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Abstract

We consider the fractional cointegrated vector autoregressive (CVAR) model of
Johansen and Nielsen (2012a) and show that the test statistic for the ususal CVAR
model is asymptotically chi-squared distributed. Because the usual CVAR model lies
on the boundary of the parameter space for the fractional CVAR in Johansen and
Nielsen (2012a), the analysis requires the study of the fractional CVAR model on a
slightly larger parameter space so that the CVAR model lies in the interior. This in
turn implies some further analysis of the asymptotic properties of the fractional CVAR
model.

Keywords: Cointegration, fractional integration, likelihood inference, vector autore-
gressive model.

JEL Classification: C32.

1 Introduction
For a p-dimensional time series, Xt, the fractional cointegrated vector autoregressive (CVAR)
model of Johansen (2008) and Johansen and Nielsen (2012a), hereafter JN(2012a), is

∆dXt = αβ′∆d−bLbXt +

k∑
i=1

Γi∆
dLibXt + εt, t = 1, . . . , T, (1)

where εt is p-dimensional independent and identically distributed with mean zero and co-
variance matrix Ω and ∆b and Lb = 1 − ∆b are the fractional difference and fractional lag
operators, respectively. The fractional difference is given by

∆dXt =
∞∑
n=0

πn(−d)Xt−n, (2)
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provided the sum is convergent, and the fractional coeffi cients πn(u) are defined in terms of
the binomial expansion (1− z)−u =

∑∞
n=0 πn(u)zn, i.e.,

πn(u) =
u(u+ 1) · · · (u+ n− 1)

n!
.

With the definition of the fractional difference operator in (2), a time series Xt is said
to be fractional of order d, denoted Xt ∈ I(d), if ∆dXt is fractional of order zero, i.e., if
∆dXt ∈ I(0). The latter property can be defined in the frequency domain as having spectral
density that is finite and non-zero near the origin or in terms of the linear representation
coeffi cients if the sum of these is non-zero and finite, see, for example, JN(2012a, p. 2672).
An example of a process that is fractional of order zero is the stationary and invertible
ARMA model. Finally, then, a p-dimensional time series Xt ∈ I(d) for which one or more
linear combinations are fractional of a lower order, i.e., for which there exists a p× r matrix
β such that β′Xt ∈ I(d− b) with b > 0, is said to be (fractionally) cointegrated.
When d = b = 1 in (1) the standard, non-fractional CVAR model, see Johansen (1996),

is obtained as a very important special case. Given the importance of this model, it would
be desirable to test the restriction d = b = 1 within the more general model (1), and, indeed,
this test can be calculated straightforwardly using the software package of Nielsen and Popiel
(2016). However, the asymptotic theory provided for model (1) in JN(2012a) is derived under
the assumption that the parameter space is η ≤ b ≤ d ≤ d1 for some (arbitrarily small) η > 0
and some (arbitrarily large) d1 > 0. Under this assumption, the standard CVAR model with
d = b = 1 lies on the boundary of the parameter space and hence it does not follow under the
assumptions in JN(2012a) that the test statistic for the standard model against the fractional
model is asymptotically χ2-distributed, see, e.g., Andrews (2001).
In this paper we show that it is possible to prove the main theorems in JN(2012a) for

a larger parameter space, where, in particular, the line d = b is no longer on the boundary.
Hence, assuming η < 1 < d1, the point d = b = 1 will be in the interior. The important
implication is that the test statistic for the non-fractional model against the fractional model
is asymptotically χ2(2)-distributed under our assumptions.
More generally, testing the usual CVAR model against the fractional CVAR model can

be viewed as a model specification test for the CVAR model against a fractional alternative.
There exists a large literature on testing univariate ARMA models against a fractional alter-
native, e.g., Robinson (1991), Agaikloglou and Newbold (1994), Tanaka (1999), and Dolado,
Gonzalo, and Mayoral (2002). Thus, the present paper contributes also to this literature by
analyzing the test of the multivariate CVAR model against a fractional alternative.
The remainder of the paper is laid out as follows. In the next section we give the

assumptions and the results. These results rely on an improved version of Lemma A.8 of
JN(2012a), which is given in Section 3. The implications of the results are discussed in
Section 4.

2 Results
In JN(2012a), asymptotic properties of maximum likelihood estimators and test statistics
were derived for model (1) with the parameter space η ≤ b ≤ d ≤ d1 for some d1 > 0, which
can be arbitrarily large, and some η such that 0 < η ≤ 1/2, which can be arbitrarily small
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Figure 1: The parameter space N in (3) is the set bounded by bold lines.

(although a smaller η implies a stronger moment condition, see Theorem 1 below). We will
instead consider the parameter space

N = N (η, η1, d1) = {d, b : η ≤ b ≤ d+ η1, d ≤ d1}, (3)

again for an arbitrarily large d1 > 0 and an arbitrarily small η such that 0 < η ≤ 1/2. While
η is exactly the same as in JN(2012a), we have in (3) introduced the new constant η1 > 0,
which is zero in JN(2012a). We note that the parameter space N explicitly includes the line
segment {d, b : η < d = b < d1} in the interior precisely because η1 > 0. The parameter
space and the role of the constant η1 > 0 is illustrated in Figure 1.
We will assume that the data for t ≥ 1 is generated by the model (1). However, it is

diffi cult to imagine a situation where {Xs}Ts=−∞ is available, or perhaps even exists, so we
assume that the data is only observed for t = −N + 1, . . . , T . JN(2016) argue in favor of the
assumption that data was initialized in the finite past using two leading examples, political
opinion poll data and financial volatility data, but we maintain the more general assumption
from JN(2012a), where the data {X−n}∞n=N may or may not exist, but in any case is not
observed. However, although the initial values assumption is based on that of JN(2012a),
our notation for initial values is closer to that of JN(2016). That is, given a sample of size
T0 = T + N , this is split into N initial values, {X−n}N−1n=0 , on which the estimation will be
conditional, and T sample observations, {Xt}Tt=1, that are fitted to the model. We summarize
this in the following display:

. . . , X−N︸ ︷︷ ︸
Data may or may not exist,

but is not observed

, X1−N , . . . , X0︸ ︷︷ ︸
Data is observed
(initial values)

, X1, . . . , XT︸ ︷︷ ︸
Data is observed
(estimation)

(4)
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The inclusion of initial values, i.e. letting N ≥ 1, has the purpose of mitigating the effect
of the unobserved part of the process from time t ≤ −N . Note that the initial values and
the unobserved part of the process, i.e. {X−n}∞n=0, are not assumed to be generated by the
model (1), but will only be assumed to be bounded, see Assumption 3 below. Also note
that the statistical and econometric literature has almost universally assumed N = 0 and,
in many cases, also assumed that data did not exist for t ≤ 0 or was equal to zero for t ≤ 0.
Because we do not observe data prior to time t = 1−N , it is necessary to imposeX−n = 0

for n ≥ N in the calculations, even if these (unobserved) initial values are not in fact zero.
Thus, we will apply the truncated fractional difference operator defined by

∆d
NXt =

t−1+N∑
n=0

πn(−d)Xt−n.

Note that our ∆0 corresponds to ∆+ in, e.g., JN(2012a). Effi cient calculation of truncated
fractional differences is discussed in Jensen and Nielsen (2014).
We fit the model

∆d
NXt = αβ′∆d−b

N LbXt +
k∑
i=1

Γi∆
d
NL

i
bXt + εt, t = 1, . . . , T, (5)

and consider maximum likelihood estimation of the parameters, conditional on N initial
values, {X−n}1−Nn=0 . Define the residuals

εt(λ) = ∆d
NXt − αβ′∆d−b

N LbXt −
k∑
i=1

Γi∆
d
NL

i
bXt, (6)

where λ = (d, b, α, β,Γ1, . . . ,Γk,Ω) is freely varying. The Gaussian log-likelihood function,
conditional on N initial values, {X−n}1−Nn=0 , is then

logLT (λ) = −T
2

log det{Ω} − T

2
tr{Ω−1T−1

T∑
t=1

εt(λ)εt(λ)′}, (7)

and the maximum likelihood estimator, λ̂, is defined as the argmax of (7) with respect to λ
such that (d, b) ∈ N . Specifically, the log-likelihood function logLT (λ) can be concentrated
with respect to (α, β,Γ1, . . . ,Γk,Ω) by reduced rank regression, for given values of (d, b), and
the resulting concentrated log-likelihood function is then optimized numerically with respect
to (d, b) over the parameter space N given in (3). Algorithms for optimizing the likelihood
function (7) are discussed in more detail in JN(2012a, Section 3.1) and implemented in
Nielsen and Popiel (2016).
The following further assumptions are imposed on the data generating process. For any

n ×m matrix A, we use the notation A⊥ for an n × (n −m) matrix of full rank for which
A′A⊥ = 0. We also let Cb denote the fractional unit circle, which is the image of the unit
disk under the mapping y = 1− (1− z)b, see Johansen (2008, p. 660), Γ = Ip−

∑k
i=1 Γi, and

Ψ(y) = (1− y)Ip − αβ′y −
∑k

i=1 Γi(1− y)yi is the usual polynomial from the CVAR model.
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Assumption 1 For k ≥ 0 and 0 ≤ r ≤ p the process Xt, t = 1, . . . , T , is generated by
model (1) with the parameter value λ0.

Assumption 2 The errors εt are i.i.d.(0,Ω0) with Ω0 > 0 and E|εt|8 <∞.

Assumption 3 The initial values as well as the unobserved part of the process, i.e. X−n, n ≥
0, are uniformly bounded.

Assumption 4 The true parameter value λ0 satisfies (d0, b0) ∈ N , 0 ≤ d0 − b0 < 1/2,
b0 6= 1/2, and the identification conditions Γ0k 6= 0 (if k > 0), α0 and β0 are p× r of rank r,
α0β

′
0 6= −Ip, and det{α′0⊥Γ0β0⊥} 6= 0. If r < p, det{Ψ(y)} = 0 has p− r unit roots and the

remaining roots are outside Cmax{b0,1}. If k = r = 0 only 0 < d0 6= 1/2 is assumed.

The conditions in Assumptions 1—4 are identical to those in JN(2012a). First, Assump-
tion 1 implies that the data is only generated by model (1) starting at time t = 1. Specifically,
X−n, n ≥ 0, are not assumed to be generated by the model, but can be arbitrary, bounded,
values, c.f. Assumption 3. Assumption 2 importantly does not assume Gaussian errors for the
asymptotic analysis, but only assumes εt is i.i.d. with eight moments, although the moment
condition needs to be strengthened for some of our results. Assumption 3 about initial values
is needed for nonstationary processes so that ∆dXt is well-defined, see (2). The conditions
in Assumption 4 imply that the cointegrating relations β′0Xt are (asymptotically) stationary
because d0 − b0 < 1/2, allow the important special case of d0 = b0(= 1), and also guarantee
that the lag length is well defined and that the parameters are identified, see JN(2012a,
Section 2.5) and Carlini and Santucci de Magistris (2017), who discuss identification of the
parameters when the lag length is not fixed.
We are now ready to state our main results in the following two theorems. Both theorems

require some strengthening of the assumptions, and these are identical to those in JN(2012a)
and will be discussed subsequently.

Theorem 1 Let Assumptions 1—4 hold and assume, in addition, that E|εt|q <∞ for some
q > 1/min{η/3, (1/2− d0 + b0)/2}, where 0 < η ≤ 1/2. Let the parameter space N (η, η1, d1)
be given in (3), where η1 is chosen such that 0 < η1 < min{η/3, (1/2 − d0 + b0)/2}. Then,
with probability converging to one, (d̂, b̂, α̂, β̂, Γ̂1, . . . , Γ̂k, Ω̂) exists uniquely for (d, b) ∈ N ,
and is consistent.

Proof of Theorem 1. If the results in Theorem 4 of JN(2012a) can be established under
our assumptions (which are identical to those in JN, 2012), but with the larger parameter
space given in (3), then the proof of Theorem 5(i) of JN(2012a) can be used without any
changes to prove our Theorem 1. The proof of Theorem 4 in JN(2012a) is given in their
Appendix B. To avoid repeating their very lengthy proof, we only detail the differences.
We first want to conclude that the deterministic terms in the process generated by the ini-

tial values are uniformly small. In JN(2012a), this follows from their Lemma A.8. However,
with our larger parameter space, this requires a new proof, and thus we give an improved
version of Lemma A.8 of JN(2012a) in Lemma 1 in Section 3. It follows from Lemma 1
that deterministic terms from initial values do not influence the limit behavior of product
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moments, and hence do not influence the limit behavior of the likelihood function, so in the
further analysis of the likelhood, we assume they are zero.
Then we analyze the stochastic terms in the likelihood function, the behavior of which

depend on d and b, and therefore on the parameter space. These stochastic terms are given
by β′0⊥∆d+ib

N Xt and β′0∆
d+jb
N Xt for i, j = −1, . . . , k. The former processes are I(d0 − d− ib),

which can be either nonstationary, (asymptotically) stationary, or near critical in the sense
that d0− d− ib is close to 1/2. On the other hand, the latter processes are (asymptotically)
stationary for all j ≥ −1 because β′0∆

d+jb
N Xt ∈ I(d0 − b0 − d − jb) and d0 − b0 − d − jb ≤

d0 − b0 − d + b ≤ d0 − b0 + η1 < 1/2 by choice of η1. Thus, we have the same classification
of processes into nonstationary, stationary, and near critical processes as in Appendix B.3 of
JN(2012a).
Close to the critical value d0−d− ib = 1/2, the process β′0⊥∆d+ib

N Xt is diffi cult to analyze
because in a neighbourhood of this value it can be both stationary and nonstationary. The
proof therefore considers a small neighborhood of the near critical processes of the form

−κ1 ≤ d0 − d− ib− 1/2 ≤ κ,

where the constant κ1, in particular, plays an important role. The behaviour of the product
moments of the stationary, the nonstationary, and the near critical processes is analyzed in
Appendix B.3 of JN(2012a) in their Lemma A.9 and its corollaries. Those results can be
applied in the present setting without change.
In the application of Lemma 1 and the results in Appendix B.3 of JN(2012a) dealing with

the stochastic terms, we need to choose the constant κ1 carefully. Specifically, on p. 2728 in
Appendix B.3 of JN(2012a), κ1 needs to be chosen such that q−1 < κ1 < min{η/3, (1/2−d0+
b0)/2} (in Appendix B.3 of JN(2012a) it is also required that κ1 < 1/6, but this condition
is redundant because we assume η ≤ 1/2), while in the application of Lemma 1 we need to
choose κ1 such that 0 < η1 < κ1 < 1/4. Choosing κ1 to satisfy all these restrictions is possible
because q > 1/min{η/3, (1/2− d0 + b0)/2} and η1 < min{η/3, (1/2− d0 + b0)/2} < 1/4.
The next theorem presents the asymptotic distributions of the estimators. For this re-

sult we will need to strengthen the condition on the initial values and make the following
assumption, which was also made in JN(2012a).

Assumption 5 Either X−n = 0 for n ≥ T ν for some ν < 1/2 or the sum
∑∞

n=1 n
−1/2|X−n|

is finite.

Theorem 2 Let Assumptions 1—5 hold with (d0, b0) ∈ int(N ) and let the parameter space
N (η, η1, d1) be given in (3), where η and η1 are chosen such that 0 < η ≤ 1/2 and 0 <
η1 < min{η/3, (1/2 − d0 + b0)/2}. Assume, in addition, that E|εt|q < ∞ for some q >
1/min{η/3, (1/2− d0 + b0)/2}. Then the following hold.
(i) If b0 < 1/2 the distribution of λ̂ = (d̂, b̂, α̂, Γ̂1, . . . , Γ̂k) is asymptotically normal.
(ii) If b0 > 1/2 we assume, in addition, that E|εt|q <∞ for some q > (b0 − 1/2)−1. Then

the distribution of λ̂ is asymptotically normal and the distribution of β̂ is asymptotically
mixed Gaussian, and the two are independent.

Proof of Theorem 2. This follows from parts (i) and (ii) of Theorem 10 in JN(2012a).
Specifically, the proof of Theorem 10 in JN(2012a) relies on the usual Taylor expansion of the
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Table 1: Summary of moment conditions
Statement Conclusion Assumption on DGP Assumption on q
Assns 2,4 assumed throughout 0 ≤ d0 − b0 < 1

2
, b0 6= 1

2
q ≥ 8

Thm. 1 consistency q > 1/min{η
3
, 1/2−d0+b0

2
}

Thm. 2(i) distn. params. b0 <
1
2

q > 1/min{η
3
, 1/2−d0+b0

2
}

Thm. 2(ii) distn. params. b0 >
1
2

q > 1/min{η
3
, 1/2−d0+b0

2
, b0 − 1

2
}

Cor. 1(i) distn. LR(d = b) d0 = b0 <
1
2

q > 3
η

distn. LR(d = b) d0 = b0 >
1
2

q > 1/min{η
3
, b0 − 1

2
}

Cor. 1(ii) distn. LR(d = b = 1) d0 = b0 = 1 q > 3
η

Note: This table provides a summary of the different moment conditions and where they are applied.

score function around the true values, and since we have made no changes to the assumptions
on the data generating process or the true values, this proof applies to the current setting
as well without any changes. Note that the moment condition q > (b0 − 1/2)−1 in part (ii)
is used in the proof of Theorem 10 in JN(2012a) to apply the functional CLT for processes
that are fractional of order b0 and obtain convergence to fractional Brownian motion, see
also JN(2012b). This fractional Brownian motion appears in the mixed Gaussian asymptotic
distribution of β̂.
The important implication of Theorem 2 is stated in the following corollary, where

LR(d = b) and LR(d = b = 1) denotes the likelihood ratio test statistics for the hypotheses
H01 : d0 = b0 and H02 : d0 = b0 = 1, respectively.

Corollary 1 Let Assumptions 1—5 hold and let the parameter space N (η, η1, d1) be given in
(3), where η and η1 are chosen such that 0 < η1 < η/3 ≤ 1/6. Assume, in addition, that
E|εt|q <∞ for some q > 3/η. Then:

(i) Let the null hypothesis H01 : d0 = b0 be true, and if b0 > 1/2 assume also that E|εt|q <
∞ for some q > 1/min{η/3, b0 − 1/2}. Then it holds that LR(d = b)

D→ χ2(1).

(ii) Under the null hypothesis H02 : d0 = b0 = 1 it holds that LR(d = b = 1)
D→ χ2(2).

Proof of Corollary 1. The corollary follows straightforwardly from Theorem 2 because
d0 = b0 satisfies (d0, b0) ∈ int(N ) under (3). The conditions q > 2/(1/2 − d0 + b0) and
η1 < (1/2− d0 + b0)/2 from Theorem 2 are redundant when d0 = b0 because then 2/(1/2−
d0 + b0) = 4 < 3/η and (1/2− d0 + b0)/2 = 1/4 > η/3 since η/3 ≤ 1/6.
We note from the statements of Theorems 1 and 2, and in particular from their proofs,

that the moment conditions and the conditions on the parameter space, i.e. on the user-
chosen constants η and η1, are closely linked. The different moment conditions that we
apply are summarized in Table 1. Under the conditions of the hypotheses in Corollary 1,
these simplify substantially. Specifically, under the null hypothesis H02 : d0 = b0 = 1 in
Corollary 1(ii), only q > 3/η moments are required, in addition to q ≥ 8 from Assumption 2,
because all other moment restrictions from Theorems 1 and 2 are redundant when d0 = b0 =
1. For example, if η is chosen as η > 3/8 (i.e., in particular if consideration is restricted to
the case of so-called “strong cointegration”, where b0 > 1/2), then the results in Corollary 1
follow under only the moment condition q ≥ 8 in Assumption 2.
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3 Improving Lemma A.8 of JN(2012a)
The next lemma gives results for the impact of deterministic terms generated by initial values.
It improves Lemma A.8(i) of JN(2012a) to accommodate the larger parameter space given
in (3), which requires a new proof and particularly requires careful choice of the constants η1
in the parameter space (3) and κ1 in Lemma 1. To state the lemma, we define the operators
∆+ and ∆− such that, for any a, ∆a

+Xt = ∆a
0Xt and, for a ≥ 0, ∆aXt = ∆a

+Xt + ∆a
−Xt. We

also define X̃t = XtI{t ≥ 1−N}, where I{·} denotes the indicator function. Note that, for
any a, ∆a

−X̃t = (∆a
N −∆a

0)Xt, and that ∆a
−Xt|a=0 = X0I{t = 0} such that ∆u

+∆0
−Xt = 0.

When d0 ≥ 1/2, the deterministic terms in the likelihood function can be written as
functions of

Dit(d, b) =


(∆d−b
− −∆d

−)X̃t + (∆d−b
+ −∆d

+)µ0t,

(∆d+ib
− −∆d+kb

− )X̃t + (∆d+ib
+ −∆d+kb

+ )µ0t,

∆d+kb
− X̃t + ∆d+kb

+ µ0t,

i = −1,
i = 0, . . . , k − 1,
i = k.

(8)

where, see equations (8) and (97) in JN(2012a),

µ0t = F+(L)α0β
′
0∆
−d0+b0
+ ∆d0−b0

− Xt −
k∑
j=0

(C0Ψ0j∆
−d0
+ + F+(L)Ψ0j∆

−d0+b0
+ )∆d0+jb0

− Xt, (9)

C0 = β0⊥(α0⊥Γ0β
′
0⊥)−1α′0⊥, Ψ0j are the coeffi cients in the polynomial Ψ(y) = −αβ′y + (1−

y)
∑k

j=0 Ψj(1−y)j evaluated at the true values, and F+(L)Zt =
∑t−1

n=0 τnZt−n for some matrix
coeffi cients τn depending only on the true values and satisfying

∑∞
n=0 |τn| < ∞. Note that

µ0t depends only on the true values of the parameters and on the initial values of Xt. When
d0 < 1/2, we use a different representation of the solution and hence leave out the terms
involving ∆d+ib

+ µ0t in (8), see Theorem 2 in JN(2012a).
The termsDit(d, b) are functions of the variables d+ib, d, and d+kb. Them’th derivative

ofDit(d, b) with respect to d, say, is denoted Dmd Dit(d, b) and the generic notation DmDit(d, b)
is used for any m’th derivative involving d and/or b.

Lemma 1 Let Assumption 3 be satisfied. Choose κ1 and η1 such that 0 < η1 < κ1 < 1/4
and define the intervals S+ = [d0 − 1/2 − κ1,∞[ and S− = [−η1, d0 − 1/2 − κ1]. Then the
functions DmDit(d, b) are continuous in (d, b) ∈ N (η, η1, d1) and satisfy

sup
d+ib∈S+

|DmDit(d, b)| → 0 as t→∞, (10)

sup
d+ib∈S−

max
1≤t≤T

|DmT d+ib−d0+1/2β′0⊥Dit(d, b)| → 0 as T →∞. (11)

Proof of Lemma 1. The following evaluations are taken from Lemmas B.3 and C.1 of
JN(2010). For |u| ≤ u0, 0 < v0 ≤ v ≤ v1, m ≥ 0, and t ≥ 1, it holds that

|Dmu πt(u)| ≤ c(1 + log t)mtu−1, (12)

|Dmu T u∆u
+∆v
−Xt| ≤ c(1 + log T )m+1Tmax{−v,−1,u−v,u}, (13)
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where the constant c does not depend on u, v, m, t, or T . Our new Lemma 2 below shows
that, for u+ v + 1 ≥ a1 > 0 and v ≥ a2 > 0, it holds that

|Dmu ∆u
+∆v
−Xt| ≤ c(1 + log t)m+1tmax{−u−1,−v,−2u−v−1}, (14)

where the constant c does not depend on u, v, m, or t. In each of the evaluations (12)—(14),
the m’th derivative with respect to u gives rise to an extra logarithmic factor, which does
not influence the convergences in (10) and (11), so in the following we assume m = 0.
Proof of (10) for the terms involving X̃t: The initial values X̃t appear in terms of the

form ∆w
−X̃t for some w ≥ −η1. We apply (12) to obtain the bound

|∆w
−X̃t| = |

N−1∑
j=0

πj+t(−w)X−j| ≤ c

N−1∑
j=0

(j+t)−w−1 ≤ c(1+log t)t−w−1 ≤ c(1+log t)tη1−1 (15)

which tends to zero as t→∞, which proves (10).
Proof of (11) for the terms involving X̃t: First note that if d0 ≤ 1/2, then S− = ∅

because 0 < η1 < κ1, and consequently there is nothing to prove if d0 ≤ 1/2. Thus, we prove
the result for d0 > 1/2.
The initial values X̃t appear in expressions of the form Tw−d0+1/2∆w+h

− X̃t, for w ∈ S−
and for some h ≥ 0. We then find that

sup
w≤d0−1/2−κ1

Tw−d0+1/2 ≤ T−κ1 → 0,

and from (15) that

sup
w≥−η1

max
1≤t≤T

|∆w+h
− X̃t| ≤ sup

w+h≥−η1
max
1≤t≤T

|∆w+h
− X̃t| ≤ c,

which proves (11).
Proof of (10) for the terms involving µ0t: These terms are only present if d0 ≥ 1/2,

which we therefore assume in the remainder of the proof. There are three types of terms,
as in the proof of (10) for the terms involving X̃t; namely supd+ib∈S+ |∆

d+ib
+ µ0t| for i =

−1, . . . , k, which are all equal, supd+ib∈S+ |∆
d+kb
+ µ0t| for i = 0, . . . , k, which are dominated by

supd+kb∈S+ |∆
d+kb
+ µ0t|, and supd−b∈S+ |∆d

+µ0t|, which is dominated by supd∈S+ |∆d
+µ0t|. Thus,

for w ∈ S+, we need only consider ∆w
+µ0t given by

F+(L)α0β
′
0∆

w−d0+b0
+ ∆d0−b0

− Xt −
k∑
j=0

(C0Ψ0j∆
w−d0
+ + F+(L)Ψ0j∆

w−d0+b0
+ )∆d0+jb0

− Xt, (16)

see (9). We note that the terms in (16) are of the form
∑t−1

i=0 AniRn,t−i(w), n = 1, 2, 3, for
suitable matrices Ani, which satisfy

∑∞
i=0 |Ani| <∞, and

R1t(w) = ∆w−d0+b0
+ ∆d0−b0

− Xt, R2t(w) = ∆w−d0
+ ∆d0+jb0

− Xt, R3t(w) = ∆w−d0+b0
+ ∆d0+jb0

− Xt.

Thus, if we show that supw∈S+ |Rnt(w)| → 0 for n = 1, 2, 3, then it follows from the Dom-
inated Convergence Theorem that supw∈S+ |

∑t−1
i=0 AniRn,t−i(w)| → 0 for n = 1, 2, 3, which

proves (10) in view of (16).
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We apply (14) for each Rnt(w). For R1t(w) we first note that ∆0
−Xt = X01(t=0), such

that ∆u
+∆0
−Xt = 0, to see that R1t(w) is in fact zero when d0 = b0, i.e.,

R1t(w)|d0=b0 = ∆w−d0+b0
+ ∆d0−b0

− Xt|d0=b0 = ∆w
+∆0

+∆0
−Xt = 0.

We therefore assume d0 > b0 in the proof for R1t(w). Let u = w − d0 + b0, v = d0 − b0
such that for w ≥ d0 − 1/2 − κ1 we find u + v + 1 = w + 1 ≥ d0 + 1/2 − κ1 = a1 > 0 and
v = d0 − b0 = a2 > 0. Then (14) shows that

|∆u
+∆v
−Xt| ≤ c(1 + log t)tmax{−u−1,−v,−2u−v−1} ≤ c(1 + log t)tmax{−u−1,−a2,−a1−u}.

Moreover, u+ a1 ≥ d0 + b0− 2κ1 ≥ 1/2− 2κ1 > 0 and u+ 1 ≥ 1/2 + b0− κ1 ≥ 1/2− κ1 > 0,
such that supw∈S+ |R1t(w)| → 0.
The proof for R2t(w) is the same as that for R1t(w), setting u = w−d0 and v = d0+jb0 ≥

d0 > 0. Finally, for R3t(w) we let u = w− d0 + b0, v = d0 + jb0 ≥ d0 > 0 and apply the same
proof as for R1t(w).
Proof of (11) for the terms involving µ0t: Again only the case d0 > 1/2 needs to be

considered (because S− = ∅ when d0 = 1/2) and there are three types of terms to be
analyzed: (i) The terms supd+ib∈S− |T d+ib−d0+1/2∆

d+ib
+ µ0t| for i = −1, . . . , k, which are all

equal, (ii) the terms supd+ib∈S− |T d+ib−d0+1/2∆
d+kb
+ µ0t| for i = 0, . . . , k, and (iii) the term

supd−b∈S− T
d−b−d0+1/2|∆d

+µ0t|. Thus, for w = d+ ib ∈ S−, we analyze

Tw−d0+1/2β′0⊥F+(L)α0β
′
0∆

w+hb−d0+b0
+ ∆d0−b0

− Xt (17)

− Tw−d0+1/2
∑k

j=0
(C0Ψ0j∆

w+hb−d0
+ + F+(L)Ψ0j∆

w+hb−d0+b0
+ )∆d0+jb0

− Xt,

where h = 0 (for terms of type (i)), h = (k − i)b (for terms of type (ii)), or h = b (for the
term of type (iii)), see (9). By application of the Dominated Convergence Theorem we only
need to prove that supw∈S− |QnT (w)| → 0 as T →∞ for n = 1, 2, 3, where

Q1T (w) = Tw−d0+1/2 max
1≤t≤T

|∆w+hb−d0+b0
+ ∆d0−b0

− Xt|,

Q2T (w) = Tw−d0+1/2 max
1≤t≤T

|∆w+hb−d0
+ ∆d0+jb0

− Xt|,

Q3T (w) = Tw−d0+1/2 max
1≤t≤T

|∆w+hb−d0+b0
+ ∆d0+jb0

− Xt|.

Each term has a factor with a bound from (13) for suitable choices of u and v. Note that
all three cases have either v = d0 − b0 ≥ 0 or v = d0 + jb0 ≥ d0 > 0, which implies that
u−v ≤ u and u+v ≥ w ≥ −η1, so that−v ≤ u+η1. This shows thatmax{−v,−1, u−v, u} =
max{u+ η1,−1}, so that the bound in (13), multiplied by T z, becomes

|T u+z∆u
+∆v
−Xt| ≤ c(1 + log T )Tmax{u+z+η1,z−1}. (18)

For n = 1, 2, 3 we apply (18) with the choices

n = 1 : u = w + hb− d0 + b0, z = 1/2− hb− b0,
n = 2 : u = w + hb− d0, z = 1/2− hb,
n = 3 : u = w + hb− d0 + b0, z = 1/2− hb− b0,
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respectively. For all three cases we find that u+ z + η1 = w− d0 + 1/2 + η1 ≤ −κ1 + η1 < 0
by choice of η1 < κ1, and for all three cases we find that z − 1 ≤ 1/2− hb− 1 ≤ −1/2 < 0,
so it follows from (18) that supw∈S− |QnT (w)| → 0 as T →∞ for n = 1, 2, 3.

The next lemma presents a new bound on |Dmu ∆u
+∆v
−Xt|, improving Lemma C.1 in

JN(2010). This bound is critical to the analysis of the initial values on the larger para-
meter space compared with Lemma A.8 in JN(2012a). Furthermore, it is also this new
bound that allows us to include the case d0 = 1/2 in the proof of Lemma 1, which was
missing in the proof of Lemma A.8 in JN(2012a).
Finally, the bound in Lemma 2 allows us to avoid the condition that κ1 < d0− 1/2 when

d0 > 1/2 in Lemma 1, which was assumed in Lemma A.8 in JN(2012a), but apparently was
overlooked in the statement of the main theorems and assumptions in JN(2012a). Specifically,
this would have required the existence of q > (d0 − 1/2)−1 when d0 > 1/2, in addition to
other conditions on q, so that κ1 can be chosen to satisfy q−1 < κ1 < d0 − 1/2. The use of
our new Lemma 2 allows us to avoid this condition in the proof of Lemma 1 and hence avoid
strengthening the moment condition on q.

Lemma 2 Let Assumption 3 be satisfied. Then, uniformly for u + v + 1 ≥ a1 > 0 and
v ≥ a2 > 0, it holds that

|Dmu ∆u
+∆v
−Xt| ≤ c(1 + log t)m+1tmax{−u−1,−v,−2u−v−1},

where the constant c does not depend on u, v, m, or t.

Proof of Lemma 2. We prove the result for m = 0 and find that

|∆u
+∆v
−Xt| ≤ c

t−1∑
j=0

∞∑
k=t−j

|πj(−u)||πk(−v)| = At +Bt,

where the inner summation is split in two at k = max{j, t− j} to define

At = c
t−1∑
j=0

max{j,t−j}−1∑
k=t−j

|πj(−u)||πk(−v)| and Bt = c
t−1∑
j=0

∞∑
k=max{j,t−j}

|πj(−u)||πk(−v)|.

Next, for r > s we use the decomposition and evaluations

πr(w) = πs(w)

r∏
i=s+1

(1 + (w − 1)/i) = πs(w)αs,r(w), (19)

|πs(w)| ≤ csw−1, and |αs,r(w)| ≤ crw−1,

where the constant c does not depend on w, r, or s; see Lemma A.3 of JN(2016). We will
also need Lemma B.4 from JN(2010), which shows that

t−1∑
j=1

ju−1(t− j)v−1 ≤ c(1 + log t)tmax{u−1,v−1,u+v−1}, (20)
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where c does not depend on t, u, v for |u| ≤ u0, |v| ≤ v0.
Proof for At: For k < j we find from (19) that

|πj(−u)||πk(−v)| = |πk(−u)||αk,j(−u)||πk(−v)| ≤ cj−u−1k−(u+v+1)−1

and it follows that

At ≤ c
t−1∑
j=t/2

j−u−1
j−1∑
k=t−j

k−(u+v+1)−1 ≤ c
t−1∑
j=t/2

j−u−1(t− j)−(u+v+1)

≤ c(1 + log t)tmax{−u−1,−u−v−1,−2u−v−1},

where we used (20) and that
∑j−1

k=t−j k
−(u+v+1)−1 ≤

∑∞
k=t−j k

−(u+v+1)−1 ≤ c(t − j)−(u+v+1)

for u+ v + 1 ≥ a1 > 0.
Proof for Bt: For k ≥ j we find from (19) that

|πj(−u)||πk(−v)| = |πj(−u)||πj(−v)||αj,k(−v)| ≤ cj−(u+v+1)−1k−v−1,

and it follows that

Bt ≤ c
t−1∑
j=0

j−(u+v+1)−1
∞∑

k=t/2

k−v−1 ≤ ct−v
t−1∑
j=0

j−(u+v+1)−1 ≤ ct−v,

where we used that
∑∞

k≥t/2 k
−v−1 ≤ ct−v for v ≥ a2 > 0 and

∑t−1
j=0 j

−(u+v+1)−1 ≤ c for
u+ v + 1 ≥ a1 > 0.

4 Conclusions and discussion
In this article, we have shown that the test statistic for the ususal CVAR model in the more
general fractional CVAR model is asymptotically chi-squared distributed. In the analysis of
the fractional CVAR in Johansen and Nielsen (2012a), the usual CVAR was on the boundary
of the parameter space, so in this article we studied the fractional CVAR model on a slightly
larger parameter space for which the CVAR model lies in the interior. This analysis required
improving several related results in Johansen and Nielsen (2012a); in particular regarding the
negligibility of the contribution of the initial values of the process to the likelihood function.
Our main results, presented in Corollary 1, show that the LR test of the usual CVAR is

asymptotically χ2(2) and that the LR test of the less restrictive hypothesis that d = b in the
fractional model is asymptotically χ2(1). Thus, the tests are very easy to implement and
can be calculated straightforwardly using the software package of Nielsen and Popiel (2016).
Both tests are important in empirical analysis as part of model determination to test a more
simple and parsimonious formulation of the empirical model.
These new results allow, at least, two important applications. First, they allow testing

the usual CVAR model against a model with more general fractional integration dynamics,
as part of the model specification step in empirical analysis. This test has been calculated
in empirical work, where it has been conjectured to be asymptotically χ2-distributed as we
have now verified. Second, it seems common to apply the model (1) with the restriction
d = b imposed, without testing this restriction against the unrestricted model. For examples
of both these types of applications see, among others, Bollerslev, Osterrieder, Sizova, and
Tauchen (2013), Dolatabadi, Nielsen, and Xu (2016), and Chen, Chiang, and Härdle (2016).
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