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Abstract

I provide general frequentist framework to elicit the forecaster’s expected
utility based on a Lagrange Multiplier-type test for the null of locality of the
scoring rules associated to the probabilistic forecast. These are assumed to be
observed transition variables in a nonlinear autoregressive model to ease the
statistical inference. A simulation study reveals that the test behaves consis-
tently with the requirements of the theoretical literature. The locality of the
scoring rule is fundamental to set dating algorithms to measure and forecast
probability of recession in US business cycle. An investigation of Bank of Nor-
way’s forecasts on output growth leads us to conclude that forecasts are often
suboptimal with respect to some simplistic benchmark if forecaster’s reward
is not properly evaluated.
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1 Introduction

Should the final user of the forecast of an uncertain event trust in professional

forecaster’s quotation? And is this quotation coherent with the prediction of an

economic/statistical model or is biased by personal judgments? Being able to an-

swer to these questions means, for any forecast user, to satisfy two strong conditions:

(i) to have a full control of the forecasting process and (ii) to deal with forecaster’s

subjective evaluation of the uncertainty – and, as a logical consequence, with the

laws of probability. These desiderata, despite their apparent triviality, are the fun-

daments of modern decision-theoretical approach to economic forecasting settled by

De Finetti (1937, 2017) almost a century ago; see also Elliott and Timmermann

(2008). According to this framework, the forecaster maximizes its own expected

utility (or, symmetrically, minimizes the loss) when (in)correctly quoting its fore-

cast before that event realizes, inducing a systematic bias1. Hence, estimating the

forecaster’s utility (or reward) function implies necessarily to check the coherence of

his forecast.

In practice, the evaluation of the probability is done by computing the goodness-

of-fit of the estimated density function (or predictive density) via the Rosenblatt

(1952) probability integral transforms (PITs), which has been object of study in

Econometrics and more recently has evolved in several directions2. Unfortunately,

as the next Section 2 extensively explains, PITs do not conveys any information

about the forecaster’s utility underlining the quotation, and thus they might fail in

recognizing a forecast drawn by a biased forecaster. Thus, some alternative approach

is necessary to the pursue of this aim. One of the most successful strategy, originat-

ing from Bates and Granger (1969), is comparing and combining the loss functions

estimated by alternative model(s) via some information criterion or encompassing

testing. This literature3, however, implicitly assumes that the loss function is known

by forecast user when assessing the forecaster’s quotation, whilst this is exactly the

main source of the uncertainty in this game.
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Scoring rules (SR) are the most immediate way to link the forecaster’s reward and

the mechanics of predictive density estimation. These are functions R→ R assign-

ing a numerical score to several competing (model) density forecasts. The score

corresponds to the forecaster’s utility for his correct forecasts of the event. A prop-

erly set SR incentives the forecaster to be honest4. Gneiting et al. (2007) (GBR,

henceforth) demonstrate that the mentioned deficiency of PITs can be overlooked

if appropriate scoring functions are used, where the world appropriate means to

be capable to nest the Savage (1971) representation, which in turn is based on the

based on the Brègman (1967) distance. Despite their eldery origins, SR have been

continuously object of interest in Statistics, see Gneiting and Raftery (2007) (GR,

henceforth). We assert that this literature under-evaluates the theoretical properties

of SRs to be used in hypothesis testing for model selection. Patton (2016) enforces

the importance of this issue by demonstrating that the forecast rankings are gener-

ally sensitive to the choice of a proper SR and concluding that forecasters should be

told ex ante what utility functions will be used to evaluate their quotation; see also

Laurent et al. (2013) for a multivariate equivalent.

The application of these theoretical results in a basic regression framework is com-

plicated by two – statistical and operational – problems: prima facie, as documented

in Table 1, the number of proper SRs (although not all strictly proper) explicitly

built-up for density forecasts is high and the ones capable to nest a Brégman-Savage

representation, despite lower, is still considerable. In secundis, many of them are

nested; this can easy confirmed by having a look on Table 1 in Jose et al. (2008).

Hence, we need a criterion to select the (unknown) reward that effectively drives the

quoted forecast. Fortunately, the Bernardo (1979) theorem, according to which a

SR is proper and local if and only if it is logarithmic, gives us a fundamental hint: in

facts, it postulates that the locality of the SR coincides with the likelihood principle.

Hence, our research question: “Is forecaster’s quotation compatible with local SR? ”

Section 3 provides an answer by introducing a new framework by relying on the
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theory by Parry et al. (2012); Dawid et al. (2012); Ehm and Gneiting (2012), whose

mathematical results have no applied counterfactuals. Namely, we assume the SR

as an endogenous transition variable in a general family of nonlinear models. This

make us able to rely on a well-known asymptotic theory. Such a combination of a

(nonlinear) model and SRs is defined scoring structure. It is based on the Patton and

Timmermann (2007) assumption that the forecaster utility is unknown but observ-

able and is directly connected to the literature on equal predictive ability testing5.

Subsequently, Section 4 define a test for the hypotheses of locality of the estimated

predictive density generated by the scoring structure and Section 5 investigates the

small-sample properties, as well as their relevance with respect to the (more or less

implicit) requirements of theoretical literature.

Section 6 illustrates two different case studies. Namely, in the first application

we introduce a modification of a standard algorithm for detection of the probabil-

ity of recessions of US economy; in the second illustration, we assess the density

forecasts of Norway’s output gap from Bank of Norway (BoN). Our results reveal

that improper scoring rules affect the dating algorithm of recessions events and the

model-based forecast performances in favor of a nonlinear specification. Secondly, an

equal predicitve ability test between our nonlinear scoring structure and a bench-

mark therein nested indicates that BoN’s fan charts are severally biased when a

strongly nonlinear model is assumed and, more importantly, when the SRs do not

have Brègman-Savage repesentation.

Finally, Section 7 summarizes and concludes; two Appendices describe the details

on the SBB algorithm and the equal predictive ability test used in our illustrations.

2 Motivating Example: the Hamill Paradox

Having a correct view of the (short term) evolution of the main macroeconomic

variables is mandatory for any central bank in order to address its policy. To this
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aim, these institutions use to ask to a pool of professional forecasters to quote

the expected probability distribution of the variable(s) under consideration. Then,

these are collected and summarized via fan charts. Anyway, the evaluation of these

forecasts is preliminary to make decisions concerning the economic policy. The

following experiment shows how easy one can fail this step.

We simulate the dynamics of US Industrial Production by using the following four

DGPs:

y
(s)
1,t = 0.9y

(s)
1,t−1 − 0.795y

(s)
1,t−2 + ε

(s)
1,t , ε

(s)
1,t ∼ N(0, 1);

y
(s)
2,t = 0.9y

(s)
2,t−1 − 0.795y

(s)
2,t−2 + (0.02− 0.4y

(s)
2,t−1 + 0.25y2,t−2)(s)G(s)(Ξ) + ε

(s)
2,t , ε

(s)
2,t ∼ N(0, 1);

y
(s)
3,t = ε

Unfocused,(s)
t , εUnfocusedt ∼ 0.5 · [N(µt, 1) +N(µt + τt, 1)];

y
(s)
4,t = ε

Hamill,(s)
t , εHamillt ∼ N(µt + δt, δ

2
t );

where: G(s)(Ξ) =
(
1 + exp

{
−
[
h(ηt)

(s)I(ηt≤0)(y
(s)
t−1 − ȳ

(s)
t ) + h(ηt)

(s)I(ηt>0)(y
(s)
t−1 −

ȳ
(s)
t )
]})−1, and

h(ηt)
.
=


γ−1

1 exp(γ1|ηt| − 1) if γ1 > 0,

0 if γ1 = 0,

−γ−1
1 log(1− γ1|ηt|) if γ1 < 0,

(1)

for ηt ≥ 0 and

h(ηt)
.
=


−γ−1

2 exp(γ2|ηt| − 1) if γ2 > 0,

0 if γ2 = 0,

γ−1
2 log(1− γ2|ηt|) if γ2 < 0,

(2)

for ηt < 0 is a function of two parameters governing the transition between the

two extreme states G = 0 and G = 1; namely h(·) is function of γ1 = 50, γ2 =

−20,c = ave(yt), ηt = (y
(s)
t−1 − ȳ

(s)
t ), ȳt = 1

T

∑T
t=1 yt and yt−1 being the tran-

sition variable, s = {1, . . . , S}, T = 265 and S = 1, 000; the sequences µt, τt

and δt, δ2
t are identically distributed and mutually independent and (δt, δ

2
t ) =

0.33 · (0.5, 1) + 0.33 · (−0.5, 1) + 0.33 · (0, 167/100). Model 1 is a simple autore-
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gression of order 2 and Model 2 a GSTAR model of the same order6; Models 3 and

4 are the Unfocused and Hamill’s forecasters, see Hamill (2001).

We then compute the PITs corresponding to these forecasts and plot them in Figure

1. Under perfect forecast, the histogram is perfectly rectangular. But in our exper-

iment, all four histograms are almost rectangular, so that none of the alternative

Forecasters is distinguishable. Such a finding – called Hamill’s Paradox – compli-

cates the decision-making because every model corresponds to a different policy. Is

the Industrial Production following a linear (thus, cyclical phases are equally pos-

sible) or nonlinear asymmetric low of motion (and thus future downturns have low

probability to happen)? Or, on the opposite side, is the professional forecasters

quotation the output of a poor model (the Unfocused), so that no policy should be

implemented? Moreover, we remark that density forecasts which has been generated

by nonlinear models, are often multimodal, as shown in Figure 2. This is often a

source of confusion with for a process driven by a mixture of distributions (ergo, of

utilities), like the Hamill forecaster. Is it symptomatic of a change in forecaster’s

utility rather than a more complex scenario – like cooperative strategy? No assess-

ment can be done according to our results.

Mitchell and Wallis (2011) severely criticize this new approach in what the data

generating process used by Hamill and GBR is not robust to some basic time-series

feature. This implies that traditional diagnostic tools can still be successfully ap-

plied. Their critique, however, is overcome by our example: in fact, it proves that

Hamill’s paradox is still an involving issue when a standard and sufficiently general

time series model specification is set.

3 Theoretical framework

We consider a time series Yt = {yt}Tt=1 = {y1, . . . , yt, . . . , yT}T, with T denoting the

transposition, which is fully represented by an information set Ft = {yt−1, yt−2, . . .}
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and a probability density P (Yt). Let denote the (1-step-ahead) probability forecast

of Yt as P (Yt+1), the best forecaster’s judgement of the distributional forecast of

Yt as Q(Yt) (we will omit Yt for notational convenience) and x a draw of Q which

materializes in T + 1 and the predictive cumulate disribution function associated to

the materialization of x as F (x). A rolling window consisting of the past m obser-

vations is used to fit a density forecast for a future observation that lies k time steps

ahead. Suppose that T = m+ n. At times t = m, . . . ,m+ n− k estimated density

forecasts P̂ (Yt+k) and Q̂(Yt+k) for Yt+k are generated, each of which depends only

on Yt?m+1, . . . , Yt. Then, in order to nest the theoretical framework by Vovk and

Shafer (2005) and Dawid (2007), we introduce two agents: Forecaster and Nature

(or Reality); the first one is assumed to have an information set at most equal to

the Nature one.

Let be: X being a set of the possible forecaster’s outcomes, P the family of distribu-

tions on X in which P is belonged and A a σ-algebra of subset of X representing the

set of actions. In particular, if the sample space is discrete (that is, a dichotomous for

events like the probability of a recession, or categorical like, say, the ranking position

of a firm or State), P is defined by P = {p ∈ A :
∑

x px = 1} is the set of all real

vectors corresponding to strictly positive probability measures; if it is continuous

(like the conditional mean of an economic time series), P is defined byM, the set

of all distributions on X which are absolutely continuous with respect to a σ−finite

measure µ. The same is for q. Forecaster aims to solve a decision problem defined

by the triple
{
X ,A,U(P, a)

}
, where: X is previously defined; A is the action space;

and U(P, a∗) is a real-valued utility function which represent the reward obtained

by Forecaster as effect of minimizing the discrepancy on his own quotations, of the

action a∗ ∈ A, which maximizes the expected utility computed using the density P

believed the true DGP, with the expected loss denoted as EU :=
∫
U(P, a)P (Yt)dYt.

Let the functions H(P ) : P → R and D(P,Q) : P × Q → R be associated to any

U(P, ·). The resulting system is defined as follows:
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Definition 1 (Scoring rules, entropy/divergence functions, scoring structure). We

define:

i. Scoring rule the function S(x,Q) := U(P, aQ)

ii. Entropy function the function H(P ) := S(P, P ) ≡ supQ∈P S(P,Q)

iii. Divergence function the function D(P,Q) := H(P )− S(P,Q)

iv. Scoring structure the 5-ple
{
Yt,Ft, S(·, ·), H(P ), D(·, ·)

}
which, under proper conditions, is able to characterize coherent forecasts.

Remark 1. The Scoring Structure is sufficiently general, in his definition, to take

in consideration both the point of view of Reality, Forecaster and Forecast User.

The interactions between these three agents depends on the assumptions on each

of them. These assumptions have practical relevance because, as we will see in the

course of the paper, they delimit the framework of econometric assessment method

to be used.

Since SRs are the main block of all this system, we formally define them as follows:

Definition 2 (m-Local, (strictly) proper scoring rule). i. A scoring rule S : X×

P → R is local of order m or m-local if it can be expressed in form of:

S(x,Q) = s(x, q(x), q′(x), q′′(x), . . . , q(m)(x)) (3)

where s = X ×Qm → R, Qm := R+ × Rm is a real-valued, infinitely differen-

tiable function, s(·, ·) is called scoring function (or q-function) of S(x,Q), q(·)

is the density function of Q, m is a finite integer, and the prime (’) denote the

differentiation with respect to x.

ii. A (local) scoring rule S(x,Q) is (strictly) proper relative to the class of prob-

ability measures P if

S(P, P ) ≤ S(P,Q) ∀ P,Q ∈ P (4)
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with equality if (and only if, for strict properness) Q = P

To make Definition 1 and Definition 2 operational, we invoke the following assump-

tions:

A 1. P is assumed such that EU exists for all a ∈ A, P ∈ P.

A 2. A is compact.

A 3. U(P, aQ) is strictly convex in a.

A 4. The entropy H(P ) associated to S() is (strictly) convex in P , integrable with

respect to P ∈ P and quasi-integrable with respect to all Q ∈ P and such that H∗ is

a sub-tangent of H at point P .

A 5. S(P,Q) is affine, real-valued for all P,Q ∈ P and minimized in Q at Q = P .

A 6. D(P,Q) − D(P,Q0) is affine in P , and D(P,Q) ≥ 0, with equality achieved

at Q = P

A 7. P̂t+k and Q̂t+k are measurable functions of the data in a rolling estimation

window.

Proposition 1. The Forecaster’s reward S(P,Q) is a proper scoring rule if and only

if A1 - A5 are satisfied.

Proof. This is essentially the Theorem 1 in GR.

Remark 2. A1 – A3 are necessary (but not sufficient) to define the Forecaster’s

reward as scoring rule. In particular, A1 is encloses the three “basic assumptions”

discussed in Dawid (2007)7 and implies that the reward is measurable with respect

to A and quasi-integrable with respect to all P ∈ P . A2 and A3 are convenience

assumption which are necessary to having a unique maximizing action. A4 charac-

terizes the general representation of scoring rules; see Thm 1 in GR. A5 stresses the

fact that Forecaster has no loss only if his DGP coincides with the Nature’s one;
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see Thm 1 in Bernardo (1979) and GBR. A6 is fundamental to characterize a very

general family of SRs for the case that every Q ∈ P = A =M, has a density q(x)

with respect to µ ∈ X , the Brègman score:

S(x,Q)B = ψ′
[
q(x)

]
+

∫ {
ψ
[
q(x)

]
− q(x)ψ′

[
q(x)

]}
dµ(x) (5)

with associated Brègman divergence:

d(P,Q)B =

∫ {(
ψ
[
p(x)

]
+
[
p(x)− q(x)

]
ψ′
[
q(x)

])
− ψ[p(x)]

}
dµ(x), (6)

where ψ is a (strictly) concave function. This is a very general class of non-metric

distance able to characterize most of the scoring rules described in Table 1. We are

particularly interested in the special case that

ψx = k(x)− λ log(x), (7)

where k, also known in Physics as Boltzmann’s constant, is commonly is set to zero

without loss of generality for ease of treatment. Under (7) the forecasts generated by

modelM are coherent with a scoring structure {Yt,Ft, S(·, ·), H(·), D(·, ·) } defined

on a logarithmic scoring rule, Shannon Entropy and Kullback-Liebler distance.

Remark 3. All the functions S(·, ·) in Definition 2 can be interpreted in terms of

utility: S(x, P ) is the Forecaster’s reward for the fact that the event x (truly)

materializes. This is a function defined on the extended real line, that is S(x, P ) ∈

R = [−∞,+∞]. Consequently the expected forecaster’s utility, conditionally to Q

can be denoted as: S(P,Q) ≡
∫ +∞
−∞ S(P, x)dQ(x). H(P ) can be interpreted as the

maximum possible of the utility that Forecaster can achieve using Nature’s true DGP

to predict P . The divergence function is the difference between the maximum utility

and the utility achieved by predicting the quoted predictive distribution Q given

the true distribution P . Hendrickson and Buehler (1971) provide the necessary and
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sufficient conditions under which D(P,Q) admits a Brègman-Savage representation.

Finally, A7 is necessary only to apply the Amisano and Giacomini (2007) predictive

ability test on the output of the scoring structure.

The next result constitutes the motivation for the rest of the analysis:

Proposition 2. Let S(x,Q) be a scoring rule, possibly fulfilling the Brègman-Savage

representation, with q-function s. Then, S(x,Q) is local and strictly proper if and

only if s is such that:

Ls = 0, (8)

where: L :=
∑

k≥0(−1)kDkq0
∂
∂qk

, D := ∂
∂x

+
∑

j>>0 qj+1
∂
qj
, D and L are total deriva-

tive and linear differential operators, respectively.

Proof. This is essentially the condition (i) in Theorem 6.4 in Parry et al. (2012).

Equation (8) is called Key Condition. For purely theoretical reasons, the same the-

orem requires other two conditions concerning the representation of s via Lagrange

operators. Nevertheless, the Key Condition is sufficient (and, to the best of our

knowledge it the only available) to identify an empirically testable hypothesis for

the assessment of the logarithmic form of the Forecaster’s utility.

4 The Locality Test

This section defines a statistical hypothesis test to check if the “key equation” (8)

is verified by data. In order to do this, we assume that the q-function s generating

S(x,Q) is an observed transition variable of a Smooth Transition Autoregressions

(STAR) model introduced by Chan and Tong (1986)8. This is necessary to set-up the

null hypothesis and introduce an LM-type test à la Luukkonen et al. (1988) (LST):

the idea is to linearize the original nonlinear parametrization via Taylor expansion

on our scoring structure to arrive an auxiliary model with augmented regressors,

the number of which depends on the type of non-linearity suspected; this artificial
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model can be investigated by standard χ2 asymptotics. We stress that the test

does not impose any form of SR, because these are treated as unknown, observed

variables. The rest of the discussion is divided in two subsections: Subsection 4.1

briefly describes the model and the null hypothesis and Subsection 4.2 the test

statistic.

4.1 The Null Hypothesis

The process {yt} observed at t = 1 − p, 1 − (p − 1), . . . ,−1, 0, 1, . . . , T − 1, T is

assumed to be driven by the following structure:

yt = (1−G(γ,wt, ck))φ
Tzt +G(γ,wt, ck))θ

Tzt + εt, εt ∼ iid(0, σ2) (9)

G(γ,wt, ck) =

(
1 + exp

{
− γ

K∏
k=1

(wt − ck)
)})−1

, γ > 0, c1 < · · · < ck, < · · · < cK ,

(10)

where: zt = (1, yt−1, . . . , yt−p)
T are the autoregressive covariates, φ = (φ0, φ1, . . . , φp)

′

are the linear part parameters, θ = (θ0, θ1, . . . , θp)
T nonlinear part parameters, γ

is the slope parameter, ck = (c1, . . . , cK) denoting the location parameters, wt =

aTzt � s is a composite transition variable, with a = [a1, . . . , ap]
T, ai =

0 if i = d

1 if i 6= d

denoting the fact that delay parameter d, which is such that 1 ≤ d ≤ p, is unknown

and s a generic proper SR as in Definition 2.

The most common choices for K are K = 1, in which case the parameters φ +

θG(γ,wt, ck)) change monotonically as a function of st from φ to φ+θ and K = 2,

in which case the parameters φ+θG(γ,wt, ck)) change symmetrically at some point

where the function reaches its own minimum. A peculiar form of this latter case is

when K = 2 and c1 = c2 and the transition function defines the Exponential STAR

(ESTAR) model. When γ → ∞, the model (9) nests the Tong (1983) two-regimes

Threshold Auto-Regressive model.
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Let denote the log-likelihood function of the T observations by Λt(zt,Ξ) with

Ξ = [φ,θ,γ, c] and the score vector by Σt(zt,Ξ) evaluated at (θ0,φ0,0, c0). Then,

standard results lead to the following log-likelihood function:

Λt(zt,Ξ) = const+
T

2
lnσ2 − 1

2
σ2
∑
t

(yt − φ′zt − θ′ztG)2

= const+
T

2
lnσ2 − 1

2
σ2
∑
t

u2
t (Ξ),

(11)

with const and ut denoting a constant and the model’s residual, respectively, and

to the score:

Σt(zt,Ξ) = ∇ΞΛt(zt,Ξ) =
1

σ2

∑
t

ut(Ξ)dt, (12)

dt = ∇Ξut(Ξ) = [zt, ztG,θ
′ztGγ,θ

′ztGc]
T, (13)

with Gγ = ∂G/∂γ and Gc = ∂G/∂c denoting the first derivatives of G with respect

to γ and c. We want to test the hypothesis that, in (9),

H0i : θ = 0 vs θ 6= 0. (14)

The null hypothesis (14) corresponds to (8) (in particular to the null hypothesis that

H∗0 : λ = 0 in the q-function s) and requires a simple LM-type test to be verified.

Note that the parameters γi, a and c are not identified under H0. In a similar way,

we could choose H ′0 : γ = 0 as our locality hypothesis, in which case neither c, a

nor θ would be identified under H ′0. This implies that the conventional maximum

likelihood theory is not directly applicable to deriving test procedures for testing

(14). In this case, it is still possible to proceed to built-up a null hypothesis by

keeping fix the unspecified parameters, as suggested by Davies (1977).
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4.2 The Test Statistics

Define τ = (τ1, τ2)T, where τ1 = (φ0,φ
T)T, τ2 = γ9. Let τ̂1 the LS estimator of τ1

under H0 : γ = 0, τ̂ = (τ ′1,0
T)T. Moreover, let d̂t = dt(τ̂ ) = (d̂1,t, d̂2,t), where the

partition conforms to that of τ . Under H0, the test statistic is:

S(Ξ)LM =
1

σ̂2
Û′D̂2(D̂′2D̂2 − D̂′2D̂1(D̂′1D̂1)−1D̂′1D̂2)−1D̂′2Û, (15)

Di = [di1, . . . ,diT ]T, D̂i = [d̂i1, . . . , d̂it, . . . , d̂iT]T, i = {1, 2}, t = 1, . . . , T , σ̂2 =

1
T

∑T
1 û

2
t and ût = yt − τ̂T

1 zt. When the model is an GLSTAR, d̂1,t = −zt =

−(1, yt−1, . . . , yt−p)
T while ẑ2t ≡ ∂2ut

∂γ∂γ′

∣∣
γ=0

= −1
2

{
θ20[yt(yt−d)]−cytθ′zt+θ

′
2ztytyt−d

}
Just minor modifications are needed in notation of d̂t and sLt in case of LSTAR2

model due to an additional c parameter with respect to the LSTAR. The proposed

test statistic depends on θ and is still unidentified unless θ2 = 0. LST prove that

this problem can be circumvented by linearizing the nonlinear model via (third

order) Taylor expansion. Here we adopt the same argument and argue that this

linearization has a double importance because it is the only direct way to link the

null hypothesis to a regression framework.

The linearized GLSTAR model

yt = φ′zt + θ′ztT3G
(
·
)
ε′t, (16)

leads to the following auxiliary regression for testing linearity and symmetry:

ε̂′t = ẑ′1tβ̃1 +

p∑
j=1

β2jsyt−jyt−d +

p∑
j=1

β3jsyt−jy
2
t−d +

p∑
j=1

β4jsyt−jy
3
t−d + vt , (17)

where vt is a NIID(0, σ2) process, β̃1 = (β10,β
T
1 )T, β10 = φ0 − (c/4)θ0, β1 =

φ − (c/4)θ + (1/4)θ0ed, ed = (0, 0, . . . , 0, 1, 0, . . . , 0)T with the d-th element equal

to unit and T3(G) = f1G + f3G
3 is the third-order Taylor expansion of G(Ξ),
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f1 = ∂G(Ξ)/∂Ξ
∣∣
γ=0

and f3 = (1/6)∂3G(Ξ)/∂Ξ
∣∣
γ=0

, G(Ξ) being defined in previous

section. The null hypothesis is

H0 : β2j = β3j = β4j = 0 j = 1, . . . , p, (18)

The test statistic:

LM1 = (SSR0 − SSR)/σ̂v
2 , (19)

with SSR0 and SSR denoting the sum of squared estimated residuals from the esti-

mated auxiliary regression (17) and under the null and alternative, respectively and

σ2
v = (1/T )SSR, has an asymptotic χ2

3p distribution under H0.

If the model is a GESTAR(p), then it is possible to show that the corresponding

auxiliary regression is

ε̂′t = β̃T
1 ẑ1 + βT

2 ztsyt−d + βT
3 ztsy

2
t−d + v′t , (20)

where vT
t is a NIID(0, σ2) error term and β̃1 = (β10,β

′
1)′, with β10 = φ0− c2θ0 and

β1 = φ − c2θ + 2cθ0ed; moreover β2 = 2cθ − θ0ed and β3 = −θ. Thus the null

hypothesis of linearity is

H ′0 : β2 = β3 = 0, (21)

which can be tested by the test statistic:

LM2 = (SSR0 − SSR)/σ̂2
v1, (22)

where SSR0 and SSR are the sum of squared residuals from (20) under the null and

the alternative respectively, σ̂2
v1 = (1/T )SSR. When the null is true, the statistic

(24) is asymptotically χ2
2p distributed. A peculiar case of (24) is when β2 = 0 as
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θ0 = c = 0, in which case, under the null

H ′′0 : β3 = 0, (23)

the test has a statistic

LM3 = (SSR0 − SSR)/σ̂2
v2 (24)

distributed as a χ2
p, with SSR0, SSR and σv2 defined in a similar way with respect

the LM2 case. The F-version of LM1, LM2 and LM3, denoted as F1, F2 and F3, may

be preferable when testing (19) or (24) in order to preserve power in low samples. In

practice the form of G is not known by the investigator. Teräsvirta (1994) proposes

a battery of F-tests on the auxiliary model (17):

H01 : β4 = 0 vs H11 : β4 6= 0

H02 : β3 = 0|β4 = 0 vs H12 : β3 6= 0|β4 = 0

H03 : β2 = 0|β3 = 0 and β4 = 0 vs H22 : β2 6= 0|β3 = 0 and β4 = 0.

(25)

and suggests an empirical rule – based on the results of a simulation experiment –

to select the right transition function. For our aims, however, this is not a crucial

issue, so we will do not discuss in details. The next Section 5 shows some results

from this LST-derived test.

5 Simulation Study

This section investigates the empirical properties of the proposed locality test by

a Monte Carlo experiment. We organize this section as follows: Sub-section 5.1

describes the design of the experiment; Sub-section 5.2 reports the results; Sub-

section 5.3 provides a brief discussion.
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5.1 Simulation Design

We consider two different data generating processes (DGP):

y
(n)
1,t = 0.4y

(n)
1,t−1 − 0.25y

(n)
1,t−2 + (0.01− 0.9y

(n)
1,t−1 + 0.795y1,t−2)(s)G(n)(Ξ) + ε

(n)
1,t , (26)

and

y
(n)
2,t = 0.8y

(n)
2,t−1 − 0.7y

(n)
2,t−2 + (0.01− 0.9y

(n)
2,t−1 + 0.795y

(i)
2,t−2)G(n)(Ξ) + ε

(n)
2,t , (27)

where G(i)(Ξ) has the same step form as in (16), ε(n)
t ∼ N(0, 1), n = {1, . . . , N}

denoting the n-esim drow of the process {yt}Tt=1 with s = yt−1, c = 1
T
y

(i)
t , N = 1, 000.

y
(n)
2,t (henceforth “DGP 1”) is an additive nonlinear model with accentuated nonlinear

behavior, due to the high autoregressive parameters driving G(Ξ) that gave a high

sensitivity to the size of the slope parameters; this can be the case of a macroeco-

nomic indicator affected by an unexpected shocks affecting the whole dynamics. On

the other hand, y(n)
2,t (henceforth “DGP 2”) describes a mixed scenario.

In order to simulate the function G(·) we use a set of values of slope γ. These

combinations allow us to investigate: i) the different cases of null, small, medium,

extreme asymmetry respectively; ii) the effect of having different strength of non-

linearity, due to the different γ-s. Moreover, we consider three different hypotheses

for T and the size α, namely T = {75, 150, 300} – corresponding to a very small,

small and medium sample sizes, respectively – and α = {0.01, 0.05, 0.10}. The first

100 simulations have been discarded in order to avoid the initialization effect.

5.2 Results

Table 2 reports the results of the Monte Carlo simulation exercise of the locality test

for the statistics F1 and F2 from the hypothesis system (25) discussed in Section

4 are reported in; the performances of F3 statistic are poor and thus has been
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omitted. Several findings can be easily noticed: first, the two tests tends to be

well-behaving for what concerns the empirical size. Second, and conversely, the

empirical power is poor if an almost linear model is used, and in general for DGP 1.

Third, the empirical power is highly sensitive to the values of the slope: for example,

under DGP1 and T=75 and α = 0.10, the power of F1 statistic passes from almost

0.02 when γ = 0.5 (hence almost linear model) to 0.6 when γ = 500 – hence, the

increase is proportional but less than linearly – and similarly for statistic F2. When

considering DGP2 the range is still more abrupt: ceteribus paribus, F1 is 0.05 when

γ = 0.5 and 0.88 when γ = 500. When T increases, there role of γ became almost

inflationary: for example, when T = 300, and α = 0.05, the range of the power of

F1 in DGP1 is [0.001 – 0.892] and still more in DGP2.

Table 3 reports the results of a different exercise: we simulate the same DGPs with

γ fixed at 10 and varying SRs; namely, we used all the scoring functions mentioned

in Table 1 apart the logarithmic score – which has been previously investigated

in Table 2). The power of the test is not affected by different SRs: the values of

each F-statistic is the same for all the 19 SRs adopted (for example, the power of

F1 in DGP1 at nominal size of 5% is 0.35 with T=75, 0.57 with T=150 and 0.63

with T=300, respectively. Secondly, the DGP2 (that is the mixed scenario) delivers

an extremely high power – actually, higher than the nonlinear scenario: in facts

ceteribus paribus, the power of the F1 statistic, is 0.77 with T=75, 0.92 with T=150

and 0.98 with T=300 and equivalent F2 powers values are slightly lower.

5.3 Discussion

The above results convey a non-trivial picture of the role of the locality of the SRs

in forecasting. In terms of statistical theory, we hold with two problems:

Structure dependence: Strong nonlinearity in the scoring structure is necessary

to detect locality.
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Score Invariance: if the SR is changed, the probability function of the event re-

alization is the same.

Heuristically, we can reply to these idiosyncrasies as follows. For the model depen-

dance problem, the SR, although treated as transition variable, is per se exogenous

to the (G)STAR model parametrization, because it is just a functional of its dis-

tribution. In addition, we used the implicit assumption that scoring rule has an

observable variable, when the converse is considerably more appropriate from a the-

oretical point of view. It is not so unrealistic to think that such a direct application

of the LST test to this object is responsible to add some nonlinearity not captured

by the AR parameters, hence leading to a spurious rejection of the null of locality

symmetry when it is true.

The Score Invariance is one of the critical assumptions of the Lindley (1982) gen-

eralized theory on the admissibility of the Forecaster’ utility and clearly stated as

a condition for treating the scores as finitely-additive probability-behaving objects.

In particular, the Lemma 4 of the same work proves the equivalence between two

different scores of two quotations conditional on the same event, enhancing in a

such a way the status of probability transform of the obtained value x10. In this

sense our simulations are fully consistent with the theory and confirm the Patton

(2016) theory that consistency of SRs is a non sufficient condition for coherency of

the evaluation. In facts, despite some of the 19 scoring functions used in this exper-

iment has Brègman-Savage representation, the empirical power of the test exactly

identical to the ones having not, so they cannot be distinguished between these two

types of utility functions. We can interpret this finding as follows: when the forecast

user have to deal with different possible Forecasters, he/she can never know, ex-post

what is the exact utility function driving them but have to specify, axiomatically,

ex-ante. This sort of “undeterminancy” puzzle is the motivation of the adoption of

the locality as criterion for SRs assessment. In fact, it tells the forecast user if the

Barnard et al. (1962) likelihood principle – according to which all the evidence in a
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sample relevant to model parameters is contained in the likelihood function – holds

or not. In this last case, the forecast is necessarily do be driven by something that

exit from the likelihood. And, being the activity of any forecast user such that they

need a good knowledge of estimation issues and methods, these deviations are likely

represented by opinions.

6 Illustrations

6.1 Assessing Recession Probability in U.S. Business Cycle

In this application, we evaluate the US business cycle by using a new version the

“Bry-Boshan Quarterly” (BBQ, henceforth) algorithm, introduced by Harding and

Pagan (2002); Engel et al. (2005) (EHP, henceforth), which in turn is an advance-

ment of the pre-existing algorithm for the detection of turning points in the US

GDP. Here, the focus is twofold: (i) descriptive, by measuring the asymmetry of the

business cycle by following the literature started with Burns and Mitchell (1946)

and (ii) predictive, assessing of the probability of recession in line with Diebold and

Ruderbusch (1989).

We use the US Index of Industrial Production in quarterly data – spanning from

1947Q1 to 2013Q1 – as proxy variable in logarithmic transformation. The source

is the Federal Reserve Bank of St. Louis, Research Division. We first measure the

effects of adopting the scoring rules in BBQ algorithm using a simple AR(5) to es-

timate the predictive density; the results are reported in Table 4 shows. Two main

findings emerge immediately: first, the high duration of the expansion phase with

respect to the contraction, in line with all the literature; second, the value of many

indicators seems to be unaffected by different scoring rules.

We then repeat the analysis by estimating a STAR of the same order in both the

linear and nonlinear part, d = 4 and 3 regimes, according to the General-to-Specific

modelling strategy in Terasvirta and Dijk (2002). According to Table 5, the asym-
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metry of the cycle is increased, and in some cases, exacerbated (see the Excess of

% triangle area). For example, let consider the case of duration (D): under lin-

ear model, it is 4.4 quarters in phase of contraction and 17.6 quarters in phase of

expansion, and this evidence is uniform for almost all the SRs adopted with only

two relevant exceptions: the LogS, which slightly under-estimate both of them (4.1

and 15.0 quarters, respectively) and Hyvaarinen Score (HS), which makes contrac-

tion still more conservative (3.6 quarters) but blows up the phase of expansion (56

quarters). When nonlinear model is used, the values of D remains the same in con-

traction, but, on a different side, the expansion phase (18.6 quarters on average) is

augmented of more than a year. The same exceptions hold: when using a LogS, the

duration of the cycle is lower both in contraction and in expansion (4.2 and 16.7

quarters, respectively); on the converse, if HS is assumed, it increase the contraction

to 6.0 and reduces dramatically the expansion to 6.7 quarters – that is less than one

third of the other measures. In the nonlinear case, also Weighted Power Score for

the special case that power parameter is 1 (WPwrS, α = 1) shares the same features

of HS: it doubles the recession phase to 9.2 quarters and reduces the expansion to

14.3 quarters. These differences in these two scores are possibly more easy to see in

the cumulated measures.

Figure 3 emphasizes the effects of SBB algorithm. When using log-level data, the

estimated recessions are almost always coincident with NBER dates – with the rel-

evant exception of 1975-6 Oil Crisis, which is recognized only by LogS and WPwrS.

The LogS is sensitive to stagnation events as in end-’60s and anticipate the Gulf-

War recession in 1991-2, and the same holds in both cases of linear and nonlinear

specification for the DGP. However, when recessions probabilities are driven by a

nonlinear model, the SBB is less prone to consider recession the years of stagnation,

as proved by the fact that the indicator is permanently 1 since 1962 to 1971. In

general LogS is almost everywhere right under STAR modelling apart a small de-

viance in end-1989-90. Differently, if data in growth rates are used, these results
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change: the (standard) BBQ over-react in the first part of the sample, where the

number of recession episodes is the double of NBER dates and, on the opposite side,

does not recognizes the first 80’s episode and over-evaluate the cyclical movements

after 1992. This holds also for many cases of SBB algorithm, but, at least, in under

LogS recessions of first 80s are recognized – albeit with a large lead. When the

same algorithm is used under STAR model, it is noticeable that for some SR, such

CRPS, is not sensitive to any recession since first Oil Crisis 1973-74 to 1991. On the

opposite side, WPwrS and WPSph overestimate the recession episodes after 1982,

remaining at 0 until 2000. The LogS is relatively more precise than other measures

although the 1982 recession remains over-estimated.

These results prove that the dating algorithms are sensitive to the the time series

model, ergo of the probability of recession, and, in particular that is a non negligible

difference between linear and non-linear parametrization. The role of nonlinearity

is evidenced in Figure 4, where the original BB and LogS-Scored BB algorithms are

compared with the transition functions of (Multiple Regime) STAR models. While

indicator functions tends to over-evaluate Oil Crises, the transition functions Gs lie

on the range [0 – 0.5] in the case of G1 and G3) and [0.5 – 1.0] in the case of G2. In

particular, Panel (b) plots the same transition function by ordering the observation

in ascending order in a such a way that it is possible to appreciate the smoothness

(or, on the opposite side, the abruptness) of the transition from extreme quiet state

to extreme event 1. In the first transition function G1, the large majority of the

observations are in the upper tail of the sigmoid – thus implying an over-evaluation

of recessions; the second transition function G2 the observations are quite equally

distributed; G3 instead tends to stay in the lower half of the range, thus is more

conservative in treating recession events. The difference of all these transitions with

BB-derived Indicators is in the simplistic zero-one representation of the events of

these last ones; not surprisingly, the observations in recession state of BB-type in-

dicators are comparable to the over-fitting transition G1 and G2.
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6.2 Assessing Bank of Norway’s Fan Chart

The output gap (OG) measures the percentage deviation between GDP and pro-

jected potential GDP. Since the OG is one of the most important variables used

in applied Macroeconomics, a correct assessment of its forecasts is part of every

Central Bank.

The Bank of Norway’s Monetary Policy Report (BoNMPR) has issued probabilistic

forecasts of OG since March 2008 to December 2017, by using fan charts to visualize

the deciles of the predictive distributions. The quarterly OG here investigated are

in percentage changes over 12 months; the first quarter extends from March 31st

to May 30, the second quarter from July 1st to September 30th, and so on11. Our

empirical analysis uses the test by Amisano and Giacomini (2007) to assess the pre-

dictive performance of BoNMPR and, following the example of Gneiting and Ranjan

(2011), compares the BoNMPR density forecasts to those derived from a simplistic

AR(1) model that uses a rolling estimation window of length m = 6 quarters; see

Appendix 2 for details.

According to our theoretical framework, the benchmark model nests a scoring struc-

ture that recover the Key Condition. In fact, it corresponds to Scoring Structure

(9) with γ = 0, which in turn is the null hypothesis of local SRs, that is the fore-

cast corresponds exactly to BoN quotation. On the other side, BoNMPR forecasts

are the product of the bank’s internal econometric model like System Averaging

Model or Norway Economic MOdel; see the BoN models web page for references.

In order to treat them with our method, we assume that BoN forecasts, whenever

rejecting the locality hypothesis, correspond to the nonlinear Scoring Structure (9)

with γ > 0. This is compatible with the empirical finding that nonlinear models

are often associated with multimodal distribution as shown in Section 2. Hence,

the Amisano-Giacomini t-statistic, if logarithmic SR (LogS) is assumed, tells us the

distance between the BoNMPR forecasts and a forecast coming from a “purely” sta-

tistical model.
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Table 6 compares the two methods at a prediction horizon of k = 1 quarters ahead,

for a test period ranging from the first quarter of 2008 to the first quarter of 2017,

for a total of n = 34 density forecast cases. The superiority of the Bank of Norway is

not unambiguously clear, how shown by the different values τ and p-values. Under

LogS, and other functional forms (like Quantum, Conditional Likelihood or Interval

Scores) the test do rejects the null hypothesis of no equal predictive ability of Scor-

ing Structure versus benchmark model, thus confirming the statistical coherency of

the quotation. On the other side, it does not reject the null in several other occa-

sions such as the WPwrS, most of Weighted Pseudo-Spherical (WPseudoSph) and

Log-Cosh (LCS) Scores.

6.3 Discussion

For what concerns the SBBQ, a couple of caveat should be noted: first, the fact

that, in many situations, different SRs convey the same cycle indicator is appar-

ently counter-intuitive, since, being of them mutually different (consistently, in some

cases), we would expect that each functional corresponds a unique value. On the

other side, the Score Invariance principle empirically proved in the previous section

seems to us a way to justify such an evidence. Moreover, this is an effect of the fact

that many of the selected SRs are nested. It is not surprising that the measures

of cycle in Tables 1 and Table 2 shows the same qualitative features in LogS and

WPwrS with power equal to 1: in facts, according to their theoretical definitions,

these two measures coincide. Concerning the peculiarity of HS, we have to notice

that it is another case of local SR. In fact, it is based on a (non-trivial) differential

transform of the logarithmic score, which increases its sensitivity.

Second, the EHP methodology here adopted and modified is not the only available

for our aim. Artis et al. (2004) provides an alternative, more elaborated algo-

rithm based on a Markov-Switching AR model. Third, and differently to Diebold

and Ruderbusch (1989), we do not assume a bayesian strategy for the replication
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of probabilities of downturn. The results of the test should be looked in light of

Teräsvirta’s modelling strategy.

Also in our second illustration – the assessment of BoN Fan Charts – we have to

make several considerations: first, in our exercise, we treated the BoNMPR forecasts

as primitive data to be compared by a benchmark. Hence, according to Vovk and

Shafer (2005) game-theoretical theory, BoN is Forecaster and we are the Forecast

User (or Skeptic); moreover, since Reality has already played his role at the date of

writing this paper, its role in building the (wrong) incentives of forecaster is anni-

hilated. These particular circumstances are the only way to use simple predictive

ability tests. In real world, a Central Bank is a Skeptic who have to deal of a (large)

pool of professional forecasters and must deal with their sub-game against Reality

and with cooperation between them in every time. Moreover, in several Central

Banks, the phase of econometric analysis of Forecasters quotations and the conse-

quent final assessment is separated by the final decisions of the Board of Governors.

This generates, potentially, a huge decision bias.

Second, we assumed that the measure of Forecaster coherency can be done via sim-

ple average of a time series of each quotation. However, more general combination

schemes are nowadays available: for example, Kapetanios et al. (2015) suggest a

sieve estimator of weighted means where weights are allowed to be nonlinear combi-

nations of density functions. On a different perspective, Billio et al. (2013) develop

a combination method which assign time-varying weights to competing densities via

Markov-Switching state-space model. All these methods can be nested in our scor-

ing stucture framework.

Finally, and consequently, the proposed methodology is a very stylized way to ad-

dress the elicitation of the true Forecaster’s incentive. We ought that further research

will be pursued in order to generalize it in several directions. For example, the scor-

ing rule has been here assumed unknown but observed to exploit the properties of

STAR family of models. Relaxing this last implicit assumption via unobserved com-
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ponent models could be an interesting development. Moreover, the formal testing is

not the only strategy to do assessment of forecasts; for example, a graphical check

via Murphy’s diagram according to Ehm et al. (2016) might contribute to cover

some of the counterintuitive results of our applications.

7 Conclusions

We introduced a novel frequentist framework based on a scoring structure which

assumes (simplistic) interactions between Forecaster and Reality in order to make

coherent evaluations of econometric forecasts. This structure allows the econome-

trician to build an LM-type test in order to verify the hypothesis of locality of the

reward of forecaster’s expected utility. The nonlinear model assumed to generate

the predictive density forecasts is set to consider the scoring rule as a transition

variable and, consequently, to nest the statistical inference of an established litera-

ture. The empirical power properties of the test are consistent with the fundamental

requirements stated in literature on Decision Theory.

The scoring structure is a fundamental tool to elicit the forecaster’s utility in several

economic applications. In business cycle, the decision rules for a standard dating

algorithm tends to exacerbate the probability of a recession. On the other side,

our example on Bank of Norway’s fan charts of the output gap reveals that relative

coherency assessment requires a careful selection of the scoring functions between

the many available. Thus, the refinement of this methodology via relaxation of

scoring structure’s operational and theoretical assumptions is a primary interest for

econometric forecasting.

Notes

1 In what follows, we prefer to use the notion of “utility” rather than “ loss” – which is more
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frequently used in the econometric literature. This allows us to have a direct link the literature

in Bayesian Statistics which, despite our frequentist approach, somewhat inspired this paper.

2 We identify two strands of literature: the first one (Rossi and Sekhposyan, 2013) generalizes

the the statistical inference below the PITs to hold with unstable forecast environments. In

the second, the statitical object is modified and generalized to improve the empirical power of

the test statistic to assess the hypothesis of correct specification; see, Gonzáles-Rivera et al.

(2011); Gonzáles-Rivera and Sun (2017) and the aforementioned literature.

3 See, inter alia, Mitchell and Hall (2005); Bao et al. (2007); Hall and Mitchell (2007); Amisano

and Giacomini (2007); Clements and Harvey (2010); Kascha and Ravazzolo (2010); Geweke

and Amisano (2011); Clements and Harvey (2012).

4 “The scoring rule is constructed according to the basic idea that the resulting device should

oblige each participant to express his true feelings, because any departure from his own personal

probability results in a diminution of his own average score as he sees it” (De Finetti, 1962,

cit., p. 359).

5 See, inter alia, Diebold and Mariano (1995); West (1996); Clark and McCracken (2001); Gia-

comini and White (2006); Giacomini and Rossi (2010)

6 For details on this peculiar generalization we refer the reader to Canepa and Zanetti Chini

(2016) and notice that this DGP is similar to the one used in Teräsvirta (1994), equation (4.1).

A large strand of literature demonstrates that this peculiar variable is typically nonlinear, see

Anderson and Teräsvirta (1992), for example.

7 That is, in our simplified notation: a) there exists exactly one p ∈ A for any P ∈ P; b) distinct

distributions in P have distinct actions in A; c) Every a ∈ A is a Bayes act for some P ∈ P;

see Dawid (2007), p. 80.

8 In preliminary versions of this paper, this test has been built-up assuming the generalized

version of the STAR model presented in Canepa and Zanetti Chini (2016). However, this

complication does not improve the results here presented. Anyway, the equivalent tables with

the result of the simulations with GSTAR model can be provided under request.

9 In the most simple case, τ is a scalar. Anyway, in the most general case of multiple regime

STAR model, it became a vector of length k; thus we prefer to maintain the vector notation.

10 “It follows that a person could proceed by choosing his probability p in advance of knowing

what score function was to be used and then, when it was announced, providing x saysfying

P (x) = p” (Lindley, 1982, cit., p. 4.)

11 Data can be downloaded from the Bank of Norway’s web page. We used the release of 2014.
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Table 6: Amisano and Giacomini (2007) test for Norges Bank’s Fan Chart of Output
Growth at a prediction horizon of 12 month for different scoring rules with Bank
of Norway taking the role of S̄f and the benchmark AR density forecast the role
of S̄g

S(Q, y) S̄f S̄g σ t P -value

QSR 0.5582 0.5582 0.0000 - 0.0000
WPowerS 2.8147 2.9534 0.1011 -3.3575 0.9991
" (α = −1) 527.6771 2.9534 1.08e05 -0.0032 0.5012
" (α = 0) 527.5193 670.8714 1.08e05 -0.0032 0.5012
" (α = 1/2) -1,062.301 -1,352.7636 4.43e05 0.0016 0.4993
" (α = 1) 1.1986 1.4481 0.3275 -1.8662 0.9653
" (α = 2) -262.6019 -333.8081 2.66e03 0.0065 0.4974
PseudoSph 2.9817 2.9817 0.0000 - 0.0000
WPseudoSph 1.9916 1.9931 1.2709e-05 -299.5681 1.0000
" (α = −1) 0.4999 0.5000 7.8768e-12 -3.8e05 1.0000
" (α = 0) 1.0000 1.0000 0.0000 - 0.0000
" (α = 1/2) -1,927.5277 1.0000 3.8e06 0.0005 0.4997
" (α = 1) 1.1986 1.4481 0.3275 -1.8662 0.9653
" (α = 2) -0.8559 -0.8361 0.0020 -23.4613 1.0000
LogS 0.0273 0.0273 0.0000 - 0.0000
IntS 3.5000 3.5000 0.0000 - 0.0000
TsallisS 1.2229 1.2229 0.0000 - 0.0000
ES -0.1237 -0.0834 0.0085 -11.5709 1.0000
GES 1.1626 1.2485 0.0388 -5.4196 1.0000
PseudoSpectrumS -7.8530 -7.8530 0.0000 - 0.0000
CRPS 0.0132 0.0120 7.2746e-06 395.9622 0.0000
QuantS -0.1909 -0.1835 0.0002 -63.5174 1.0000
CLS -0.1467 -0.4232 0.4021 1.6841 0.0499
CsLS 0.0088 0.0076 8.0784e-06 375.7488 0.0000
LCS 0.0552 0.0552 0.0000 - 0.0000
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Figure 1: The Hamill paradox

(a) PIT under linear forecast
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(b) PIT under GSTAR forecast
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(c) PIT under unfocused forecast
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(d) PIT under Hamill’s forecast
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NOTE: This figure plot the output of the motivating example described in Section 2.

Figure 2: Simulated predictive density of a GSTAR model
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NOTE: This figure shows the density of a GSTAR model with parameter values: φ0 = 0.0,
φ1 = 0.4, φ2 = −0.25, θ0 = 0.01, θ1 = −0.9, θ2 = 0.795, γ1 = −200, γ2 = 100, c = ȳt;
we adopt S = 1, 000 Monte-Carlo draws and B = 10.000 bootstrap replications; see
Zanetti Chini (2017) for details.
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Figure 3: The effects of different SR in BBQ algorithm

(a) Analysis of data in logarithms
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(b) Analysis of data in quarterly growth rates
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Figure 4: The SBBQ algorithm and nonlinear modelling.

(a) Indicators from (S)BBQ algorithm and STAR transition function vs time
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(b) Indicators from (S)BBQ algorithm and STAR transition function vs transition variable
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A The Scored Bry-Boshan Algorithm

Understanding the business cycle means to realize how the transition probabilities

are likely to be affected by the nature of ∆yt, which is the scope of the EHP dating

algorithm, in which the phases are defined as St = 1(∆yt > 0), i.e. when there

is a positive growth rate at time t, the economy is in a state of expansion (E),

while a negative one refers to a contraction (C). Under random walk hypothesis, the

probabilities of a change in phase at time t is

Pr(EC) : Pr(St+1 = 0|St = 1) = Pr(∆yt+1 < 0|∆yt > 0)

Pr(CE) : Pr(St+1 = 1|St = 0) = Pr(∆yt+1 > 0|∆yt < 0)

(28)

Our innovation consists in understanding how the transition probabilities are likely

to be affected by the nature of ∆yt given the estimated scoring rule(s).

Let the turning point dates produce K phases of expansions and contractions, with

an index (i = 1, ..., K) denoting the i-th expansion or contractions. Then the defi-

nition of peaks and troughs can be stated follows:

peak at t = {(∆2yt,∆yt) > 0, (∆yt+1,∆2yt+2) < 0}

trough at t = {(∆2yt,∆yt) < 0, (∆yt+1,∆2yt+2) > 0}
(29)

with ∆2yt = yt − yt−2. Additionally we are interested the following indicators of

cycle:

• Duration: Di

• Amplitude: Ai

• Cumulative Movements: 0.5 · (Di · Ai)

• Excess cumulated movements: Ei = (CT i − Ci + 0.5 · Ai)/Di

• Coefficient Variation: CVi =

q
(1/K

PK
i=1(Dij−D̄i))

1/K
PK
j=1D

i
j
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A set of restrictions have to be imposed in order to define properly what movement

can be defined as cycle and what is contrarily treated as outlier. The literature

suggests: K = 2 for definition of peak, which produces the expression (29); the

minimal duration to have a complete cycle is 5 quarters; the turning phase (the

number of quarters before the peak) has been set at 1.

The indicators stated above can be thought as two states of a Markov process, whose

transition is the object of investigation. Thus, a peak at time t demarcates a state

of expansion at time t, St = 1, from a state of contraction at time t +1, St+1 = 0.

The states St are then a binary Markov process, which might be summarized with

the transition probabilities Pr(St+1|St).

Model selection has been conducted via Bayesian Information Criterion (BIC); this

suggests an autoregressive order 5. We first estimated a linear AR(5) model; the

estimated model are the basis for computing the h-step ahead density forecast via

Monte Carlo simulation. A set of 25 different scoring rules – additionally to the

case that no score is computed on (29) is then achieved and used to proceed with

our modified version of EHP algorithm, which we call Scored Bry-Boshan (SBB)

algorithm.

B The Amisano-Giacomini test.

Let be S̄fn = 1
n−k−1

∑m+n−k
t=m S(f̂t+k, yt+k) and S̄gn = 1

n−k−1

∑m+n−k
t=m S(ĝt+k, yt+k) the

average scores of two density forecast, f and g, respectively; then, the test statistic

for the null hypothesis that ∆∗ = S̄fn − S̄gn = 0 is

tn =
√
n

∆∗

σ̂n
, σ̂2

n =
1

n− k + 1

k−1∑
j=−(k−1)

m+n−k−|j|∑
t=m

∆t,k∆t+|j|,k (30)

and ∆t,k = Sfn − Sgn. In this kind of analysis, f is preferable to g if and only if

Sf < Sg.
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