̂t,N,nfd(||St||).
Next, using the triangle inequality, we bound ÎS,t,2 as

∥∥∥ÎS,t,2∥∥∥ ≤ ∥∥∥∥ 1

Nt

Nt∑
j=1

εj,tG
(S)
j,t,0

∥∥∥∥+

∥∥∥∥ 1

Nt

Nt∑
j=1

εj,t

(
G

(S)
j

(
S̃t, θ̃

)
−G(S)

j,t,0

)∥∥∥∥
+

∥∥∥∥ 1

Nt

Nt∑
j=1

(
κj(St,θ0)− κj

(
S̃t, θ̃

))
G

(S)
j

(
S̃t, θ̃

)∥∥∥∥
≡ ÎS,t,21 + ÎS,t,22 + ÎS,t,23.

(91)

From Lemma 8 (a), we readily have supt=1,...,T ||ÎS,t,21|| = op(1). Next, for ÎS,t,22, we may use A4

and A7, to bound

||ÎS,t,22|| ≤
K

Nt

Nt∑
j=1

|εj,t|fd(||St||)||S̃t − St||.

Then, by applying Burkholder-Davis-Gundy inequality as well as using the integrability conditions for

a given φ
(k)
j,t in A5 and for the state vector St in A6, we have

sup
t=1,...,T

∣∣∣∣∣∣ 1

Nt

Nt∑
j=1

(|εj,t| − φ(1)
j,t )fd(||St||)

∣∣∣∣∣∣ = op(1),

the proof of which parallels that of Lemma 8 (a). Hence, using, again, A7 and uniform consistency

of the state vectors (S̃1, ..., S̃T ), we have, altogether, that ||ÎS,t,22|| ≤ Kη̂t,N,nfd(||St||). By applying

almost identical arguments, we also have ||ÎS,t,23|| ≤ Kη̂t,N,nfd(||St||).
We continue with P̂S,t,1 −PS,t, which, using the triangle inequality, may be bounded as∥∥∥P̂S,t,1 −PS,t

∥∥∥ ≤ ∥∥∥∥λ(knNt
− %

ςt

)
Ct,0C

′
t,0

∥∥∥∥+ 2

∥∥∥∥λknNt
Ct,0

(
C
(
S̃t
)
−Ct,0

)′∥∥∥∥
+

∥∥∥∥λknNt

(
C
(
S̃t
)
−Ct,0

)(
C
(
S̃t
)
−Ct,0

)′∥∥∥∥
≡ P̂S,t,11 + P̂S,t,12 + P̂S,t,13.

(92)
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First, using A2 and A7, we have ||P̂S,t,11|| ≤ K√
N
η̂t,N,nfd(||St||), and by applying A7 as well as the

uniform consistency of (S̃1, ..., S̃T ), we get ||P̂S,t,12||+ ||P̂S,t,13|| ≤ Kη̂t,N,nfd(||St||).
Next, for P̂S,t,2, we have by triangular inequality that∥∥∥P̂S,t,2

∥∥∥ ≤ λkn
Nt

∥∥∥(C(S)
(
S̃t
)
−C(S)

t,0

)(
V̂ n
t − ξ1

(
S̃t
))∥∥∥

+ λ
kn
Nt

∥∥∥C(S)
t,0

(
V̂ n
t − Vt

)∥∥∥+ λ
kn
Nt

∥∥∥C(S)
t,0

(
ξ1

(
St
)
− ξ1

(
S̃t
))∥∥∥

≡ P̂S,t,21 + P̂S,t,22 + P̂S,t,23.

(93)

Then, invoking, once more, uniform consistency of (S̃1, ..., S̃T ), part (b) of Lemma 8 and A7, it readily

follows that ||P̂S,t,21||+ ||P̂S,t,22||+ ||P̂S,t,23|| ≤ Kη̂t,N,nfd(||St||).
Combining the bounds above, we have∥∥∥ÎS,t(S̃t, θ̃) + P̂S,t(S̃t)−LS,t

∥∥∥ ≤ Kη̂t,N,nfd(||St||). (94)

Hence, taking into account the lower bound restriction on the eigenvalues of LS,t in A8, we get, for

some sufficiently big integer q > 0,∥∥∥L−qS,t (ÎS,t(S̃t, θ̃) + P̂S,t(S̃t)
)
−L−q+1

S,t

∥∥∥ ≤ η̂t,N,n. (95)

From here, upon using the triangle inequality, we have∥∥∥L−q+1
S,t

∥∥∥− η̂t,N,n ≤ ∥∥∥L−qS,t (ÎS,t(S̃t, θ̃) + P̂S,t(S̃t)
)∥∥∥ ≤ ∥∥∥L−q+1

S,t

∥∥∥+ η̂t,N,n. (96)

This implies that the minimum eigenvalue of L−qS,t(ÎS,t(S̃t, θ̃) + P̂S,t(S̃t)) is bounded from below by

Kfd(||St||)− η̂t,N,n. Hence, on a set with probability approaching one, we have∥∥∥∥Lq
S,t

(
ÎS,t(S̃t, θ̃) + P̂S,t(S̃t)

)−1
∥∥∥∥ ≤ Kfd(||St||).

To proceed, we make use of the following identity A−1 − B−1 = A−1(B − A)B−1 for two square

invertible matrices A and B. By applying this with the inequality above, it follows that∥∥∥∥Lq
S,t

(
ÎS,t(S̃t, θ̃) + P̂S,t(S̃t)

)−1
−L−1+q

S,t

∥∥∥∥ ≤ Kη̂t,N,nfd(||St||). (97)

Finally, by using ||AB|| ≤ ||A|| × ||B||, we get the desired result.

Part (b). From the bounds in the proof of part (a), we have

||L̄S,t −LS,t|| ≤ K

 η̂t,N,n√
N

+

∣∣∣∣ 1

Nt

Nt∑
j=1

εj,tG
(S)
j,t,0

∣∣∣∣+ λ
kn
Nt
|V̂ n
t − Vt|

 fd(||St||). (98)
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Hence, with Āt,N,n = L−1
S,tL̄S,t − Ip, we get, using A7,

||Āt,N,n|| ≤ K

 η̂t,N,n√
N

+

∣∣∣∣ 1

Nt

Nt∑
j=1

εj,tG
(S)
j,t,0

∣∣∣∣+ λ
kn
Nt
|V̂ n
t − Vt|

 fd(||St||). (99)

Now, by denoting the eigenvalues of Ip + Āt,N,n with λ̄ni , for i = 1, ..., p, and applying Gershgorin’s

circle theorem, we have

max
i=1,...,p

|λ̄ni − 1| ≤ K

 η̂t,N,n√
N

+

∣∣∣∣ 1

Nt

Nt∑
j=1

εj,tG
(S)
j,t,0

∣∣∣∣+ λ
kn
Nt
|V̂ n
t − Vt|

 fd(||St||),

and, using parts (a) and (b) of Lemma 8 for supt=1,...,T

∣∣∣∣ 1
Nt

∑Nt
j=1 εj,tG

(S)
j,t,0

∣∣∣∣ and supt=1,...,T |V̂ n
t −Vt| as

well as the integrability conditions for St (so that we can make the inversion), the same holds true for

eigenvalues of |Ip + Āt,N,n|−1. Hence, the eigenvalues of |Ip + Āt,N,n|−1 − Ip are bounded in absolute

value by K
( η̂t,N,n√

N
+
∣∣ 1
Nt

∑Nt
j=1 εj,tG

(S)
j,t,0

∣∣+ λ knNt |V̂
n
t − Vt|

)
fd(||St||), and, as a result,

∥∥|Ip + Āt,N,n|−1 − Ip
∥∥ ≤ K

 η̂t,N,n√
N

+

∣∣∣∣ 1

Nt

Nt∑
j=1

εj,tG
(S)
j,t,0

∣∣∣∣+ λ
kn
Nt
|V̂ n
t − Vt|

 fd(||St||). (100)

From here, the desired result readily follows.

Part (c). First, as for the proof of consistency of the parameter and state vector estimates, we

have

sup
t=1,...,T

||Ŝt(θ̃)− Ŝt(θ0)|| = op(1). (101)

Given the above result, it is no restriction to work on a set (whose probability approaches 1) on which

supt=1,...,T ||Ŝt(θ̃) − St|| ≤ ε for some arbitrarily small ε > 0. We will assume this to be the case for

the remainder of the proof, without further mentioning.

By using the first-order condition, Mt(θ̃) = 0 in (40), then ∂Ŝt(θ̃)/∂θ′ is recovered by the implicit

function theorem, that is, from ∂Mt(θ̃)/∂θ′ = 0. In particular, the latter provides(
ÎS,t(Ŝt(θ̃), θ̃) + P̂S,t(Ŝt(θ̃))

) ∂Ŝt(θ̃)

∂θ′
= ÎS,θ,t(Ŝt(θ̃), θ̃). (102)

From part (a), we have∥∥∥∥(ÎS,t(Ŝt(θ̃), θ̃) + P̂S,t(Ŝt(θ̃))
)−1
−
(
ÎS,t(Ŝt(θ0),θ0) + P̂S,t(Ŝt(θ0))

)−1
∥∥∥∥ ≤ Kη̂t,N,nfd(||St||).

Furthermore, using A7 and arguments similar to those for the proof of part (a), we have∥∥∥ÎS,θ,t(Ŝt(θ̃), θ̃)− IS,θ,t
∥∥∥ ≤ Kf2d(||St||)η̂t,N,n. (103)

By combining the results above with part (a) of the lemma, we easily get the claim.
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Lemma 10. Assume the conditions of Theorem 2 hold. Denote p1 × p2 matrices Mj,t and Mt, with

p1, p2 ≥ 1, which are adapted to F (0)
t , for j = 1, ..., Nt and t ∈ N and for which ||Mj,t|| ≤ M t with

supt E|M t|q <∞ and supt E(||Mt||q) <∞ for every q > 0. Then, for some, r1, r2, r3 ∈ N3, we have

N (r1+r2+r3)/2

T

T∑
t=1

∥∥∥Ŝt(θ0)− St
∥∥∥r1 × ∥∥∥∥∥ 1

Nt

Nt∑
j=1

εj,tMj,t

∥∥∥∥∥
r2

×
∥∥∥∥λknNt

Mt(V̂
n
t − Vt)

∥∥∥∥r3
= Op

(
k

1+
r1+r3

2
n ∆n ∨ 1

)
. (104)

Proof. First, using Lemma 9 (a) and supt=1,...,T (kn/Nt) = Op(1), we can bound the stated expression

by (A1 +A2)×Op(1) where

A1 =
1

T

T∑
t=1

∥∥(IS,t + PS,t)
−1
∥∥r1 × ∥∥∥√NFt,N,n∥∥∥r1 ×

∥∥∥∥∥ 1√
Nt

Nt∑
j=1

εj,tMj,t

∥∥∥∥∥
r2

×
∥∥∥√kn (V̂ n

t − Vt
)
Mt

∥∥∥r3 ,
A2 = sup

t=1,...,T
|η̂t,N,n|r1

× 1

T

T∑
t=1

∥∥∥√NFt,N,n∥∥∥r1 ×
∥∥∥∥∥ 1√

Nt

Nt∑
j=1

εj,tMj,t

∥∥∥∥∥
r2

×
∥∥∥√kn (V̂ n

t − Vt
)
Mt

∥∥∥r3 × fd(||St||).
Now, since supt=1,...,T |η̂t,N,n|

r1 = op(1), and the analysis of A2 is done exactly the same way as that

of A1, we can focus on the latter henceforth. By using the triangle inequality in conjunction with the

definition of Ft,N,n, we may further bound A1 ≤ (A11 +A12)×Op(1) where

A11 =
1

T

T∑
t=1

a1
t ×

∥∥∥∥∥∥ 1√
Nt

Nt∑
j=1

εj,tGj,t,0

∥∥∥∥∥∥
r1

×

∥∥∥∥∥ 1√
Nt

Nt∑
j=1

εj,tMj,t

∥∥∥∥∥
r2

×
∥∥∥√kn (V̂ n

t − Vt
)∥∥∥r3 ,

A12 =
1

T

T∑
t=1

a2
t ×

∥∥∥∥∥ 1√
Nt

Nt∑
j=1

εj,tMj,t

∥∥∥∥∥
r2

×
∥∥∥√kn (V̂ n

t − Vt
)∥∥∥r1+r3

,

and where we use the shorthand notation

a1
t =

∥∥(IS,t + PS,t)
−1
∥∥r1 ‖Mt‖r3 and a2

t =
∥∥(IS,t + PS,t)

−1
∥∥r1 ‖Ct,0‖r1 ‖Mt‖r3 .

Then, by applying the Burkholder-Davis-Gundy inequality, inequality in means as well as the regularity

conditions in A5, we have for r ≥ 2

E0

∥∥∥∥∥∥ 1√
Nt

Nt∑
j=1

εj,tMj,t

∥∥∥∥∥∥
r

≤ KE0

 1

Nt

Nt∑
j=1

ε2j,t||Mj,t||2
r/2

≤ KE0

 1

Nt

Nt∑
j=1

|εj,t|r||Mj,t||r
 =

K

Nt

Nt∑
j=1

φ
(r)
j,t ||Mj,t||r,

(105)
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and, for r = 1, by Jensen’s inequality

E0

∥∥∥∥∥∥ 1√
Nt

Nt∑
j=1

εj,tMj,t

∥∥∥∥∥∥ ≤ K
√√√√ 1

Nt

Nt∑
j=1

φj,t||Mj,t||2. (106)

Furthermore, given the integrability assumptions for Mj,t and the ones for φ
(k)
j,t in A5, we have

E

 1

Nt

Nt∑
j=1

φ
(r)
j,t ||Mj,t||r

m

≤ Km,r, ∀m > 0, r ≥ 2, (107)

where Km,r > 0 denotes some finite constant depending on the value of m and r.

Next, using the triangle inequality and the decomposition of V̂ n
t − Vt from the proof of Lemma 7,

we have |V̂ n
t − Vt|q ≤ K(|V̂ n,1

t |q + |V̂ n,2
t |q + |V̂ n,3

t |q). Then, we may readily use the bounds from the

proof of Lemma 7 to show that for some arbitrary small ι > 0, it follows that

Et|
√
knV̂

n,1
t |q ≤ K

(1)
t,n


√
kn∆

1
2
−ι

n , if q = 1,

k
1− q

2
n ∆

1−q+(2q−r)$
n , if q ≥ 2,

Et|
√
knV̂

n,2
t |q ≤ K

(2)
t,n

 kn
√

∆n, if q = 1,

k
1+q/2
n ∆n, if q ≥ 2,

Et|
√
knV̂

n,3
t |q ≤ K

(3)
t,n ,

where K
(1)
t,n , K

(2)
t,n and K

(3)
t,n are random variables adapted to F (0)

t and having finite moments of all

orders. Now, since, from the assumptions of Theorem 2, we have ∆
(2− r2 )$−1
n
kn

→ 0 and kn
√

∆n → 0, it

follows that

Et|
√
kn(V̂ n

t − Vt)|q ≤ Kt,n

 1, if q = 1,

k
1+q/2
n ∆n, if q ≥ 2,

(108)

where Kt,n is a random variable adapted to F (0)
t and having finite moments of all orders. By combining

(105)-(107) and (108), using the fact that a1
t and a2

t have finite moments of all orders, and by applying

Hölder’s inequality, we get the desired result.

Lemma 11. Assume the conditions of Theorem 2 hold. Then, we have

1

T

T∑
t=1

{
N
(
Ŝt(θ0)− St

)(
Ŝt(θ0)− St

)′
− (IS,t + PS,t)

−1 (ΩS,t + ΨS,t) (IS,t + PS,t)
−1

}
Mt = op(1),

(109)

1

T

T∑
t=1

{
kn(V̂ n

t − Vt)2 − 2V 2
t

}
Mt = op(1), (110)
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where Mt is F (0)
t -adapted matrix, with dimension p× p1 for the first result and of dimension p1 × p2

for the second result, where p1, p2 ≥ 1, and further supt E(||Mt||q) <∞ for every q > 0.

Proof. We start with (110). First, decompose the term on the left-hand side of (110) into C1 and C2,

where

Cj =
1

T

T∑
t=1

cjtMt, j = 1, 2, (111)

with c1
t = kn(V̂ n,3

t )2 − 2Vt and c2
t = 2knV̂

n,3
t (V̂ n,1

t + V̂ n,2
t ) + kn(V̂ n,1

t + V̂ n,2
t )2, using the notation from

the proof of Lemma 7. From here, by applying the bound in (71), we have

|Et(c1
t )| ≤ Kt,nkn∆n and Et(c1

t )
2 ≤ Kt,n

where E(Kt,n)2 ≤ K. Hence, by splitting C1 into 1
T

∑T
t=1 Et(c1

t )Mt and 1
T

∑T
t=1(c1

t − Et(c1
t ))Mt, we

get E||C1||2 ≤ K
(
(kn∆n)2 ∨ 1

T

)
, and, as a result, C1 = op(1).

Next, for C2, we invoke the derived bounds for the conditional second moments of V̂ n,1
t and V̂ n,2

t

in (69) and (72),

Et
(
V̂ n,1
t + V̂ n,2

t

)2
≤ Kt,n

(
∆

(4−r)$
n − 1

kn

∨
kn∆n

)

for some integrable Kt,n. Hence, we have Et|c2
t | ≤ Kt,n

(
∆

(4−r)$−1
2

n ∨ kn
√

∆n

)
, where E(Kt,n)2 ≤ K.

Therefore, given the restrictions on $ and kn in (20), we get C2 = op(1).

We continue with (109). Given part (a) of Lemma 9 and since Et||Ft,N,n||2 ≤ η̂t,N,nKt,n/N for

some Kt,n with finite moments and supt=1,...,T η̂t,N,n = Op(1), we have that the term on the left-hand

side of (109) is asymptotically equivalent to

1

T

T∑
t=1

(IS,t + PS,t)
−1 (NFt,N,nF ′t,N,n −ΩS,t −ΨS,t

)
(IS,t + PS,t)

−1Mt,

which, in turn, may be decomposed into B1, B2 and B3, where

B1 =
1

T

T∑
t=1

(IS,t + PS,t)
−1
(
N(F

(1)
t,N,n)(F

(1)
t,N,n)′ −ΩS,t

)
(IS,t + PS,t)

−1Mt,

B2 =
1

T

T∑
t=1

(IS,t + PS,t)
−1
(
N(F

(2)
t,N,n)(F

(2)
t,N,n)′ −ΨS,t

)
(IS,t + PS,t)

−1Mt,

B3 =
1

T

T∑
t=1

(IS,t + PS,t)
−1
(
N(F

(1)
t,N,n)(F

(2)
t,N,n)′ +N(F

(2)
t,N,n)(F

(1)
t,N,n)′

)
(IS,t + PS,t)

−1Mt.

First, for B1, if we denote Ω̂n
S,t = 1

Nt

∑Nt
j=1 φj,tGj,t,0G

′
j,t,0, we may decompose B1 further as

B11 =
1

T

T∑
t=1

(IS,t + PS,t)
−1
(
N(F

(1)
t,N,n)(F

(1)
t,N,n)′ − Ω̂n

S,t

)
(IS,t + PS,t)

−1Mt,
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B12 =
1

T

T∑
t=1

(IS,t + PS,t)
−1
(
Ω̂n
S,t −ΩS,t

)
(IS,t + PS,t)

−1Mt.

When conditioning on F (0), the increments of B11 are uncorrelated, and by additionally applying

A2 for Nt/N , we have B11 = Op(1/
√
T ). Next, using our assumption for the smoothness in k of

G(k, τ,S,θ), D(k, τ,S,θ) and φt,k,τ in A5 and A7 as well as the assumption for the mesh of the

observation grid in A2, we also have B12 = op(1). The asymptotic negligibility of B2 is proved in

exactly the same way as (110), and we are, thus, left with the analysis of B3. For the latter, by

successive conditioning, and since Et||F (1)
t,N,n||2 +Et||F (2)

t,N,n||2 ≤ η̂t,N,nKt,n/N for some Kt,n with finite

moments as well as supt=1,...,T η̂t,N,n = Op(1), we have B3 = Op(1/
√
T ). This concludes the proof.

Lemma 12. Assume the conditions of Theorem 2 hold. Then, we have the convergence in (22) holding

jointly with the one in (21).

Proof. In the proof, without loss of generality, we assume that t1 < · · · < th. First, given the

consistency result of Theorem 1 and Lemma 9 (a), for any t, we have

ÎS,t(Ŝt, θ̂) + P̂S,t(Ŝt, θ̂)
P−→ IS,t + PS,t.

Furthermore, again for any t, we have using the bounds in the proof of Lemma 7 that
√
NFt,N,n =

Op(1). Then, using Lemmas 1-3 in Andersen et al. (2015a), we get the convergence result (22) to

hold, with ESt1 , ...,ESth being a sequence of standard Gaussian vectors, defined on an extension of

the original probability space, each of them independent of each other, and of F .

In addition, by applying Lemma 7, we have the convergence result in (21). What remains to be

proved is that the convergence in (21) and (22) holds jointly with Eθ independent from each of the

vectors ESt1 , ...,ESth . For this, it is sufficient to show that for an arbitrary bounded random variable

Y adapted to F and bounded Lipschitz-continuous functions f1,...,fh and g, we have

E
(
Y f1

(√
NFt1,N,n

)
· · · fh

(√
NFth,N,n

)
g
(√

NT (A11 +A31)
))

−→ E (Y f1 (Ft1) · · · fh (Fth))E (g (F )) ,
(112)

where Ft1 , ...,Fth are F-conditionally Gaussian distributed and independent of each other, each of

which with F-conditional asymptotic variance of ΩS,t1 + ΨS,t1 ,...,ΩS,th + ΨS,th , respectively, and F is

Gaussian distributed with variance of ΩU + Ψθ.

Now, since Fth is separable, we also have the Fth-conditional convergence of
√
NT (A11 +A31) to

its limit by Theorem VIII.5.25 in Jacod and Shiryaev (2003), and, as a result,

Et
(
Y g
(√

NT (A11 +A31)
))

P−→ Et(Y )E (g (F )) . (113)
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Therefore, since f1,...,fh are bounded, we have

E
(
f1

(√
NFt1,N,n

)
· · · fh

(√
NFth,N,n

)
×
(
Et
(
Y g
(√

NT (A11 +A31)
))
− Et(Y )E (g (F))

))
−→ 0.

(114)

Furthermore, from the stable convergence result of
√
NFt1,N,n,...,

√
NFth,N,n, we get

E
(
f1

(√
NFt1,N,n

)
· · · fh

(√
NFth,N,n

)
Et(Y )E (g (F))

)
−→ E (Y f1 (Ft1) · · · fh (Fth))E (g (F )) .

(115)

Combining (114) and (115), we get (112), and this establishes joint convergence in (21) and (22).
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