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Long- and Short-Run Components of Factor Betas: Implications for 
Equity Pricing 

Abstract: We suggest a bivariate component GARCH model that simultaneously obtains factor 
betas’ long- and short-run components. We apply this new model to industry portfolios using 
market, small-minus-big, and high-minus-low portfolios as risk factors and find that the cross-
sectional average and dispersion of the betas’ short-run component increase in bad states of the 
economy. Our analysis of the risk premium highlights the importance of decomposing risk across 
horizons: The risk premium associated with the short-run market beta is significantly positive. 
This is robust to the portfolio-set choice. 

Keywords: long-run betas; short-run betas; risk premia; component GARCH model; MIDAS 

JEL Classifications: G12; C58 
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1. Introduction 

A vast literature is devoted to investigating the cross-sectional relationship between expected 

returns and risk (see, e.g., Engle, Bollerslev, and Wooldridge, 1988; Harvey, 1989; Schwert and 

Seguin, 1990; Ang, Hocrick, Xing, and Zhang, 2006; Bali, 2008). However, the empirical evidence 

is inconclusive and inference is sensitive to model specification and estimation procedure (see, 

e.g., Jagannathan and Wang, 1996; Lewellen and Nagel, 2006; Lewellen, Nagel, and Shanken, 

2010). 

In this paper, we suggest a new conditional asset-pricing model by using the mixed-data-sampling 

approach in a component bivariate GARCH model. This new framework allows us to 

simultaneously obtain long- and short-run factor-beta components. We apply the new asset-pricing 

model to a widely used data set of industry portfolios to evaluate its ability to explain the cross-

sectional differences in expected equity returns. 

An important motivation for an asset-pricing model with a component structure is the information 

flow in financial markets. Andersen and Bollerslev (1997) and Calvet and Fisher (2007) show that 

information in financial markets arrives at various frequencies and has different degrees of 

persistence. Therefore, information affects the return dynamics differently at different frequencies. 

The risk premia reflect the compensation for exposure to the shocks driven by information arriving 

at different frequencies and with heterogeneous degrees of persistence. Ignoring this may result in 

poor estimates of systematic risk and the related risk premia. 

A number of studies show that the choice of frequency is important for obtaining a correct measure 

of risk and capturing the risk–return relationship. For example, Gilbert, Hrdlicka, Kalodimos, and 

Siegel (2014) show that there are large differences between high-frequency (daily) and low-

frequency (quarterly) stock betas. They show that opacity makes high-frequency betas unusable. 
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According to Lewellen and Nagel (2006), compounding ensures that the betas vary across different 

frequencies. Engle and Lee (1999) and Engle and Rangel (2008) show that models with both low- 

and high-frequency volatility and correlation components capture the dynamics of equity returns 

better than single-frequency models. Adrian and Rosenberg (2008) explore cross-sectional pricing 

of risk by decomposing equity-market volatility into short-run (capturing market-skewness risk) 

and long-run components (closely related to business-cycle risk). Cenesizoglu and Reeves (2015) 

use a nonparametric approach and measure market beta with short-, medium-, and long-run 

components. The short- and medium-run components are estimated from daily returns over one- 

and five-year periods and the long-run component is estimated from monthly returns over a 10-

year period. Boons and Tamoni (2016) show that dividing risk into long- and short-run components 

helps uncover a link between risk premia and the macro economy. 

Several studies have used the mixed data sampling (MIDAS) approach to estimate systematic risk. 

Gonzalez, Nave, and Rubio (2012) use a weighted average of daily returns to estimate monthly 

betas. Gonzalez, Nave, and Rubio (2016) define the conditional beta with two additive components, 

a transitory component estimated from daily returns and a long-run beta based on macroeconomic 

state variables. Baele and Londono (2013) use Colacito, Engle, and Ghysels’s (2011) dynamic 

conditional correlation (DCC) MIDAS model to obtain long-run betas. They find that DCC-

MIDAS betas are superior to ordinary betas in limiting the downside risk and ex-post market 

exposure for the minimum-variance strategy. Ghysels, Santa-Clara, and Valkanov (2005) use 

MIDAS volatilities to analyze the risk–return trade-off. They investigate the effects of changing 

the frequency of the returns in the MIDAS risk–return trade-off regressions and find that using 

high-frequency returns (above monthly) provides excessively noisy estimates. Therefore, they 
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conclude that monthly returns are preferable. Ghysels, Guérin, and Marcellino (2014) continue 

this analysis by combining regime switching with MIDAS and consider variations across horizons. 

To the best of our knowledge, this is the first conditional asset-pricing model that uses a component 

model to decompose betas and risk premia into long- and short-run components. Our bivariate 

component GARCH model enables us to simultaneously decompose total variances and 

covariances into long- and short-run variances and covariances and thereby to estimate the 

corresponding components of the asset betas. The new component GARCH model builds upon 

Engle and Lee (1999). Theoretical and empirical evidence suggests that deterministic changes in 

long-run returns can generate long-memory behavior, which may be interpreted as changes in the 

unconditional variance of long time series (Mikosch and Stărică, 2004; Amado and Teräsvirta, 

2013, 2014, 2015). This motivates us to model the long-run variances and covariances based on 

the unconditional variance and covariance of past long-run returns—i.e., the monthly returns—

while the short-run variances and covariances are based on data with different frequencies (weekly 

or monthly). The decomposition can be used both on mixed-frequency data (as a MIDAS 

approach) and on single-frequency data. 

For our methodological contribution, we employ a different framework from the traditional 

decomposition approach of the GARCH–MIDAS model with a multiplicative form. That approach 

works well with a univariate model, but it does not work well in a bivariate setting to estimate 

variance and covariance at the same time: We may have negative covariances. Colacito, Engle, 

and Ghysels’s (2011) two-step DCC-MIDAS approach has a multiplicative form in the univariate 

model of the first step and an additive form in the second step. Our new decomposition method 

with an additive form estimates the variance and covariance components simultaneously. 
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We investigate the dynamics and determinants of industry betas based on the three Fama and 

French (1993) factors: the market portfolio, the small-minus-big portfolio (SMB), and the high-

minus-low portfolio (HML). We apply our component GARCH model to each factor and an asset 

(industry portfolio) to estimate long- and short-run variances and covariances. From these we 

calculate long- and short-run betas. The estimated long- and short-run betas are subsequently used 

in cross-sectional regressions to estimate the long- and short-run risk premia associated with each 

factor. The main analysis is based on the 30 industry portfolios from Fama and French (1993, 

1997), but we also estimate our new model with 17 and 49 industry portfolios as well as with 25 

portfolios sorted based on size and book-to-market value. 

Our paper is also closely related to the literature exploring the impact of macroeconomic variables 

on market betas across portfolios. Many studies show that business-cycle exposure is 

heterogeneous across industries and provide models for industries’ and equity portfolios’ 

heterogeneous reactions to business-cycle conditions (see, e.g., Berk, Green, and Naik, 1999; 

Gomes, Yaron, and Zhang, 2003; Lewellen and Nagel, 2006; Baele and Londono, 2013; Gonzalez, 

Nave, and Rubio 2016). In particular, Baele and Londono (2013) show that industry betas display 

substantial heterogeneity with respect to their business-cycle exposure. This is consistent with 

Berk, Green, and Naik’s (1999) and Gomes, Yaron, and Zhang’s (2003) models. Moreover, Baele 

and Londono (2013) also show that the cross-sectional dispersion on industry betas is larger during 

recessions, supporting Gomes, Yaron, and Zhang’s (2003) theoretical predictions. We investigate 

the macro-economic conditions that can explain the fluctuations of factor betas around their long-

run paths. Furthermore, we analyze how macro-economic conditions affect the cross-sectional 

dispersions of short-run betas. 
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We find that the short-run component of betas for all three factors increase on average in 

contractionary states of the economy, where industries related to necessities are less affected by 

fluctuations in economic conditions. In line with earlier results, the cross-sectional dispersion in 

short-run betas increases in these economic conditions. Moreover, we find that the data frequency 

matters for estimation of the risk premium: None of the risk premia estimated at weekly 

frequencies is significant, which is in contrast to the risk premia obtained at the monthly frequency. 

This implies that risk premia estimated more frequently than monthly are noisy. At the monthly 

frequency, our analysis of the risk premium highlights the importance of decomposing risk across 

horizons. Although the risk premia associated with both the long- and short-run SMB betas are 

significant, only the risk premium associated with the short-run market beta is significantly 

positive. This is robust to the choice of test portfolio. By excluding recessions from our sample, 

the risk premia for all the betas, except for the long-run market beta, become significantly positive. 

It seems that investors demand compensation only when the market beta increases from its long-

run level. 

The rest of the paper is structured as follows. First, we introduce the econometric framework. 

Second, we introduce the data before we discuss the empirical results. Finally, we conclude. The 

appendix contains various technical details. 

2. The component asset-pricing model 

In this section, we present the new component GARCH model. The empirical analysis follows a 

two-step estimation procedure similar to Fama and MacBeth (1973). The first step entails time-

series regressions to obtain total, long-, and short-run betas. In the second step, we estimate the 

corresponding risk premia. 
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2.1 First step: Bivariate component GARCH model 

Within the component GARCH models, there are two general approaches to distinguish short-run 

from long-run movements, an additive approach, proposed by Engle and Lee (1999) and a 

multiplicative GARCH–MIDAS approach, proposed by Engle, Ghysels, and Sohn (2013). The 

multiplicative approach, despite working well in a univariate GARCH model, cannot be applied 

to bivariate models to simultaneously estimate variances and covariances, as we may have negative 

covariances. We use an additive decomposition approach and extend Asgharian and Hansson’s 

(2000) and Bali’s (2008) bivariate GARCH model to a bivariate component GARCH model to 

decompose the total variance and covariance to a long-run, persistent, component and a short-run, 

transitory, component. 

We work with both single-frequency and mixed-frequency models. We use the subscripts s and t 

to keep track of the periods. In the single frequency model, s and t are identical; in the mixed-

frequency model, s and t denote periods corresponding to the weekly and monthly frequency, 

respectively.1 

We assume that the mean equations for the excess returns for portfolio i (𝑟𝑟𝑖𝑖,𝑠𝑠,𝑡𝑡) and the state 

variable x (𝑟𝑟𝑥𝑥,𝑠𝑠,𝑡𝑡) follow a simple form where they are equal to a constant plus an error term (𝜀𝜀𝑖𝑖,𝑠𝑠,𝑡𝑡 

and 𝜀𝜀𝑥𝑥,𝑠𝑠,𝑡𝑡, respectively): 

 𝑟𝑟𝑖𝑖,𝑠𝑠,𝑡𝑡 = 𝛾𝛾0𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑠𝑠,𝑡𝑡 

𝑟𝑟𝑥𝑥,𝑠𝑠,𝑡𝑡 = 𝛾𝛾0𝑥𝑥 + 𝜀𝜀𝑥𝑥,𝑠𝑠,𝑡𝑡 . 
(1) 

                                                 
1 We also estimate the model with the monthly–daily combination. The results are similar to those with the monthly–
weekly combination. For the sake of brevity, those results are not reported. 
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The error terms are assumed to follow normal distributions with mean zero and time dependent 

variances, 𝑞𝑞𝑖𝑖,𝑠𝑠,𝑡𝑡 and 𝑞𝑞𝑥𝑥,𝑠𝑠,𝑡𝑡. The error terms have a time dependent covariance, 𝑞𝑞𝑖𝑖𝑖𝑖,𝑠𝑠,𝑡𝑡. 

Engle and Lee’s (1999) univariate additive component GARCH model defines the total conditional 

variance of an asset as the sum of a long-run (permanent) component and a short-run (transitory) 

component where the total variance follows a GARCH(1,1). Engle and Lee (1999) replace the 

unconditional variance by the long-run time-varying variance. The idea of an unconditional time-

varying variance is also presented in, for example, Amado and Teräsvirta’s (2014) model. We 

extend the idea above to a bivariate GARCH(1,1) model to estimate portfolios’ conditional 

variances as well as their conditional covariances with the common factors. 

In the parameterization of the GARCH equation, we use the BEKK specification to reduce the 

number of parameters. The formulation of the intercept follows de Santis and Gerard (1997), while 

the unconditional moments (the τ’s) are time varying. The total variances and covariance are 

modeled as 

 𝑞𝑞𝑖𝑖,𝑠𝑠,𝑡𝑡 = 𝜏𝜏𝑖𝑖,𝑡𝑡(1 − 𝑎𝑎𝑖𝑖2 − 𝑏𝑏𝑖𝑖2) + 𝑎𝑎𝑖𝑖2𝜀𝜀𝑖𝑖,𝑠𝑠−1,𝑡𝑡
2 + 𝑏𝑏𝑖𝑖2𝑞𝑞𝑖𝑖,𝑠𝑠−1,𝑡𝑡 

𝑞𝑞𝑥𝑥,𝑠𝑠,𝑡𝑡 = 𝜏𝜏𝑥𝑥,𝑡𝑡(1 − 𝑎𝑎𝑥𝑥2 − 𝑏𝑏𝑥𝑥2) + 𝑎𝑎𝑥𝑥2𝜀𝜀𝑥𝑥,𝑠𝑠−1,𝑡𝑡
2 + 𝑏𝑏𝑥𝑥2𝑞𝑞𝑥𝑥,𝑠𝑠−1,𝑡𝑡 

𝑞𝑞𝑖𝑖𝑖𝑖,𝑠𝑠,𝑡𝑡 = 𝜏𝜏𝑖𝑖𝑖𝑖,𝑡𝑡(1 − 𝑎𝑎𝑖𝑖𝑎𝑎𝑥𝑥 − 𝑏𝑏𝑖𝑖𝑏𝑏𝑥𝑥) + 𝑎𝑎𝑖𝑖𝑎𝑎𝑥𝑥𝜀𝜀𝑖𝑖𝑖𝑖,𝑠𝑠−1,𝑡𝑡
2 + 𝑏𝑏𝑖𝑖𝑏𝑏𝑥𝑥𝑞𝑞𝑖𝑖𝑖𝑖,𝑠𝑠−1,𝑡𝑡 , 

(2) 

where , , and  are the long-run variances and covariance. 

We use the weighted moving average of the past observations to estimate the long-run variances 

and covariances. This is similar to Colacito, Engle, and Ghysels’s (2011) approach to estimating 

long-run correlation in the DCC-MIDAS model: 

ti,τ tx,τ tsix ,,τ
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𝜏𝜏𝑖𝑖,𝑡𝑡 = �𝜑𝜑𝑘𝑘(𝑤𝑤1,𝑤𝑤2)𝑉𝑉𝑖𝑖,𝑡𝑡−𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 

𝜏𝜏𝑥𝑥,𝑡𝑡 = �𝜑𝜑𝑘𝑘(𝑤𝑤1,𝑤𝑤2)𝑉𝑉𝑥𝑥,𝑡𝑡−𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 

𝜏𝜏𝑖𝑖𝑖𝑖,𝑡𝑡 = �𝜑𝜑𝑘𝑘(𝑤𝑤1,𝑤𝑤2)𝑉𝑉𝑖𝑖𝑖𝑖,𝑡𝑡−𝑘𝑘

𝐾𝐾

𝑘𝑘=1

, 

(3) 

where 

 𝑉𝑉𝑖𝑖,𝑡𝑡 = (𝑟𝑟𝑖𝑖,𝑡𝑡 − 𝜇𝜇𝑖𝑖,𝑡𝑡)2 

𝑉𝑉𝑥𝑥,𝑡𝑡 = (𝑟𝑟𝑥𝑥,𝑡𝑡 − 𝜇𝜇𝑥𝑥,𝑡𝑡)2 

𝑉𝑉𝑖𝑖𝑖𝑖,𝑡𝑡 = �𝑟𝑟𝑖𝑖,𝑡𝑡 − 𝜇𝜇𝑖𝑖,𝑡𝑡��𝑟𝑟𝑥𝑥,𝑡𝑡 − 𝜇𝜇𝑥𝑥,𝑡𝑡�, 

(4) 

 and are the means of the monthly returns for i and x over five-year historical data before 

each period t, and K is the number of periods within the five years.2 The long-run component is 

the average of the squared deviations of the monthly returns from their mean to follow the 

conventional approach to estimating beta.3 The weighting scheme used in equation (3) is described 

by a beta-lag polynomial: 

 
𝜑𝜑𝑘𝑘(𝑤𝑤1,𝑤𝑤2) =

�𝑘𝑘 𝐾𝐾� �
𝑤𝑤1−1

(1 − 𝑘𝑘
𝐾𝐾� )𝑤𝑤2−1

∑ (𝑗𝑗 𝐾𝐾� )𝑤𝑤1−1(1 − 𝑘𝑘
𝐾𝐾� )𝑤𝑤2−1𝑘𝑘

𝑗𝑗=1

. (5) 

The short-run component of the variance and covariance is the difference between the total and 

long-run components:  

 𝑔𝑔𝑖𝑖,𝑠𝑠,𝑡𝑡 ≡ 𝑞𝑞𝑖𝑖,𝑠𝑠,𝑡𝑡 − 𝜏𝜏𝑖𝑖,𝑡𝑡 = 𝑎𝑎𝑖𝑖2�𝜀𝜀𝑖𝑖,𝑠𝑠−1,𝑡𝑡
2 − 𝜏𝜏𝑖𝑖,𝑡𝑡� + 𝑏𝑏𝑖𝑖2(𝑞𝑞𝑖𝑖,𝑠𝑠−1,𝑡𝑡 − 𝜏𝜏𝑖𝑖,𝑡𝑡) 

𝑔𝑔𝑥𝑥,𝑠𝑠,𝑡𝑡 ≡ 𝑞𝑞𝑥𝑥,𝑠𝑠,𝑡𝑡 − 𝜏𝜏𝑥𝑥,𝑡𝑡 = 𝑎𝑎𝑥𝑥2�𝜀𝜀𝑥𝑥,𝑠𝑠−1,𝑡𝑡
2 − 𝜏𝜏𝑥𝑥,𝑡𝑡� + 𝑏𝑏𝑥𝑥2(𝑞𝑞𝑥𝑥,𝑠𝑠−1,𝑡𝑡 − 𝜏𝜏𝑥𝑥,𝑡𝑡) 

(6) 

                                                 
2 The five-year window with monthly returns is conventional for estimating unconditional betas (see, e.g., Fama and 
French, 1993). 
3 In the GARCH–MIDAS model, the long-run component is calculated as the weighted sum of the realized variances 
and covariance. We also estimate the model with realized moments based on daily data and exponential weights. The 
conclusions remain unaltered. 

ti ,µ tx ,µ
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𝑔𝑔𝑖𝑖𝑥𝑥,𝑠𝑠,𝑡𝑡 ≡ 𝑞𝑞𝑖𝑖𝑥𝑥,𝑠𝑠,𝑡𝑡 − 𝜏𝜏𝑖𝑖𝑥𝑥,𝑡𝑡 = 𝑎𝑎𝑖𝑖𝑥𝑥2 �𝜀𝜀𝑖𝑖𝑥𝑥,𝑠𝑠−1,𝑡𝑡
2 − 𝜏𝜏𝑖𝑖𝑥𝑥,𝑡𝑡� + 𝑏𝑏𝑖𝑖𝑥𝑥2 �𝑞𝑞𝑖𝑖𝑥𝑥,𝑠𝑠−1,𝑡𝑡 − 𝜏𝜏𝑖𝑖𝑥𝑥,𝑡𝑡�. 

The total betas are calculated from the total covariance and variance, and the long-run betas from 

the long-run covariance and variance: 

 
𝛽̂𝛽𝑥𝑥,𝑖𝑖,𝑠𝑠,𝑡𝑡
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =

𝑞𝑞�𝑖𝑖𝑖𝑖,𝑠𝑠,𝑡𝑡

𝑞𝑞�𝑥𝑥,𝑠𝑠,𝑡𝑡
 

𝛽̂𝛽𝑥𝑥,𝑖𝑖,𝑠𝑠,𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =

𝜏̂𝜏𝑖𝑖𝑖𝑖,𝑠𝑠,𝑡𝑡

𝜏̂𝜏𝑥𝑥,𝑠𝑠,𝑡𝑡
. 

(7) 

The short-run betas are the differences between the total and long-run betas.4 

Several restrictions have been applied to ensure that the conditional variance–covariance matrix is 

positive definite at each s and t. The details are in the appendix, where we also discuss 

identification and stationarity of the model. The log-likelihood function for model estimation is 

also given in the appendix. 

2.2 Second step: Cross-sectional regressions 

In our setting, the expected returns depend on both long- and short-run components of three risk 

premia, market-, SMB- and HML-based risk. 

The second step concerns the Fama and MacBeth (1973) cross-sectional regressions, where we 

investigate the sign and significance of the risk premia of the state variables. There is one cross-

sectional regression for each period s. When we consider the total betas, it reads as follows. 

 𝑅𝑅𝑖𝑖,𝑠𝑠,𝑡𝑡 = 𝐶𝐶0𝑠𝑠,𝑡𝑡
total + 𝐶𝐶1𝑠𝑠,𝑡𝑡

total𝛽𝛽𝑀𝑀,𝑖𝑖,𝑠𝑠,𝑡𝑡
total + 𝐶𝐶2𝑠𝑠,𝑡𝑡

total𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖,𝑠𝑠,𝑡𝑡
total + 𝐶𝐶3𝑠𝑠,𝑡𝑡

total𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻,𝑖𝑖,𝑠𝑠,𝑡𝑡
total + 𝜀𝜀𝑖𝑖,𝑠𝑠,𝑡𝑡 , for 𝑖𝑖 = 1, … ,𝑁𝑁 (8) 

We also do cross-sectional regressions with both short- and long-run betas and thereby obtain long- 

and short-run risk premia. This is new to the literature. 

                                                 
4 We also calculate the short-run betas from the short-run covariance and variance defined in equation (6). This 
approach is noisy as it results in extreme values when the short-run factor variance is very small. 
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 𝑅𝑅𝑖𝑖,𝑠𝑠,𝑡𝑡 = 𝑐𝑐0𝑠𝑠,𝑡𝑡 + 𝑐𝑐1,𝑠𝑠,𝑡𝑡
long𝛽𝛽𝑀𝑀,𝑖𝑖,𝑠𝑠,𝑡𝑡

long + 𝑐𝑐1,𝑠𝑠,𝑡𝑡
short𝛽𝛽𝑀𝑀,𝑖𝑖,𝑠𝑠,𝑡𝑡

short + 𝑐𝑐2,𝑠𝑠,𝑡𝑡
long𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖,𝑠𝑠,𝑡𝑡

long + 𝑐𝑐2,𝑠𝑠,𝑡𝑡
short𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖,𝑠𝑠,𝑡𝑡

short + 𝑐𝑐3,𝑠𝑠,𝑡𝑡
long𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻,𝑖𝑖,𝑠𝑠,𝑡𝑡

long  

+ 𝑐𝑐3,𝑠𝑠,𝑡𝑡
short𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻,𝑖𝑖,𝑠𝑠,𝑡𝑡

short + 𝜀𝜀𝑖𝑖,𝑠𝑠,𝑡𝑡 , for 𝑖𝑖 = 1, … ,𝑁𝑁 

(9) 

The risk premia are the average of the estimated coefficients, the c’s. We use the time series of the 

estimated parameters for the factors to investigate such properties of the factor risk premia as 

whether the average coefficients are significant and, if so, whether they are positive or negative. 

This corresponds to traditional analysis of risk premia. We use Newey and West’s (1987) 

correction for the standard errors. 

3. Data 

Our analysis is based on the value-weighted excess returns for 30 industry portfolios at weekly 

and monthly frequencies. We use market, SMB, and HML risk factors as state variables (Fama 

and French, 1993, 1997). We gratefully obtain the data from Kenneth French’s online data library. 

The sample covers the period from 1945 to 2015 and includes several business cycles such as the 

dotcom bubble and the recent financial crisis. For robustness, we also use 17- and 49-value 

weighted industry portfolios and 25 size and book-to-market double-sorted portfolios, which are 

also available from the same website. 

Table 1 shows descriptive statistics for the monthly excess returns of the 30 industry portfolios. 

The mean return is significantly positive and varies from 6.0% per year (“Other”) to 11.5% per 

year (“Smoke”). The standard deviations are relatively large, ranging from 13.3% per year 

(“Utilities”) to 32.4% per year (“Coal”). For all industry portfolios, we observe negative skewness 

and positive excess kurtosis, revealing extreme negative returns. 

We also use a set of macroeconomic explanatory variables measured at the monthly frequency 

including industrial-production growth (IP) and five variables from Goyal and Welch’s (2008) 

data set: T-bill rate (TBL), term spread (TMS), inflation (INFL), default-yield spread (DFY), and 
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default-return spread (DFR). We use their first two principle components (PC1 and PC2) to 

condense the information about the state of the macro economy. Table 2 shows the correlation of 

the PCs with the individual variables. PC1 loads strongly negatively on the T-bill rate and the 

inflation rate and strongly positively on the term spread. A large positive value of PC1 amounts to 

a contractionary state of the economy. PC2 loads strongly positively on the industrial production 

growth and strongly negatively on the term spread and the default-yield spread. A large positive 

value of PC2 amounts to an expansionary state of the economy. 

4. Empirical results 

In this section, we show the empirical results. First, we show the results regarding estimations of 

betas and the risk premia. Then, we discuss how the risk premia are related to the state of the 

economy. At the end, we investigate the robustness of the results to using other data sets. 

4.1 Estimation of the bivariate component GARCH model 

We use different frequency pairs (s, t) to decompose the long- and short-run components. The 

long-run component, t, is at the monthly frequency and the short-run component, s, varies from 

weekly to monthly frequency. Our default model is based on the monthly frequency. That is, the 

returns in equation (1), the short-run variance and covariance in equation (2), and the long-run 

variances and covariance in equation (3) are all based on monthly returns (hereafter denoted 

monthly–monthly or M–M). This is a GARCH specification with time-varying unconditional 

moments. We use the monthly–monthly approach as the base case to be able to compare our results 

with earlier studies since it is conventional to use a five-year moving window with monthly returns 

to estimate betas and also a monthly frequency to estimate the cross-sectional regression. We also 

use an alternative specification of the component GARCH model in which we keep the long-run 
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moments in equation (3) at the monthly frequency while changing the frequency of the bivariate 

variance and covariance in equation (2) and the returns in equation (1) to weekly (denoted 

monthly–weekly or M–W). This is a MIDAS specification. 

The results presented in the paper are based on fixed weights in equation (3) with w1 = w2 = 1, 

which implies equal weights for all observations. In this case, , , and are the moving 

averages over the past five years of , , and , respectively. We have also used exponentially 

weighted moving average by setting w1 = 1 and estimating w2. Since the estimation of w2 converges 

to 1 in most cases, we only report the results with the fixed weights. The advantage is that our 

estimated long-run betas are equal to the conventional estimate of the unconditional beta. This 

facilitates straightforward comparisons with earlier studies. 

Table 3 shows the means and the standard deviations of the parameter estimates of the bivariate 

component GARCH models for the 30 industry portfolios and for each of the three factors, both 

for the monthly–weekly and monthly–monthly specifications. The parameter estimates show that 

the volatilities are persistent, because all the bs are much greater than the corresponding as. The 

related standard deviations are very small, indicating that the volatility persistence should hold for 

most of the industries. As expected, the estimated mean returns (the γs) are larger in the monthly–

monthly specification than in the monthly–weekly specification. 

Figure 1 shows the average and standard deviation of the total betas estimated from the bivariate 

component GARCH models for the monthly–monthly and monthly–weekly combinations for each 

of the 30 industry portfolios. In general, the cross-sectional rank of the betas is similar across the 

two frequencies. The average market betas are similar across frequencies, while the SMB and 

HML betas are typically lower for the monthly–weekly frequency than for the monthly–monthly 

ti,τ tx,τ tix,τ

tiV , txV , tixV ,
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frequency. The standard deviations of the market and HML betas are larger for weekly returns, 

indicating a larger variation of these betas over time. 

To illustrate the estimated betas over time, we use the financial industry as an example. Figure 2 

shows the time series of the total and long-run betas for the monthly–monthly and monthly–weekly 

frequencies for this industry. The long-run betas are smoother than the total betas, especially when 

we use the monthly–weekly frequency instead of the monthly–monthly frequency. The market 

betas are less variable than the SMB and HML betas at both frequencies. As expected, the 

estimated betas are, in general, very large during the recent financial crises, which supports the 

large contribution of the financial industry to the systematic risks during this period. 

4.2 Variations in betas across the state of the economy 

Understanding how the market exposures of different industry betas change over the states of 

economy is essential for investors’ portfolio choice and risk-management strategies. Many papers 

have identified the heterogeneous reaction of equity portfolios to the business cycle and the general 

economic conditions. Boudoukh, Richardson, and Whitelaw (1994) show that different industries 

possess different cyclical tendencies with the overall economy. Some industries are highly cyclical, 

while others are less dependent on the state of the economy. Petersen and Strauss (1991) find that 

industries producing durable goods tend to exhibit much more cyclical investment behavior than 

industries producing nondurable goods. This is because the cash flow is more procyclical in the 

durable-goods sector than in the nondurable-goods sector. Berk, Green, and Naik (1999) argue that 

the cross-sectional variations in betas depend on firms’ investment opportunities, which vary 

across industries. Gomes, Yaron, and Zhang (2003) link the cyclical behavior of betas to different 

size and growth opportunities determining firm-specific reactions to aggregated productivity. 

Finally, Gonzalez, Nave, and Rubio (2016) conclude that value, small, low momentum, and low-
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long-reversal stocks have countercyclical betas, while growth, big, high momentum, and high-

long-reversal stocks have procyclical betas. 

We analyze how short-run betas are related to economic variables to see if the fluctuations of factor 

betas around their long-run paths can be explained by the macro-economic conditions.5 Table 4 

reports the results of regressing the cross-sectional averages of the monthly–monthly short-run 

betas on one-month lagged macro-economic variables. In Panel A, we use the individual 

macroeconomic variables; in Panel B, we use the first two principle components calculated from 

these macro-economic variables. 

From Table 4, we see that the short-run market beta depends positively on the T-bill rate, the term 

spread, the inflation rate, and the default yield spread. Similarly, the short-run market beta depends 

positively on PC1, which is positively correlated with the contractionary state. The short-run SMB 

beta depends negatively on industrial-production growth, the default return spread, and PC2, which 

is positively correlated with the expansionary state. The short-run HML beta depends positively 

on the T-bill rate, the term spread, the inflation rate, and the default yield spread, and negatively 

on the default return spread. It depends positively on PC1 and negatively on PC2. All in all, we 

can conclude that the short-run component of all factor betas increase when the economy is in a 

bad state. 

Table 5 shows the results from regressing the short-run beta of each industry portfolio on the PC1 

and PC2. In line with Petersen and Strauss (1991), Boudoukh, Richardson, and Whitelaw (1994), 

and Baele and Londono (2013), we find that industries related to the necessities (such as “Beer,” 

“Smoke,” and “Clothes”) are less affected by fluctuations in economic conditions. We also observe 

                                                 
5 We do not analyze the relation of the long-run betas to the state of the economy because they are estimated over 
longer periods; matching the period of the macroeconomic variables with the long-run betas is not straightforward. 
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a positive relation between the economic conditions and market betas for industries such as 

“Chemical,” “Telecommunications,” “Business equipment,” “Papers,” and “Retail.” However, in 

contrast with the results reported from previous studies, we find a significant increase in short-run 

market beta during recessions for such nondurable industries as “Food,” “Games,” and 

“Household.” 

The link between the cross-sectional dispersion of industry betas and the state of the economy has 

been examined previously. Gomes, Yaron, and Zhang (2003) find that the heterogeneity of betas 

across firms increases during recessions leading to increasing beta dispersion. This effect is 

reinforced by the countercyclical behavior of dispersion of the firms’ characteristics, which is in 

line with the findings of Chan and Chen (1988). Baele and Londono (2013) find that the empirical 

cross-sectional dispersions in industry betas increase during recessions. 

In this paper, we examine the link between the cross-sectional dispersions of short-run betas and 

the economic conditions. We use the method in Baele and Londono (2013) to calculate the cross-

sectional dispersion of the betas for each month. Then, we regress the dispersion coefficients on 

PC1 and PC2. The regression results are reported in Table 6. The cross-sectional dispersion of the 

estimated short-run SMB and HML betas depend positively on PC1 and negatively on PC2, which, 

in line with Baele and Londono (2013) and Gomes, Yaron, and Zhang (2003) shows that cross-

sectional dispersion of betas increases in contractionary economic conditions. 

4.3 Cross-sectional regressions 

To evaluate our suggested component GARCH model, we compare its pricing ability with that of 

two alternative models for estimating beta: the traditional rolling-window OLS regressions 

(unconditional betas) and the bivariate GARCH model. For these comparisons, we use both weekly 

and monthly returns. 
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Table 7 shows the total risk premia obtained from various models, the mean of the estimated time-

series coefficients from the cross-sectional regressions in equation (8). First, the table shows the 

estimated risk premia associated with the unconditional betas. The market and HML risk premia 

are not significant. The SMB risk premium is significantly positive at the monthly frequency, 

which is in accordance with earlier findings, whereas it is insignificant at the weekly frequency. 

Table 7 then shows the risk premia obtained from the conventional bivariate GARCH model. None 

of the risk premiums are significant irrespectively of data frequency. Finally, the table shows the 

total risk premia related to the component GARCH model. Here the total risk premia are 

qualitatively similar to the unconditional risk premia, namely, that only the SMB risk premium is 

significant, and only so at the monthly–monthly frequency. So, if we were only interested in total 

risk premia, the component GARCH model provides the same information as the traditional model. 

Now we move on to the cross-sectional regressions in equation (9) with long- and short-run betas 

from the component GARCH mode. Table 8 shows the risk premia of the long- and short-run 

components of beta. At the monthly–weekly frequency, none of the risk premia in Tables 7 and 8 

is significant. This indicates that risk premia based on the weekly frequency is too noisy. For the 

monthly–monthly frequency, several of the risk premia are significantly positive. The risk premia 

associated with both the long- and short-run SMB betas are significant. Interestingly, the risk 

premium associated with the short-run market beta is also significantly positive. This is, to some 

extent, consistent with Cenesizoglu and Reeves (2015), who show that the overall performance of 

the three-component beta model (short, medium, and long) is mostly due to short and medium 

term betas, while the long-run beta contributes little. 

To investigate if the significance of the risk premium of the short-run market beta is robust to the 

choice of the test assets, we estimate our model for some alternative portfolios. First, we use 25 
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doubled-sorted Fama and French (1993) book-to-market and size portfolios. Second, we use a finer 

division into industries (49 industry portfolios) and broader division into industries (17 industry 

portfolios). Table 9 shows the variations in the long- and short-run risk premia for the four data 

sets. The risk premia related to the short-run market beta are significantly positive for all four data 

sets. So, this finding is not specific to the 30-industry data set. It seems that investors demand 

compensation only when the market beta increases from its long-run level. 

4.4 Risk premia across the business cycle 

In Table 10, we relate the risk premia to the state of the economy as measured by NBER recessions. 

More specifically, we calculate the average of the estimated parameters of the cross-sectional 

regressions in recessions and normal periods. The table shows the risk premia for the entire sample 

period (analogous to Tables 7 and 8), only for normal periods, and only for recessions for the 

monthly–monthly frequency. Panel A is concerned with total risk premia and panel B with short- 

and long-run risk premia. For the unconditional model, the risk premia during normal periods are 

similar to those for the entire sample period. The values are very different in recessions, where the 

market risk premium is significantly negative, showing the large average ex-post realized return 

for risky firms, firms with high market betas. For the bivariate GARCH model, the risk premia of 

all the factors are insignificant for all the subsamples, except the market risk premium which is 

significantly negative in recession. The total betas from the component GARCH model also give 

significant risk premia for SMB and HML (only at the 10% level for the latter). Overall, none of 

these estimations gives a significantly positive risk premium for the market beta, which is 

consistent with findings from the previous literature. 

For the component GARCH model (Panel B of Table 10), the short- and long-run SMB risk premia 

are significantly positive and slightly larger in normal periods than for the entire sample period. 



20 

The short-run market risk premium is significantly positive in the entire sample period and during 

normal periods. The short-run market risk premium is larger in normal periods than for the entire 

sample period, which is caused by the negative (and insignificant) risk premium in recessions. The 

negative short-run market risk premium in recessions is similar to the negative unconditional risk 

premium. Risk premia for both short- and long-run HML for nonrecession periods are positive and 

significant at the 10% level. The insignificance of the HML factor for the total period is due to the 

fact that our period of study has some important recession periods that cause a large negative 

realized mean return and result in an insignificant risk premium. In general, excluding recessions 

from our sample makes the risk premia for all the betas, except for the long-run market beta, 

significant and with the expected sign. 

5. Conclusion 

This paper proposes a new model for decomposing systematic risk into long- and short-run 

components and provides an important empirical application. The new bivariate component 

GARCH model enables us to simultaneously decompose total variances and covariances into long- 

and short-run variances and covariances and thereby to estimate the corresponding components of 

the asset betas. We model the long-run variances and covariances based on the unconditional 

variance and covariance of past long-run monthly returns, while the short-run variances and 

covariances are based on data with different frequencies (weekly or monthly). 

The main analysis is based on Fama and French’s (1993) 30 industry portfolios. We investigate 

the dynamics and determinants of market, SMB, and HML industry betas (Fama and French, 

1993)We apply our component GARCH model to each factor and an industry portfolio to estimate 

long- and short-run variances and covariances. From these, we calculate long- and short-run betas 
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and use them in cross-sectional regressions to estimate the long- and short-run risk premia 

associated with each factor. 

We find that the short-run component of betas for all three factors increase on average in 

contractionary states of the economy, where industries related to necessities are less affected by 

fluctuating economic conditions. We also find that the cross-sectional dispersion in short-run betas 

increases in contractionary economic conditions. Moreover, we find that the data frequency 

matters for estimation of the risk premium: None of the risk premia estimated at weekly frequency 

is significant. At the monthly frequency, our analysis of the risk premia highlights the importance 

of decomposing risk across horizons. Although, the risk premia associated with both the long- and 

short-run SMB betas are significant, only the risk premium associated with the short-run market 

beta is significantly positive. The results appear to be robust to choice of data set, at least for 

different divisions into industry portfolios and for portfolios based on size and book-to-market. In 

the future, it could be interesting to see if the empirical results also hold for other than the US stock 

market. Moreover, it would be interesting to put the component GARCH model to use in other 

settings. 
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Appendix 

This appendix contains technical details about the component GARCH model. 

A.1. Likelihood function 

The bivariate component GARCH model written in matrix form is as 
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𝜏𝜏𝑖𝑖𝑖𝑖,𝑡𝑡(1 − 𝛼𝛼𝑖𝑖𝛼𝛼𝑥𝑥 − 𝑏𝑏𝑖𝑖𝑏𝑏𝑥𝑥) 𝜏𝜏𝑥𝑥,𝑡𝑡(1 − 𝛼𝛼𝑥𝑥2 − 𝑏𝑏𝑥𝑥2)
�

+ �𝛼𝛼𝑖𝑖 0
0 𝛼𝛼𝑥𝑥

� �
𝜀𝜀𝑖𝑖,𝑠𝑠−1,𝑡𝑡
2 𝜀𝜀𝑖𝑖,𝑠𝑠−1,𝑡𝑡𝜀𝜀𝑥𝑥,𝑠𝑠−1,𝑡𝑡

𝜀𝜀𝑖𝑖,𝑠𝑠−1,𝑡𝑡𝜀𝜀𝑥𝑥,𝑠𝑠−1,𝑡𝑡 𝜀𝜀𝑥𝑥,𝑠𝑠−1,𝑡𝑡
2 � �𝛼𝛼𝑖𝑖 0

0 𝛼𝛼𝑥𝑥
�

− �𝑏𝑏𝑖𝑖 0
0 𝛼𝛼𝛼𝛼𝑥𝑥

� �
𝑞𝑞𝑖𝑖,𝑠𝑠−1,𝑡𝑡 𝑞𝑞𝑖𝑖𝑖𝑖,𝑠𝑠−1,𝑡𝑡
𝑞𝑞𝑖𝑖𝑖𝑖,𝑠𝑠−1,𝑡𝑡 𝑞𝑞𝑥𝑥,𝑠𝑠−1,𝑡𝑡

� �𝑏𝑏𝑖𝑖 0
0 𝑏𝑏𝑥𝑥

�. 

(A.1.2)  

The error terms in the return equation are assumed to be bivariate normally distributed with 𝑄𝑄𝑡𝑡 as 

the conditional variance–covariance matrix and 𝜁𝜁𝑡𝑡 is an IID vector process such that E(𝜁𝜁𝑡𝑡𝜁𝜁𝑡𝑡′) = 𝑰𝑰, 

where 𝑰𝑰 is the identity matrix. 

The log likelihood function is 

 𝐿𝐿(Θ) = −
1
2
�[ln(2𝜋𝜋) + 𝑙𝑙𝑙𝑙|𝑄𝑄𝑡𝑡|] + 𝜀𝜀𝑠𝑠𝑠𝑠′ 𝑄𝑄𝑡𝑡−1𝜀𝜀𝑠𝑠𝑠𝑠

𝑇𝑇

𝑖𝑖=1

. (A.1.3) 

A.2. Positive definiteness 

Here, we discuss the necessary restrictions on the parameters to ensure the positive definiteness of 

the conditional variance–covariance matrix, 𝑄𝑄𝑠𝑠,𝑡𝑡. 

Recall that the residuals from the return equations of the bivariate component GARCH model are 

assumed joint normal: 
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 𝜺𝜺𝑠𝑠,𝑡𝑡|ℱ𝑠𝑠−1,𝑡𝑡  ~ ℕ (0,𝑸𝑸𝑠𝑠,𝑡𝑡), (A.2.1) 

where, without loss of generality, s and t denote periods corresponding to the higher and lower 

frequency, respectively, 𝑡𝑡 =  1, … ,𝑇𝑇 and 𝑠𝑠 =  1, … , 𝑡𝑡, … , 2𝑡𝑡, … , 𝑆𝑆, 𝑆𝑆 =  𝑇𝑇 ×  𝑚𝑚, 𝑚𝑚 is the block 

size. [.]denotes a floor function of the quotient. Clearly, 𝑡𝑡 = [𝑠𝑠 𝑚𝑚⁄ ] + 1 (note that in practice the 

block size, 𝑚𝑚, might be different, one might not have T full blocks of data.). 

Denote returns 𝑅𝑅𝑡𝑡 = (𝑟𝑟𝑖𝑖𝑖𝑖, 𝑟𝑟𝑥𝑥𝑥𝑥)𝑇𝑇 as an exogenous p covariate, where i and x denote portfolios and 

state variables, respectively. Assume also that 𝑅𝑅𝑡𝑡 are component-wise stationary, ergodic strongly 

mixing processes with mixing coefficient ∑ 𝛼𝛼𝑛𝑛
1−2/𝛾𝛾∞

𝑛𝑛=1 <  ∞ (𝛾𝛾 > 2) . 𝑄𝑄𝑡𝑡  is parameterized as 

measurable to ℱ𝑠𝑠−1,𝑡𝑡  and exogenous variable 𝑅𝑅𝑡𝑡 . 𝜺𝜺𝑠𝑠,𝑡𝑡  is a 𝑑𝑑 ×  1 and 𝑸𝑸𝑠𝑠,𝑡𝑡  is a 𝑑𝑑 × 𝑑𝑑  matrix. 

Without loss of generality, 𝜺𝜺𝑠𝑠,𝑡𝑡 =  𝑸𝑸𝑠𝑠,𝑡𝑡
1/2𝜂𝜂𝑠𝑠,𝑡𝑡 , and 𝜂𝜂𝑠𝑠,𝑡𝑡  is assumed to be iid bivariate Gaussian 

~ ℕ(0, 𝐼𝐼𝑑𝑑), and is independent of 

ℱ𝑠𝑠−1,𝑡𝑡 =  𝜎𝜎(𝜀𝜀𝑠𝑠−1,𝑡𝑡 , 𝜀𝜀𝑠𝑠−2,𝑡𝑡 , … , 𝜀𝜀𝑠𝑠−1,𝑡𝑡, 𝜀𝜀𝑠𝑠−2,𝑡𝑡 , … ). 

The bivariate component GARCH model in matrix form is 

 𝑸𝑸𝑠𝑠,𝑡𝑡 =  𝝉𝝉𝑡𝑡 − 𝑨𝑨′𝜏𝜏𝑡𝑡𝑨𝑨 − 𝑩𝑩′𝜏𝜏𝑡𝑡𝑩𝑩 + 𝑨𝑨′𝜺𝜺𝑠𝑠−1,𝑡𝑡 , 𝜺𝜺′𝑠𝑠−1,𝑡𝑡𝑨𝑨 +  𝑩𝑩′𝑸𝑸𝑠𝑠−1,𝑡𝑡𝑩𝑩, (A.2.2) 

where 𝝉𝝉𝑡𝑡  is a 𝑑𝑑 × 𝑑𝑑  random variable (long-run exogenous matrix), A, B are 𝑑𝑑 × 𝑑𝑑 coefficient 

matrices and are assumed to be real matrices. In particular, 𝐴𝐴 = (𝑎𝑎𝑖𝑖, 0; 0,𝑎𝑎𝑥𝑥), 𝐵𝐵 = (𝑏𝑏𝑖𝑖, 0; 0, 𝑏𝑏𝑥𝑥) as 

in equation (2). 

Remark The term 𝝉𝝉𝑡𝑡 − 𝑨𝑨𝜏𝜏𝑡𝑡𝑨𝑨 − 𝑩𝑩′𝜏𝜏𝑡𝑡𝑩𝑩  resembles the variance-targeting constant term in 

Pedersen and Rahbek (2014). However, it is worth noting that the constant term is time varying in 

our case and is driven by low-frequency variables. 

𝝉𝝉𝑡𝑡  is defined to be 𝑽𝑽𝑡𝑡𝑡𝑡diag(𝝎𝝎)𝑽𝑽′𝑡𝑡𝑡𝑡 = ∑ 𝝎𝝎𝑘𝑘𝑽𝑽𝑡𝑡𝑘𝑘𝑽𝑽′𝑡𝑡𝑡𝑡𝐾𝐾
𝑘𝑘=1 , where 𝑽𝑽𝑡𝑡𝑡𝑡  is a 𝑑𝑑 × 𝐾𝐾 matrix of (low-

frequency) exogenous shocks, 𝝎𝝎 is a 𝐾𝐾 × 1 vector, and diag(𝝎𝝎) is a 𝐾𝐾 × 𝐾𝐾 matrix with diagonal 
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element as 𝜔𝜔 . In our case, d =  2 and 𝜔𝜔 = (𝜔𝜔1,𝜔𝜔2, … ,𝜔𝜔𝐾𝐾)𝑇𝑇  is set to be 

(𝜙𝜙1(𝜔𝜔1,𝜔𝜔2),𝜙𝜙2(𝜔𝜔1,𝜔𝜔2), … ,𝜙𝜙𝐾𝐾(𝜔𝜔1,𝜔𝜔2)) 𝑇𝑇 defined in equation (3), and 𝑽𝑽𝑡𝑡𝑡𝑡 = (𝑉𝑉𝑡𝑡1, … ,𝑉𝑉𝑡𝑡𝑡𝑡) with 

𝑽𝑽𝑡𝑡𝑡𝑡 = (𝑟𝑟𝑖𝑖,𝑡𝑡−𝑘𝑘 −  𝜇𝜇𝑖𝑖, 𝑟𝑟𝑥𝑥,𝑡𝑡−𝑘𝑘 −  𝜇𝜇2)𝑇𝑇. 

To ensure 𝑸𝑸𝑠𝑠,𝑡𝑡 is positive definite at each s, t, we first need to impose a condition to guarantee that 

𝑪𝑪𝑟𝑟𝑟𝑟 ≝  𝝉𝝉𝑡𝑡 − 𝑨𝑨′𝝉𝝉𝑡𝑡𝑨𝑨 − 𝑩𝑩′𝝉𝝉𝑡𝑡𝑩𝑩  is positive definite. We define first the matrix 𝑪𝑪 = 1 − 𝑨𝑨′1𝑨𝑨 −

𝑩𝑩′1𝑩𝑩 , where 1 is an all-one 2 x 2  matrix. Namely 𝑪𝑪 = (1 − 𝑎𝑎𝑖𝑖2 −  𝑏𝑏𝑖𝑖2, 1 − 𝑎𝑎𝑖𝑖𝑎𝑎𝑥𝑥 − 𝑏𝑏𝑖𝑖𝑏𝑏𝑥𝑥; 1 −

𝑎𝑎𝑖𝑖𝑎𝑎𝑥𝑥 − 𝑏𝑏𝑖𝑖𝑏𝑏𝑥𝑥, 1 −  𝑎𝑎𝑥𝑥2 −  𝑏𝑏𝑥𝑥2)  ≝ (𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖𝑖𝑖; 𝑐𝑐𝑖𝑖𝑖𝑖, 𝑐𝑐𝑥𝑥). 

Proposition 1. (Positive definiteness of 𝑪𝑪𝑟𝑟𝑟𝑟) If 𝑐𝑐𝑖𝑖 > 0, 𝑐𝑐𝑥𝑥 > 0, 𝑐𝑐𝑖𝑖𝑐𝑐𝑥𝑥 − 𝑐𝑐𝑖𝑖𝑖𝑖2 > 0, then the matrix 𝑪𝑪 is 

positive definite, and 𝑪𝑪𝑟𝑟𝑟𝑟 is positive definite almost surely. 

Proof. Because 𝝉𝝉𝑡𝑡 = 𝑽𝑽𝑡𝑡𝑡𝑡diag(𝝎𝝎)𝑽𝑽𝑡𝑡𝑡𝑡′ =  ∑ 𝜔𝜔𝑘𝑘𝑉𝑉𝑡𝑡𝑡𝑡𝑉𝑉𝑡𝑡𝑡𝑡′𝐾𝐾
𝑘𝑘=1 , we can define the matrix 𝝉𝝉𝑡𝑡 =

(𝜔𝜔�12,𝜔𝜔�12;  𝜔𝜔�12,𝜔𝜔�22) with 𝜔𝜔�12 =  ∑ 𝜔𝜔𝑘𝑘(𝑟𝑟𝑖𝑖,𝑡𝑡−𝑘𝑘 − 𝜇𝜇𝑖𝑖)2𝐾𝐾
𝑘𝑘=1 , 𝜔𝜔�22 =  ∑ 𝜔𝜔𝑘𝑘(𝑟𝑟𝑥𝑥,𝑡𝑡−𝑘𝑘 − 𝜇𝜇𝑥𝑥)2𝐾𝐾

𝑘𝑘=1  and 𝜔𝜔�12 =

 ∑ 𝜔𝜔𝑘𝑘(𝑟𝑟𝑥𝑥,𝑡𝑡−𝑘𝑘
𝐾𝐾
𝑘𝑘=1 − 𝜇𝜇𝑥𝑥)(𝑟𝑟𝑖𝑖,𝑡𝑡−𝑘𝑘 − 𝜇𝜇𝑖𝑖). Now, we can write that 𝑪𝑪𝑟𝑟𝑟𝑟 = (𝑐𝑐𝑖𝑖𝜔𝜔�12, 𝑐𝑐𝑖𝑖𝑖𝑖𝜔𝜔�12; 𝑐𝑐𝑖𝑖𝑖𝑖𝜔𝜔�12 , 𝑐𝑐𝑥𝑥𝜔𝜔�22). 

We now calculate the two eigenvalues of 𝑪𝑪𝑟𝑟𝑟𝑟. Letting 𝑇𝑇𝑖𝑖 =  𝑐𝑐𝑖𝑖𝜔𝜔�12 + 𝑐𝑐𝑥𝑥𝜔𝜔�22 and 𝐷𝐷𝑖𝑖 =  𝑐𝑐𝑖𝑖𝜔𝜔�12𝑐𝑐𝑥𝑥𝜔𝜔�22 −

 𝑐𝑐𝑖𝑖𝑖𝑖2 𝜔𝜔�122 , 

𝜆𝜆1(𝐶𝐶𝑟𝑟𝑟𝑟) = �𝑇𝑇𝑖𝑖
2
� + (𝑇𝑇𝑖𝑖

2

4
− 𝐷𝐷𝑖𝑖)

1
2, 𝜆𝜆2(𝐶𝐶𝑟𝑟𝑟𝑟) = �𝑇𝑇𝑖𝑖

2
� + (𝑇𝑇𝑖𝑖

2

4
− 𝐷𝐷𝑖𝑖)

1
2. 

As 𝑐𝑐𝑖𝑖, 𝑐𝑐𝑥𝑥 > 0 , 𝑇𝑇𝑖𝑖 > 0  because 𝑇𝑇𝑖𝑖
2

4
− 𝐷𝐷𝑖𝑖 = �𝑐𝑐𝑖𝑖𝜔𝜔�12+ 𝑐𝑐𝑥𝑥𝜔𝜔�22�

2

4
−  𝑐𝑐𝑖𝑖𝜔𝜔�12𝑐𝑐𝑥𝑥𝜔𝜔�22 +  𝑐𝑐𝑖𝑖𝑖𝑖2 𝜔𝜔�122 = �𝑐𝑐𝑖𝑖𝜔𝜔�12+ 𝑐𝑐𝑥𝑥𝜔𝜔�22�

2

4
+

 𝑐𝑐𝑖𝑖𝑖𝑖2 𝜔𝜔�122  ≥ 0. Further, by the Cauchy-Schwarz inequality 𝜔𝜔�122  ≤ 𝜔𝜔�12𝜔𝜔�22, we have 𝐷𝐷𝑖𝑖  ≥ (𝑐𝑐𝑖𝑖𝑐𝑐𝑥𝑥 −

 𝑐𝑐𝑖𝑖𝑖𝑖2 )𝜔𝜔�1
2𝜔𝜔�22 . Therefore, by 𝑐𝑐𝑖𝑖𝑐𝑐𝑥𝑥 −  𝑐𝑐𝑖𝑖𝑖𝑖2 > 0 , 𝐷𝐷𝑖𝑖 ≥ 0 . This would lead to 𝜆𝜆1(𝑪𝑪𝑟𝑟𝑟𝑟),𝜆𝜆2(𝑪𝑪𝑟𝑟𝑟𝑟) ≥ 0 . 

Moreover 𝜆𝜆2(𝑪𝑪𝑟𝑟𝑟𝑟) = 0 if and only if 𝜔𝜔�1 = 0 or 𝜔𝜔�2 = 0. As weights 𝜔𝜔 are positive and returns 

𝑟𝑟𝑖𝑖,𝑡𝑡−𝑘𝑘 − 𝜇𝜇𝑖𝑖, 𝑟𝑟𝑥𝑥,𝑡𝑡−𝑘𝑘 − 𝜇𝜇𝑥𝑥 are continuously distributed, 𝜔𝜔�1 = 0 and 𝜔𝜔�2 = 0 with probability 0. 
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Remark If one would like to extend the model to a multidimensional case, this result can also be 

proved by considering 𝑪𝑪𝑟𝑟𝑟𝑟 = 𝑪𝑪 ∘ 𝒓𝒓𝑡𝑡, where ∘ denotes the elementwise (Hadamard) product of two 

matrices. As 𝒓𝒓𝑡𝑡𝑠𝑠 is a weighted sum of almost surely positive-definite matrices 𝑽𝑽𝑡𝑡𝑡𝑡𝑽𝑽𝑡𝑡𝑡𝑡′  (symmetric 

and real), then by the Weyl’s inequality in matrix theory, the smallest eigenvalue of 𝒓𝒓𝑡𝑡 is almost 

surely positive as well. Also, C is positive definite according to our conditions. Therefore, we have 

by the Schur product theory for the Hadamard product, as 𝒄𝒄𝑟𝑟𝑟𝑟 is the Hadamard product of 𝑪𝑪 and 

𝝉𝝉𝑡𝑡, 𝑪𝑪𝑟𝑟𝑟𝑟 is almost surely positive definite. 

Proposition 2. (Positive definiteness of 𝑸𝑸𝑠𝑠.𝑡𝑡) Suppose that diagonal element 𝑏𝑏𝑥𝑥 ≠  0 and 𝑎𝑎𝑖𝑖 > 0, 

𝑏𝑏𝑖𝑖 > 0, 𝑸𝑸0 is a positive definite matrix and conditions in proposition 1 hold, then 𝑸𝑸𝑠𝑠,𝑡𝑡 is positive 

definite for all s. 

Proof. If 𝑪𝑪𝑟𝑟𝑟𝑟 is almost surely positive definite, 𝑩𝑩′𝑸𝑸𝑠𝑠−1,𝑡𝑡𝑩𝑩 is positive definite, and 𝑨𝑨′𝜺𝜺𝑠𝑠−1,𝑡𝑡𝜺𝜺𝑠𝑠−1,𝑡𝑡
′ 𝑨𝑨 

is semipositive definite, we have 𝑸𝑸𝑠𝑠,𝑡𝑡 to be positive definite. The positive definiteness of 𝑪𝑪𝑟𝑟𝑟𝑟is 

addressed by proposition 1. Since 𝑸𝑸0  is positive definite, 𝑩𝑩′𝑸𝑸0𝑩𝑩  is positive definite, so the 

positive definiteness of 𝑩𝑩′𝑸𝑸𝑠𝑠,𝑡𝑡𝑩𝑩  follows by iteration. As it can be seen that 

rank�𝑨𝑨′𝜺𝜺𝑠𝑠−1,𝑖𝑖𝜺𝜺𝑠𝑠−1,𝑖𝑖
′ 𝑨𝑨� = 1, 𝑸𝑸𝑠𝑠,𝑡𝑡 is positive definite. 

A.3. Stationarity 

Here, we show the identifiability and stationarity results. We rewrite the model in vector form as 

 vec�𝑸𝑸𝑠𝑠,𝑡𝑡� = (𝐼𝐼 − 𝑨𝑨′ ⊗ 𝑨𝑨′ − 𝑩𝑩′ ⊗ 𝑩𝑩′)vec{𝒓𝒓𝑡𝑡} + 𝑨𝑨′ ⊗ 𝑨𝑨′vec�𝜺𝜺𝑠𝑠−1,𝑡𝑡𝜺𝜺𝑠𝑠−1,𝑡𝑡
′ � + 𝑩𝑩′ ⊗ 𝑩𝑩′vec�𝑸𝑸𝑠𝑠−1,𝑡𝑡�. (A.2.3) 

As we would not need all the elements of a matrix if it is symmetric, we write (A.2.2) in terms of 

the vech operator. The vech form of the bivariate component model specified in equation (A.2.2) 

can be derived as 
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 vech�𝑸𝑸𝑠𝑠,𝑡𝑡� =  𝑪𝑪�vech{𝒓𝒓𝑡𝑡} +  𝑨𝑨�vech�𝜺𝜺𝑠𝑠−1,𝑡𝑡𝜺𝜺𝑠𝑠−1,𝑡𝑡
′ � + 𝑩𝑩�vech{𝑸𝑸𝑠𝑠−1,𝑡𝑡}, (A.2.4)  

where the operator vech denotes vectorize the lower diagonal elements of a symmetric matrix. 

𝑨𝑨� = diag(𝑎𝑎𝑖𝑖2,𝑎𝑎𝑖𝑖𝑎𝑎𝑥𝑥,𝑎𝑎𝑥𝑥2), 𝑩𝑩� = diag(𝑏𝑏𝑖𝑖2, 𝑏𝑏𝑖𝑖𝑏𝑏𝑥𝑥, 𝑏𝑏𝑥𝑥2), and 𝑪𝑪� = 𝑰𝑰𝑑𝑑(𝑑𝑑+1)/2 −  𝐴̃𝐴 −  𝑩𝑩� . 

Proposition 3. (Identifiability) Suppose that 𝑎𝑎𝑖𝑖 > 0 and 𝑏𝑏𝑖𝑖 > 0. Then the parameters in equation 

(4) are identifiable. 

Proof. In equation (2), the coefficients attached to 𝜀𝜀𝑠𝑠−1,𝑡𝑡
2  are 𝑎𝑎𝑖𝑖2, which is identified up to its sign, 

as are 𝑏𝑏𝑖𝑖. The coefficient associated with 𝜀𝜀𝑖𝑖,𝑠𝑠−1,𝑡𝑡𝜀𝜀𝑥𝑥,𝑠𝑠−1,𝑡𝑡 is 𝑎𝑎𝑖𝑖𝑎𝑎𝑥𝑥. Since 𝑎𝑎𝑖𝑖 is identified, 𝑎𝑎𝑥𝑥 would 

be identified as well. Similarly, 𝑏𝑏𝑥𝑥 is identified. ∎ 

The stationarity of the BEKK model is studied in Boussama, Fuchs, and Stelzer (2011). Next, we 

prove that we need to ensure the spectral radius of 𝑨𝑨� +  𝑩𝑩�  is less than one for the stationarity of 

our model. In particular, this is equivalent to max(𝑎𝑎𝑖𝑖2, |𝑎𝑎𝑖𝑖𝑎𝑎𝑥𝑥|,𝑎𝑎𝑥𝑥2) +  max(𝑏𝑏𝑖𝑖2, |𝑏𝑏𝑖𝑖𝑏𝑏𝑥𝑥|,𝑏𝑏𝑥𝑥2) < 1. 

Proposition 4. (Covariance Stationarity) If max(𝑎𝑎𝑖𝑖2, |𝑎𝑎𝑖𝑖𝑎𝑎𝑥𝑥|,𝑎𝑎𝑥𝑥2) +  max(𝑏𝑏𝑖𝑖2, |𝑏𝑏𝑖𝑖𝑏𝑏𝑥𝑥|,𝑏𝑏𝑥𝑥2) < 1, the 

model is covariance stationary, and the stationary covariance Σ  is of the form vech{Σ} =

(𝐼𝐼 −  𝑨𝑨� −  𝑩𝑩�)−1𝑪𝑪�τ∞. 

The stationary solution of equation (2) is 

 vech�𝑸𝑸𝑠𝑠,𝑡𝑡� =  ∑ 𝑩𝑩�𝑙𝑙−1𝑨𝑨�vech{𝜺𝜺𝑠𝑠−𝑙𝑙,𝑖𝑖𝜺𝜺𝑠𝑠−𝑙𝑙,𝑡𝑡′ }∞
𝑙𝑙=1 + ∑ 𝑩𝑩�𝑙𝑙−1𝑪𝑪�vech{𝝉𝝉⌊(𝑠𝑠−𝑙𝑙)/𝑚𝑚⌋+1,𝑡𝑡}∞

𝑙𝑙=1 . (A.2.5)  

Proof. As in the proof of proposition 2.7 in Engle and Kroner (1995), denote by 𝔼𝔼𝑡𝑡 the conditional 

expectation 𝔼𝔼(∙ |ℱ𝑡𝑡), conditioning on the information set ℱ𝑡𝑡. 

 𝔼𝔼𝑠𝑠−𝐿𝐿vech�𝜺𝜺𝑠𝑠,𝑡𝑡𝜺𝜺𝑠𝑠,𝑡𝑡
′ � =  �(𝑨𝑨� + 𝑩𝑩�)𝑙𝑙−2𝑪𝑪�𝔼𝔼𝑠𝑠−𝐿𝐿vech{𝝉𝝉⌊(𝑠𝑠−𝑙𝑙+1)/𝑚𝑚⌋+1,𝑡𝑡}

𝐿𝐿

𝑙𝑙=2

+  (𝑨𝑨� + 𝑩𝑩�)𝐿𝐿−1vech{𝑸𝑸𝑠𝑠−𝐿𝐿+1} (A.2.6) 

As 𝐿𝐿 →  ∞, (𝑨𝑨� + 𝑩𝑩�)𝐿𝐿−1 → 0 if max(𝑎𝑎𝑖𝑖2, |𝑎𝑎𝑖𝑖𝑎𝑎𝑥𝑥|,𝑎𝑎𝑥𝑥2) +  max(𝑏𝑏𝑖𝑖2, |𝑏𝑏𝑖𝑖𝑏𝑏𝑥𝑥|,𝑏𝑏𝑥𝑥2) < 1. 
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As we have assumed that {𝑹𝑹t} are element-wise strong mixing processes, the elements in 𝝉𝝉𝑡𝑡 are 

the weighted sum of functions relating to {𝑹𝑹𝑡𝑡}. Mixing series are measure preserving. It can be 

seen that for the blocks 𝑏𝑏 = 1, 2, … , ⌊𝐿𝐿 𝑚𝑚⁄ ⌋,∑ (𝑨𝑨� + 𝑩𝑩�)𝑙𝑙−2𝑪𝑪�𝔼𝔼𝑠𝑠−𝐿𝐿vech𝝉𝝉⌊(𝑠𝑠−𝑙𝑙+1)/𝑚𝑚⌋+1,𝑡𝑡
𝑏𝑏𝑏𝑏
𝑙𝑙=(𝑏𝑏−1)𝑚𝑚+1  

will be mixing. Note that within block b, as vech𝝉𝝉⌊(𝑠𝑠−𝑙𝑙+1)/𝑚𝑚⌋+1,𝑡𝑡 does not vary with respect to s, 

therefore the value 𝔼𝔼𝑠𝑠−𝐿𝐿vech{𝝉𝝉⌊(𝑠𝑠−𝑙𝑙+1)/𝑚𝑚⌋+1,𝑡𝑡 stays the same within a block. As long as 𝐿𝐿 𝑚𝑚⁄  →

∞ , it is not hard to see that lim
𝐿𝐿→∞

∑ (𝑨𝑨� + 𝑩𝑩�)𝑙𝑙−2𝑪𝑪�𝔼𝔼𝑠𝑠−𝐿𝐿vech𝝉𝝉⌊(𝑠𝑠−𝑙𝑙+1)/𝑚𝑚⌋+1,𝑡𝑡
𝐿𝐿
𝑙𝑙=2 𝑝𝑝

→  (𝐼𝐼 −  𝑨𝑨� −

 𝑩𝑩�)−1𝑪𝑪�τ∞, where 𝝉𝝉∞ =  𝔼𝔼vech𝝉𝝉⌊(𝑠𝑠−𝑙𝑙+1)/𝑚𝑚⌋+1. 
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Table 1: Summary statistics for excess returns of 30 industry portfolios 
The table shows the yearly means, standard deviations, excess kurtosis, and skewness of the excess 
returns in percentage for the 30 industrial portfolios. The monthly sample covers the period from 
1945 to 2015. The data are from Kenneth French’s online data library. ***, **, and, * indicate 
significance at the 1%, 5%, and, 10% levels, respectively. 

 Mean St. dev Excess kurtosis Skewness 
Food  8.610*** 14.179 2.479*** −0.056  
Beer  9.767*** 18.303 4.868*** 0.412*** 
Smoke 11.512*** 19.633 2.870*** −0.065  
Games 9.370*** 23.862 2.519*** −0.186**  
Books 7.641*** 19.509 2.412*** −0.025  
Hshld 8.179*** 16.119 1.503*** −0.302*** 
Clths 8.400*** 20.611 3.115*** −0.083  
Hlth  10.165*** 16.960 1.903*** 0.066  
Chems 8.006*** 18.456 2.121*** −0.096  
Txtls 8.865*** 23.308 9.418*** 0.492*** 
Cnstr 7.811*** 19.776 2.431*** −0.210**  
Steel 6.138*** 23.904 2.335*** −0.240*** 
FabPr 7.751*** 20.155 2.513*** −0.384*** 
ElcEq 9.906*** 20.931 1.443*** −0.160*  
Autos 7.768*** 22.176 5.893*** 0.209**  
Carry 9.737*** 21.213 1.360*** −0.260*** 
Mines 6.400*** 23.920 2.220*** −0.173**  
Coal  9.475*** 32.400 2.714*** 0.143*  
Oil  9.232*** 18.199 1.062*** −0.005  
Util  7.096*** 13.343 1.098*** −0.201**  
Telcm 6.486*** 14.695 1.837*** −0.174**  
Servs 9.935*** 21.490 1.514*** −0.151*  
BusEq 9.681*** 22.163 2.051*** −0.311*** 
Paper 8.612*** 17.269 2.098*** −0.169**  
Trans 7.584*** 19.354 1.279*** −0.200**  
Whlsl 8.294*** 18.602 2.283*** −0.298*** 
Rtail 9.001*** 17.528 2.409*** −0.222*** 
Meals 10.068*** 20.450 2.478*** −0.405*** 
Fin  8.523*** 17.779 1.808*** −0.405*** 
Other 5.959*** 19.152 1.752*** −0.388*** 
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Table 2: Correlation matrix between principal components and macro variables 
This table shows the correlation between the first two principle components (PC1 and PC2) and 
the underlying macro variables: industrial production growth (IP), T-bill rate (TBL), term spread 
(TMS), inflation (INFL), default-yield spread (DFY), and default-return spread (DFR). The 
monthly sample covers the period from 1945 to 2015. 

 PC1 PC2 IP TBL TMS INFL DFY DFR 
PC1 1.000        
PC2 0.000 1.000       
IP 0.143 0.598 1.000      
TBL −0.885 −0.071 −0.038 1.000     
TMS 0.619 −0.558 −0.037 −0.440 1.000    
INFL −0.762 0.023 −0.044 0.499 −0.280 1.000   
DFY −0.283 −0.827 −0.281 0.334 0.268 0.101 1.000  
DFR 0.068 −0.277 −0.021 −0.039 0.085 0.005 0.077 1.000 
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Table 3: Parameter estimates of the component GARCH model 
The table shows the means and standard deviations of the parameter estimates from the bivariate 
component GARCH model in equations (1)–(5) for the monthly–weekly (M–W) and monthly–
monthly (M–M) frequencies for the 30 industry portfolios and the market, small-minus-bi, and 
high-minus-low factors. The sample covers the period from 1945 to 2015. 

  γι  γx  ai  ax  bi  bx 
  Mean Std dev Mean Std dev Mean Std dev Mean Std dev Mean Std dev Mean Std dev 

M–W 
Market 0.208 0.036 0.190 0.011 0.241 0.015 0.265 0.016 0.963 0.005 0.954 0.007 
SMB 0.201 0.038 0.012 0.005 0.290 0.047 0.262 0.015 0.942 0.021 0.949 0.008 
HML 0.209 0.032 0.062 0.004 0.251 0.023 0.272 0.006 0.959 0.008 0.958 0.002 

M–M 
Market 0.731 0.146 0.662 0.057 0.282 0.020 0.284 0.026 0.941 0.014 0.943 0.011 
SMB 0.693 0.150 0.008 0.031 0.284 0.030 0.319 0.021 0.939 0.020 0.880 0.037 
HML 0.803 0.192 0.305 0.057 0.289 0.028 0.313 0.016 0.927 0.028 0.939 0.014 
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Table 4: Macroeconomic influences on cross-sectional average of short-run betas 
The table shows the coefficients and t-values from univariate (Panel A) and multivariate (Panel B) 
regressions of the cross-sectional averages of the monthly–monthly short-run betas on the 
individual macroeconomic variables and the principle components, respectively. The intercepts of 
the univariate regressions are not tabulated. SMB = small-minus-big, HML = high-minus-low. The 
sample covers the period from 1945 to 2015. ***, **, and, * indicate significance at the 1%, 5%, 
and, 10% levels, respectively.  

Panel A. Univariate regressions 
 Market  SMB  HML 

 Coef. t-val Coef. t-val Coef. t-val 
IP 0.006  1.518 −0.141*** −6.457 −0.023  −0.919 
TBL 0.006*** 4.870 −0.009  −1.187 0.040*** 4.717 
TMS 0.006*** 4.870 −0.009  −1.187 0.040*** 4.717 
INFL 0.006*** 4.870 −0.009  −1.187 0.040*** 4.717 
DFY 0.006*** 4.870 −0.009  −1.187 0.040*** 4.717 
DFR 0.000  −0.135 −0.044*** −5.281 −0.020**  −2.104 

Panel B. Multivariate regressions 
 Market  SMB  HML 

 Coef. t-val Coef. t-val Coef. t-val 
Intercept 0.006  1.518 −0.141*** −6.457 −0.023  −0.919 
PC1 0.006*** 4.870 −0.009  −1.187 0.040*** 4.717 
PC2 0.000  −0.135 −0.044*** −5.281 −0.020**  −2.104 
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Table 5: Macroeconomic influences on individual short-run betas 
The table shows the coefficients and t-values from regressions of the individual monthly–monthly 
short-run betas on the first two principle components. Intercepts are included in all regressions but 
are not tabulated. SMB = small-minus-big, HML = high-minus-low. The sample covers the period 
from 1945 to 2015. ***, **, and, * indicate significance at the 1%, 5%, and, 10% levels, 
respectively. 

 Market  SMB  HML 
 PC1 PC2 PC1 PC2 PC1 PC2 

Food  0.020*** −0.014*** −0.008 −0.042*** 0.007 0.014 
Beer  −0.004 −0.015*** −0.003 −0.062*** 0.058*** −0.024** 
Smoke 0.038*** −0.012** −0.006 −0.001 0.050*** 0.035*** 
Games 0.014*** 0.002 0.010 −0.067*** 0.046*** −0.069*** 
Books 0.003 −0.017*** −0.019* −0.084*** 0.035*** −0.050*** 
Hshld 0.021*** 0.000 0.002 −0.054*** 0.025** −0.027** 
Clths 0.007 0.000 −0.012 −0.054*** 0.029** −0.020 
Hlth  0.019*** −0.014*** 0.005 −0.026*** 0.028*** 0.007 
Chems 0.009*** 0.001 −0.010 −0.043*** 0.049*** 0.001 
Txtls 0.006 −0.034*** −0.019 −0.122*** 0.014 −0.036** 
Cnstr −0.007*** 0.001 −0.019* −0.049*** 0.061*** −0.023* 
Steel 0.005 0.027*** −0.030*** −0.056*** 0.057*** 0.002 
FabPr 0.003 0.000 0.005 −0.052*** 0.056*** −0.051*** 
ElcEq −0.003 0.006* −0.003 −0.055*** 0.066*** −0.038*** 
Autos 0.009** −0.011** −0.023** −0.075*** 0.047*** −0.037*** 
Carry 0.009** 0.008** 0.018* −0.056*** 0.054*** −0.055*** 
Mines 0.002 0.028*** −0.017 −0.033** 0.046*** −0.009 
Coal  −0.014** 0.038*** −0.008 −0.021 0.071*** 0.007 
Oil  −0.013*** 0.007* −0.001 −0.006 0.038*** −0.009 
Util  0.010*** −0.017*** −0.003 −0.022*** 0.016** 0.015** 
Telcm 0.020*** −0.014*** −0.010* −0.024*** 0.007 0.018** 
Servs −0.007** 0.022*** −0.022*** 0.000 0.055*** −0.026* 
BusEq 0.010*** 0.006 −0.016 −0.055*** 0.038*** −0.040*** 
Paper 0.008*** −0.004 −0.012 −0.048*** 0.031*** −0.021* 
Trans 0.000 0.013*** −0.018** −0.037*** 0.054*** −0.035*** 
Whlsl 0.001 0.013*** −0.009 −0.012 0.053*** −0.038*** 
Rtail 0.006** −0.011*** −0.018** −0.051*** 0.016* −0.033*** 
Meals 0.016*** 0.018*** 0.003 −0.025** 0.031*** −0.036*** 
Fin  0.004 −0.021*** −0.012 −0.070*** 0.023** −0.016 
Other 0.001 −0.011*** −0.010 −0.032*** 0.047*** −0.017 
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Table 6: Dispersion regressions 
The table shows the coefficients and t-values from regressions of the cross-sectional dispersion in 
short-run betas on the first two principle components constructed on macro variables. SMB = 
small-minus-big, HML = high-minus-low. The sample covers the period from 1945 to 2015. ***, 
**, and, * indicate significance at the 1%, 5%, and, 10% levels, respectively. 

 Market  SMB  HML 
 Coef. t-val Coef. t-val Coef. t-val 
Intercept 0.134*** 43.618 0.212*** 33.695 0.245*** 31.142 
PC1 0.001  0.956 0.017*** 7.867 0.007*** 2.567 
PC2 0.000  0.371 −0.011*** −4.515 −0.012*** −3.992 
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Table 7: Total risk premia 
The table shows the risk premia estimated using unconditional betas, betas from a conventional 
bivariate GARCH model for weekly and monthly frequencies, and the total betas from the bivariate 
component GARCH model for the monthly–weekly (M–W) and monthly–monthly (M–M) 
frequencies. SMB = small-minus-big, HML = high-minus-low. The sample covers the period from 
1945 to 2015. ***, **, and, * indicate significance at the 1%, 5%, and, 10% levels, respectively. 

  Intercept  Market  SMB  HML 
  Coef. t-val Coef. t-val Coef. t-val Coef. t-val 

Unconditional Weekly 0.175*** 4.11 −0.010  −0.12 0.034  0.90 0.026  0.65 
Monthly 0.858*** 4.69 −0.464  −1.55 0.490*** 3.01 0.114  0.71 

Bivariate 
GARCH 

Weekly 0.147*** 4.21 0.001  0.02 −0.008  −0.27 −0.040  −1.10 
Monthly 0.643*** 3.86 0.039  0.14 0.166  0.93 0.007  0.04 

Component 
GARCH 

M–W 0.156*** 4.24 0.019  0.26 0.005  0.16 −0.013  −0.34 
M–M 0.661*** 4.08 −0.020  −0.07 0.463*** 2.64 0.217  1.23 
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Table 8: Long- and short-run risk premia 
The table shows the risk premia for long- and short-run betas from the bivariate component 
GARCH model with monthly–weekly (M–W) and monthly–monthly (M–M) frequencies. SMB = 
small-minus-big, HML = high-minus-low. The sample covers the period from 1945 to 2015. ***, 
**, and, * indicate significance at the 1%, 5%, and, 10% levels, respectively. 

   Long  Short 
 Intercept  Market  SMB  HML  Market  SMB  HML 
 Coef. t-val Coef. t-val Coef. t-val Coef. t-val Coef. t-val Coef. t-val Coef. t-val 

M–W 0.150*** 3.32 0.018  0.20 0.013  0.30 0.021  0.42 0.050  0.58 0.039  0.90 −0.019  −0.43 
M–M 0.844*** 4.79 −0.275  −0.89 0.645*** 3.01 0.321  1.40 0.818**  2.00 0.669**  1.87 0.402  1.29 
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Table 9: Variations in long- and short-run risk premia across data sets 
The table shows the risk premia estimated using long- and short-run betas from the bivariate 
component GARCH model for the monthly–monthly frequency using four data sets. SMB = small-
minus-big, HML = high-minus-low. The sample covers the period from 1945 to 2015. ***, **, 
and, * indicate significance at the 1%, 5%, and, 10% levels, respectively. 

  Long  Short 
 Intercept  Market  SMB  HML  M  SMB  HML 
 Coef. t-val Coef. t-val Coef. t-val Coef. t-val Coef. t-val Coef. t-val Coef. t-val 

25 BM–Size 0.876*** 4.29 −0.306  −1.05 0.371*** 2.55 0.356**  2.01 0.318*  1.76 0.054  0.32 0.102  0.65 
30 Industries 0.844*** 4.79 −0.275  −0.89 0.645*** 3.01 0.321  1.40 0.818**  2.00 0.669**  1.87 0.402  1.29 
49 industries 0.467*** 3.35 0.202  0.83 0.350**  2.41 0.284*  1.72 0.690*** 2.60 0.470**  2.31 0.105  0.61 
17 Industries 1.032*** 4.72 −0.513  −1.44 0.411*  1.74 −0.004  −0.02 1.169*** 3.79 0.038  0.12 −0.353  −0.65 
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Table 10: Recession and risk premia 
The table shows the risk premia for the entire sample, for NBER normal periods, and NBER 
recessions. Panel A shows the risk premia from the monthly total betas for the unconditional 
model, the bivariate GARCH model, and the component GARCH model with monthly–monthly 
frequency. Panel B shows the short- and long-run risk premia from the component GARCH model 
for the monthly–monthly frequency. SMB = small-minus-big, HML = high-minus-low. The 
sample covers the period from 1945 to 2015. ***, **, and, * indicate significance at the 1%, 5%, 
and, 10% levels, respectively. 

Panel A. Risk premia for total betas 
  Intercept  Market  SMB  HML 
 Coef. t-val Coef. t-val Coef. t-val Coef. t-val Coef. 

Unconditional  
Entire 0.858*** 4.69 −0.464 −1.55 0.490*** 3.01 0.114 0.71 

Normal 0.834*** 4.378 −0.159  −0.516 0.427**  2.493 0.231  1.382 
Recession 1.004**  2.128 −2.335*** −3.070 0.876**  2.063 −0.604  −1.459 

Bivariate GARCH 
Entire 0.643*** 3.86 0.039  0.14 0.166  0.93 0.007  0.04 
Normal 0.557*** 3.231 0.294  1.054 0.132  0.692 0.119  0.634 
Recession 1.174*** 2.751 −1.522**  −2.206 0.375  0.795 −0.681  −1.468 

Component GARCH 
Entire 0.661*** 4.08 −0.020  −0.07 0.463*** 2.64 0.217  1.23 
Normal 0.651*** 3.876 0.134  0.501 0.433**  2.404 0.316*  1.782 
Recession 0.720*  1.730 −0.964  −1.452 0.647  1.451 −0.389  −0.887 

Panel B. Risk premia for component GARCH betas 
   Long  Short 
 Intercept  Market  SMB  HML  Market  SMB  HML 
 Coef. t-val Coef. t-val Coef. t-val Coef. t-val Coef. t-val Coef. t-val Coef. t-val 

Entire 0.844*** 4.79 −0.275  −0.89 0.645*** 3.01 0.321  1.40 0.818**  2.00 0.669**  1.87 0.402  1.29 
Normal 0.777*** 4.253 −0.011  −0.033 0.668*** 3.148 0.443*  1.935 1.025**  2.369 0.753**  2.073 0.490*  1.642 
Recession 1.259*** 2.783 −1.897**  −2.395 0.507  0.966 −0.431  −0.760 −0.450  −0.420 0.156  0.174 −0.137  −0.185 
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Figure 1: Averages and standard deviations of total betas from the component GARCH 
model 
The graphs show the time-series average and standard deviations of the estimated total betas using 
the bivariate component GARCH model at the monthly–monthly (M–M) and monthly–weekly 
(M–W) frequency. The industries are sorted with respect to the size of the total beta estimated with 
monthly–monthly frequency. SMB = small-minus-big, HML = high-minus-low. The sample 
covers the period from 1945 to 2015. 
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Figure 2: Factor betas estimated by the component GARCH model 
The graphs plot the total (dotted line) and long-run (solid line) market, small-minus-big (SMB), 
and high-minus-low (HML) betas estimated by the component GARCH model at monthly–
monthly and monthly–weekly frequencies for the financial industry portfolio. The sample covers 
the period from 1945 to 2015. 
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