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Abstract

Electricity spot prices are subject to transitory sharp movements commonly referred
to as spikes. The paper aims at assessing their effects on model based inferences
and predictions, with reference to the Nord Pool power exchange. We identify a
spike as a price value which deviates substantially from the normal price, where
the latter is defined as the expectation arising from a model accounting for long
memory at the zero and at the weekly seasonal frequencies, given the knowledge of
the past realizations. Hence, a spike is associated to a time series innovation with
size larger than a specified threshold. The latter regulates the robustness of the
estimates of the underlying price level and it is chosen by a data driven procedure
that focuses on the ability to predict future prices. The normal price is computed
by a modified Kalman filter, which robustifies the inferences by cleaning the spikes,
i.e. shrinking an observation deviating substantially from the normal price towards
the one-step-ahead prediction. Our empirical application illustrates the effects of
the spikes on the estimates of the parameters governing the persistence of the series;
moreover, a real time rolling forecasting exercise is used to establish the amount of
cleaning for optimizing the predicting accuracy at different horizons.
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1 Introduction

Electricity spot prices are subject to transitory sharp movements commonly referred to as
spikes. This phenomenon is well documented and defines one of the salient features of the
corresponding time series. The literature has been looking for an operational definition
of spikes and has formulated models that are capable of accounting for them. See for
instance Hellström et al. (2012), Nowotarski et al. (2013), and the references therein.
Another approach deals with robustifying the inferences, as in Dupuis (2017).

The objective of this paper is to assess the effects of spikes on model based inferences
and predictions, with reference to spot electricity prices from the Nord Pool power ex-
change. In particular, we focus on the daily average price quoted in Elspot (Norwegian
Krones), the auction market for day-ahead electricity delivery, see NordPool (2017). The
series, which is available from January 1, 2000 to December 31, 2016 (6,210 daily observa-
tions), is plotted in the top left hand panel of figure 2, after a logarithmic transformation.
We shall denote it by yt, t = 1, . . . , n. The top right panel displays the sample autocor-
relations of yt. Figure 1c plots the logarithmic returns ∆yt = yt − yt−1, and 1d is the
corresponding sample autocorrelation function.

These plots reveal some of the most prominent features of the Nord Pool electricity
prices: the strongly persistent movements of the underlying level, the presence of a weekly
cycle, clearly visible in the autocorrelation plots. Interestingly, we could not detect an
annual seasonal component. While few would question the occurrence of spikes, the
literature has presented several operational definitions of a spike.

According to one popular definition, price spikes are extreme price values that surpass
a specified absolute or relative threshold for a brief period of time. There are two relevant
ingredients for characterizing a spike: the amplitude of the deviation from a reference value
and the short duration. One possible limitation of this definition rests on the arbitrariness
in defining the threshold value, which in turn can be periodically varying and functionally
related to the price level itself, as well as to other covariates (temperature, etc) - in which
case a conditional threshold would be preferable.

The approach that we take in this paper characterises a spike as a price value which
deviates substantially from the normal price, where the latter is defined as the expectation
arising from a correctly specified model of observed prices, given the knowledge of the past
realizations. In particular, a spike is associated to a time series innovation with size larger
than a specified threshold. The threshold, however, is not given, but rather it is backed
up from the data by performing a real time forecasting exercise and establishing the level
of robustification against spike that is optimal for forecasting any number of days ahead.
As in Hellström et al. (2012) we allow for both positive and negative spikes.

The model that vehicles the notion of a normal price is a generalized fractional ex-
ponential model formulated in the frequency domain. According to it the logarithm of
the spectral density is additively decomposed into the contribution of the long memory
component at the zero frequency, that of a persistent weekly cycle and that of the short
memory component. More details will be provided in section 2.

Under the Gaussian assumption, the model is estimated by maximising the Whittle
likelihood, as it is described in section 3.1 and prediction can be carried out by using the
autoregressive representation of the model. However, the presence of spikes makes the
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(d) Sample ACF of ∆yt

Figure 1: Nord Pool average daily prices (logs): original series and sample autocorrela-
tion function; log-returns and their sample autocorrelation function.

assumption of Gaussianity untenable and will distort inferences and predictions.
Hence, the central contribution of our paper deals with proposing a methodology

for robustifying the inferences through a modified Kalman filter, which identifies when
the innovation at time t has a size greater than a threshold and limits the influence
of the corresponding observation by shrinking it towards its one-step-ahead prediction,
conditional on the previous observations. This idea is developed in section 4. The cleaned
time series data can then be used for model based inferences and the prediction of future
observations.

Our application to the Nord Pool electricity price series illustrates the effects of the
spikes on the estimates of the parameters governing the persistence of the series. A real
time rolling forecasting exercise enables to determine the level of correction that is optimal
for predicting at different horizons. The main results will be presented in section 5. In
section 6 we present some conclusions.
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2 A Generalized Fractional Exponential Model for

Electricity Prices

We consider the following time series regression model for the logarithmic daily average
price yt:

yt = x′tβ + ut, (1)

where xt is a k× 1 vector of explanatory variables and ut is a zero mean random process.
Denoting by B the lag operator, ut is generated by the following fractionally integrated
process

(1−B)d0
3∏
j=1

(1− 2 cos$jB +B2)djut = zt, $j =
2π

7
j, j = 1, 2, 3, (2)

where dj, j = 1, 2, 3 are the fractional integration parameters at the Gegenbauer fre-
quencies and zt is a short-memory stationary process, characterized by the spectral
density fz(ω), which will be defined below. The factor (1 − B)d0 accounts for the
long-range dependence at the long-run frequency, whereas the Gegenbauer polynomials
(1−2 cos$jB+B2), j = 1, 2, 3, account for the persistent seasonal behavior of the process
at frequencies $j = 2π

7
j, which correspond to cycles with a period of 7 days (j = 1), 3.5

days (j = 2, two cycles per week), and 2.3 days (j = 3, three cycles per week). The
process is stationary if dj ∈ (0, 0.5), j = 0, 1, 2, 3 (see Woodward et al. (2011), p. 418,
Theorem 11.5a). The Gegenbauer process was introduced by Hosking (1981) and formal-
ized by Gray et al. (1989). The model can be considered as an extension of that specified
by Hsu and Tsai (2009).

As far as the short-memory component zt is concerned, we assume that its spectral
density has the following exponential representation (see Bloomfield (1973)) of order q:

fz(ω) =
1

2π
exp

(
cz0 + 2

q∑
k=1

czk cos(ωk)

)
,

where cz0, czk, k = 1, . . . , q are real-valued parameters, known as the cepstral coefficients
of zt Bogert et al. (1963).

Our specification is similar to that adopted by Soares and Souza (2006), but it differs
for the representation of the short memory components, which is modelled by truncating
the Fourier series representation of the log-spectrum; furthermore, we do not constrain
the memory parameters to lie in the stationary region.

The specification implies that the spectral density of ut, denoted as f(ω), is linear in
the memory coefficients and in the short-run coefficients czk, as can be seen by writing:

ln[2πf(ω)] = cz0 + 2
∑q

k=1 czk cos(ωk)− 2d0 ln |2 sin(ω/2)|
−2
∑3

j=1 dj ln
∣∣4 sin

(ω+$j

2

)
sin
(ω−$j

2

)∣∣ . (3)

From (3) we can derive the cepstral coefficients of the process ut, by the inverse Fourier
transform:

ck =
1

2π

∫ π

−π
ln[2πf(ω)] exp(ıωk)dω, k = 0, 1, . . . , (4)
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which, by trigonometric identities (see Gradshteyn and Ryzhik (2007), formula 1.441.2
and 1.448.2), are given by

ck = I(k ≤ q)czk +
1

k

(
d0 + 2

3∑
j=1

dj cos($jk)

)
, k ≥ 1, (5)

whereas, for k = 0, c0 = cz0. The sequence {ck}k=0,1,..., is referred to as the cepstrum of
ut. Its elements are the Fourier coefficients of the log-spectrum of ut, i.e. ln[2πf(ω)] =
c0 + 2

∑∞
k=1 ck cos(ωk), as it is clear from (4). The cepstral coefficient contain all of the

relevant information that is needed for the linear prediction of the process ut, and yt
thereof, as we shall see in section 3.2.

3 Estimation and prediction

3.1 Whittle estimation

Given a time series realization of length n, {(yt, xt), t = 1, 2, . . . , n}, estimation of the
memory parameters dj, j = 0, 1, 2, 3, and the cepstral coefficients czk, k = 0, 1, . . . , q, is
carried out in the frequency domain.

Let β̂ denote the least squares estimator of β and define ût = yt−x′tβ̂. The periodogram
of ût is

I(ω) =
1

2πn

∣∣∣∣∣
n∑
t=1

ûte
−ıωt

∣∣∣∣∣
2

.

Defining θ = (d0, d1, d2, d3, cz0, cz1, . . . , czq)
′, the Whittle likelihood is

L(θ) = −
n−1∑
j=1

[
ln f(ωj) +

I(ωj)

f(ωj)

]
. (6)

where f(ω), the spectral density of ut, is specified according to equation (3),and both
the periodogram and the spectrum are evaluated at the Fourier frequencies ωj = 2πj

n
,

j = 1, . . . , n− 1.
The maximizer of (6) is the Whittle pseudo-maximum likelihood estimator of θ. We

refer to Dahlhaus (1989), Velasco and Robinson (2000), Giraitis et al. (2012) and Beran
et al. (2013) for the properties of the estimator in the long memory case.

For estimation we use the tapered periodogram. Tapering aims at reducing the estima-
tion bias that characterizes the periodogram ordinates in the nonstationary case. Velasco
(1995) and Velasco and Robinson (2000) show that with adequate data tapers, the Whit-
tle estimator of the parameters of classes of fractional integrated models, encompassing
the fractional exponential model, is consistent and asymptotically normal when the true
memory parameter is in the nonstationary region. The adoption of a data taper makes
the estimates invariant to the presence of certain deterministic trends.

The tapered discrete Fourier transform of yt is defined as the squared modulus of

w (ωj) =

(
2π

n∑
t=1

h2t

)−1/2 n∑
t=1

htûte
iωjt (7)

5



where {ht}nt=1 is a taper sequence, i.e. a sequence of nonnegative weights that down-
weight the extreme values of the sequence on both sides, leaving the central part almost
unchanged. Note that the raw periodogram arises in the case of ht = 1. As in Velasco and
Robinson (2000), the sequence {ht}nt=1 is obtained from the coefficients of the polynomial(

1− z[n/p]

1− z

)p
.

Typical choices are p = 2, 3. The tapered periodogram that enters the Whittle likelihood
in (6) is then I(ωj) = |w(ωj)|2.

3.2 Linear representation and prediction

Let Ft denote the information available up to time t. The one-step-ahead prediction error
variance (p.e.v.) of yt, σ

2 = V ar(yt|Ft−1), is obtained by the Szegö-Kolmogorov formula
as

σ2 = exp

[
1

2π

∫ π

−π
ln[2πf(ω)]dω

]
,

from which it follows that cz0 = lnσ2. Moreover, if the stationarity condition is satisfied,
we can obtain the infinite moving average (MA) and autoregressive (AR) representations
of the system:

yt = x′tβ + ψ(B)ξt, φ(B)(yt − x′tβ) = ξt, ξt ∼ WN(0, σ2), (8)

where ψ(B) = 1 + ψ1B + ψ2B
2 + . . . ,

∑
j ψ

2
j < ∞, and φ(B) =

∑∞
j=0 φjB

j = ψ(B)−1,∑
j φ

2
j < ∞, φ0 = 1. The moving average coefficients of the Wold representation are

obtained recursively from the cepstral coefficients by the formula

ψj = j−1
j∑
r=1

rcrψj−r, j = 1, 2, . . . , (9)

with ψ0 = 1. See Jancek (1982), Pourahmadi (1983) and Hurvich (2002). The autore-
gressive coefficients are obtained according to the recursive formula

φj = −j−1
j∑
r=1

rcrφj−r, j = 1, 2, . . . , (10)

with starting value φ0 = 1. The optimal one-step-ahead linear predictor of the random
component is then ũt+1|t =

∑∞
j=1 φjut−j+1.

In practice, the infinite MA and AR representations are truncated at lag m, and the
approximating AR(m) or MA(m) models can be cast in state space form. In general, an
ARMA(p, q) time series model for ut,

ut − φ1ut−1 − · · · − φput−p + ξt + θ1ξt−1 + · · ·+ θqξt−q, ξt ∼WN(0, σ2),

can be written in state space form with measurement equation:

ut = Zαt +Gξt, t = 1, . . . , n, (11)
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where αt is a random vector with m = max(p, q) elements, Z = [1, 0, . . . , 0], and G = 1.
The evolution of the states is governed by the transition equation

αt+1 = Tαt +Hξt, t = 1, 2, . . . , n, (12)

where

T =


φ1 1 0 · · · 0

φ2 0 1
. . . 0

...
...

. . . . . . 0
... · · · · · · 0 1
φm 0 · · · · · · 0

 , H =


θ1 + φ1

θ2 + φ2
...
...

θm + φm

 .

The initial state vector α1, assuming stationarity (the eigenvalues of T are inside the unit
circle), has a distribution with mean E(α1) = 0 and variance Var(α1) = σ2P1|0, satisfying
matrix equation P1|0 = TP1|0T

′ + HH ′. The above state space representation is due to
Pearlman (1980), and encompasses both the pure AR and MA cases. An approximation
of the optimal predictor using m lags is then obtained from the Kalman filter.

Define α̃t|t−1 = E(αt|Ft−1), and Var(αt|Ft−1) = σ2Pt|t−1. The Kalman filter (KF) is
the following recursive algorithm: for t = 1, . . . , n,

νt = ut − Zα̃t|t−1, ft = ZPt|t−1Z
′ +GG′,

Ct = Pt|t−1Z
′f−1t ,

α̃t|t = α̃t|t−1 + Ctνt, Pt|t = Pt|t−1 − CtftC ′t,
Qt = HG′f−1t ,

α̃t+1|t = T α̃t|t +Qtνt, Pt+1|t = TPt|tT
′ +HH ′ − (QtftQ

′
t +QtftC

′
tT
′ + TCtftQ

′
t).

(13)
As m→∞, the above equations compute the innovations νt = ut−E(ut|Ft−1), and σ2ft is
the prediction error variance at time t, which is Var(ut|Ft−1); α̃t|t are the updated, or real-
time, estimates of the state vector, and Ct is the gain, Ct = Cov(αt, yt|Yt−1)[Var(yt|Yt−1)]−1.
It can be shown that αt|Ft ∼ N(α̃t|t, σ

2Pt|t). The vector Qt has the following interpreta-
tion:

Qt = Cov(Hξt, ut|Ft−1)[Var(ut|Ft−1)]−1,
so that α̃t+1|t is the one-step-ahead state prediction and we can write αt+1|Ft ∼ N(α̃t+1|t, σ

2Pt+1|t).

4 Robust filtering and forecasting

As stated in the Introduction, electricity prices are characterized by abnormally high or
low values, called price spikes. Their effect on the periodogram and, thus, on the Whittle
estimates depends on their size, pattern and recurrence. Spikes tend to bias downward
the estimates of the memory parameters, and to inflate those of the conditional and
unconditional variance of the series. They affect the predictions from the model, not only
indirectly, via their effect on the parameter estimates, but also directly, as they have a
potentially unbounded effect on the predictions.

There are several strategies for robustifying the estimates of the parameters and, thus,
of the spectrum. McCloskey and Hill (2013) propose to replace the sample spectrum I(ω)

7



in (6) with a robust periodogram, constructed from the Fourier transform of a robust
autocovariance estimate. Our alternative strategy is based on an iterative data-cleaning
method, based on a robust Kalman filter, exposed below. The robust KF is a data
cleaning algorithm based on Martin and Thomson (1982), which reduces the influence
of outliers (and the spikes) by replacing the outlying observations with a regularized
estimate, resulting from shrinking yt towards its one-step-ahead prediction, by an amount
which depends on the size of the innovation.

We now propose a robust Kalman filter which is an adaptation of the data cleaning
filter proposed by Masreliez and Martin (1977) and Martin and Thomson (1982). The
robust filter modifies the updating and prediction equations (13), by using a bounded
and continuous function of the standardized innovations, so as to control the effects of
extreme values on the conditional mean estimates and the predictions.

Let Ψ(x) denote Huber’s influence function, see Maronna et al. (2006):

Ψ(x) =

{
x, if |x| ≤ a,
a · sign(x), if |x| > a.

This function limits the influence of a large x, by replacing it by a constant value a
bearing the same sign. The corresponding weight function is w(x) = Ψ(x)/x, such that
0 ≤ w(x) ≤ 1.

The robust KF is obtained by replacing in the usual KF f−1t by a shrunk version f̄−1t
in the expressions for the regression matrices Ct and Qt, giving, for t = 1, . . . , n:

ν+t = ut − Zα̃+
t|t−1, f+

t = ZP+
t|t−1Z

′ +GG′, f̄−1t = w
(
ν+t /

√
f+
t

)
/f+

t

C+
t = Pt|t−1Z

′f̄−1t ,

α̃+
t|t = α̃+

t|t−1 + C+
t ν

+
t , P+

t|t = P+
t|t−1 − C

+
t f̄tC

+′

t ,

Q+
t = HG′f̄−1t ,

α̃+
t+1|t = T α̃+

t|t +Q+
t ν

+
t , P+

t+1|t = TP+
t|tT

′ +HH ′ − (Q+
t f̄tQ

+′

t +Q+
t f̄tC

+′

t T
′ + TC+

t f̄tQ
+′

t ).

(14)
Here, α̃+

t|t−1 and P+
t+1|t are initialized at time t0 ≥ 1 by α̃+

t0|t0−1 = α̃t0|t0−1 and P+
t0+1|t0 =

Pt0+1|t0 . Note that if Ψ(x) = x, the identity function, w(x) = 1 and the above recursions
yield the usual Kalman filter (13).

The Huber Ψ-function applies to the standardized innovation ν+t /
√
f+
t ; if its absolute

value is larger than a, then the weight function w
(
ν+t /

√
f+
t

)
is less than 1 and f̄−1t is

shrunk towards zero. The “clean” estimate of yt is then ỹt|t = x′tβ + ũt|t, where

ũt|t = Zα̃+
t|t +GG′f̄−1t ν+t . (15)

Assume that all the previous observations were clean, so that w(ν̃s) = 1, s < t. At
time t, ν+t = νt, α

+
t|t−1 = αt|t−1, and f+

t = ft, whereas α̃+
t|t is shrunk towards the one-step-

ahead prediction αt|t−1. If w
(
ν+t /

√
f+
t

)
= 0, then no updating takes place. Noticing

that ut = Zα̃t|t +GG′f−1t νt, we can write

ũt|t = w
(
νt/
√
f t

)
ut +

[
1− w

(
νt/
√
f t

)]
Zα̃t|t−1,

8



a weighted average of the observable ut and its one-step-ahead prediction using the past
observations. Similarly, the cleaned observation ỹt|t is intepreted as a weighted average of
yt and the one-step-ahead prediction, x′tβ + Zα̃t|t−1.

A spike is defined in real time as the deviation of yt from its cleaned value ỹt|t, i.e.
st = yt − ỹt|t. Obviously, the sequence st depends on the choice of the tuning constant a.
In robust statistics, see Maronna et al. (2006), the latter regulates the trade–off between
the so–called breakdown point and the efficiency of the estimator. The breakdown point is
a measure of robustness of an estimator as it gives the fraction of bad data the estimator
can tolerate before giving results towards the boundary of the parameter space. Lower
values of a increase the breakdown point, but reduce the efficiency. A typical value is
a = 1.345 which guarantees 95% efficiency for i.i.d. Gaussian observations.

Robust estimation and forecasting entails the following steps:

1. The model (2)-(3) is estimated by maximising the Whittle likelihood in (6) with
respect to θ, using a taper of order p = 2 for the periodograms. Let θ̂ = (β̂, d̂0, d̂1,
d̂2, d̂3, ĉz0, . . . , ĉzq)

′ denote the estimated coefficients.

2. We obtain from θ̂ the estimated cepstral coefficients ĉk, k = 1, 2, . . . ,m, applying
(5), and we then obtain the first m coefficient of the autoregressive representation,
φ̂j, j = 1, . . . , K, by applying formula (10).

3. The truncated AR(m) representation for ut, ut =
∑m

j=1 φ̂jut−j + ξt, where ξt is the
error term, is cast in state space form.

4. The robust Kalman filter (14) is applied in order to obtain a set of clean data.

After some experimentation, we set m = 50 for the order of the AR approximation. The
selection of the order q of the EXP model for zt is based on the Bayesian Information
Criterion (BIC) and it is performed in the first step of the algorithm. If φ̃j, j = 1, . . . , K,
and β̃ denote the final estimates of the AR and the regression coefficients, our predictor
of yt+l, l = 1, 2, . . . , at time t is obtained as ỹt+l|t = x′t+lβ̃+ ũ+t+l|t, where ũ+t+l|t is the l-step
ahead predictor of ut obtained from applying the robust Kalman filter to the state space
representation of the AR(m) model.

The steps 1-4 can also be repeated, after replacing the observations yt by the cleaned
observations ỹt|t as given in equation (15), until the convergence is achieved, i.e. the
change in the parameter estimates are within the prescribed tolerance.

5 Case study: Nord Pool daily electricity prices

The model was estimated using the complete data available for the period 1/1/2000-
31/12/2016, for a total of 6,210 obervations. Table 1 displays the parameter estimates,
along with their standard errors, arising from Whittle maximum likelihood estimation
using the original uncorrected data, the clean data, applying the robust Kalman filter
using the Huber influence function with tuning constant set equal to a = 1.345, with is
standard reference value. In the last two columns we present the estimates arising from
iteratively replacing the cleaned data in Whittle estimation. The procedure converged
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in 6 iteration; convergence is achieved when from one iteration to the next the sum of
the squared differences in the weights w(·) is less that 10−4. The order of the short run
component estimated by BIC is q = 7.

Table 1: Nord Pool daily average prices (logs), 1/1/2000-31/12/2016. Point estimates
and estimation standard errors of the memory a short run cepstral parameters obtained
by Whittle maximum likelihood estimation, robust estimation (one iteration), iterative
robust estimation. The tuning parameter for robust estimation is set equal to a = 1.345.

Whittle Robust 1st iter Robust final
Coeff. Point Est StdErr Point Est StdErr Point Est StdErr

d0 0.8336 0.0370 0.9197 0.0370 0.9137 0.0370
d1 0.4170 0.0258 0.4520 0.0258 0.4561 0.0258
d2 0.3813 0.0261 0.4249 0.0261 0.4373 0.0261
d3 0.3612 0.0258 0.3571 0.0258 0.3833 0.0258
cz0 -13.7167 0.0179 -15.2010 0.0179 -15.3960 0.0179
cz1 0.2934 0.0641 0.4718 0.0641 0.6824 0.0641
cz2 0.1231 0.0349 0.2130 0.0349 0.1620 0.0349
cz3 0.1484 0.0253 0.1555 0.0253 0.1612 0.0253
cz4 0.0817 0.0208 0.1164 0.0208 0.1161 0.0208
cz5 0.0568 0.0182 0.1102 0.0182 0.1110 0.0182
cz6 0.0690 0.0164 0.1292 0.0164 0.1545 0.0164
cz7 -0.1386 0.0204 -0.1444 0.0204 -0.1663 0.0204

The most noticeable fact is that the robustified estimates of the long memory parame-
ter at the zero frequency increases from 0.83 to 0.92. The memory of the fundamental and
harmonic weekly cycle also increse, expect perhaps for d3, although the robust estimates
remain within the stationary region. The prediction error variance, which is estimated
by taking the exponential of ĉ0, is smaller for the robust case. Also, iterating the robust
estimation procedure, does not change the estimates relevantly. Notice that the asymp-
totic standard errors do not vary, as they are a function of the explanatory variables in
the logarithmic spectral model 3.

Figure 2a compares the original series and the cleaned series arising from the iterative
robust estimate. Figure 2b compares the estimated log-spectra. It is evident that the
robust estimate diverges more rapidly around the zero and seasonal frequencies, and that
the log-spectrum is smaller that the one estimated on the original series, as the data-
cleaning filter has reduced the contribution of the noise to the spectrum. This is clearly
visible from the plot of the standardized innovations νt/

√
ft for the original series and

ν+t /
√
f+
t for the clean series, in figure 2c. Figure 2d plots the sample autocorrelation

function of the robust standardized residuals. As it may be anticipated from these plots,
the presence of conditional heteroscedastity in the robust time series residuals is less of a
problem.

As a matter of fact, some residual persistence has ended up in the spikes estimates.
The average value of a spike (defined as yt minus its cleaned estimate) is close to zero, but
there is some degree of clustering: in particular, the first eight sample autocorrelations of
the spike sequence are:
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(d) Sample ACF of robust residuals

Figure 2: Nord Pool average daily prices (logs). Original and cleaned series (2a); esti-
mated log-spectrum (2b); standardized innovations (2d) and their sample autocorrelation
function (2d).

lag 1 lag 2 lag 3 lag 4 lag 5 lag 6 lag 7 lag 8
0.5458 0.3229 0.2591 0.1848 0.1105 0.1017 0.1317 -0.0143

We now turn to the issue of choosing the tuning parameter. The value 1.345 is a pop-
ular choice in the robustness literature, but, as we saw above, it presumably oversmooths
the series, delivering a cleaned series which is less informative about the future than the
original one. The optimal value of a will be determined by time series cross-validation,
by looking at the ability to predict electricity prices h steps ahead, where h ranges from
1 day to 14 days.

For this purpose we perform a rolling forecast experiment such that, starting from the
first of January 2015, we estimate the model by Whittle likelihood on the original and the
cleaned data (from a single iteration of the algorithm) from 1/1/2000 to 31/12/2014, using
values of a ranging from 1 to 5 with step 1/3. Conditional on the parameter estimates, we
compute the out-of-sample predictions ỹn1+h|n1 , for h = 1, . . . , 14 and n1 = 5, 479. This
yields 13 sets of predictions, corresponding to the different values of a. Subsequently, we
update the training sample by adding the observation n1 + 1 and removing the first, and
perform the same operations until the end of sample is reached. Comparing the prediction

11



to the actual observations yields 731−h h-step-ahead forecast errors that can be used for
assessing the predictive accuracy.

Figure 3 is a contour plot of the logarithm relative mean square forecast error of the
robust predictor, versus the raw predictor, as a function of h and a, denoted RelMSE(h, a).
Values smaller than zero are such that the robust predictor outperforms the raw one. As
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Figure 3: Logarithm of the relative mean square forecast error of the robust predictor as
a function of the forecast horizon h = 1, . . . , 14 (horizontal axis) and the tuning parameter
a (vertical axis).

far as day-ahead prediction (h = 1) is concerned, robustification does not provide an
advantage: the relative MSE as a varies converges towards 1 and we need to have a large
value of a to obtain the same performance, as the following table shows:

a 1 2 3 4 5
RelMSE(1, a) 1.71 1.34 1.20 1.12 1.04

This seemingly disappointing result might be due to the fact that spikes appear in short
clusters, affecting neighbouring observations. However, already for h = 4 the robust
predictor is more accurate if we choose a around 2.33, which is higher than the default
value 1.33. More generally, the robust predictor can outperform the usual predictor for
longer horizons. In the plot, the light blue area corresponds to the combinations which
yield equal predictive accuracy as the predictor based on the original data. The dark
blue area is such that the largest forecasting accuracy gains accrue from robustifying the
estimates.

The results of the rolling forecasting experiment point out that the extent of the robus-
tification that is needed to optimize the out-of-sample predictive ability of the maintained
model is less than that implied by the threshold a = 1.345, i.e. it is achieved for larger
values of a. This conclusion is reinforced by the analysis of the standardized residuals of
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the model estimated using the full sample, according to the robust estimation method-
ology outlined in section 4, using different values of a in the range [1,5]. The following
table presents the value of the skewness, kurtosis and Jarque and Bera (1980) statistics.

Values of a
1.00 1.33 1.67 2.00 2.33 2.67 3.00 4.00 5.00 ∞

Skewness -0.12 -0.05 -0.03 -0.03 -0.03 -0.02 -0.03 -0.01 -0.02 -0.06
Kurtosis 1.68 1.93 2.18 2.43 2.71 3.01 3.31 4.30 5.36 18.15
Jarque-Bera 463.90 298.10 175.34 84.61 22.63 0.64 25.49 431.39 1433.65 5.89 · 104

The last column refers to the standard non robust case, such that the standardized
residuals are computed by the usual KF (see section 3.2) conditional on the parameter
estimates maximising the Whittle likelihood. The minimum of the Jarque-Bera statistic
is obtained for a around 2.67. Thus, it is likely that the default value for the tuning
constant results in a loss of the informational content of the observed data.

6 Conclusions

Price spikes affect both the parameter estimates and the predictions arising from a model.
With respect to the predictions, they do not only exert their influence by biasing down-
wards the estimates of the persistence of the system’s dynamics, but their effect is also
propagated via the forecast function, if we condition on their observed values.

This paper has provided a correction for those distorting effects based on a “data
cleaning” filter, which modifies the basic Kalman filter equation in a way that a suspi-
cious observation is corrected by shrinking it towards its expected value, given the past
observations. The identification of a spike relies on the selection of a threshold defined
on the scale of the time series innovations. We have addressed the choice of the optimal
level of robustification by choosing the threshold according to criterion of maximising the
out-of-sample predictability.

Our main conclusion is that robustifying the parameter estimates and the predictions
contributes positively to the forecasting accuracy of the maintained model at longer leads;
furthermore, the forecasting performance may be optimized with respect to the choice of
the tuning parameter. At shorter horizons, such as one day ahead, we found that no gains
accrue from robust estimation and prediction. This result may be a consequence of the
fact that spikes arrive in short clusters, so that a spiky observations at time t contains
important information for predicting next day’s price.
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