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1 Introduction

The number of nonlinear models in the macroeconometric literature is large.
A restriction imposed for this article is that only parametric time series
models are considered. This excludes, among other things, nonlinear cross-
sectional models and nonparametric time series models. Nonlinear panel
models constitute an exception because they bear rather strong resemblance
to some of the nonlinear models discussed in this article. Deterministic mod-
els (with random noise) that have occasionally been applied to macroeco-
nomic time series are not reviewed either. Linear models with breaks may
also viewed as nonlinear, but the huge literature of structural breaks is omit-
ted from consideration here.

The focus will be on models that do not contain many theory restrictions
on their structure. Univariate models naturally belong to this category, and
in the vector case, nonlinear vector autoregressive models will receive most
of the attention. Further, all models to be highlighted are conditional mean
models. Although models of the conditional variance have also been applied
to macroeconomic time series, see for example the seminal contribution by
Engle (1982), they are much more popular in financial applications and are
left outside this work.

Since applications of nonlinear vector models to macroeconomic time se-
ries have become common later than applications of their univariate coun-
terparts, the former models will receive more attention than the latter. Pre-
sentations of nonlinear vector models are accompanied by relevant macro-
economic examples, so the reader can see where and how the models can and
have so far been applied.

The plan of the article is as follows. Univariate models are considered in
Section 2 and dynamic single-equation ones in Section 3. Multivariate (vec-
tor) models are the topic of Section 4. T'wo nonlinear panel models are briefly
presented in Section 5. Section 6 contains final remarks and suggestions for
further reading.

2 Univariate autoregressive and single-equation
regression models

2.1 Switching regression and smooth transition models

Models with more than one regime have a long history in statistics, time se-
ries analysis and econometrics. The first models were regression models with
independent observations. Quandt (1958) considered a switching regression



model in which the regression equation, including the error term, switches
according to a random switch variable. As an example Quandt used a con-
sumption equation in which a switch in the regime occurs when the interest
rate exceeds a certain value. Let y; be the consumption, x; the income and
Ji the interest rate. The model is

Y :G+b$i—|—€1i (1)

for j; > j, and
Y =20C + d&?z + €9; (2)

otherwise, where (a,b) # (c,d). The independent errors ey; ~ N(0,0%,),
k =1,2, 02 # o3. The author suggested that the parameters of the model
be estimated by maximising the log-likelihood using a grid over the values
of j;. (In this discussion, however, he used time as the switch variable.) Due
to discontinuity of the log-likelihood, this is by and large how parameter
estimation is carried out in all switching regression models. Testing the
hypothesis that there is only a single regime was also considered. Quandt
(1958) acknowledged the fact that the true switch-point, if any, is unknown,
but time was not yet ripe for a rigorous analysis of this testing problem.

Bacon and Watts (1971) argued that instead of having an abrupt shift
from one regime to the other, one could make the transition smooth. Using
previous notation, their smooth transition model has the form

yi = a+bxr; + (c+ dxy)G(z;) + & (3)

where the transition function G(x;) is a bounded continuous function, monotonic
in x;. The authors used the two-parameter hyperbolic tangent function that

is bounded between zero and one but pointed out that many other functions
would be equally possible. They assumed the error variance to be constant
for all values of G(z;) and adopted a Bayesian approach to estimating the
parameters of the model. The application in Bacon and Watts (1971) was
not an economic one but had to do with a chemical.

Interestingly, in the econometrics literature, Goldfeld and Quandt (1972,
pp. 263-264) independently presented the smooth transition regression model
as a solution to the estimation problem in the switching regression model (1)
and (2) with switch variable j;. The idea was to approximate the switch by
a smooth continuous function to make the log-likelihood well behaved and
maximise the likelihood using standard nonlinear optimisation algorithms.

These models were adapted to time series a few years later. The break-
through in the univariate case, called the threshold autoregressive (TAR)
model, came with the paper by Tong and Lim (1980). The model has the



form
,

EDICATEEN (CRESTESN (4)

j=1

where I(A) is the indicator function: I(A) = 1 when A is true, and zero
otherwise, cg,cq,...,c, are threshold parameters, ¢¢ = —o0, ¢, = 00, and
w; = (Lyi-1, - ¥—p). If 7 = 1, the model is linear. Furthermore, ¢; =
(G0, P1js - p;) such that ¢; # ¢@; for i # j, and g5, = 0,e, with {e;} ~
iid(0,1), and o; > 0, j = 1, ...,r. The TAR model is called self-exciting when
the threshold variable is a lag of y; as in (4). In many economic applications
the TAR model is assumed to have two regimes:

yr = (O wy +e1) (st < c1) + (Phwy + e9){1 — I(s; < 1)} (5)

A comprehensive account of the model and its statistical properties can be
found in Tong (1990).

The autoregressive counterpart of the smooth transition model (3) was
introduced by Chan and Tong (1986). The smooth transition autoregressive
(STAR) model is

Yt = ¢I1Wt + ¢/2WtG(ytfd) + € (6)

where, following previous notation, ¢;; = oe; with {e;} ~ iid(0, 1), and o > 0.
The transition function G(y;—4) of Chan and Tong (1986) is the cumulative
distribution function of the standard normal variable. The logistic function
introduced by Maddala (1977, p. 396) has become the most popular choice
in the literature. Teréisvirta (1994) suggested pairing the logistic function

Gr(Wi—a) = (1 +exp{—y(yr—a—)}) ", 7 >0 (7)

with the exponential function

Ge(yi-a) = 1 — exp{—y(r—a — ¢)*},7 > 0 (8)

previously used in a slightly more restricted form in the exponential autore-
gressive (EAR) model by Haggan and Ozaki (1981). When v — oo in (7),
the model converges to a two-regime TAR model, whereas the EAR model
or the more general ESTAR model (6) with (8) becomes linear. Terésvirta
(1994) discussed the choice between the logistic and the exponential transi-
tion function and STAR model specification more generally as well. Jansen
and Teréisvirta (1996) suggested another variant of the logistic function that
is close to the exponential transition function but contains one parameter
more than the latter. A STAR model with this transition function converges
to a special case of a TAR model with three regimes when v — oco. The
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LSTAR model may be generalised to a multiple-transition model as in van
Dijk and Franses (1999), but many economic applications rely on a single-
transition model.

A few macroeconomic time series such as interest rates and unemployment
rate are rather persistent. Many authors tend to model them as random
walks without drift. Lanne and Saikkonen (2002) provided a useful nonlinear
alternative that mimics the behaviour of these series but can be stationary.
Their model is a TAR model in which only the intercept is switching:

Yy = Z bo;l(ci1 < yi-a < ¢;) + Wi+ 9)
j=1
where ¢ = (¢y,...,¢,)" and w; = (yi—1,...,¥1—p)". Given that the intercept
remains bounded, this model has the same stationarity conditions as the
linear AR model. The authors fitted their model to two monthly time series:
the Swiss Franc Euro exchange rate and a UK Treasury bill rate.

The argument in the indicator function in (5) may be replaced by an
unobservable discrete stochastic variable s; that obtains r different values
s¢ € {1,...,r}, say, and has a (typically first-order) Markov structure. The
transition (or staying if i = j) probabilities

pij = Pr{s; = jls;-1 =i}, 4,5 =1,..,r (10)
determine the probability for the process to switch from regime ¢ to regime
J at time ¢ and are parameters to be estimated. The resulting model is the

Markov switching or hidden Markov autoregressive (MSAR) model. It may
be written as follows:

Y = Zd);WtI(St =J)+e (11)
j=1
with ¢, # ¢; for i # j, where ¢;;, = o0&, with {g;} ~ iidN(0,1). Douc,
Moulines and Rydén (2004) considered this model and proved consistency
and asymptotic normality for the maximum likelihood estimators of its pa-
rameters. Maximum likelihood estimation of the MS regression model was
already studied by Lindgren (1978).
Hamilton (1989) introduced a different MSAR model. The latent variable
has the same values and transition probabilities as (11) with (10) but a
different structure:

ye = p(sy) + Z Gifyi—i — p(se—i)} + &
= {ul(s) - Z Gipt(se—i) } + Z OiYi—i + &4 (12)
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where p(i) # u(j) for all @ # j. From (12) it is seen that the model bears
similarity to (9) in that only the intercept is switching. If » = 2, as is often
the case in macroeconomic applications, the latent switching intercept can
obtain 2P+ different values.

2.2 Time-varying parameter models and Bayesian tech-
niques

Another nonlinear model may be constructed from a linear AR model by
making its coefficients random. An early example is the autoregressive model

Yy = d)/ltwt + & (13)

where ¢, = (¢y;, ..., ¢,,) and gy ~ iidN(0, 0), see Andel (1976) and Nicholls
and Quinn (1982). The time-varying elements ¢;, ~ iid(¢;, 7). The survey
by Swamy and Tavlas (1995) concentrates on random coefficient regression
models and contains a number of macroeconomic examples. In many macro-
economic applications, the random coefficients are instead made persistent
by assuming that they follow a random walk:

Git = Qi1 + NitVit

where \;; > 0, i = 1,...,p. Furthermore, vy ~ iidN(0,0%), i = 1,...,p, and
independent of £;,. When \; = 0 for all i and ¢, (13) is a linear autoregressive
model. In order to prevent {y;} from exploding during the sample period,
the parameters \; have to be small. Koop and Potter (2001) showed how
TVP-AR models are estimated using suitably chosen prior distributions and
numerical techniques. Their Bayesian approach also allows model compar-
isons using Bayes factors.

Bayesian methods also enable simultaneous comparisons of large numbers
of time series models. Koop and Potter (2000) discuss building nonlinear
models with these methods and apply them to two macroeconomic series, the
growth rate of the quarterly real US GDP, 1954(1)-1987(4), and the annual
British industrial production index, 1700-1992. They define 11 classes of
models, linear models, linear models with one or two structural breaks, linear
models with one or two outliers and two- and three regime TAR models. In
addition, they specify each model with a different number of lags and with
homoskedastic or heteroscedastic errors. The idea is to compute the posterior
model probability for every model and find out the most probable model or
models. In the case of the US GDP, this approach favours a model with
a single structural break and heteroskedastic errors, whereas a three-regime
TAR model with homoskedastic errors has the highest posterior probability
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for the industrial production index. Since publication of Koop and Potter
(2000), increasing computational power has no doubt increased the attraction
of model comparisons of this kind.

2.3 Other applications

Univariate STAR and TAR models have been applied to a large number
of macroeconomic variables, including industrial production, unemployment
and inflation, to name perhaps the most important ones. The main reason
for nonlinearity has been asymmetry. For example, dynamic behaviour of
the growth rate of industrial production has in many countries been different
during recessions and expansions. Early examples of this can be found in
Terdsvirta and Anderson (1992) who fitted STAR models to quarterly series
of growth rates of industrial production in various countries. Similarly, the
MSAR model has been applied to characterizing business cycles, in which
case the latent variable represents the phase of the cycle. See for example
Montgomery, Zarnowitz, Tsay and Tiao (1998) for (11) with (10) and Hamil-
ton (1989) for (12). In macroeconomic applications, the number of regimes
in MSAR models is typically chosen a priori and not determined from the
data.

3 Dynamic single-equation regression models

Augmenting a univariate nonlinear autoregressive model by exogenous vari-
ables leads to a dynamic nonlinear regression model. To give an example,
the smooth transition regression (STR) model is obtained as

Y = Q1w + oW G (sy) + Pix; + ¥ox,G(sy) + &

where 1] # 15, x; = (214, ..., Tx)' is a vector of at least weakly exogenous
variables, G(s;) is (for example) a logistic transition function, and s; is a
stationary transition variable. Possibilities include s; = zj; and s; = y;q,
but s; may also be an exogenous variable not in x;. STR models have been
applied to modelling money demand in Germany and the UK. For an ap-
plication to the long annual UK money demand series, originally considered
and modelled by Ericsson, Hendry and Prestwich (1998), see Teriisvirta and
Eliasson (2001). A comprehensive model building strategy for STR models
is discussed in Terésvirta (1998).



4 Vector nonlinear models

Univariate time series models, linear and nonlinear, can be used for forecast-
ing, but describing relationships between macroeconomic variables requires
multivariate models, unless exogeneity assumptions can be made. Many of
the models fitted to macroeconomic time series are general time series models
that have found application in a wide range of areas. They typically nest a
standard linear vector autoregressive (VAR) model and are generalisations
of corresponding univariate models. A few frequently applied nonlinear VAR
models will be discussed below.

4.1 Disequilibrium models

Before considering VAR models, however, the focus will be on a family of
models arising from economic theory propositions. There exist situations in
economics in which markets do not clear, that is, the ex ante demand and
supply quantities cannot be equated, i.e., the market is in disequilibrium. For
example, a disequilibrium in labour markets may be due to wages that do
not adjust downwards. Government—controlled apartment rents are another
example of this type of disequilibrium. Further, credit rationing may create
a market in disequilibrium: there may be excess demand because the banks
may not lend money to firms that they consider too risky recipients of loans.

Fair and Jaffee (1972) were the first to define a general disequilibrium
model. It contains both a demand and a supply equation. Borrowing the
notation in Teréisvirta et al. (2010, Chapter 2), the demand equation equals

D, = apx + aip, +¢f (14)

where D; is the quantity demanded at time ¢, x” is the vector of variables,
except the price, affecting the demand, p, is the price at time ¢, a; < 0 (the
price has a negative effect on demand) and e is an error term. The supply
equation is

S = Box; + Pipe + &7 (15)
where S; is the quantity supplied at time ¢, x; is the vector of variables,
other than the price, affecting the supply, 5, > 0 (the price has a positive
effect on supply) and €7 is an error term. When D; # S;, only the smaller
one of the two quantities is observed. This is indicated by completing (14)
and (15) by the 'min-condition’ for the observed quantity:

D™ = min(Dy, ;). (16)

The resulting system defined by (14), (15) and (16) is strongly nonlinear. It
does not nest a linear system.



Fair and Jaffee (1972) applied the model to the demand and supply of
housing starts in the US. The number of housing starts is a nonstationary
variable, and both the demand and supply equation contain a time trend
to reflect different nonstationarities in these two equations. Estimation is
carried out by quantifying the difference between demand and supply as
follows:

Dt - St == 'YApt, Y > 0. (].7)

This means that the min-condition is replaced by (17). This leads to a single-
equation switching regression model

1
D = (x4 awpr — ;Apt +eP)I(Ap, > 0)
1
+ (Box? + B — SApi+ )1 - I(Ap; > 0)}

where the switch is instantaneous (observed at the same time as p;) and the
switch-point known. The error process switches as well. An increase in price
(in the application a lagged mortgage interest rate) decreases demand for
housing starts whereas a decrease increases the supply.

For maximum likelihood estimation of disequilibrium models with the
min-condition, see Maddala and Nelson (1974). A survey of disequilibrium
models can be found in Maddala (1983, Chapter 10). For a Bayesian ap-
proach and more discussion about the model, see Bauwens, Lubrano and
Richard (1999, Section 8.6).

4.2 Vector smooth transition regression model

The first VAR model to be considered here is the Logistic Vector STR
(LVSTR) model. It is a generalisation of the single-equation STR model
to the vector case. Following Hubrich and Terdsvirta (2013), the LVSTR
model of order p may be defined as follows:

P
yi = to+ Gy, c8)p + Z{q)j + G(v,¢58) ¥ty

=1

(T + v, 3)B)x, + & (18)

where y; is an m x 1 vector of stationary variables, x; is an n x 1 vector of
stationary exogenous variables, p, and p; are m x 1 intercept vectors, ®;
and ¥;, j =1,...,p, are m X m parameter matrices, and I' and & are m x n
parameter matrices. Each row of the composite matrix [p,, ¥y, ..., ¥,, 5]



has to contain at least one nonzero element. The m x m transition matrix
G(7, c;s;) has the following form:

G(’Ya C; St) - dla’g{Gl (’717 Ci, Slt)7 sty Gm(7m7 Cm, Smt)} (19)

where s;;, © = 1,...,m, are stationary transition variables. The error vector
g ~ 1id(0, 3) where 3 > 0. When G;(v;,¢;,55¢), j = 1,...,m, are standard
logistic functions,

Gi(vjscj.850) = (L+exp{—;(s;: —¢;)}) 7", 7; > 0 (20)

and I' = E = 0, the model (18) is stable if both [I,, — >>"_, ®;27| # 0 and
Ly — >0 (®5 + ;)27 | # 0 for |2 < 1.
A special case found in many applications is the one in which (19) is
simplified to
G(’ch;st) = G(,}/?C; St)Im (21)

where a single transition function controls the shift in all equations. Camacho
(2004) considered this model and devised a modelling strategy for it. Re-
placing the transition function in (21) by I(s; < ¢) and setting I' = 2 = 0 in
(18) yields the two-regime Vector Threshold Autoregressive (VTAR) model
by Tsay (1998).

Neither LVSTR nor the VTAR model is identified when the data-generating
process is linear. To avoid the estimation of unidentified models, it follows
that linearity has to be tested before fitting either of the two models to the
data.

Interaction between the real and financial sectors of the economy has
become under scrutiny especially after the financial crisis of years 2007—
2008. Schleer and Semmler (2015) apply the LVSTAR model (I' = E = 0
in (18)) to study this interaction in 11 euro area countries. They assume
that there may be two extreme regimes: a low and a high (financial) stress
regime. To study the effects of financial stress to the economy they construct
for each country a two-dimensional LVSTAR model with the growth rate and
the corresponding ZEW Financial Condition Index (FCI) for the euro area
financial conditions as variables. The transition variable s, in (21) is a lag
of FCI of that country. Linearity is tested and rejected before specifying
and estimating a nonlinear model. Generalised impulse response functions
(GIRF), see for example Koop, Pesaran and Potter (1996) or Terisvirta et al.
(2010, Chapter 15), computed from the estimated model are used to interpret
the results. They show that the response to a financial shock is stronger and
longer-lasting during financial stress than when the stress is low.

Caggiano, Castelnuovo and Figueres (2017) consider the effect of policy
uncertainty on central macroeconomic variables of the US economy during

9



different phases of the business cycle. The policy uncertainty is measured by
an index constructed by Baker, Bloom and Davis (2016). The variables are
the six-term moving average of the monthly growth rate of industrial pro-
duction, the unemployment rate, the year-on-year CPI inflation and the fed-
eral funds rate. In addition, the model contains a binary policy uncertainty
dummy variable based on the uncertainty index. After testing and rejecting
linearity, the authors construct an LVSTAR model for these variables. A
smoothed and lagged growth rate of the industrial production functions as
the transition variable in (21). Even here, GIRF are used to illustrate the
results. They show that exogenous policy uncertainty shocks have stronger
effects on the economy in recessions than in expansions. See also Caggiano,
Castelnuovo and Groshenny (2014) for an application of the LVSTAR model
to estimating the effects of policy uncertainty on the US unemployment rate.

4.3 Vector smooth transition error correction model

In the previous section it has been assumed that the variables in the model
are stationary. Many macroeconomic variables are, however, nonstationary
and some of them 'move together’, in which case they may be assumed (or
shown) to be linearly cointegrated. Based on this assumption, Gefang (2012)
used a Vector Smooth Transition Error Correction (VSTEC) model to study
the money-output relationship. An interesting thing is that she estimates the
model using Bayesian techniques. Bayesian methods in general are frequently
used in the estimation of nonlinear VAR models because they tend to alleviate
numerical problems present in the estimation of some of them.

The Logistic VSTEC model in Gefang (2012) is obtained by reparameter-
ising the LVSTAR model, (18) with I' = E = 0, and the transition function
(21) as follows:

Ay, = Dwy+G(v,c;8)Dwy +Igyi—1 + G(v, ¢; ) Iy

p
+ Z{‘i)] + G("}/, C; St)‘I’j}Ay'tfj + E¢, Y > O (22)

J=1

where Ay, is assumed stationary in the mean, D; contains the deterministic
components (in (18) the intercept, in (22) the intercept and the linear time
trend), and the m x m matrix IT; = A;B}, with rank(A;) = rank(B;) = ¢; <
m and ¢ = 0,1. Note that the ranks need not be equal. The cointegrating
relationships defined in B; are thus assumed to change with the regime,
which would probably complicate the classical specification and estimation
procedure quite substantially. Details of how this and other difficulties are
handled in the Bayesian framework are discussed in the paper. It may be
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mentioned, however, that to avoid the aforementioned identification problem:
(22) is not identified if the true data-generating process is linear, the prior
distribution for the slope parameter v is bounded away from zero. There
are 18 candidates for the transition variable s;, and the Bayesian approach
allows one to investigate all of them.

The model in the application is a four-variable LSTVAR consisting of
the seasonally adjusted industrial production index, the seasonally adjusted
M2 money stock, the producer price index for all commodities and the sec-
ondary market rate on three-month Treasury bills. The observations are
monthly US data from 1959(1) to 2006(12). Bayesian posterior probabilities
are calculated for 3138 models in total. The models with the highest pos-
terior probability have one factor in common: they all suggest that money
nonlinearly Granger causes output.

4.4 Vector threshold autoregressive model

As already mentioned, replacing the transition function in (21) by I(s; < c¢)
and setting I' = E = 0 in (18) yields the two-regime Vector Threshold
Autoregressive (VTAR) model by Tsay (1998). The author developed a
useful strategy for building such models. The application in that paper is
to financial series and is therefore not considered here. For an interesting
macroeconomic application we turn to Galvao (2006) whose VTAR model
has an extra twist: it also allows for a break in the series. The Vector
Structural Break Threshold Autoregressive (VSBTAR) model is defined as
follows:

p p
ve = (b + Z ‘I’gl)Yt—j)]z(St—d <)+ (p? + Z ‘I’§-2)Yt—j)
j=1 j=1
X {]_ — Iz(st—d < Tl)}]lt(t < to)
p
+ (1 + >8Py, L(siea <)+ (1P + D 8Py, )
j=1 j=1

X {1 —=1(s—qg <rm3)}{1 = L(t <to)} +e& (23)
where s; is the threshold variable, d > 0, &, ~ iid(0, X), ; and r3 are switch-
points and t, is a break-point. When I; = 1, (23) collapses into a VTAR

model, whereas when I, = 1, the model is a linear VAR with a break at
t = to. The standard two-regime VTAR model thus becomes

3

P P
Yt = (N(l) + Z ‘I)g‘l)}’t—j)[(st—d <)+ (M(Q) + Z Q)EQ)Yt—j)
j=1

J=1

) {1 —I(s,-q < 11)} + €0 (24)
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The structure of (23) resembles that of the single-equation time-varying
STAR model of Lundbergh, Terisvirta and van Dijk (2003) with the exten-
sion that 1 # r3. The model is aimed at describing the relationship between
economic growth and interest rate spread. The purpose is to investigate
the claim that the spread forecasts economic growth in recessions but not
in expansions. The possibility that the relationship is changing over time is
considered as well.

Specification of VSBTAR models requires care due to the double tran-
sition structure. Since the model is only identified under the alternative,
Galvao (2006) applies supremum linearity tests. For these tests, see for in-
stance Hansen (1996) or Terésvirta et al. (2010, Section 5.5). The para-
meters are estimated by conditional least squares or by maximum likelihood
conditionally on the switch-points r1,r3 and ty3. A three-dimensional grid is
formed for these three parameters, and the (global) optimum of the objective
function (log-likelihood or the sum of squared errors) yields the estimates for
them.

The VSBTAR model is applied to predicting recessions in the US econ-
omy. There exists literature suggesting that interest rate spreads are useful
in predicting output growth only when the growth rate is negative but not
otherwise. This relationship could be described by a VITAR model. But
then, Galvao (2006) also cites research suggesting that spread may have lost
its predictive power, which could be investigated by a linear VAR model
with breaks. Considering these proposals jointly leads to the bivariate VS-
BTAR model whose variable are the output growth and the spread between
the long- and short-term interest rates. The observations are quarterly from
1953(2) to 2002(4). The model selection procedure supports the choice of
the VSBTAR model.

It is not possible here to describe the forecasting procedure or how suc-
cess in predicting recessions is measured. Galvao (2006) reports that the
VSBTAR model performs better than its competitors, VAR and VTAR, in-
sample, whereas the latter two models are 'more robust’, meaning that they
outperform the more complicated VSBTAR model out-of-sample. The results
show that the estimate of the break-point in the VSBTAR model is changing
when new data become available. This may not be surprising because the
model allows exactly one break, and it may be reasonable to expect the most
conspicuous shift in parameters to be the one determining the location of the
sole break-point.
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4.5 Vector threshold cointegration

The LVSTEC model (22) was preceded by a vector threshold cointegration
(VTC) model that Balke and Fomby (1997) introduced. The VTC model
with three regimes can be written as follows:

3 p—1
Ay; = Z(Nj +a;B8y 1+ Z U Ay, + ) (cjo1 < 511 < ¢) (25)
j=1 k=1

for p > 2, where B and «;, j = 1,2,3, are m x 1 vectors and {r—:gj)} is a
sequence of independent but not identically distributed vectors with mean
0 and covariance matrix ;. In this model, the cointegrating relationship
s; = B'y; and the switch variable equals s;_;. If ¢; < 0 and ¢y > 0 (assuming
as before that ¢y = —oo and ¢3 = +o0) and, furthermore, as = 0, the
model describes a situation in which there is a band around the equilibrium
s¢ = 0 such that within the band no adjustment towards the equilibrium takes
place. When p = 1, the lags of Ay; vanish from the model. Saikkonen (2008)
considered (25) assuming \Il,(gj) = WU, and sgj) =€,7=12,3;k=1,...,p—1.
Furthermore, he also discussed the case in which instead of three distinct
regimes the transition from one extreme to the other is smooth and described
by two logistic transition functions.

The VTC model is often applied to describing the relationship between
two interest rates. The argument is that transaction costs prevent the ad-
justment inside a band. In these cases often 3 = (1, —1). Besides, it may be
assumed that the band is symmetric around zero: ¢; = —cy in (25). Bec
and Rahbek (2004) studied a pair of short-term and long-term German in-
terest rates using a VI'C model. Their univariate tests rejected the unit root
hypothesis against a stationary threshold alternative for both series. The
authors then fitted a univariate TAR model to B'y; and, using a supremum
linearity test, found that linearity was rejected. From this they concluded
that the two series may be nonlinearly cointegrated and fit a VTC model to
them.

Anderson (1997) suggested another nonlinear adjustment mechanism to
consider the treasury bill market. The model is (25) except for two differ-
ences. First, the indicator function in (25) is replaced by the exponential
transition function (8) with ¢ = 0 (as defined in the paper, s; = 0 is the equi-
librium point at time t). second, the delay d = 1, and third, &; ~ iid(0,%).
This makes the adjustment smooth and nonlinear such that the drift towards
the equilibrium first increases and becomes constant when |s;, ;| becomes
sufficiently large. The argument for this transition function is that different
treasury bill owners face different transaction costs, in which case a sharp
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band is not a suitable description of the aggregate.

It may be mentioned that the (bivariate) vector threshold error correction
model is substantially generalised by Cai, Gao and Tjgstheim (2017) who
apply their model to characterising the relationship between the US federal
funds rate controlled by the Federal Reserve and the three-month Treasury
Bill rate. The results suggest that 'the Federal Reserve tends to adjust the
federal funds rate as a response to the market interest rates.’” A detailed
treatment of the model is not possible here.

4.6 Vector Markov Switching Autoregressive models

Like the univariate smooth transition or threshold autoregressive models, the
univariate Markov switching model can also be generalised to a vector model.
The two-regime Vector Markov Switching Autoregressive (VMSAR) model
may be obtained by replacing the indicator function in (24) by I(s; = i)
where s, is latent and ¢ = 1, 2. The dynamic behaviour of the latent variable
is defined as in the univariate case. For a review, see Krolzig (1997).

VMSAR models are quite popular in macroeconomics. As their univari-
ate counterparts, they are suitable for situations in which it can be assumed
(sometimes because of lack of information) that the probability of switching
regimes is constant over time and does not depend on any observable indica-
tor variable. Like the VTAR model, the VMSAR model nests a linear VAR
model. It has the same property as the VTAR model: the VMSAR model is
not identified when the true model is a linear VAR.

Warne and Vredin (2006) considered the question whether the unemploy-
ment is more (or less) volatile when inflation is high than when it is low.
This is done for three countries, the US, the UK and Sweden. We choose
the US to illustrate their work. The authors begin by constructing a theory
model and continue by deriving its time series counterpart, a bivariate VAR
model. Since there is a possibility that the two series are cointegrated, they
first estimate a linear error correction VAR model. Misspecification tests for
the model based on monthly US data from 1959(1) to 1998(12) show that
the estimated model is not satisfactory: the errors are autocorrelated and
seem to contain conditional heteroskedasticity.

The authors next consider a bivariate VMS error correction (VMS-EC)
model for y; = (yrnre, yue)'- It has the following form:

2 p—1
Ay = (u+ a8y + > OV Ay )I(si=j)+e  (26)
j=1 k=1

where €; ~ iid(0,X). The cointegrating vector 8 = (1, —f), where — 3 is
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the coefficient of yy ;. Before fitting (26) to the data, linearity (one regime)
is tested against two regimes using the test by Carrasco, Hu and Ploberger
(2014) and rejected. It should be noted that in most macroeconomic appli-
cations linearity is not tested but the number of regimes is simply assumed
known. Testing is important, however, for the reason already mentioned: the
MS-AR model, like the TAR and STAR models, is not identified when the
true relationship is linear.

It is common to estimate the cointegrating relationship from the linear
VAR and keep it fixed in (26). Warne and Vredin (2006) instead construct a
grid for 3;; and estimate the other parameters conditionally on values of 3,
in the grid using the EM algorithm. The estimated equations are evaluated
using misspecification tests in Hamilton (1996) and their vector generalisa-
tions and found adequate. The authors estimate a 95% confidence interval
for By (its estimate equals B = 0.038) by using a grid as explained in the
paper. The interval contains zero, and the conclusion is that inflation is actu-
ally stationary, whereas there is may be a stochastic trend in unemployment.
The estimated regimes are interpreted as low and high inflation ones, and
the outcomes pertaining to the original research question are discussed.

When the dimension of the model increases, estimation of VMSAR models
often becomes numerically very demanding. In such a situation, Bayesian
methods may help. It is not possible to discuss Bayesian VMSAR models
in detail here, but a reference is made to the paper by Sims, Waggoner and
Zha (2008). The authors show how parameter restrictions in the transition
matrix P = [p;;], where p;; is defined as in (10) make the VMSAR model a
flexible and applicable tool in many situations. For example, it may be used
to model structural shifts as well as incremental changes in parameters over
time.

Sims et al. (2008) discuss the issue of constructing prior distributions for
parameters. They consider the case in which both the mean and the variance
of the process are changing over time. They develop a new estimation method
that is computationally more efficient than the widely used Monte Carlo
EM method. The application in the paper is to the trivariate vector series
consisting of the logarithm of the GDP, an inflation variable and the federal
funds rate. Nine different models are specified and estimated. The ones with
three or four regimes in which only the variance is switching are found to
have the best fit, measured by the Marginal Data Density, a concept defined
in the paper.
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4.7 Vector random coefficient autoregressive models

Assuming coefficients of a linear VAR model to be random generates another
family of nonlinear models. Consider the following VAR model

p
yi = Z Dy +e (27)

Jj=1

where y; is an m x 1 vector, ®;;, j = 1,...,p, are stochastic m x m pa-
rameter matrices, and €; ~ iid(0,X). Define the m x pm matrix ®;, =
(®14, ..., P,) and vectorise it into a pm*-vector ¢, = vec(®;). Nicholls and
Quinn (1981a,b) assumed that ¢, ~ iid(¢, ) and considered stationarity
conditions and asymptotic properties of least squares estimators of parame-
ters of this vector random coefficient autoregressive (VRCAR) model. More
recently, as in the univariate case, in economic applications the focus has
been on (27) such that ¢, = ¢,_; + v, with v, ~ iidN (0, Q). Furthermore,
cov(es, vy) = A. This means that the sequence {¢,}, instead of being iid, is
a random walk without drift. The paths of the individual coefficients may
diverge and make {y;} an explosive sequence.

Cogley and Sargent (2001) apply this VRCAR model to studying the re-
lationship between inflation, unemployment and the real interest rate. The
approach is Bayesian, and the values of ¢, are obtained by simulation after
postulating prior distributions for the starting-value ¢, and the hyperpara-
meters X, 2 and A. However, since the variance of inflation in this model
approaches infinity over time, which, as the authors write, ’cannot be opti-
mal for a central bank that minimizes a loss function involving the variance
of inflation’, in simulations the draws from the conditional distribution of ¢,
given ¢,_; and Q leading to explosive roots of the lag polynomial of (27)
at time ¢ are discarded. In fact, the variance of the other two variables ap-
proaches infinity as well. This restriction implies that {y,;} is persistent but
stationary with unknown dynamic properties. Primiceri (2005), applying a
similar (but not identical) model, does not impose such a restriction, the
argument being that the observation period is so short that the coefficients
do not have time to explode. Whether or not this happens also depends on
the properties of €2.

The argument for fitting a VRCAR model to this dataset is that the dy-
namic relationship between the variables in y; is constantly changing, and a
model with random walk parameters is therefore better suited for character-
ising the relationship than, say, a VAR model with constant parameters. In
the present example, the reason for fitting this reduced form (in Primiceri’s
case structural) model to the data is that its time-varying parameter esti-
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mates are expected to provide information about changes in monetary policy
over the years.

In applications of nonlinear models that nest a linear VAR, testing linear-
ity against these models is possible and, as has been discussed, even necessary.
There does not seem to exist a test of a linear VAR against the type of pa-
rameter change in the VRCAR model of Cogley and Sargent (2001). (There
does not seem to exist a test in which the VRCAR model would be the null
hypothesis.) The test by Nyblom (1989) comes closest as its alternative is
that the parameter vector is a random walk. In Cogley and Sargent (2005)
the test is carried out and the null hypothesis is not rejected. Some tests of
the linear VAR against a structural break yield the same result. The authors
argue that these tests have low power against their VRCAR. Their conclusion
is that ’a failure to reject should not be construed as an embarrassment to
time-varying parameter models’. A practical conclusion would be that since
the null hypothesis is not rejected, the linear VAR ought to be preferred to
the computationally more complicated nonlinear VRCAR model.

The VRCAR models of Cogley and Sargent (2005) and Primiceri (2005)
also contain a time-varying error covariance matrix, based on stochastic
volatility. Since the focus in this chapter is on the conditional mean models
and because of space restrictions, this extension is not considered here. The
aforementioned tests, however, are performed under the assumption that the
error covariance matrix is constant over time.

5 Nonlinear panel models

Although this article has concentrated on pure time series models, there is an
important related area worth mentioning, namely the nonlinear panel models.
In these models the time dimension that contains nonlinearity is completed
with cross sections. There exist two popular nonlinear panel models: the
panel threshold regression (PTR) model by Hansen (1999) and the panel
smooth transition regression (PSTR) model by Gonzélez, Terdsvirta and van
Dijk (2005). In the multi-threshold form the PTR model has the following

representation:
Yit = [ + Z ¢;~Xitf(cj—1 <sip < ¢j)+eq (28)
=1

1t = 1,..., N, where y;; is a scalar, x;; is a vector of regressors for the cross-
sectional unit 7, the nonzero vectors ¢; # ¢, for all j # k, s;; is the threshold
variable for this unit, and the error term e; ~ iid(0,0?). The parameters
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co = —o0 and ¢, = 0o as in (4). Hansen (1999) considers linearity testing,
determining r, and estimation by nonlinear least squares.

The PSTR model is similar to (28) and is defined by the following equa-
tion:

,
Yir = 11 + A + PoXir + Z ¢;Xith(S§i)) + it (29)
j=1
where )\; is a time-specific variable, for example a trend, common to all units
i, and g5 ~ iid(0,0?), i = 1,..., N, that is, heteroskedasticity is allowed in
cross sections. The transition function equals

K

G(si) = (1 +exp{—; [ (s — )~

k=1

where different transitions can have different transition variables for each i
and, typically, K = 1 or K = 2. Modelling problems include determining r
and K, and they are discussed in the paper.

Both models have been applied to macroeconomic problems and datasets.
For example, the relationship between economic growth and inflation (*the
growth-inflation nexus’) can be perceived as a nonlinear phenomenon. Ap-
plications of nonlinear panel models to studying it include Espinoza, Leon
and Prasad (2011), Omay and Oznur Kan (2010) and Seleteng, Bittencourt
and van Eyden (2013). The Feldstein-Horioka puzzle of positive saving-
investment correlations may be regarded as another one. Fouquau, Hurlin
and Rabaud (2008) considered the relationship between these two variables
for 24 OECD countries annually from 1960 to 2000 using the PSTR model.

6 Final remarks and suggestions for further
reading

Due to the large number of nonlinear models applied to macroeconomic
problems, many such models have not received the attention they might
deserve. For more information, the reader has to turn to other sources.
For an overview specifically focussing on macroeconometric time series, see
Granger (2001). For an authoritative treatment of univariate TAR models
the reader is referred to Tong (1990). Hansen (2011) contains a comprehen-
sive account of economic applications of these models. Terésvirta, Tjgstheim
and Granger (2010) take up a number of nonlinear models not discussed in
this work, including nonparametric nonlinear models. Among other things,
they also discuss building STAR and TAR models. Nonparametric models
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play a central role in Fan and Yao (2003). Univariate nonlinear models are
surveyed in Teréisvirta (2006b), and STAR models in particular in van Dijk,
Terdsvirta and Franses (2002). The volume of Krolzig (1997) on Markov-
switching models has already been mentioned. There exists a rather recent
survey of vector TAR and STAR models by Hubrich and Terisvirta (2013).

Since space is limited, forecasting nonlinear (macro)economic time series
has not been considered either. For two examples that involve macroeco-
nomic variables, see Stock and Watson (1999) and Ter#isvirta, van Dijk and
Medeiros (2005). Terdsvirta (2006a) is a general survey on forecasting with
nonlinear models.
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