
Department of Economics and Business Economics 

Aarhus University 

Fuglesangs Allé 4 

DK-8210 Aarhus V 

Denmark 

Email: oekonomi@au.dk  

Tel: +45 8716 5515 

 

 

 
 
 
 
 
 
 

 
 

 
 

 
 
 

 

Is the diurnal pattern sufficient to explain the intraday 

variation in volatility? A nonparametric assessment 

 

Kim Christensen, Ulrich Hounyo  and Mark Podolskij 

 

CREATES Research Paper 2017-30 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:oekonomi@au.dk


Is the diurnal pattern sufficient to explain the intraday
variation in volatility? A nonparametric assessment∗

Kim Christensen† Ulrich Hounyo† Mark Podolskij‡,†

July, 2017

Abstract

In this paper, we propose a nonparametric way to test the hypothesis that time-variation
in intraday volatility is caused solely by a deterministic and recurrent diurnal pattern. We
assume that noisy high-frequency data from a discretely sampled jump-diffusion process are
available. The test is then based on asset returns, which are deflated by a model-free jump- and
noise-robust estimate of the seasonal component and therefore homoscedastic under the null.
The t-statistic (after pre-averaging and jump-truncation) diverges in the presence of stochastic
volatility and has a standard normal distribution otherwise. We prove that replacing the true
diurnal factor with our estimator does not affect the asymptotic theory. A Monte Carlo
simulation also shows this substitution has no discernable impact in finite samples. The test
is, however, distorted by small infinite-activity price jumps. To improve inference, we propose
a new bootstrap approach, which leads to almost correctly sized tests of the null hypothesis.
We apply the developed framework to a large cross-section of equity high-frequency data and
find that the diurnal pattern accounts for a rather significant fraction of intraday variation in
volatility, but important sources of heteroscedasticity remain present in the data.
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1 Introduction

There is a widespread agreement in the literature that any dynamic model of volatility should—at

a minimum—account for two distinct features in order to explain the formation of diffusive risk in

financial markets. On the one hand, a mean-reverting but highly persistent stochastic component

is needed at the interday horizon to capture volatility clustering (e.g., Fama, 1965; Mandelbrot,

1963). On the other, a pervasive diurnal effect is required as one of the most critical determinants

to describe the recurrent behavior of intraday volatility. In stock markets, for example, there is a

tendency for absolute (or squared) price changes during the course of a trading day to form a so-

called “U”- or reverse “J”-shape with notably larger fluctuations near the opening and closing of the

exchange than around lunch time (see, e.g., Harris, 1986; Wood, McInish, and Ord, 1985, for early-

stage documentation of this attribute). In addition to these effects, volatility may exhibit large,

sudden shifts around the release of important economic news, such as macroeconomic information

(e.g., Andersen and Bollerslev, 1998).

A recent strand of work, fueled by access to high-frequency data and complimentary theory for

model-free measurement of volatility, has taken a more detailed close-up of these components and

largely confirmed their presence.1 The diurnal U-shape, in particular, has emerged as a potent—if

not predominant—source of within-day variation in volatility. It is therefore common to formu-

late parametric models of time-varying volatility targeted for high-frequency analysis (be it in

continuous- or discrete-time) as a composition of a stochastic and deterministic process (with suit-

able restrictions imposed to ensure the parameters are separately identified). A standard approach

is to assume that the stochastic process is constant within a day but is evolving randomly between

them (thus enabling volatility clustering), while the deterministic part is a smooth periodic function

that is allowed to change within the day but is otherwise time-invariant (thus capturing the diurnal

effect), see, e.g., Andersen and Bollerslev (1997, 1998); Boudt, Croux, and Laurent (2011); Engle

and Sokalska (2012) and references therein.

Indeed, a major motivation behind the preferred use of realized measures of return variation that

are temporally aggregated to the daily frequency is to avoid dealing with the diurnal effect, since

it is widely believed to make them intrinsically robust against its presence. However, as stressed

by Andersen, Dobrev, and Schaumburg (2012); Dette, Golosnoy, and Kellermann (2016) diurnal

effects inject a strong Jensen’s inequality-type bias in some of these estimators; an effect that is

reinforced and magnified with a high “volatility-of-stochastic volatility” (e.g., Christensen, Oomen,

and Podolskij, 2014). This can, for instance, alter the finite sample properties of jump tests designed

to operate at either the intraday or interday horizon (e.g., Andersen, Bollerslev, and Dobrev, 2007;

Barndorff-Nielsen and Shephard, 2006; Lee and Mykland, 2008) and make them significantly leaned

1A comprehensive list of papers in this field, including several reviews of the literature, is available at
the webpage of the Oxford-Man Institute of Quantitative Finance’s Realized Library: http://realized.oxford-
man.ox.ac.uk/research/literature.
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toward the alternative and cause spurious jump detection as result.2 As such, further investigation

of diurnal effects appears warranted.

In this paper, we develop a nonparametric framework to assess if diurnal effects can, in fact,

explain all of the intraday variation in volatility, as stipulated by such a setup. A casual inspection

of high-frequency data does not offer conclusive evidence about the validity of this conjecture. In

concrete applications, inference is obscured by microstructure noise at the tick-by-tick frequency

(e.g., Hansen and Lunde, 2006) and the existence of price jumps that are potentially very small and

highly active (e.g., Aı̈t-Sahalia and Jacod, 2012a).3 Moreover, even if stochastic volatility is truly

present, in practice its components may be so persistent that it is acceptable (and convenient) to

regard it as absent on small time scales.4

Consistent with the above, we model the asset log-price as a general arbitrage-free Itô semi-

martingale, which is contaminated by microstructure noise. In our framework, the asymptotic

theory is (mainly) infill, i.e. the process is assumed to be observed on a fixed time interval with

mesh tending to zero.

There are several existing tests of constant volatility available in the high-frequency volatility

area (see, e.g., Dette, Podolskij, and Vetter, 2006; Dette and Podolskij, 2008; Vetter and Dette,

2012). To our knowledge, none allow for the joint disturbance of jumps and microstructure noise,

nor do they directly study the extension to diurnal variation advocated here. We formulate a

test on the back of log-returns that are only homoscedastic under the null, after they are filtered

for diurnal effects. We then study a jump-robust version of the pre-averaged bipower variation,

where we extend the bivariate central limit theorem of Podolskij and Vetter (2009a) to the jumpy

setting (see Barndorff-Nielsen, Hansen, Lunde, and Shephard, 2008; Jacod, Li, Mykland, Podolskij,

and Vetter, 2009; Zhang, Mykland, and Aı̈t-Sahalia, 2005; Zhang, 2006, for further work on noise-

robust volatility estimation). The test is constructed via the asymptotic distribution implied by

a transformation of such statistics and an application of Cauchy-Schwarz for a particular—but

standard—choice of the parameters. As an aside, we add that a slightly different configuration of

our t-statistic (based on the comparison of suitably non-truncated and truncated statistics) can

serve as a basis for a jump test, which is robust to diurnal effects, but we do not pursue this idea

in the present paper.

As the diurnal pattern is unknown in practice, we follow the “two-stage” approach of Andersen

and Bollerslev (1997). In the first stage, the diurnal factors are pre-estimated. We propose a

nonparametric estimator, which is both inherently jump- and noise-robust and therefore applicable

2The effects are deeply intertwined, however, because jumps can also induce substantial biases in and distort esti-
mates of both integrated variance (e.g., Barndorff-Nielsen and Shephard, 2004; Christensen, Oomen, and Podolskij,
2014) and the diurnal pattern (e.g., Andersen, Bollerslev, and Das, 2001; Boudt, Croux, and Laurent, 2011).

3In view of this, a related topic is whether a diffusive component is needed in the first place to represent risk
formation in financial asset prices. While the prevailing evidence is slightly mixed, it appears largely affirmative (see,
e.g., Aı̈t-Sahalia and Jacod, 2012b; Kolokolov and Renò, 2017; Todorov and Tauchen, 2010).

4Of course, the locally constant approximation of stochastic volatility is one of the most heavily exploited in the
analysis of high-frequency data, see, e.g., Mykland and Zhang (2009).
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in practice. It extends previous work of, e.g., Andersen and Bollerslev (1997); Andersen, Dobrev,

and Schaumburg (2012); Boudt, Croux, and Laurent (2011); Taylor and Xu (1997); Todorov and

Tauchen (2012) to the noisy setting (see also Hecq, Laurent, and Palm, 2012). In the second stage,

the estimator is inserted and therefore replaces the true value in the deflation step. The estimate

contains a sampling error, however, which afflicts the calculation and may propagate through the

system and invalidate the analysis. This problem has largely gone unnoticed (or at least been

ignored) in previous work.5 Here, we show that our estimator has a sampling error of sufficiently

small order to not affect the asymptotic theory.

A simulation study reveals that this substitution also has no discernable impact in finite samples.

The test is, however, severely distorted by the presence of small infinite-activity price jumps, which

it understandably appears to confuse with stochastic volatility. To improve inference, we suggest a

new bootstrap approach. It is of independent interest and can be viewed as an overlapping version

of the wild blocks of blocks bootstrap by Hounyo, Gonçalves, and Meddahi (2017). We prove the

first-order validity of the bootstrap, while in simulations it helps to restore an almost correctly sized

test.

The paper is structured as follows. In Section 2, we introduce our theoretical framework and

the main assumptions. We extend the asymptotic theory of the pre-averaged bipower variation and

construct a jump- and noise-robust test of the hypothesis that all intraday variation in volatility

is captured by the diurnal pattern. In Section 3, we propose an estimator of the latent diurnal

pattern and show that the sampling error of the feasible statistic is sufficiently small to not affect

the previous results. In Section 4, we introduce the bootstrap and show its consistency for testing

the null hypothesis in a noisy jump-diffusion setting. In Section 5, we present the Monte Carlo

results, while an empirical illustration is conducted in Section 6. We conclude in Section 7. The

mathematical proofs and some auxiliary results are relegated to the Appendix.

2 Theoretical setup

We let X denote a latent efficient log-price defined on a filtered probability space (Ω,F , (Ft)t≥0, P )

and recorded in the window [0, T ], where T is the number of days in the sample and the subinterval

[t − 1, t] is the tth day, for t = 1, . . . T . Throughout, T is mainly fixed and the asymptotic theory

is infill, so we often impose T = 1 as a normalization, but please note the important digression in

Section 3, where a long-span analysis (T → ∞) is required, and there the additional notation and

interpretation of [0, T ] is helpful.

As consistent with the no-arbitrage restriction (e.g., Delbaen and Schachermayer, 1994), we

5A notable exception is Todorov and Tauchen (2012). In the supplemental material to that paper, available at
Econometrica’s website, the authors treat the impact of diurnal filtering on their realized Laplace transform estimator
of volatility, but microstructure noise is supposed to be absent.
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model X as an Itô semimartingale:

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs + Jt, t ∈ [0, T ], (1)

where (at)t≥0 is a predictable, locally bounded drift process, (σt)t≥0 is an adapted, càdlàg volatility

process, while (Wt)t≥0 is a Brownian motion.

Jt is a jump process defined by the equation:

Jt =
(
δ1{|δ|≤1}

)
?
(
µ
t
− νt

)
+
(
δ1{|δ|>1}

)
? µ

t
, (2)

where µ is a Poisson random measure on R+×R and ν is a predictable compensator of µ, such that

ν(ds, dx) = ds⊗ λ(dx) and λ is a σ-finite measure.

As explained above, the main idea of the paper is to construct a test, which tells whether a

diurnal component is adequate to describe the evolution of within-day volatility.6 To this end, we

need to put some structure on the problem, starting with:

Assumption (D1): σt = σsv,tσu,t.

σsv,t and σu,t represent two distinct sources of time-varying volatility in many financial return series.

The first term, σsv,t, denotes a stochastic process, which allows for randomness in the evolution of σt

over time. The second term, σu,t, is a deterministic seasonal component that represents the diurnal

pattern.

The multiplicative structure means our test can be formed by deflating the log-return series with

σu,t and checking if the outcome is homoscedastic, as we do in Section 2.2.

Assumption (D2):
(
σ2
sv,t

)
t≥0

is stationary with E(σ2
sv,t) = σ2 and

∑∞
k=0 cov

(
σ2
sv,t, σ

2
sv,t+k

)
<∞.

Assumption (D3): (σ2
u,t)t≥0 is a continuously differentiable 1-periodic function with bounded

derivative for t→ 0 and t→ 1 and normalized such that
∫ 1

0
σ2
u,sds = 1.

Assumption (D2) – (D3) are sufficient to ensure identification of both volatility components from

the data.7 Apart from the stationarity of the stochastic volatility, the former also restricts its

memory, which implies the process is ergodic. The latter says the diurnal component has to be

recurrent, so that we can gradually infer it from gathering a larger sample.8 Taken together, the

conditions imply that an average of (an estimate of) volatility sampled at a fixed time of the day

s ∈ (0, 1), i.e. T−1
∑T

t=1 σ
2
t−1+s = σ2

u,sT
−1
∑T

t=1 σ
2
sv,t−1+s

p→ σ2
u,sσ

2, as T → ∞, thereby delivering

σ2
u,s after suitable normalization.

6We do not speak about the dynamics of volatility during market close. Thus, our framework is consistent with
random changes in between-day volatility.

7The normalization in Assumption (D3) is known as a “standardization condition,” which ensures that the
decomposition in Assumption (D1) is unique under (locally) constant volatility, see, e.g., Andersen and Bollerslev
(1997); Boudt, Croux, and Laurent (2011); Taylor and Xu (1997).

8It can be extended to accommodate a day-of-the-week effect (e.g., Andersen and Bollerslev, 1998).
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In Section 3, we use this idea to recover σu from noisy high-frequency data, so that we can

compute the test in practice, but—for the moment—we treat it as observed.

We further rule out jumps in σsv,t:

Assumption (V): σsv,t is of the form:

σsv,t = σ0 +

∫ t

0

ãsds+

∫ t

0

σ̃sdWs +

∫ t

0

ṽsdBs, (3)

where (ãt)t≥0, (σ̃t)t≥0 and (ṽt)t≥0 are adapted, càdlàg stochastic processes, while (Bt)t≥0 is a stan-

dard Brownian motion that is independent of W .

Assumption (V) is common in the realized volatility literature (see, e.g., Barndorff-Nielsen, Hansen,

Lunde, and Shephard, 2008; Gonçalves and Meddahi, 2009; Mykland and Zhang, 2009; Christensen,

Podolskij, and Vetter, 2013; Hounyo, 2017). It facilitates the control of some approximation errors in

the proofs, but it can potentially be relaxed. In recent work, Christensen, Podolskij, Thamrongrat,

and Veliyev (2016) operate with a power variation-based statistic and impose a weaker set of

assumptions, which allows for rather unrestricted jump dynamics in volatility (see their equation

(2.3) and Theorem (3.2), which is based on Assumption (H1) from Barndorff-Nielsen, Graversen,

Jacod, Podolskij, and Shephard (2006)). It may be possible to extend our setting in that direction,

but we leave a full exploration of it for future research.

In some of our results, we also assume that the volatility is bounded away from zero. In partic-

ular, we sometimes adopt the following condition:

Assumption (V’): σsv,t > 0 and σu,t > 0, for all t ≥ 0.

At last, we impose that:

Assumption (J): There exists a sequence of stopping times (τ̃n)∞n=1 increasing to ∞ and a

deterministic nonnegative function γ̃n such that
∫
R γ̃n(x)βλ(dx) <∞ and ||δ(ω, t, x)|| ∧ 1 ≤ γ̃n(x),

for all (ω, t, x) with t ≤ τ̃n(ω), where β ∈ [0, 2].

β captures the activity of the jump process. As β approaches two, the jumps are smaller but more

vibrant. As explained by Todorov and Bollerslev (2010), the harder they are to distinguish from

the diffusive part of X. Below, we impose Assumption (J) to hold for any β ∈ [0, 1), thus restricting

attention to jump processes with sample paths of finite length.

2.1 Microstructure noise

The presence of market frictions (such as price discreteness, rounding errors, bid-ask spreads, grad-

ual response of prices to block trades and so forth) prevent us from observing the true, efficient

5



log-price process Xt. Instead, we observe a noisy version Yt, which we assume is given by

Yt = Xt + εt, (4)

where εt is a noise term that collects the market microstructure effects. We assume that εt is

independently distributed and independent of Xt, such that

E(εt) = 0 and E
(
ε2t
)

= σ2
u,tω

2, (5)

for any t, where Yt is observed.

As consistent with, e.g, Bandi and Russell (2006); Kalnina and Linton (2008), the second moment

of the noise is allowed to be heteroscedastic and exhibit diurnal variation. We assume it is identical

to the volatility diurnality, which conveniently makes the detrended noise asymptotically i.i.d (cf.

(12)). We return to this later in Remark 3, where we highlight the impact of weakening it to a

general form of heteroscedasticity.

About the noise distribution, we follow Podolskij and Vetter (2009a):

Assumption (A): (i) ε is distributed symmetrically around zero, and (ii) for any 0 > a > −1,

it holds that E(|εt|a) <∞.

Assumption (A’): Cramer’s condition is fulfilled, that is lim supt→∞ |χ(t)| < 1, where χ denotes

the characteristic function of ε.

2.2 Test of heteroscedasticity

To develop a test of the “no heteroscedasticity after diurnal correction” assumption, we partition

the sample space Ω into the following two subsets:

ΩH0 = {ω : σsv,t is constant for t ≥ 0}, (6)

and ΩHa = Ω{H0
. The null hypothesis can then formally be defined as H0 : ω ∈ ΩH0 , whereas the

alternative is Ha : ω ∈ ΩHa .

Our goal is to find a test with a prescribed asymptotic significance level and with power going

to one to test the hypothesis that ω ∈ ΩH0 . The key challenge we address is how to construct

such a test, when X—apart from being driven by a Brownian component—is subject to diurnal

variation, potentially discontinuous and observed with measurement error. The solution is based

on computing a set of estimators, which reveal information about the presence of time-variation in

the stochastic volatility σsv,t robustly to the above features.

The differential form of (1) scaled by σu,t yields:

dXt

σu,t
=

at
σu,t

dt+
σt
σu,t

dWt +
dJt
σu,t

, (7)

or

dXd
t = adtdt+ σsv,tdWt + dJdt , (8)
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where a superscript d is used to represent a process that has been adjusted by the seasonal compo-

nent of volatility.9

Then, we study the quadratic variation of Xd:

[Xd]t =

∫ t

0

σ2
sv,sds+

∑
s≤t

|∆Xd
s |2, (9)

where
∫ t

0
σ2
sv,sds is the integrated variance of Xd, while

∑
s≤t |∆Xd

s |2 is the sum of the squared

deflated jumps, where ∆Xd
s = Xd

s −Xd
s−.

We note that if the stochastic volatility process is constant, say σsv,t = σ, (1) reduces to

Xt = X0 +

∫ t

0

asds+ σσu,t
(
Wt −W0

)
+
(
δ1{|δ|≤1}

)
?
(
µ
t
− νt

)
+
(
δ1{|δ|>1}

)
? µ

t
, (10)

while

[Xd]t = σ2t+
∑
s≤t

|∆Xd
s |2. (11)

The construction of the t-statistic now progresses in three steps. Firstly, we account for microstruc-

ture noise by doing local pre-averaging of Y d. Secondly, we tease out the continuous part of the

quadratic variation by suitably removing the jump component in (11). Thirdly, we develop a fully

feasible theory by proposing a statistic that can replace σu in the computations.

2.3 The pre-averaging approach

In this section, we confine the clock to t ∈ [0, 1], i.e. we set T = 1. In our simulations and empirical

work, we implement the test “day-by-day,” so that here the unit interval is naturally interpreted as

a trading day’s worth of data.

The noisy log-price Yt is observed at regular time points ti = i/n, for i = 0, . . . , n. Then, the

deflated intraday log-returns (at frequency n) can be computed as:

∆n
i Y

d ≡ Y d
i/n − Y d

(i−1)/n, i = 1, . . . , n. (12)

As Y d
t = Xd

t + εdt , we can split ∆n
i Y

d into

∆n
i Y

d = ∆n
iX

d + ∆n
i ε
d, (13)

where ∆n
iX

d = Xd
i/n − Xd

(i−1)/n denotes the n-frequency return of the efficient log-price, while

∆n
i ε
d = εdi/n − εd(i−1)/n is the change in the microstructure component.

To lessen the noise, we adopt the pre-averaging approach of Jacod, Li, Mykland, Podolskij, and

Vetter (2009); Podolskij and Vetter (2009a,b). To describe it, we let kn be a sequence of positive

integers and g a real-valued function. kn represents the length of a pre-averaging window, while g

assigns a weight to those noisy log-returns that are inside it. g is defined on [0, 1], such that g(0) =

9Note that many parts of this paper can be applied to both the raw and deflated log-returns series (e.g., the
pre-averaging theory in the next subsection). We base the theoretical exposition on the seasonally adjusted version
to minimize the notational load, while we present results for both series in the empirical application.
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g(1) = 0 and
∫ 1

0
g(s)2ds > 0. We assume g is continuous and piecewise continuously differentiable

with a piecewise Lipschitz derivative g′. A canonical function that fulfills these restrictions is

g(x) = min(x, 1− x).

We introduce the notation:

φ1(s) =

∫ 1

s

g′(u)g′(u− s)du and φ2(s) =

∫ 1

s

g(u)g(u− s)du, (14)

and for i = 1, 2, we let ψi = φi(0). For instance, if g(x) = min(x, 1− x), it follows that ψ1 = 1 and

ψ2 = 1/12.

Also, we write:

ψn1 = kn

kn∑
j=1

(
g

(
j

kn

)
− g
(
j − 1

kn

))2

and ψn2 =
1

kn

kn−1∑
j=1

g2

(
j

kn

)
. (15)

In the appendix, after freezing the volatility locally, ψn1 and ψn2 appear in the conditional expectation

of the squared pre-averaged return in (17). As n→∞,

ψn1 → ψ1 and ψn2 → ψ2, (16)

while ψni − ψi = O
(
n−1/2

)
, for i = 1, 2, so we can work with ψi and not worry about the effect of

this substitution in the asymptotic theory. In contrast, ψni can differ a lot from ψi, if kn is small,

so as a practical guide it is better to work with (15).

The pre-averaged return, say ∆n
i Ȳ

d, is then found by computing a weighted sum of consecutive

n-frequency deflated log-returns over a block of size kn:

∆n
i Ȳ

d =
kn−1∑
j=1

g

(
j

kn

)
∆n
i+j−1Y

d, i = 1, . . . , n− kn + 2. (17)

As readily seen, pre-averaging entails a slight “loss” of summands compared to n. Thus, while the

original sample size is n, there are only n − kn + 2 elements in (∆n
i Ȳ

d)n−kn+2
i=1 . It follows from the

decomposition in (13) that ∆n
i Ȳ

d = ∆n
i X̄

d + ∆n
i ε̄
d and, as shown by Vetter (2008),

∆n
i X̄

d = Op

(√
kn
n

)
and ∆n

i ε̄
d = Op

(
1√
kn

)
. (18)

Thus, the noise is dampened, thereby reducing its influence on ∆n
i Ȳ

d. As an outcome, we retrieve a

basically noise-free estimate, which can substitute the efficient log-return ∆n
iX

d in subsequent com-

putations, taking proper account of the dependence introduced in (∆n
i Ȳ

d)n−kn+2
i=1 .10 The reduction

increases with larger kn, but too much pre-averaging also impedes the accuracy of estimators of

the quadratic variation, yielding a trade-off in selecting kn. To strike a balance and get an efficient

10If kn is even, it follows with the above definition of g(x) = min(x, 1−x) that the pre-averaged returns in (17) can

be rewritten as ∆n
i Ȳ

d = 1
kn

∑kn/2
j=1 Y d

i+kn/2+j
n

− 1
kn

∑kn/2
j=1 Y d

i+j
n

. Thus, the sequence (2∆n
i Ȳ

d)n−kn+2
i=1 can be interpreted

as constituting a new set of increments from a price process that is constructed by simple averaging of the rescaled
noisy log-price series, (Y d

i/n)ni=0, in a neighbourhood of i/n, thus making the use of the term pre-averaging and the
associated notation transparent.
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n−1/4 rate of convergence, Jacod, Li, Mykland, Podolskij, and Vetter (2009) propose to set:

kn = θ
√
n+ o

(
n−1/4

)
, (19)

for some θ ∈ (0,∞). With this choice, the orders of ∆n
i X̄

d and ∆n
i ε̄
d are balanced and equal to

Op

(
n−1/4

)
. An example of (19) used throughout this paper is kn =

[
θ
√
n
]
.

2.3.1 The pre-averaged bipower variation

With the pre-averaged return series, (∆n
i Ȳ

d)n−kn+2
i=1 , available, Podolskij and Vetter (2009a) propose

the bipower variation statistic:

BV (Y d, l, r)n = n
l+r
4
−1 1

µlµr

Nn∑
i=1

y(Y d, l, r)ni , (20)

where l, r ≥ 0, y(Y d, l, r)ni = |∆n
i Ȳ

d|l|∆n
i+kn

Ȳ d|r, Nn = n− 2kn + 2 and µp = E(|N(0, 1)|p).11 In the

following, if we write BV (l, r)n and y(l, r)ni , we assume that they are implicitly defined with respect

to Y d. Podolskij and Vetter (2009a) show that under suitable regularity conditions, in particular

that X is a continuous Itô semimartingale (i.e., X follows (103)), then as n→∞

BV (l, r)n
p→ BV (l, r) =

∫ 1

0

(
θψ2σ

2
sv,s +

1

θ
ψ1ω

2

) l+r
2

ds, (21)

and

n1/4

(
BV (l1, r1)n −BV (l1, r1)

BV (l2, r2)n −BV (l2, r2)

)
ds→MN

(
0,Σ

)
, (22)

with l1, r1, l2, r2 ≥ 0, where “
ds→” is stable convergence, Σ =

(
Σl1,r1,l2,r2
ij

)
1≤i,j≤2

the conditional

covariance matrix of the limiting process n1/4
(
BV (l1, r1)n, BV (l2, r2)n

)ᵀ
, and ᵀ the transpose.12

2.3.2 A truncated pre-averaged bipower variation

The estimator in (20) can also be made jump-robust in both the stochastic limit and its asymptotic

distribution, but—as explained by Podolskij and Vetter (2009a)—this puts strong restrictions on l

and r. Firstly, the central limit theory in (22) is not valid for the popular choice l = r = 1. Indeed,

Vetter (2010) shows that this estimator is not even mixed Gaussian, which severely constrains our

ability to draw inference. Secondly, the version with l = r = 2 as implemented below, does not

converge to the limit in (21), if X jumps, and while that is true for the pre-averaged (1,1)-bipower

variation, asymptotically, it is well-known that the latter typically has a pronounced upward bias

in finite samples (e.g., Christensen, Oomen, and Podolskij, 2014). Thus, to achieve a better jump-

robustness and enlarge the feasible set of powers for which we can do hypothesis testing, we follow

11In order to avoid a finite sample bias in the construction of BV (l, r)n, we only divide it by Nn (the number of
summands in the estimator) in our simulations and empirical work. We stick with n in the theoretical parts of the
paper, as it involves less notation.

12The formal definition of Σ is given in Appendix A.
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Corsi, Pirino, and Renò (2010) in the no-noise and finite-activity jump setting by combining the

bipower idea with the truncation approach of Mancini (2009); Jacod and Protter (2012); Jing, Liu,

and Kong (2014).

To introduce our t-statistic for the homoscedasticity test, we therefore start by deriving a result

as above for a truncated pre-averaged bipower variation, which verifies that the probability limit

and asymptotic distribution of this new estimator are identical to those given by (21) and (22) in

the general setting, where X follows the Itô semimartingale in (1). Thus, we propose to set:

B̌V (l, r)n = n
l+r
4
−1 1

µlµr

Nn∑
i=1

y̌(l, r)ni , (23)

where y̌(l, r)ni = |∆n
i Ȳ

d|l1{|∆n
i Ȳ

d|<υn}|∆
n
i+kn

Ȳ d|r1{|∆n
i+kn

Ȳ d|<υn} and 1{·} is the indicator function,

which discards pre-averaged log-returns that exceed a predetermined level

υn = αu$n , for α > 0 and $ ∈ (0, 1/2), (24)

such that un = kn/n.

Theorem 2.1 Let l1, r1, l2 and r2 be four positive real numbers and X be given by (1). Suppose that

Assumption (J) holds for some β ∈ [0,min{1, l1, r1, l2, r2}) and that
(

l1+r1−1
2(l1+r1−β)

∨ l2+r2−1
2(l2+r2−β)

)
≤ $ <

1/2. Furthermore, we assume (D1), (V), (A), and impose the moment condition E(|εt|s) <∞, for

some s > (3 ∨ 2(r1 + l1) ∨ 2(r2 + l2)). If any li or ri is in (0, 1], we postulate (V′), otherwise either

(V′) or (A′). In addition, suppose that kn →∞ as n→∞ such that (19) holds. Then, as n→∞,

n1/4

(
B̌V (l1, r1)n −BV (l1, r1)

B̌V (l2, r2)n −BV (l2, r2)

)
ds→MN

(
0,Σ). (25)

Theorem 2.1 shows that (23) is robust to the jump part in its limiting distribution. Note that Σ

is identical to the matrix in (22). To our knowledge, the result is new with the main innovations

being the statistic is (23) and the underlying process is a general Itô semimartingale given by (1).

It extends Theorem 3 of Podolskij and Vetter (2009a) to discontinuous X by establishing a joint

asymptotic distribution, as in (22), for the class of truncated pre-averaged bipower variation. In pre-

vious work, Jing, Liu, and Kong (2014) prove—under some regularity conditions—the consistency

and CLT for the truncated pre-averaged realized variance, i.e. the statistic of the form B̌V (2, 0)n,

when X follows (1). Our paper generalizes the latter article to the bipower setting with—subject

to the above constraint—arbitrary powers.

The lower bound on $ is determined by an interplay between the bipower parameters and the

activity of the jump process. The crude intuition is that small jumps tend to resemble Brownian

motion, so if the threshold vanishes too slowly, it can impair the jump-robustness, and this effect

is aggravated for larger bipowers. We therefore normally work with $ close to a half in practice.

In our Monte Carlo, l1 = r2 = 2, l2 = r2 = 1 and β = 0.5, so that any $ ∈ [1/3, 1/2) is valid.

Throughout, we always set $ = 0.49.
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The above enables extraction of an essentially noise-free and jump-robust estimate of the con-

tinuous piece of the quadratic variation in (9) and thus facilitates the construction of a test for the

presence of time-variation in σsv,t. An implication of (25) is that for any l1, r1, l2, r2 ≥ 0, which

adhere to the conditions of Theorem 2.1 and such that l1 + r1 > l2 + r2, as n→∞,

B̌V (l1, r1)n − (B̌V (l2, r2)n)
l1+r1
l2+r2

p→ BV (l1, r1)− (BV (l2, r2))
l1+r1
l2+r2

=

∫ 1

0

(
θψ2σ

2
sv,s +

1

θ
ψ1ω

2

) l1+r1
2

ds−

[∫ 1

0

(
θψ2σ

2
sv,s +

1

θ
ψ1ω

2

) l2+r2
2

ds

] l1+r1
l2+r2

≥ 0,

(26)

with equality if and only if σsv,t is constant. We thus build a test of H0 via the infeasible t-statistic:

T ninf. =
n1/4

(
B̌V (l1, r1)n − (B̌V (l2, r2)n)

l1+r1
l2+r2

)
√
V

d→ N(0, 1), (27)

where

V = Σ11 − 2

(
l1 + r1

l2 + r2

)(
B̌V (l2, r2)n

) l1+r1
l2+r2

−1
Σ12 +

(
l1 + r1

l2 + r2

)2

(B̌V (l2, r2)n)
2
(
l1+r1
l2+r2

−1
)
Σ22. (28)

Note that the convergence in (27) holds only under H0, while under Ha it follows from (26) that

n1/4
(
B̌V (l1, r1)n−(B̌V (l2, r2)n)

l1+r1
l2+r2

)
→∞. This way we can determine if Xd has homoscedastic or

heteroscedastic volatility with asymptotically correct size and power tending to one, as n→∞. To

render the test feasible, we propose a consistent estimator of Σ in Section 4, which can be plugged

into (28). It is both inherently robust to heteroscedasticity and positive semi-definite.

3 A local estimator of diurnal variance

In the previous section, we pretended the diurnal component of volatility was available to deflate the

noisy log-return series (i.e., (7)). In practice, σu is unobserved. We here propose a nonparametric

jump- and noise-robust estimator of it and state appropriate conditions, under which the sampling

error—induced by this estimation—is asymptotically negligible, so that it does not thwart the

results in Section 2 (and 4).

It turns out to be impossible to recover the latent diurnal variance on a fixed time interval.

We thus resort to a long-span asymptotic theory, which extracts information about it by pooling

high-frequency data across days.

As above, we suppose that on day t we record Y at equidistant time points ti = t− 1 + i/n, for

i = 0, 1, . . . , n and write the associated n-frequency log-returns as:

∆n
(t−1)n+iY ≡ Yt−1+i/n − Yt−1+(i−1)/n, for t = 1, . . . , T and i = 1, . . . , n. (29)

As in Zhang, Mykland, and Aı̈t-Sahalia (2005), we operate within a two time scale framework,

where the “slow” scale uses a coarser set of m-frequency returns, where m < n, i.e. ∆m
(t−1)m+jY =

Yt−1+j/m − Yt−1+(j−1)/m, for t = 1, . . . , T and j = 1, . . . ,m, which is reserved for diurnal variance

11



estimation, while the “fast” scale is based on all observed n-frequency returns and is intended for

a bias-correction. Throughout, we assume m is a divisor of n, so that {j/m}mj=0 ⊆ {i/n}ni=0.

In the following, we say a process (bt)t≥0 is bounded in Lp, if

sup
t∈R+

E
[
|bt|p

]
<∞. (30)

Assumption (D4): (at)t≥0, (ãt)t≥0, (σ̃t)t≥0 and (ṽt)t≥0 are bounded in L4.

Assumption (D4) adds some regularity to the driving processes in X, which is necessary here as

T →∞ in the asymptotic theory, and so we cannot appeal to the standard “localization” procedure

(e.g., Jacod, 2008) to bound various terms in the proofs.

Now, we set:

σ̂2
u,s =

1

T

T∑
t=1

(
√
m∆m

(t−1)m+jY )2−m
T

T∑
t=1

[v̂ar(εt−1+(j−1)/m)+v̂ar(εt−1+j/m)], for s ∈ [(j−1)/m, j/m),

(31)

where v̂ar(εt−1+(j−1)/m) is a consistent estimator of var(εt−1+(j−1)/m), which has to converge at a

rate faster than m−1, e.g.

v̂ar(εt−1+(j−1)/m) = − 1

T

1

n/m− 1

T∑
t=1

n/m∑
i=1

[(
∆n
i+[t−1+ j−1

m ]nY
)(

∆n
i−1+[t−1+ j−1

m ]nY
)]
. (32)

As readily seen, σ̂2
u,s is based directly on the raw noisy high-frequency data. It does not require

jump-truncation nor pre-averaging and is therefore trivial to compute.13 Due to its reliance on

the squared normalized noisy high-frequency increment, however, it accumulate a bias from the

microstructure noise, which the second term in (31) cancels out by computing a local block-wise

estimator of the noise variance.

While it appears counterintuitive, σ̂2
u,s is also jump-robust, as we show below. The intuition is

that in our model, there are no fixed points of discontinuity in X, so that the influence of any jumps

is intrinsically averaged away, as m→∞, T →∞ and n→∞.

Proposition 3.1 Assume that X is given by (1). Moreover, we suppose Assumption (D1) – (D4),

(V), (V’), (A) and (A’). If m→∞ and T →∞, as n→∞, then it holds that

σ̂2
u,s = σ2

u,s +OP (mT−1/2) +OP (m3/2n−1/2T−1/2). (33)

Next, we note that: √
σ̂2
u,s −

√
σ2
u,s = σ̂u,s − σu,s '

1

2
√
σ2
u,s

(
σ̂2
u,s − σ2

u,s

)
, (34)

13It is naturally also possible to pre-average and follow up with jump-truncation. This may lead to a better rate
of convergence for the diurnal variance estimator. Here, we do not follow this line of thought, as it requires extra
tuning parameters, and because the current setup appears to work reasonably well in practice.

12



with σ2
u,s bounded away from 0. Thus, we can write:

σ̂u,s = σu,s +OP (mT−1/2) +OP (m3/2n−1/2T−1/2). (35)

It therefore follows that if

m ∝ nδ2 and T ∝ nδ3 , (36)

where δ2 ∈ (0, 1/2] and δ3 > 1/2+2δ2 (for a fixed value of δ2), then the error induced from estimating

σu does not alter the analysis in Section 2 and 4. That is, neither Theorem 2.1 or (27) are affected,

nor is the bootstrap applied to y̌(l, r)ni = |∆n
i Ȳ

d|l1{|∆n
i Ȳ

d|<υn}|∆
n
i+kn

Ȳ d|r1{|∆n
i+kn

Ȳ d|<υn}, where (with

a slight abuse of notation) we redefine

∆n
i Ȳ

d =
kn−1∑
j=1

g

(
j

kn

)
∆n
i+j−1Y

d, i = 1, . . . , n− kn + 2, (37)

to be based on:

∆n
i+j−1Y

d =
∆n
i+j−1Y

σ̂u, i+j−1
n

, (38)

with σ̂u, i+j−1
n

from (31).

Remark 1 If the noise is autocorrelated but not heteroscedastic, ω̂2 = v̂ar(εt−1+(j−1)/m) given by

(32) is no longer a consistent estimator of ω2 = var(ε). Indeed, when the noise is a stationary q-

dependent sequence (for known q > 0), the statistic defined in (32) estimates the quantity 2
(
ρ(0)−

ρ(1)
)
, where ρ(k) = cov(ε1, ε1+k). Hautsch and Podolskij (2013, Lemma 2) discuss an estimator of

ρ(k), k = 0, . . . , q + 1, which is obtained from a simple recursion formula. Building on their result,

we can deduce an estimator of ω2 in this alternative setup:

ω̂2 = −
q+1∑
k=1

kγ̂(k), (39)

where

γ̂(k) =
1

T

1

n/m− k

T∑
t=1

n/m−k∑
i=1

(
∆n
i+[t−1+ j−1

m ]nY
)(

∆n
i+k+[t−1+ j−1

m ]nY
)
, for k = 0, . . . , q + 1. (40)

Then,

ω̂2 p→ ω2 = ρ(0). (41)

The Monte Carlo and empirical analysis is based on

σ̂2
u,s ≡

1

T

T∑
t=1

(
√
m∆m

j+(t−1)mY )2 − 2mω̂2, for s ∈ [(j − 1)/m, j/m), (42)

where ω̂2 is (39) with q = 3.
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4 The bootstrap

In this section, we improve the quality of inference in our test of heteroscedasticity in the noisy jump-

diffusion setting by relying on the bootstrap, when computing critical values for the t-statistic. This

is warranted by the Monte Carlo in Section 5, which reveals that in small samples, the feasible version

of (27) (cf. (66)) is poorly approximated by the standard normal. Next, we propose a bootstrap

estimator of the conditional covariance matrix of the limiting process n1/4
(
B̌V (l1, r1)n, B̌V (l2, r2)n)ᵀ,

i.e. Σ. As the bootstrap estimator is positive semi-definite by construction, it renders our test

implementable.

We build on a series of papers in the high-frequency volatility area. In particular, Gonçalves and

Meddahi (2009) propose the wild bootstrap for realized variance, in a framework where the asset

price is observed without error. Gonçalves, Hounyo, and Meddahi (2014) and Hounyo, Gonçalves,

and Meddahi (2017) extend their work to accommodate noise. The latter studies the pre-averaged

realized variance estimator—i.e., BV (2, 0)n—proposed by Jacod, Li, Mykland, Podolskij, and Vetter

(2009), where the pre-averaged returns are both overlapping and heteroscedastic due to stochastic

volatility. In this context, a block bootstrap applied to (∆n
i Ȳ

d)n−kn+2
i=1 appears natural.

Nevertheless, such a scheme is only consistent if σsv,t is constant. As shown by Hounyo,

Gonçalves, and Meddahi (2017), the problem is that |∆n
i Ȳ

d|2 are heterogeneously distributed under

time-varying volatility.14 In particular, their mean and variance are unequal. This creates a bias

term in the blocks of blocks bootstrap variance estimator. To cope with both dependence and het-

erogeneity of |∆n
i Ȳ

d|2, they combine the wild bootstrap with the blocks of blocks bootstrap. The

procedure exploits that heteroscedasticity can be handled by the former, while the latter can repli-

cate serial dependence in the data. Hounyo (2017) generalizes Hounyo, Gonçalves, and Meddahi

(2017) to a broad class of covariation estimators in a general setting that accommodates jumps,

microstructure noise, irregularly spaced high-frequency data and non-synchronous trading. Also,

Dovonon, Gonçalves, Hounyo, and Meddahi (2014) develop a new local Gaussian bootstrap for

high-frequency jump testing, but market microstructure noise is supposed to be absent. Here, we

allow for noise and concentrate on heteroscedasticity.

The bootstrap version of B̌V (l, r)n is

B̌V (l, r)n∗ = n
l+r
4
−1 1

µlµr

Nn∑
i=1

y̌(l, r)n∗i , (43)

where (y̌(l, r)n∗i )Nni=1 is a bootstrap sample from (y̌(l, r)ni )Nni=1.

We apply a bootstrap to y̌(l, r)ni , which replicates their dependence and heterogeneity. As

suggested by Hounyo, Gonçalves, and Meddahi (2017), we merge the wild bootstrap with block-

based resampling. However, our bootstrap is new, and it can be viewed as an overlapping version

of their algorithm. We name it “the overlapping wild blocks of blocks bootstrap.” We note that

14This feature is highlighted by the asymptotic distribution of ∆n
i Ȳ

d in (90) below.
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the degree of overlap among the blocks to be bootstrapped plays a major role in efficiency: the

nonoverlapping block-based approach is less efficient than a partial or full-overlap block (e.g., Dudek,

Leśkow, Paparoditis, and Politis, 2014).

To describe this approach, let bn be a sequence of integers, which will denote the bootstrap block

size, such that for some δ1 ∈ (0, 1):

bn = O
(
nδ1
)
. (44)

We divide (y̌(l, r)ni )Nni=1 into overlapping blocks of size bn. The total number of such blocks is

Nn− bn + 1. The bootstrap is based on Nn− 2bn + 2 of them. In particular, we look at overlapping

blocks within the set (y̌(l, r)ni )Nn−bni=1 (there is Jn = Nn − 2bn + 1 many such blocks) and the last

block containing the elements y̌(l, r)nNn−bn+1, . . . , y̌(l, r)nNn . The bootstrap sample is constructed by

properly combining the first Jn blocks.

To explain this setup and avoid confusion, note that the main ingredient behind the theo-

retical validity of the suggested resampling scheme is that we center all bootstrap draws from a

block of bn consecutive observations, say the jth that holds y̌(l, r)nj , . . . , y̌(l, r)nj+bn−1, around a

local average of data in the (j + bn)th block (which is thus shifted to the right and consists of

y̌(l, r)nj+bn , . . . , y̌(l, r)nj+2bn−1), as given by B̄j+bn in (45) below. This principle is no longer applica-

ble starting with the block that covers the elements y̌(l, r)nNn−2bn+2, . . . , y̌(l, r)nNn−bn+1, because the

centering here demands a local average to be computed from y̌(l, r)nNn−bn+2, . . . , y̌(l, r)nNn+1, and the

last observation is not available.

Let u1, . . . , uJn+1 be i.i.d. random variables, whose distribution is independent of the original

sample. We denote by µ∗q = E∗
(
uqj
)

its qth order moments.15 Then,

B̄j =
1

bn

bn∑
i=1

y̌(l, r)ni−1+j, j = 1, . . . , Nn − bn + 1, (45)

is the average of the data in the jth block consisting of y̌(l, r)nj , . . . , y̌(l, r)nj+bn−1. Next, we generate

the overlapping wild blocks of blocks bootstrap observations by:

y̌(l, r)n∗m − ¯̄BNn =



1√
bn

∑m
j=1

(
y̌(l, r)nm − B̄bn+j

)
uj, if m ∈ In1 ,

1√
bn

∑bn
j=1

(
y̌(l, r)nm − B̄m+j

)
um+j−bn , if m ∈ In2 ,

1√
bn

∑Nn−bn+1−m
j=1

(
y̌(l, r)nm − B̄Jn+1−j+bn

)
uJn+1−j, if m ∈ In3 ,

1√
bn

(
y̌(l, r)nm − B̄Nn−bn+1

)
uJn+1, if m ∈ In4 ,

(46)

15As usual in the bootstrap literature, P ∗ (E∗ and var∗) denotes the probability measure (expected value and
variance) induced by the resampling, conditional on a realization of the original time series. In addition, for a

sequence of bootstrap statistics Z∗n, we write (i) Z∗n = op∗(1) or Z∗n
p∗

→ 0, as n → ∞, if for any ε > 0, δ > 0,
limn→∞ P [P ∗(|Z∗n| > δ) > ε] = 0, (ii) Z∗n = Op∗(1) as n → ∞, if for all ε > 0 there exists an Mε < ∞ such that

limn→∞ P [P ∗(|Z∗n| > Mε) > ε] = 0, and (iii) Z∗n
d∗

→ Z as n → ∞, if conditional on the sample Z∗n converges weakly
to Z under P ∗, for all samples contained in a set with probability P converging to one.
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where

¯̄BNn =
1

Nn

Nn∑
i=1

y̌(l, r)ni , (47)

and

In1 = {1, . . . , bn − 1}, In2 = {bn, . . . , Jn},

In3 = {Jn + 1, . . . , Nn − bn}, In4 = {Nn − bn + 1, . . . , Nn}.
(48)

It is interesting to note that if we were to center y̌(l, r)nm around the grand mean ¯̄BNn , instead of

the localized block average B̄j+m, it would yield a bootstrap observation

y̌(l, r)n∗m − ¯̄BNn =
(
y̌(l, r)nm − ¯̄BNn

)
ηm, (49)

for m ∈ In2 (the main set), where ηm = 1√
bn

∑bn
j=1 um+j−bn . Therefore, under the assumption

that E(uj) = 0 and var(uj) = 1, we find that E(ηm) = 0, var(ηm) = 1, and cov(ηm, ηm−k) =(
1− k

bn

)
1{k≤bn}. Thus, our approach is related to the dependent wild bootstrap of Shao (2010) (see

also, e.g., Hounyo (2014)), who extends the traditional wild bootstrap of Wu (1986); Liu (1988) to

the time series setting, and it is the special case, where the kernel function is assumed to be Bartlett

(see Assumption 2.1 in Shao, 2010).

The idea of the new centering B̄j+m is to deal with the mean heterogeneity of y̌(l, r)nm. As

shown by Hounyo, Gonçalves, and Meddahi (2017), for the case of squared pre-averaged returns

y(2, 0)nm, centering the non-overlapping wild blocks of blocks bootstrap around the corresponding

grand mean N−1
n

∑Nn
i=1 y(2, 0)ni does not work, when σsv,t is time-varying. In this paper, we show

that generating the bootstrap observations as in (46) does yield an asymptotically valid bootstrap

for (B̌V (l1, r1)n, B̌V (l2, r2)n)ᵀ, even if σsv,t is not constant.

As in Shao (2010) and Hounyo (2014), the dependence between neighboring observations y̌(l, r)nm

and y̌(l, r)nm′ is not only preserved, if m and m′ belong to a particular block, as typical in block-based

resampling. Indeed, if |m−m′| < bn, y̌(l, r)n∗m and y̌(l, r)n∗m′ are conditionally dependent (except for

the last bn data).

A common feature of the block-based bootstrap, in particular the non-overlapping wild blocks

of blocks approach of Hounyo, Gonçalves, and Meddahi (2017), is that if the sample size Nn is not

a multiple of bn, then one has to either take a shorter bootstrap sample or use a fraction of the last

resampled block. This leads to some inaccuracy, when bn is large relative to Nn. In contrast, for

the overlapping version proposed in this paper, the size of the bootstrap sample is always equal to

the original sample size.

Write

¯̄BNn∗ =
1

Nn

Nn∑
i=1

y̌(l, r)n∗i , (50)

as the average value of the bootstrap observations. A closer inspection of ¯̄BNn∗ suggests that we
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can rewrite the centered bootstrap sample mean ¯̄BNn∗ − ¯̄BNn as follows

Nn

(
¯̄BNn∗ − ¯̄BNn

)
=

1√
bn

Jn∑
j=1

bn
(
B̄j − B̄j+bn

)
uj. (51)

Thus,

B̌V (l, r)n∗ = B̌V (l, r)n + n
l+r
4
−1 1

µlµr

1√
bn

Jn∑
j=1

bn
(
B̄j − B̄j+bn

)
uj

= B̌V (l, r)n − 1√
bn

Jn∑
j=1

∆̌B(l, r)nj uj,

(52)

where

∆̌B(l, r)nj = B̌(l, r)nj+bn − B̌(l, r)nj , (53)

such that

B̌(l, r)nj = n
l+r
4
−1 1

µlµr

bn∑
i=1

y̌(l, r)ni−1+j. (54)

We can now derive the first and second bootstrap moment of n1/4

(
B̌V (l1, r1)n∗

B̌V (l2, r2)n∗

)
. The following

Lemma states the formulas.

Lemma 4.1 Assume that y̌(l, r)n∗m are generated as in (46). Then, it follows that

E∗
(
B̌V (l, r)n∗

)
= B̌V (l, r)n − 1√

bn

Jn∑
j=1

∆̌B(l, r)njE
∗(uj), (55)

Also, for 1 ≤ i, j ≤ 2,

cov∗
(
n1/4B̌V (li, ri)

n∗, n1/4B̌V (lj, rj)
n∗) =

√
n

bn

Jn∑
k=1

∆̌B(li, ri)
n
k∆̌B(lj, rj)

n
kvar∗(uk). (56)

Equation (55) of Lemma 4.1 implies that with E∗(uj) = 0, B̌V (l, r)n∗ is an unbiased estimator of

B̌V (l, r)n, i.e. E∗
(
B̌V (l, r)n∗

)
= B̌V (l, r)n. The second part shows that the bootstrap covariance

of n1/4B̌V (li, ri)
n∗ and n1/4B̌V (lj, rj)

n∗ depends on the variance of u. In particular, if we select

var∗(u) = 1/2 as in Hounyo, Gonçalves, and Meddahi (2017):

var∗

(
n1/4

(
B̌V (l1, r1)n∗

B̌V (l2, r2)n∗

))
= Σ̌n, (57)

where Σ̌n =
(
Σ̌l1,r1,l2,r2,n
ij

)
1≤i,j≤2

and

Σ̌
li,ri,lj ,rj ,n
ij =

√
n

2bn

Jn∑
k=1

∆̌B(li, ri)
n
k∆̌B(lj, rj)

n
k . (58)
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Note that based on (58), we can rewrite Σ̌n as

Σ̌n =

√
n

2bn

Jn∑
j=1

ξ̌j ξ̌
ᵀ
j , (59)

where ξ̌j ≡
(

∆̌B(l1, r1)nj , ∆̌B(l2, r2)nj

)ᵀ
. It follows that if the external random variable u is selected

as above, the overlapping wild blocks of blocks bootstrap variance estimator is consistent for the

asymptotic variance of n1/4
(
B̌V (l1, r1)n, B̌V (l2, r2)n

)ᵀ
provided Σ̌n is a consistent estimator of Σ,

as proved in Theorem 4.1 below. Note that Σ̌n is related to recent work on asymptotic variance

estimation by Mykland and Zhang (2017); see also, e.g., Christensen, Podolskij, Thamrongrat, and

Veliyev (2016); Jacod and Todorov (2009); Mancini and Gobbi (2012).

Remark 2 Note that from (59), we can also rewrite Σ̌n as follows:

Σ̌n =
1

bn

bn∑
m=1

Σ̌n
m, (60)

where

Σ̌n
m =

√
n

2

bNn/bnc−2∑
j=0

ξ̌jbn+mξ̌
ᵀ
jbn+m =

(
Σ̌l1,r1,l2,r2,n
ij,m

)
1≤i,j≤2

. (61)

We deduce that the diagonal elements of Σ̌n
m, i.e. Σ̌l1,r1,l2,r2,n

11,m and Σ̌l1,r1,l2,r2,n
22,m are nothing else

than the consistent bootstrap variance estimators of the asymptotic variance of n1/4B̌V (l1, r1)n and

n1/4B̌V (l2, r2)n, as proposed by Hounyo (2017).

The next result shows that under some regularity conditions, the estimator Σ̌n converges in

probability to Σ in a general Itô semimartingale context.

Theorem 4.1 Assume that X fulfills Assumption (J) for some β ∈ [0, 2]. Furthermore, suppose

that the conditions of Theorem B.1 in Appendix B hold true, when X is continuous (i.e., X follows

(103)), and also if X has jumps (i.e., X follows (1)) with either

l1 + r1 + l2 + r2 ≤ 4(1− δ1), 0 ≤ β < 4(1− δ1), (62)

or

l1 + r1 + l2 + r2 > 4(1− δ1), 0 ≤ β < 4(1− δ1),
l1 + r1 + l2 + r2 − 4(1− δ1)

2(l1 + r1 + l2 + r2 − β)
≤ $ <

1

2
. (63)

Then, as n→∞, it holds that

Σ̌n p→ Σ, (64)

where Σ is defined in Appendix A.

In our Monte Carlo studies and empirical application, we take l1 = r1 = 2 and l2 = r2 = 1. Here,

(63) holds provided β < 4(1− δ1). As 1/2 < δ1 < 2/3 by assumption (i.e, 4/3 < 4(1− δ1) < 2), it

therefore suffices that β ∈ [0, 4/3).
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Theorem 4.1 implies that in finite samples, we get a consistent and nonnegative estimator of V :

V̌ n = Σ̌n
11 − 2

(
l1 + r1

l2 + r2

)(
B̌V (l2, r2)n

) l1+r1
l2+r2

−1
Σ̌n

12 +

(
l1 + r1

l2 + r2

)2(
B̌V (l2, r2)n

)2
(
l1+r1
l2+r2

−1
)
Σ̌n

22. (65)

Corollary 4.1 Assume that the conditions from Theorem 4.1 hold true. If X is given by (10),

such that Assumption (J) holds for some β ∈ [0, 1) and
(

1
2(2−β)

∨ 3
2(4−β)

)
≤ $ < 1/2. Then, if

l1 + r1 > l2 + r2 and as n→∞,

T n ≡
n1/4

(
B̌V (l1, r1)n −

(
B̌V (l2, r2)n

) l1+r1
l2+r2

)
√
V̌ n

d→ N(0, 1). (66)

Corollary 4.1 delivers the asymptotic normality of the studentized statistic T n; the feasible

version of (27). Note that under the alternative presence of heteroscedasticity, B̌V (l1, r1)n −(
B̌V (l2, r2)n

) l1+r1
l2+r2 converges to a strictly positive random variable. Moreover, as V̌ n was shown

to be a robust estimator of V even in the presence of stochastic volatility, jumps and noise, we can

conclude that the statistic T n → ∞ if the realization of Xd has a heteroscedastic volatility path.

Therefore, appealing to the properties of stable convergence, we deduce that

lim
n→∞

P
(
T n > z1−α | ΩH0

)
= α, (67)

lim
n→∞

P
(
T n > z1−α | ΩHa

)
= 1 (68)

where zα is the α-quantile of a standard normal distribution. The implication is that we reject H0,

if T n is significantly positive. While the alternative inference procedure based on (66) does not

require any resampling, it possesses inferior finite sample properties, as shown in Section 5.

Remark 3 The results from Jacod, Podolskij, and Vetter (2010) and Podolskij and Vetter (2009a)

indicate that some assumptions can be relaxed. In particular, in Corollary 4.1, if all the powers

are even numbers (e.g., l1 = 4, r1 = 0, l2 = 2 and r2 = 0), we can prove the results in the general

setting of Jacod, Podolskij, and Vetter (2010) with heteroscedastic noise, which is of a general form

E
(
ε2t | X

)
= ω2

t and not necessarily restricted to E
(
ε2t | X

)
= ω2σ2

u,t. Here, the null is modified as

H0 : ω ∈ ΩH0 ∩
{
ω : t 7−→ var

(
εdt | X

)
is constant on [0, 1]

}
, (69)

where εdt ≡ εt/σu,t. This suggests that in the presence of heteroscedastic noise of a general form,

H0 is a joint statement about the constancy of both diffusive and the rescaled noise variance. Such

information should be useful in practice, because it delivers knowledge about the presence of het-

eroscedasticity irrespective of its origin. Meanwhile, Figure 1 shows that for our empirical high-

frequency data—and the two choices of θ adopted in the paper—B̌V (1, 1)n is almost exclusively

composed by diffusive volatility. This implies that very little residual noise is left in the data after

pre-averaging, which indicates that any rejection of the null is more likely due to genuine time-

variation in σsv,t. We note that the dampening of the noise is naturally much weaker for θ = 1/3,

which is therefore more susceptible to reject H0 on this ground.

19



Figure 1: Proportion of microstructure noise in B̌V (1, 1)n.

Panel A: θ = 1/3. Panel B: θ = 1.
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Note. We plot the proportion of B̌V (1, 1)n that is due to residual variation (after pre-averaging) in the microstructure noise.

B̌V (1, 1)n is rescaled by θψkn2 to provide an estimate of the integrated variance up to a bias term ψkn1 ω2/(θ2ψkn2 ), see (21) and

Theorem 2.1. The figure shows the ratio of the bias to the total B̌V (1, 1)n estimate over time for the ticker symbols included in
our empirical analysis. ω2 is replaced by the robust estimator ω̂2 in (39) computed daily with q = 3.

Corollary 4.2 Assume that the conditions of Theorem 4.1 hold true and the external random

variable is chosen as uj
i.i.d.∼

(
E∗(uj), var∗(uj)

)
, such that var∗(uj) = 1/2. Then, as n→∞,

var∗

(
n1/4

(
B̌V (l1, r1)n∗

B̌V (l2, r2)n∗

))
= Σ̌n p→ Σ, (70)

both in model (103) and (1), where Σ is defined in Appendix A.

Given the consistency of the bootstrap variance estimator, we now prove the associated convergence

of the bootstrap distribution of n1/4
(
B̌V (l1, r1)n∗, B̌V (l2, r2)n∗

)ᵀ
.

Theorem 4.2 Assume that all conditions from Corollary 4.2 hold true and that E∗
(
|uj|
)2+δ

< ∞
for some δ > 0. Then, as n→∞,

(
Σ̌n
)−1/2

n1/4

(
B̌V (l1, r1)n∗ − E∗

(
B̌V (l1, r1)n∗

)
B̌V (l2, r2)n∗ − E∗

(
B̌V (l2, r2)n∗

) ) d∗→ N(0, I2), (71)

in probability-P , both in model (103) and (1). Moreover, let

Sn∗ =

n1/4

[
B̌V (l1, r1)n∗ −

(
B̌V (l2, r2)n∗

) l1+r1
l2+r2 −

(
E∗
(
B̌V (l1, r1)n∗

)
−
(
E∗
(
B̌V (l2, r2)n∗

)) l1+r1l2+r2

)]
√
V

,

(72)
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where l1 + r1 > l2 + r2. It holds that

V n∗ ≡ var∗
[
n1/4

(
B̌V (l1, r1)n∗ −

(
B̌V (l2, r2)n∗

) l1+r1
l2+r2

)]
p→ V, (73)

and

Sn∗
d∗→ N(0, 1), (74)

in probability-P , both in model (10) and (1).

Theorem 4.2 shows that the normalized statistic Sn∗ is asymptotically normal both in model (10)

and (1). This implies, independently of whether H0 or Ha is true, Sn∗
d∗→ N(0, 1), in probability-P .

This ensures that the following bootstrap test both controls the size and is consistent under the

alternative. Let

Zn∗ ≡ n1/4
[
B̌V (l1, r1)n∗−

(
BV (l2, r2)n∗

) l1+r1
l2+r2−

(
E∗
(
BV (l1, r1)n∗

)
−
(
E∗(BV (l2, r2)n∗)

) l1+r1
l2+r2

)]
(75)

and

Zn ≡ n1/4

(
B̌V (l1, r1)n −

(
B̌V (l2, r2)n

) l1+r1
l2+r2

)
. (76)

Remark 4 We reject H0 at level α, if Zn > p∗1−α, where p∗1−α is the (1 − α)-percentile of the

bootstrap distribution of Zn∗. Under the conditions of Theorem 4.2, the statistic Zn∗ d∗→ N(0, V ), in

probability-P . Note that as Zn dst→ N(0, V ) on ΩH0, the fact that Zn∗ d∗→ N(0, V ), in probability-P ,

ensures that the test has correct size, as n→∞. On the other hand, under the alternative (i.e. on

ΩHa), as Zn diverges at rate n1/4, but we still have that Zn∗ d∗→ N(0, V ) = Op∗(1), the test has unit

power asymptotically.

The above bootstrap test is convenient, as it does not require estimation of the asymptotic

variance-covariance matrix Σ, but it may not lead to asymptotic refinements. In order to at-

tain such improvement (or at least be able to prove it), we should base the bootstrap on an

asymptotically pivotal t-statistic. To this end, we propose a consistent bootstrap estimator of

Σ̌n = var∗
(
n1/4

(
B̌V (l1, r1)n∗, B̌V (l2, r2)n∗

)ᵀ)
. We look at the following adjusted bootstrap version

of Σ̌n given by Σ̌n∗ =
(

Σ̌l1,r1,l2,r2,n∗
ij

)
1≤i,j≤2

, where the individual entries of Σ̌n∗ are

Σ̌
li,ri,lj ,rj ,n∗
ij =

√
n

bn

var∗(u)

E∗(u2)

Jn∑
k=1

∆̌B(li, ri)
n∗
k ∆̌B

∗
(lj, rj)

n
k , (77)

with

∆̌B(l, r)n∗j = ∆̌B(l, r)nj uj, (78)

where ∆̌B(l, r)nj is from (53) and (uj)
Jn
j=1 are the external random variables used to generate the

bootstrap observations in (46). We can also write

Σ̌n∗ =

√
n

bn

var∗(u)

E∗(u2)

Jn∑
j=1

ξ̌∗j ξ̌
∗ᵀ
j , (79)
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where ξ̌∗j ≡ uj

(
∆̌B(l1, r1)nj , ∆̌B(l2, r2)nj

)ᵀ
. We can show that Σ̌n∗ consistently estimates Σ̌n for

any choice of external random variable u with E∗
(
|uj|4

)
< ∞. Next, based on Σ̌n∗ we construct a

bootstrap studentized variant of (66):

T n∗ ≡ Zn∗√
V̌ n∗

, (80)

where

V̌ n∗ = Σ̌n∗
11 − 2

(
l1 + r1

l2 + r2

)(
B̌V (l2, r2)n

) l1+r1
l2+r2

−1
Σ̌n∗

12 +

(
l1 + r1

l2 + r2

)2(
B̌V (l2, r2)n

)2
(
l1+r1
l2+r2

−1
)
Σ̌n∗

22 . (81)

Theorem 4.3 Assume that the conditions of Corollary 4.2 are true and the external random vari-

able is chosen as uj
i.i.d.∼

(
E∗(uj), var∗(uj)

)
, such that E∗

(
|uj|4+δ

)
< ∞ for some δ > 0. Then, as

n→∞, (
Σ̌n∗)−1/2

n1/4

(
B̌V (l1, r1)n∗ − E∗

(
B̌V (l1, r1)n∗

)
B̌V (l2, r2)n∗ − E∗

(
B̌V (l2, r2)n∗

) ) d∗→ N(0, I2), (82)

in probability-P , both in model (103) and (1). Also,

T n∗
d∗→ N(0, 1), (83)

in probability-P , both in model (10) and (1).

Theorem 4.3 shows the asymptotic normality of the studentized statistic T n∗. An implication

of results in Theorem 4.3 is that we reject H0 at significance level α, if T n > q∗1−α, where q∗1−α is

the (1− α)-percentile of the bootstrap distribution of T n∗.

5 Monte Carlo analysis

We here assess the properties of the nonparametric noise- and jump-robust test of deterministic

versus stochastic variation in the intraday volatility coefficient that was proposed in Section 2. We

also highlight the refinements that can potentially be offered by the bootstrap, as outlined in Section

4, in sample sizes that resemble those, we tend to encounter in practice. We do so via detailed and

realistic Monte Carlo simulations, and we start by describing the design of the study.

To simulate the efficient log-price Xt, we adopt the model:

dXt = atdt+ σtdWt + dJt, (84)

where X0 = 0, at = 0.03 (per annum) and the other components are defined below.

As above, σt = σsv,tσu,t. To describe σu,t, we follow earlier work of Hasbrouck (1999) and

Andersen, Dobrev, and Schaumburg (2012) by using the specification:

σu,t = C + Ae−a1t +Be−a2(1−t). (85)
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We set A = 0.75, B = 0.25, C = 0.88929198 and a1 = a2 = 10.16 This produces a pronounced,

asymmetric reverse J-shape in σu,t with a value of about 1.8 (1.1) times higher at the start (end)

of each simulation compared to the observations in the middle. This is also a good description of

the actual intraday volatility pattern observed in our empirical high-frequency data (cf. Panel B in

Figure 5).

We assume that σsv,t follows a stochastic volatility two-factor structure (SV2F):17

σsv,t = s-exp (β0 + β1τ1,t + β2τ2,t) , (86)

where

dτ1,t = α1τ1,tdt+ dB1,t, dτ2,t = α2τ2,tdt+ (1 + φτ2,t)dB2,t. (87)

Here, B1,t and B1,t are two independent standard Brownian motions with E (dWtdB1,t) = ρ1dt and

E (dWtdB2,t) = ρ2dt.

We follow Huang and Tauchen (2005) and use the parameters β0 = −1.2, β1 = 0.04, β2 = 1.5,

α1 = −0.00137, α2 = −1.386, φ = 0.25 and ρ1 = ρ2 = −0.3.18 This means that the first factor

becomes a slowly-moving component, which generates persistence in volatility, while the second is

a fast mean-reverting process that allows for a sufficient amount of volatility-of-volatility. At the

start of each simulation, we initialize τ1 at random from its stationary distribution, i.e. τ1,0 ∼
N
(
0,−[2α1]−1

)
. Meanwhile, τ2 is started at τ2,0 = 0 (e.g., Barndorff-Nielsen, Hansen, Lunde, and

Shephard, 2008).

In absence of stochastic volatility, i.e. under the null hypothesis of deterministic diurnal varia-

tion, we freeze σsv,t at a value equal to the unconditional expectation implied by the above SV2F

model, i.e. σ2 = E(σ2
sv,t).

Jt is a symmetric tempered stable process with Lévy measure:

ν(dx) = c
e−λx

x1+β
dx, (88)

where c > 0, λ > 0, and β ∈ [0, 2) measures the degree of jump activity. We assume λ = 3 and

β = 0.5. The choice of β produces an infinite-activity, finite-variation process and is consistent with

Theorem 4.1. The idea is to subdue Xt to a stream of small jumps that, in contrast to the large

ones, are typically difficult to filter via truncation, and which can be confused by the t-statistic with

stochastic volatility. We therefore anticipate that this setup induces some size distortions in the

test. c is calibrated so that Jt accounts for 20% of the quadratic variation. This parameterization

aligns with other papers (e.g., Aı̈t-Sahalia, Jacod, and Li, 2012; Aı̈t-Sahalia and Xiu, 2015; Huang

and Tauchen, 2005).

16The calibration of C ensures that
∫ 1

0
σ2
u,tdt = 1.

17The s-exp function is used to denote the exponential function that has been spliced with a polynomial of linear
growth at high values of its argument, i.e. s-exp(x) = ex if x ≤ x0 and s-exp(x) = ex0√

x0−x2
0+x2

, if x > x0. As

advocated by Chernov, Gallant, Ghysels, and Tauchen (2003), we set x0 = ln(1.5).
18Note that these parameters are annualized. We assume there are 250 trading days in a year.
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Figure 2: Illustration of a simulation.

Panel A: volatility. Panel B: jump process.
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Note. The figure shows a sample path of the two main ingredients in the jump-diffusion model (from the first simulation of
1,000 replica in total). In Panel A, the volatility is measured relative to its unconditional average. In Panel B, as barely
noticeable, the tempered stable jump process has many small increments that are close, but not equal, to zero.

We approximate the continuous time representation of σsv,t using an Euler scheme, while Jt is

generated as the difference between two spectrally positive tempered stable processes, which are

simulated using the acceptance-rejection algorithm of Baeumer and Meerschaert (2010), as described

in Todorov, Tauchen, and Grynkiv (2014).19 Note that the latter is exact, if β < 1, as is the case

here.

We simulate data for t ∈ [0, 1] (this is thought of as corresponding to a trading session on a US

stock exchange, which spans 6.5 hours), where the discretization step is ∆t = 1/23, 400 (i.e., time

runs on a one second grid).

In Figure 2, we provide an illustration of a realization of the volatility and jump process from

the full model.

A total of T = 1, 000 Monte Carlo replica is generated. In each simulation, we pollute the

efficient price with an additive noise term by setting Yi/n = Xi/n + εi/n. To capture the well-

known negative serial correlation in log-returns induced by bid-ask bounce in transaction prices

and apparent second-order effects present in our real data (cf. Panel A in Figure 5), we follow

Kalnina (2011) and model εi/n (for a given observation frequency n) as an MA(1):

εi/n = ε′i/n + ϕε′(i−1)/n, where ε′i/n | (σt)t∈[0,1]
i.i.d.∼ N

(
0,

ω2

1 + ϕ2

)
, (89)

19We thank Viktor Todorov for sharing Matlab code to simulate a tempered stable process.
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so that var(ε) = ω2.

To gauge how the strength of autocorrelation in ε affects our results, we consider ϕ = 0, −0.3,

−0.5, and −0.9. Of course, the first value corresponds to the i.i.d. noise case. To model the

magnitude of ε, we set ω2 = ξ2

√∫ 1

0
σ4
t dt, such that the variance of the market microstructure

component scales with volatility (e.g., Bandi and Russell, 2006; Kalnina and Linton, 2008). As in

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), we fix ξ2 = 0.0001, 0.001 and 0.01, as

motivated by the empirical work of Hansen and Lunde (2006), who find these to be typical sizes

of noise contamination for the 30 stocks in the Dow Jones Industrial Average index (see also, e.g.,

Aı̈t-Sahalia and Yu, 2009).

We inspect both the infeasible setting, where the true—but unknown—diurnal factor σu,t is

applied to standardize the noisy high-frequency return in (12) and the feasible version from (38),

where the estimator σ̂u,t in (31) is used.

We compute σ̂u,t based on m = 78 (i.e., 5-minute data) and bias-correct with the estimator of

ω2 from (39) with q = 3.20 Although the noise is at most 1-dependent here, our implementation

matches the empirical application, where this value of q suffices to capture the autocorrelation

found in our real high-frequency data, as evident from Panel A in Figure 5. In Figure 3, we plot σ̂u,t

alongside σu,t as estimated both under H0 and Ha. As seen, σ̂u,t is roughly unbiased, but it exhibits

higher variation around σu,t in the presence of stochastic volatility, which adds measurement error

to the calculations.21

We then construct noisy deflated log-returns ∆n
i Y

d ≡ Y d
i/n − Y d

(i−1)/n at sampling frequency

n = 390, 780, 1560, 4680, 7800, 11700 and 23400, thereby varying the sample size across a broad

range of selections. With the above interpretation of time, the smallest (largest) value of n amounts

to observing a new price every minute (second). Such a number of trade arrivals is not unrealistic

compared to real high-frequency data, as reported in Section 6.

We pre-average using (17) and (37), which we do locally on a window of size kn = [θ
√
n]. We

work with θ = 1/3 and θ = 1 (as also done in, e.g., Christensen, Kinnebrock, and Podolskij, 2010).22

As standard, the weight function is g(x) = min(x, 1− x).

The t-statistic is based on comparing B̌V (l, r)n with l1 = r1 = 2 and l2 = r2 = 1. To truncate,

we set vn = cu$n with un = kn/n in (24), which is adapted to an estimate of the local spot volatility.

As in, e.g., Li, Todorov, and Tauchen (2013, 2016), we fix the “rate” parameter $ = 0.49, while

we determine the “scale” dynamically as c = Φ(0.999)
√
BV (1, 1)n, where Φ(0.999) is the 99.9%-

quantile from the standard normal distribution and BV (1, 1)n is the non-truncated estimator in

20The noise plays a limited role at this sampling frequency, but we prefer a low value of m to accommodate all
the choices of n in the simulation design. In our empirical work, we exploit 30-second data (i.e., m = 780), as the
instruments analyzed there are very liquid and, as a result, sample sizes are generally large.

21To illustrate the robustness of our approach, we do not filter σ̂u,t, although it appears natural to exploit the
smoothness condition in Assumption (D3) to reduce sampling errors further.

22As this introduces a small rounding effect in the relation between θ and kn, we therefore reset θ = kn/
√
n

following the determination of kn. We apply this “effective” θ in all the subsequent computations, as also advocated
in Jacod, Li, Mykland, Podolskij, and Vetter (2009).
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Figure 3: Estimation of the diurnal component.

Panel A: H0 : σt = σσu,t. Panel B: Ha : σt = σsv,tσu,t.
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Note. We plot σu,t from (85). An estimate is recovered from σ̂u,t proposed in (31) based on m = 78. The bias-correction is
done via ω̂2 in (39) with q = 3. Panel A depicts estimates under H0 : σt = σσu,t, while Panel B is for Ha : σt = σsv,tσu,t.
Each point on a vertical line corresponds to an estimate in that time interval for some combination of n, ξ2 and ϕ.

(20). The intuition behind this construction is as follows. Assume there are no jumps in the

interval [i/n, (i+ kn)/n]. Then, under mild regularity conditions:

n1/4∆n
i Ȳ

d a∼ N

(
0, θψ2σ

2
sv,i/n +

1

θ
ψ1ω

2

)
. (90)

It follows from (21) that BV (1, 1)n
p→
∫ 1

0

(
θψ2σ

2
sv,s + 1

θ
ψ1ω

2
)
ds, so that

√
BV (1, 1)n is a (jump-

robust) measure of the average dispersion (i.e., standard deviation) of the sequence ∆n
i Ȳ

d, while

Φ(·) controls how far out in the tails of the distribution truncation is enforced.23 On the other

hand, while ∆n
i Ȳ

d is of order Op

(
n−1/4

)
, $ ∈ (0, 1/2) implies that u$n shrinks at a slower pace

than ∆n
i Ȳ

d. Therefore, purely “continuous” returns fall within the boundary of the threshold

asymptotically. In contrast, if there are jumps in [i/n, (i+ kn)/n], ∆n
i Ȳ

d usually has order Op(1),

and such “discontinuous” returns are, eventually, discarded.

The bootstrap inference is done as follows. We resample the pre-averaged high-frequency data

B = 999 times for each Monte Carlo replication. Application of our bootstrap also requires the

selection of the external random variable u. This is an important choice in practice, and consistent

with previous work (e.g., Hounyo, 2017; Hounyo, Gonçalves, and Meddahi, 2017) we examine the

23While the pre-averaged (1,1)-bipower variation is robust to the presence of jumps in the p-lim, as n → ∞, in
practice it tends to be slightly upward biased for a finite value of n, because the jumps are not completely eliminated,
see, for example, Christensen, Oomen, and Podolskij (2014).
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robustness of our approach by adopting two candidate distributions:24

(1.) uj ∼ N(0, 1/2).

(2.)

uj =


1√
2

(
1−
√

5

2

)
, with probability p =

√
5 + 1

2
√

5

1√
2

(
1 +
√

5

2

)
, with probability 1− p =

√
5− 1

2
√

5
.

(91)

In both cases, E∗(uj) = 0 and var∗(uj) = 1/2, so these are asymptotically valid choices of uj

for the purpose of constructing a bootstrap test based on studentized and unstudentized statistics.

The two-point distribution in (2.) was originally proposed by Mammen (1993), and here we just

scale it such that its variance is a half.

Estimation of the asymptotic variance-covariance matrix Σ depends on the block size bn = O(nδ)

with 1/2 < δ < 2/3. Of course, this means nothing other than eventually bn = cnδ, for some

constant c. There is no available theory, which can help us find optimal choices of c and δ (e.g., via

a MSE criterion). Moreover, in finite samples any fixed block size bn can be achieved from many

combinations of c and δ. Set against this upshot, we propose the following. We fix δ = 2/3 at the

upper bound (again, the inequality constraint is only binding in the limit). We set bmin
n = [2nδ]

and bmax
n = [min(3nδ, Nn/2)]. The first choice is motivated, since we need at least bn ≥ 2kn for the

estimator to capture the dependence in (y̌(l, r)ni )Nni=1, while the latter amounts to saying bn should

also not be too large compared to Nn. We then partition [bmin
n , bmax

n ] into 30 equidistant subintervals

and loop bn over the integers that are closest to the endpoints. We select an “optimal” value of

bn by using the minimum variance criterion of Politis, Romano, and Wolf (1999) with a two-sided

averaging window of length d = 2.

In Table 1 – 4, we report the rejection rates—averaged across simulations—of the above jump-

and noise-robust test of H0 at the 5% level of significance. The critical value in each test is found

either via the 95% quantile of the standard normal distribution function (labeled CLT), as motivated

by the asymptotic theory in Corollary 4.1, or with the help of the bootstrap-based percentile and

percentile-t approach—with the headings zwb· and twb·—for the two external random variates u

introduced above.

Throughout, we highlight the setting with ϕ = −0.5, while noting the simulated size and power

for other values of ϕ are generally within ±1%-point of the numbers reported here (the latter are

omitted, but available at request). This is also true for the noise variance parameter, ξ, which

changes the results in a limited way, if at all, as gauged by inspection of Panel A – C in each

table. As such, neither of the parameters associated to noise has a material effect on the outcome of

24We also experimented with a third external random variable using an alternative formulation of the two-point
distribution, where uj = ±1 with probability p = 1− p = 1/2. The outcome was more or less identical to the results
we report based on (2.), so we decided to exclude these results to save space.
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the t-statistic, illustrating its robustness to market frictions. The only exception to this rule is for

θ = 1/3 and ξ2 = 0.01, where a visible drop in the rejection rate underHa is noticed, suggesting that

narrow pre-averaging is inadequate to counter the microstructure contamination in the presence of

an (abnormally) large noise. As expected, the block size bn increases monotonically with n.

Now, about replacing the latent diurnal volatility σu,t with our statistic σ̂u,t from (31), we observe

from, say, Table 1 and 3 that it does not modify the properties of the t-statistic much. In particular,

the rejection rates are only marginally higher, as was to be expected, because σ̂u,t is an estimator,

which has an inherent sampling error attached to it. This means it does not completely control for

the true seasonal pattern—to the extend σ̂u,t deviates from σu,t—leaving the rescaled high-frequency

log-returns ∆n
i Y

d modestly heteroscedastic even under the null. Still, the effect is rather benign,

which is remarkable given our naive configuration of σ̂u,t with a relatively small choice of m even

for larger sample sizes n. We therefore concentrate on the feasible results presented in Table 3 – 4

going forward.

On the other hand, by comparing these two tables we note the pre-averaging window itself, via

θ, has a more significant impact on the test, though mostly in small samples. We comment further

on that below.

Turning to the analysis of the rejection rates underH0 of deterministic volatility (size), the tables

show the test is oversized. In particular, the CLT-based approach has a pronounced distortion in

finite samples, starting at about 25.3% (20.5%) for θ = 1/3 (θ = 1). This is more than five (four)

times larger than the nominal level. These rates improve and decline towards 5% as n increases,

but remain notably elevated even in fairly large samples.

In contrast, the bootstrap-based approaches are much less biased relative to inference with the

asymptotic critical value. The refinement brought about by bootstrapping is often substantial,

when the sample size is limited, and the rejection rates are closer to the significance level across

the board, albeit they are also mildly inflated initially. The percentile approach appears to possess

better size properties compared to the percentile-t, and it settles around 5 – 6% fast. As noted

above, the former procedure has the added advantage that it does not require the user to input

a—potentially imprecise—estimate of Σ. This also helps to make it slightly less computationally

intensive, so as a practical choice we advocate the percentile approach. It is interesting to see that

the difference between the two external random variables, in terms of controlling size, is negligible,

perhaps with a very weak preference for the one based on the discrete two-point distribution. In

the empirical application below, we base our investigation on zwb2.

Next, we look at the simulation results under Ha with stochastic volatility (power). The power

exhibited by the various tests is not overwhelming for small n, but it improves steadily towards

100% as n grows large. Still, it stays somewhat less than unity even for n = 23, 400. It appears

the CLT-based test has good power, but this is largely due to the sheer amount of Type I errors

committed with this statistic. We observe a notable drop in the rejection rates going from Table

3 (with θ = 1/3) vis-à-vis to Table 4 (with θ = 1), caused by the heavy increase in pre-averaging.
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Figure 4: Simulation properties of t-statistic and H-index.

Panel A: assessment of power. Panel B: relative bias of Ĥ-index.
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Note. In Panel A, we create an indicator variable I, which equals to one if the t-statistic (based on zwb2) is significant at
the 5% nominal level, zero otherwise. We plot it against the true H-index from (92) (small symbol). The curve is from a
logistic regression between the two. Also shown are local averages of I (large symbol). In Panel B, we plot the distribution of

Ĥ-index—defined in (93)—scaled by the H-index. Throughout, the setting is n = 23, 400, ξ2 = 0.001 and ϕ = −0.5.

While this generally renders our testing procedures more resilient to the detrimental effects of

microstructure noise, it also smooths out the underlying volatility path and thereby diminishes our

ability to uncover genuine heteroscedasticity in the data. It thus highlights a crucial trade-off in

practice in terms of selecting θ.

The above suggests our test is not always powerful enough to pick up variation in σsv,t. There

are several possible explanations of this finding. Firstly, the choice of the tuning parameter θ has a

significant impact, as we highlighted above and inspect further below. Secondly, the problem is not

trivial. It may just be hard to detect fluctuations in σsv,t from noisy high-frequency data, leaving

the jump distortion aside. Thirdly, and although σsv,t is time-varying under the alternative, it may

be so persistent that its sample path—which of course differs between simulations—moves about so

little (in relative terms) that it appears essentially homoscedastic on an intraday time frame. While

this feature partially justifies regarding σsv,t as “almost constant,” it also makes it hard for the test

to discriminate Ha from natural sampling variation under H0 (which it rightfully should do here),

at least for the simulated sample sizes.

To shed light on these aspects, we compute:

H-index = 1−
( ∫ 1

0
σ2
sv,sds

)2∫ 1

0
σ4
sv,sds

. (92)

The H-index compares the square of integrated variance to the integrated quarticity of Xd. It
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has the intuitive interpretation that it describes how much σsv,t deviates from H0 in percent, see,

e.g., Podolskij and Wasmuth (2013).25 We note that H-index ∈ [0, 1] by construction and that

it equals zero if and only if σsv,t = σ is constant. Strictly positive values imply σsv,t is to some

extent time-varying (not necessarily random, though). The H-index is therefore a natural measure

of heteroscedasticity in our framework.26

The two-factor stochastic volatility process used in this paper has an average H-index value of

about 0.20 (based on a large number of paths drawn from the model). It falls below 0.10 20% of

the times, while it is rarely smaller than 0.05.

In Panel A of Figure 4, we report the outcome of the t-statistic both for the set of experiments

with deterministic and stochastic volatility. We define an indicator variable I, which takes the value

one if H0 was rejected (on the basis of zwb2), and zero otherwise. The figure is a scatter plot of

I versus the H-index. The fitted line originates from a logit regression of I on the H-index, which

can be interpreted as the power of the test, conditional on H-index. As expected, the tendency to

discard H0 is an increasing function of the H-index. When the deviation from the null is 0.15, the

t-statistic is significant about two-thirds of the time for θ = 1/3, which falls down to 50% for θ = 1.

Meanwhile, an H-index above 0.35 (θ = 1/3) – 0.45 (θ = 1) implies it more or less always lies in

the rejection region. It thus requires rather convincing evidence against the null to firmly reject it,

more so for θ = 1.

In practice, we estimate the H-index based on

Ĥ-index = 1− ÎV
2

ÎQ
, (93)

where

ÎV =
1

θψn2
B̌V (1, 1)n − ψn1

θ2ψn2
ρ̂2, ÎQ =

1

(θψn2 )2
B̌V (2, 2)n − 2

ψn1
θ2ψn2

ρ̂2ÎV−
(

ψn1
θ2ψn2

)2

ρ̂4, (94)

and

ρ̂2 = ρ̂(0) + 2

q∑
k=1

ρ̂(k) (95)

estimates the asymptotic bias in B̌V (l, r)n in the presence of q-dependent measurement error (e.g.,

Hautsch and Podolskij, 2013, Lemma 2),

ρ̂(k) = −
q−k+1∑
j=1

jγ̂(k + j), and γ̂(k) =
1

n− k

n−k∑
i=1

∆n
i Y

d∆n
i+kY

d, (96)

25The statistic has been used in earlier work to test for the parametric form of volatility (e.g., Dette, Podolskij, and
Vetter, 2006; Vetter and Dette, 2012). In contrast to our paper, the former operate with continuous X. Moreover,
the ratio appears—sometimes in a different format—in other strands of the literature, for example asymptotic
variance reduction (e.g., Clinet and Potiron, 2017), estimation of integrated variation (e.g., Andersen, Dobrev, and
Schaumburg, 2014; Barndorff-Nielsen, Hansen, Lunde, and Shephard, 2008; Xiu, 2010), or in the context of jump-
testing (e.g., Barndorff-Nielsen and Shephard, 2006; Kolokolov and Renò, 2016).

26While it is possible to base the t-statistic on the H-index by transforming the CLT in (66) via the delta rule, we
refrain from doing so due to the severe amount of time it takes to run the code.
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for k = 0, . . . , q + 1.

In Panel B of Figure 4, we plot the distribution of the relative bias Ĥ-index/H-index as a function

of θ across simulations under the alternative. Note that an unbiased estimator has the distribution

centered at one. As apparent, Ĥ-index is slightly downward biased both for θ = 1/3 and θ = 1,

which is mainly caused by a modest underestimation of IQ.27 This leads to conservative statements

about the true level of heteroscedasticity in the data, thereby reducing the rejection rate. The

distribution is more dispersed and has a higher probability of being close to zero or even outright

negative, when θ = 1. This, in part, can help to explain why the simulated power is smaller for

θ = 1.

Overall, our noise- and jump-robust test of heteroscedasticity in diurnally-corrected diffusive

volatility implemented via the bootstrap percentile-approach has good properties. In contrast to

the CLT-based version of the test, it is almost unbiased, also for very small values of n, while it has

decent—albeit not perfect—power under the presence of stochastic volatility.

6 Empirical application

We apply our framework to a large cross-sectional panel of US equity high-frequency data. It

includes the 30 stocks of the Dow Jones Industrial Average—following the update of its constituent

list on March 18, 2015—and the SPDR S&P 500 trust. The latter is an ETF with a price of about

1/10 the cash market value of the S&P 500 index. The sample period is January 4, 2010 through

December 31, 2013 for a total of T = 1, 006 official exchange trading days. Table 5 presents a list

of ticker symbols along with a few summary statistics.28

The data were extracted from the TAQ database and comprise a complete transaction record

for each stock. They were cleaned with the algorithm developed by Christensen, Oomen, and

Podolskij (2014), who build on earlier work of Brownless and Gallo (2006) and Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2009). It is a standard way of preparing data for analysis in the

high-frequency volatility literature.

To compute σ̂u,t, we create an equidistant log-price series for each asset pre-ticked to a 5-second

resolution, i.e. n = 4, 680. We then set m = 780—or n/m = 6—to retrieve a local estimate σ̂u,t

that covers a 30-second interval.29 It ensures that we recover a detailed view of the diurnality in

volatility, while still being able to purge the associated noise with decent accuracy. On each block,

we bias-correct with the robust estimator in (39) using q = 3.30 This is motivated by Panel A

27There is also an attenuation effect induced by the non-linear transformation of ÎV.
28Notice that the variance of the noise, as captured by ξ̂2, is generally smaller than what we assumed in the

simulations. This is consistent with the notion that the noise has decreased over time.
29To estimate σu,t, we further delete a few outliers from the sample. Firstly, the Flash Crash of May 6, 2010.

Secondly, for each 30-second interval we remove the top 1% of data for each stock—as measured by |∆m
i Y |—to filter

out observations typically associated with idiosyncratic news announcements. These events exert an unduly influence
on the estimates due to our relatively small value of T . In a larger sample this should not be necessary.

30ω2 is sometimes estimated to be negative, due to the sampling distribution of ω̂2. This cannot be true, of course,
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Figure 5: Properties of equity high-frequency data.

Panel A: ACF of ∆n
i Y . Panel B: σ̂u,t.
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Note. In Panel A, we plot the ACF of our TAQ high-frequency equity data averaged across assets and over time. In Panel B, we
present our estimator σ̂u,t of within-day volatility. The cross-sectional average is reported, along with the highest and smallest
point estimate. As a comparison, we also fit the parametric form of diurnal variation in (85) via non-linear least squares.

in Figure 5, which reports the autocorrelation function (ACF) of ∆n
i Y . As shown, while the first

few autocorrelations are significant, the ACF dies out fast and is generally insignificant after lag

three and negligible beyond lag five (not shown in figure), so this choice of q suffices to capture the

observed serial dependence in the noise.

The cross-sectional average of σ̂u,t is reported along with the minimum and maximum value in

Panel B of Figure 5. We note σ̂u,t features the reverted J-shape as reported in prior work, but also

that it is very rough with sharp increases around pre-scheduled macroeconomic announcements

(e.g., at 10:00am or 2:00pm). The latter is consistent with empirical findings in, e.g., Todorov

and Tauchen (2011), who note that jumps in volatility are strongly correlated with large moves

in market prices.31 There are also some notable spikes in within-day volatility prior to the close

of the exchange. Overall, diurnal variation is remarkably constant across assets, as gauged by the

maximum and minimum value. To assess the parametric model used in the simulations, we estimate

the parameters of (85) via non-linear least squares based on the cross-sectional average. The fitted

equation σu,t = 0.78 + 1.71e11.85t + 0.30e14.17(1−t) is a good approximation to our nonparametric

estimates, although it does not track the sharp initial decay in early trading.

and we therefore truncate ω̂2 at zero throughout the paper. This happens more often if the noise is really small
relative to the underlying volatility of the asset, as demonstrated by the index-tracker SPY in Figure 1.

31It also suggests that σu,t may not be as smooth as stipulated by Assumption (D3). Note, however, that although
volatility peaks at the announcement, it does not necessarily jump. In our data it actually starts to increase around
1-minute to 30-seconds prior to the time, where the numbers are officially slated for release. This is consistent with
the findings of Jiang, Lo, and Verdelhan (2011) from the U. S. Treasury market.
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Figure 6: The distribution of the Ĥ-index.

Panel A: before correction. Panel B: after correction.
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Note. We plot the cross-sectional distribution of the Ĥ-index before and after diurnal correction with our nonparametric estimator
from (31), also shown in Panel B of Figure 5. The dashed vertical line at zero indicates the theoretical lower bound.

We then construct the deflated log-returns and compute the test for each stock and day in

the sample. In the right-hand side of Table 5, we report the average rejection rate of H0 and

associated H-index measurement. As above, we base the investigation on B̌V (2, 2)n and B̌V (1, 1)n

with θ = 1/3 and θ = 1. The bootstrap percentile approach is applied to evaluate the significance

of our t-statistic, i.e. zwb2. As a comparison, we also retrieve the corresponding results from the

raw data prior to diurnal correction.

Looking at Table 5, we observe that H0 is discarded more than half of the times for almost

every single stock, irrespective of θ, if there is no seasonal adjustment.32 The levels are highest for

θ = 1/3, which is consistent with the increased power if θ is small, as uncovered in the simulation

section. On the other hand, there is also some evidence of the caveat raised in Remark 3. That

is, the pre-averaging estimator is affected harder by residual microstructure noise if θ is small, so

that here the test is prone to discredit H0 in the presence of a general form of heteroscedasticity in

the variance of the noise. Indeed, there is some tendency for stocks with very negative first-order

return autocorrelation and large levels of noise—as measured by ξ̂2— to reject more frequently.

If we control for diurnal variation, the rejection rate drops about by 25% (for θ = 1/3) to almost

50% (for θ = 1). This implies the diurnal pattern is a first-order effect, which captures a large

fraction of variation in intraday volatility. However, as readily seen, important and potent sources

32We add that due to the multiple testing, roughly five percentage points of these (or even a bit more as the
test was found to be mildly oversized) can potentially be attributed to false positives, since we are testing at a
significance level α = 0.05. To control the family-wise error rate, a standard Bonferroni-type correction can be used
(e.g., Andersen, Bollerslev, and Dobrev, 2007).
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Figure 7: Empirical properties of t-statistic and Ĥ-index.

Panel A: before correction. Panel B: after correction.

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H−index

o
u

tc
o

m
e

 o
f 

t−
s
ta

ti
s
ti
c

 

 

θ = 1/3
θ = 1

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H−index
o

u
tc

o
m

e
 o

f 
t−

s
ta

ti
s
ti
c

 

 

θ = 1/3
θ = 1

Note. We create an indicator variable I, which equals to one if the t-statistic is significant at the 5% nominal level, zero otherwise.
We plot I against the Ĥ-index before and after diurnal correction (i.e., based on (Ĥ-index, zwb2) or (Ĥ-indexd, zdwb2)) and as a
function of θ. The curve is from a logistic regression between the two. We also show local averages of I.

of heteroscedasticity remain present in the data.

This story is corroborated by the Ĥ-index, for which we also plot the cross-sectional distribution

before and after diurnal correction in Figure 6. The distribution shifts to the left and displays less

sampling variation after diurnal correction, while we again notice a slight increase in the dispersion

by moving θ up, although the effect is weak. As measured by the cross-sectional average shown

in Panel B of the figure, the strength of residual heteroscedasticity present in ∆n
i Y

d is broadly

comparable to that of the two-factor stochastic volatility model from Section 5 for θ = 1/3, while

it is somewhat less for θ = 1.

At last, in Figure 7 we model the empirical rejection rate of the t-statistic as a function of the

Ĥ-index. The message of the logit fit is consistent with the simulations. It takes a relatively high

reading of Ĥ-index to confidently reject H0. Note that the rejection rates are (at least crudely) close

if Ĥ-index ' Ĥ-indexd, as can be gauged by comparing Panel A and B. The intuitive explanation

is that the power of the test depends only on the level of heteroscedasticity, which is captured by

the H-index, and not as such on whether one has diurnally-corrected or not.

7 Conclusion

In this paper, we study a new approach to determine if changes in intraday spot volatility of a

discretely sampled noisy jump-diffusion model can be attributed solely to a deterministic cyclical

component (i.e., the so-called U- or reverse J-shape) against an alternative of further variation
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induced by a stochastic process.

We propose to construct a test of this hypothesis from an asset return series, which has been

deflated by the diurnal component and, as such, is homoscedastic under the null. The t-statistic

diverges to infinity, if the deflated return series is heteroscedastic, and it has a standard normal

distribution otherwise. To get a feasible test, we develop a—surprisingly robust—nonparametric

estimator of unobserved diurnal volatility, which (in contrast to the test itself) is computed directly

from noisy high-frequency data without pre-averaging or jump-truncation. It requires only a trivial

bias-correction to eliminate the noise variance. Our estimator is consistent and has a sampling

error, which is of small enough order that replacing the true diurnal factor with it does not alter

the asymptotic theory.

We inspect the properties of the test in a Monte Carlo simulation. We note the theory-based

version has gross size distortions in the presence of infinite-activity price jumps, thus motivating a

bootstrap. We validate the bootstrap and confirm it helps to improve inference by making the test

almost correctly sized. The test also has acceptable power, but can fail to reject the null even in

large samples, if a wide pre-averaging window is applied. The estimation of the diurnal factor has

a limited impact, but it raises the rejection rate slightly.

We implement our nonparametric estimator of diurnal variance and test of heteroscedasticity

on real high-frequency data. The diurnal pattern explains a sizable portion of within-day variation

in the volatility, as inferred by the notable drop in the rejection rate of the test and the reduction

in the H-index—a descriptive statistic that measures the strength of time-varying volatility. It

suggests that once we control for diurnal variation in practice, the rescaled log-returns are much

closer to homoscedastic, but important sources of variation remain present in the data. So the

definite answer to the title of the paper appears to be “no.” The diurnal pattern does not explain

all intraday variation in volatility, but it does capture a rather significant portion of it.
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A The explicit form of Σ

In Section 2, we show that our proposed estimator Σ̌n is consistent for the asymptotic covariance

matrix of n1/4
(
BV (Y d, l1, r1)n, BV (Y d, l2, r2)n

)ᵀ
, i.e. Σ appearing in (22), Theorem B.1 and Theo-

rem 4.1. We also prove a corresponding result for the bootstrap version, Σ̌n∗, in Section 4. In this

short appendix, we derive an explicit expression for Σ, which was not put in the main text. We

follow Podolskij and Vetter (2009a) by first defining:

hij(a, b, c) = cov
(
|H1|li |H2|ri , |H3|lj |H4|rj

)
,

where a is a real number, b and c are a two- and four-dimensional vector. Moreover, (H1, . . . , H4)

follows a multivariate normal distribution with:

1. E(Hl) = 0 and var(Hl) = b1a
2 + b2ω

2,

2. H1 ⊥ H2, H1 ⊥ H4, and H3 ⊥ H4,

3. cov(H1, H3) = cov(H2, H4) = c1a
2 + c2omega

2 and cov(H2, H3) = c3a
2 + c3ω

2.

We set t =

(
1

θ
ψ1, θψ2

)
and define:

f1(s) =
1

θ
φ1(s), f2(s) = θφ2(s), f3(s) = θφ3(s), f4(s) =

1

θ
φ4(s),

for s ∈ [0, 2], where

φ1(s) =

∫ 1−s

0

g′(u)g′(u+ s)du, φ2(s) =

∫ 1−s

0

g(u)g(u+ s)du,

φ3(s) =

∫ 2−s

0

g′(u)g′(u+ s− 1)du and φ4(s) =

∫ 2−s

0

g(u)g(u+ s− 1)du.

We note that both f1 and f2 are 0 for s ∈ [1, 2], according to the assumptions imposed on g. We

next let f(s) =
(
f1(s), f2(s), f3(s), f4(s)

)ᵀ
. At last, we get that

Σ =
(

Σl1,r1,l2,r2
ij

)
1≤i,j≤2

=

∫ 1

0

(
wl1,r1,l2,r211 wl1,r1,l2,r212

wl1,r1,l2,r221 wl1,r1,l2,r222

)
(σsv,u)du,

where

wl1,r1,l2,r2ij (σsv,u) = 2θ

∫ 2

0

hij
(
σsv,u, t, f(s)

)
ds.
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B Proofs

In this appendix, K denotes a generic constant, which changes from line to line. Also, as in Jacod

and Protter (2012), we assume that a, σ, δ and X are bounded. As Jacod, Podolskij, and Vetter

(2010) explain, this follows by a standard localization procedure, described in Jacod (2008), and

does not lose generality. Formally, we derive our results under the assumption:

Assumption (G): X follows (1) with a and σ are adapted, càdlàg processes such that a, σ, δ

and X are bounded, so that for some constant K and nonnegative deterministic function γ̃:

‖at(ω)‖ ≤ K, ‖σt(ω)‖ ≤ K, ‖Xt(ω)‖ ≤ K, ‖δ(ω, t, x)‖ ≤ γ̃(x) ≤ K,

∫
R
γ̃(x)βλ(dx) ≤ K.

Throughout the appendix, it will be convenient to define the continuous part of X by X ′ and the

discontinuous martingale part by X ′′, i.e.

X ′t = X0 +

∫ t

0

a′sds+

∫ t

0

σsdWs, X ′′t = Xt −X ′t, (97)

where, according to the value of β, we set

a′s =

{
as −

(
δ1{|δ|≤1}

)
? νt, if β ≤ 1

as +
(
δ1{|δ|>1}

)
? νt, if β > 1

.

Then, we can write

Yt = Y ′t + Y ′′t , (98)

where Y ′t = X ′t + εt and Y ′′t = X ′′t . As in the main text, if we write BV (l, r)n, B̌V (l, r)n, B(l, r)ni ,

∆B(l, r)ni , y̌(l, r)ni , B̌(l, r)ni or ∆̌B(l, r)ni , we assume they are defined with respect to Y d.

Proof of Theorem 2.1. Here, we more or less follow the techniques applied in the proof of The-

orem 4.1 in Hounyo (2017). Firstly, we introduce the pre-averaged return ∆n
i Ȳ computed on the

raw unscaled high-frequency returns:

∆n
i Ȳ =

kn−1∑
j=1

g

(
j

kn

)
∆n
i+j−1Y, i = 1, . . . , n− kn + 2.

Next, for the associated definitions of B̌V (Y, l, r)n, B̌V (Y ′, l, r)n, together with the maintained

assumptions appearing in the main text and if σu,t = 1, the central limit theorem in Theorem 3 of

Podolskij and Vetter (2009a) implies that, as n→∞,

n1/4

(
B̌V (Y ′, l1, r1)n −BV (l1, r1)

B̌V (Y ′, l2, r2)n −BV (l2, r2)

)
ds→MN(0,Σ). (99)

A careful inspection of the proof of this result shows that the stable convergence in (99) remains

valid, when the pre-averaged return is given by ∆n
i Ȳ

d in (17) and σt = σsv,tσu,t. Indeed, the main
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ingredient is the weak convergence:

n1/4∆n
i ε
d d→ N

(
0,

1

θ
ψ1ω

2

)
,

and

n1/4∆n
i Ȳ
′d a∼ N

(
0, θψ2σ

2
sv,i/n +

1

θ
ψ1ω

2

)
,

which follows from (5), as σu,t > 0 for all t ≥ 0 and locally bounded. Thus, it suffices to prove that

for any l, r > 0,

n1/4
(
B̌V (Y d, l, r)n − B̌V (Y ′d, l, r)n

) p→ 0. (100)

To show (100), we let Fu(x) = F (x)1{|x1|<u}1{|x2|<u}, for some u > 0, where F (x) = |x1|l|x2|r with

x =
(
x1 x2

)ᵀ
. As in the line of thought on page 385 in Jacod and Protter (2012), we can show

that for wn = υn/
√
un with un = kn/n:

|Fwn(x+ y)− Fwn(x)| ≤ w
− 2

1−2ω
n ‖x‖l+r+

2
1−2ω +

((
1 + ‖x‖l+r

)(
‖y‖ ∧ 1 + ‖y‖l+r ∧ wl+rn

))
.

Next, let x =
(
∆n
i Ȳ

d ∆n
i+kn

Ȳ d
)ᵀ
/
√
un and y =

(
∆n
i Ȳ
′′d ∆n

i+kn
Ȳ ′′d

)ᵀ
/
√
un. According to (16.4.9)

in Jacod and Protter (2012) in conjunction with results in part 3 in the proof of Lemma 16.4.5 in

that book, for some l + r > 0:

E
(
‖x‖l+r

)
≤ K, E

(
‖y‖ ∧ 1

)
≤ Ku1−β/2

n φn and E
(
‖y‖2 ∧ w2

n

)
≤ Kuω(2−β)

n φn, (101)

where φn → 0 as n→ 0. In addition, from (101) and the inequality (‖y‖∧wn)p ≤ wp−mn (‖y‖∧wn)m,

for 0 < m < p, it is found that

E
(
‖y‖l+r ∧ wl+rn

)
≤ Kwl+r−2

n E
(
‖y‖ ∧ wn

)2 ≤ Ku
ω(l+r−β)− 1

2
(l+r−2)

n φn, (102)

where again φn → 0 as n→ 0. Thus, from the above inequalities together with the definition

n1/4
(
B̌V (Y d, l, r)n − B̌V (Y ′d, l, r)n

)
=
n
l+r−3

4

µlµr

n−2kn+2∑
i=1

(
|∆n

i Ȳ
d|l|∆n

i+knȲ
d|r − |∆n

i Ȳ
′d|l|∆n

i+knȲ
′d|r
)

1{|∆n
i Ȳ

d|<υn}1{|∆n
i+kn

Ȳ d|<υn},

it follows that

n
l+r−3

4
1

µlµr

n−2kn+2∑
i=1

E

(∣∣∣(|∆n
i Ȳ

d|l|∆n
i+knȲ

d|r − |∆n
i Ȳ
′d|l|∆n

i+knȲ
′d|r
)

1{|∆n
i Ȳ

d|<υn}1{|∆n
i+kn

Ȳ d|<υn}

∣∣∣)
≤ Kn

l+r−3
4 n · u

l+r
2
n

(
un + u1−r/2

n φn + u
ω(l+r−β)− 1

2
(l+r−2)

n φn

)
≤ Kn

1
4

(
n−1/2 + n

β−2
4 φn + n

(l+r−2)−2ω(l+r−β)
4 φn

)
≤ K

(
n−1/4 + n

(β−1)
4 φn + n

(l+r−1)−2ω(l+r−β)
4 φn

)
.

Thus, if β < 1 and l+r−1
2(l+r−β)

≤ $ < 1/2, then E
(
|n1/4(B̌V (Y d, l, r)n − B̌V (Y ′d, l, r)n)|

)
→ 0 and
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therefore n1/4(B̌V (Y d, l, r)n − B̌V (Y ′d, l, r)n)
p→ 0. This completes the proof of Theorem 2.1. �

Next, we establish the following result (under no jumps) since it will be useful later in the proof

of Theorem 4.1.

Theorem B.1 Let l1, r1, l2 and r2 be four positive real numbers and X given by

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs. (103)

We define:

Σ̂n =

√
n

2bn

Nn−2bn+1∑
i=1

ξiξ
ᵀ
i , (104)

where ξi ≡ (∆B(l1, r1)ni ,∆B(l2, r2)ni )ᵀ, such that

∆B(l, r)nj = B(Y d, l, r)nj+bn −B(Y d, l, r)nj , (105)

with

B(l, r)nj = n
l+r
4
−1 1

µlµr

bn∑
i=1

y(l, r)ni−1+j. (106)

Furthermore, we assume (V), (A), and impose the moment condition E(|εt|s) < ∞, for some

s > (3 ∧ 2(r1 + l1) ∧ 2(r2 + l2)). If any li or ri is in (0, 1], we postulate (V′), otherwise either (V′)

or (A′). In addition, suppose that kn → ∞ as n → ∞ such that (19) holds, and the block size bn

fulfills (44) for some 1/2 < δ1 < 2/3. Then, as n→∞,

Σ̂n p→ Σ, (107)

where Σ is defined in Appendix A.

Proof of Theorem B.1. Here, recall that X follows (103) and note that given (104), we can

rewrite Σ̂n as follows:

Σ̂n =
1

bn

bn∑
m=1

Σ̂n
m, (108)

where

Σ̂n
m =

√
n

2

bNnbn c−2∑
k=0

ξkbn+mξ
ᵀ
kbn+m =

(
Σ̂l1,r1,l2,r2,n
ij,m

)
1≤i,j≤2

. (109)

Thus, it suffices that Σ̂n
m

p→ Σ, uniformly in m. Thus, the proof is reduced to showing that

p-lim
n→∞

Σ̂l1,r1,l2,r2,n
ij,m = Σl1,r1,l2,r2

ij , 1 ≤ i, j ≤ 2, (110)

uniformly in m. Note that we can rewrite Σ̂l1,r1,l2,r2,n
ij,m as

Σ̂l1,r1,l2,r2,n
ij,m =

√
n

2

bNnbn c−2∑
k=0

∆B(Y d, li, ri)
n
kbn+m∆B(Y d, lj, rj)

n
kbn+m.
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Then, given the definition of ∆B(Y d, l, r)nm given in (105), by adding and subtracting appropriately,

it follows that

Σ̂l1,r1,l2,r2,n
ij,m =

√
n

2

bNnbn c−2∑
k=0

2B(Y d, li, ri)
n
(k+1)bn+mB(Y d, lj, rj)

n
(k+1)bn+m

−B(Y d, li, ri)
n
(k+1)bn+mB(Y d, lj, rj)

n
kbn+m

−B(Y d, li, ri)
n
kbn+mB(Y d, lj, rj)

n
(k+1)bn+m



+

√
n

2


B(Y d, li, ri)

n
mB(Y d, lj, rj)

n
m

+B(Y d, li, ri)
n

(bNnbn c−1)bn+m
B(Y d, lj, rj)

n

(bNnbn c−1)bn+m

−B(Y d, li, ri)
n

(bNnbn c−2)bn+m
B(Y d, lj, rj)

n

(bNnbn c−1)bn+m

−B(Y d, li, ri)
n

(bNnbn c−1)bn+m
B(Y d, lj, rj)

n

(bNnbn c−2)bn+m


= M l1,r1,l2,r2,n

ij,m (Y d) +Rl1,r1,l2,r2,n
ij,m (Y d),

where the remainder term

Rl1,r1,l2,r2,n
ij,m (Y d) = Op

(
n−

3
2 b2
n

)
= op(1),

uniformly in m, so long as δ1 < 3/4, where we apply the definition of B(Y d, l, r)nm in (106), the

Cauchy-Schwartz inequality, and the fact that E
(
|∆n

i Ȳ
d|l
)
≤ Kn−l/4 (cf., Lemma 1 of Podolskij

and Vetter, 2010). Next, we show the main term is such that

p-lim
n→∞

M l1,r1,l2,r2,n
ij,m (Y d) = Σij, 1 ≤ i, j ≤ 2, (111)

uniformly in m. We prove the result for the following unsymmetrized estimator:

M̃ l1,r1,l2,r2,n
ij,m (Y d) =

√
n

bNnbn c−1∑
k=1

(
B(Y d, li, ri)

n
kbn+mB(Y d, lj, rj)

n
kbn+m

−B(Y d, li, ri)
n
kbn+mB(Y d, lj, rj)

n
(k−1)bn+m

)
. (112)

We introduce two approximations of B(Y d, l, r)njbn+m:

B̃(Y d, l, r)njbn+m = n
l+r
4
−1 1

µlµr

bn∑
i=1

ỹ(l, r)ni−1+jbn+m,

B̄(Y d, l, r)njbn+m = n
l+r
4
−1 1

µlµr

bn∑
i=1

ỹ(l, r)ni−1+(j−1)bn+m,

where ỹ(Y d, l, r)i =
∣∣∆n

i Ỹ
d
∣∣l∣∣∆n

i+kn
Ỹ d
∣∣r with ∆n

i Ỹ
d = ∆n

i ε̄
d + σsv, jbn

Nn

∆n
i W̄ , for jbn + m ≤ i ≤

(j + 1)bn +m− 1. We then show that the error due to replacing ∆n
i Ȳ

d by ∆n
i Ỹ

d is small enough to

be ignored and, hence, does not affect our theoretical results. This is true, because σsv is assumed
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to be an Itô semimartingale itself, so that

E
(∣∣∆n

i Ȳ
d −∆n

i Ỹ
d
∣∣) = E

(∣∣∣ kn∑
j=1

g

(
j

kn

)∫ i+j
n

i+j−1
n

adsds+
kn∑
j=1

g

(
j

kn

)∫ i+j
n

i+j−1
n

(
σsv,s−σsv, jbn

Nn

)
dWs

∣∣∣)

≤ K

kn
n

+

(
kn∑
j=1

g2

(
j

kn

)
E

(∣∣∣ ∫ i+j
n

i+j−1
n

(
σsv,s − σsv, jbn

Nn

)
dWs

∣∣∣)2
)1/2


≤ K

(
kn
n

+

(
kn
n

bn
n

)1/2
)
≤ K

(knbn)1/2

n
.

Note that E
(
|B(Y d, l, r)nm|

)
≤ K bn

n
uniformly in m, and so

E
(∣∣B(Y d, l, r)njbn+m − B̃(Y d, l, r)njbn+m

∣∣) ≤ Kbn

(
(knbn)1/2

n

(
1√
kn

) (l+r)
4
−1
)

≤ K

(
bn
n

)3/2

.

As for B̄
(
Y d, l, r

)n
jbn+m

, we find that E
(∣∣B(Y d, l, r)njbn+m − B̄(Y d, l, r)njbn+m

∣∣) ≤ K

(
bn
n

)3/2

. And

because δ < 2/3, we deduce that M̃ l1,r1,l2,r2,n
ij,m (Y d)− M̄ l1,r1,l2,r2,n

ij,m (Y d) = op(1), uniformly in m, where

M̄ l1,r1,l2,r2,n
ij,m (Y d) =

√
n

bNnbn c−1∑
k=1

(
Bnkbn+m − B̂nkbn+m

)
,

such that

Bnkbn+m = B̄(Y d, l1, r1)nkbn+mB̄(Y d, l2, r2)nkbn+m and B̂nkbn+m = B̄(Y d, l1, r1)nkbn+mB̃(Y d, l2, r2)n(k−1)bn+m.

Then,

√
n

∣∣∣∣∣
bNnbn c−1∑
k=1

E

(
Bnkbn+m − E

(
Bnkbn+m | Fn(k−1)bn+m

Nn

))∣∣∣∣∣ ≤ K
b

3/2
n

n
,

√
n

∣∣∣∣∣
bNnbn c−1∑
k=1

E

(
B̂nkbn+m − E

(
B̂nkbn+m | Fn(k−1)bn+m

Nn

))∣∣∣∣∣ ≤ K
b

3/2
n

n
,

by conditional independence, and now we are left with

M̄ l1,r1,l2,r2,n
ij,m (Y d) =

√
n

bNnbn c−1∑
k=1

E
(
Bnkbn+m − B̂nkbn+m | Fn(k−1)bn+m

Nn

)
+ op(1),

uniformly in m. As in Podolskij and Vetter (2010) and using δ > 1/2, we note that

√
nE
(
Bnkbn+m − B̂nkbn+m | Fn(k−1)bn+m

Nn

)
= 2θ

∫ kbn
Nn

(k−1)bn
Nn

∫ 2

0

hij
(
σsv,u, t, f(s)

)
dsdu+ o

(
bn
Nn

)
,
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uniformly in k and m, and thus

M̄ l1,r1,l2,r2,n
ij,m (Y d) = 2θ

∫ 1

0

∫ 2

0

hij
(
σsv,u, t, f(s)

)
dsdu+ op(1)

=

∫ 1

0

wl1,r1,l2,r2ij

(
σsv,u

)
du+ op(1),

uniformly in m, and the proof is complete. �

Proof of Theorem 4.1. We prove (64) solely in model (1), which is enough, as it is the most

general and nests (103). Now, under the stated assumptions, the definitions of Σ̌l1,r1,l2,r2,n
ij (Y d),

Σ̌l1,r1,l2,r2,n
ij (Y ′d), and the limiting result in Theorem B.1, we deduce that, as n→∞,

p-lim
n→∞

Σ̂l1,r1,l2,r2,n
ij,m (Y ′d) = Σl1,r1,l2,r2

ij , for 1 ≤ i, j ≤ 2,

uniformly in m. Thus, to get the desired result, it suffices to show that

p-lim
n→∞

(
Σ̌l1,r1,l2,r2,n
ij,m (Y d)− Σ̌l1,r1,l2,r2,n

ij,m (Y ′d)
)

= 0, for 1 ≤ i, j ≤ 2, (113)

uniformly in m. Inserting the definition of Σ̌l1,r1,l2,r2,n
ij (Y d) and Σ̌l1,r1,l2,r2,n

ij (Y ′d), it holds that

2√
n

(
Σ̌l1,r1,l2,r2,n
ij,m (Y d)− Σ̌l1,r1,l2,r2,n

ij,m (Y ′d)
)

=

bNnbn c−2∑
k=0

(
∆̌B(Y d, li, ri)

n
kbn+m∆̌B(Y d, lj, rj)

n
kbn+m − ∆̌B(Y ′d, li, ri)

n
kbn+m∆̌B(Y ′d, lj, rj)

n
kbn+m

)

=

bNnbn c−2∑
k=0

((
B̌(Y d, li, ri)

n
(k+1)bn+mB̌(Y d, lj, rj)

n
(k+1)bn+m − B̌(Y ′d, li, ri)

n
(k+1)bn+mB̌(Y ′d, lj, rj)

n
(k+1)bn+m

)
−
(
B̌(Y d, li, ri)

n
(k+1)bn+mB̌(Y d, lj, rj)

n
kbn+m − B̌(Y ′d, li, ri)

n
(k+1)bn+mB̌(Y ′d, lj, rj)

n
kbn+m

)
−
(
B̌(Y d, li, ri)

n
kbn+mB̌(Y d, lj, rj)

n
(k+1)bn+m − B̌(Y ′d, li, ri)

n
kbn+mB̌(Y ′d, lj, rj)

n
(k+1)bn+m

)
+
(
B̌(Y d, li, ri)

n
kbn+mB̌(Y d, lj, rj)

n
kbn+m − B̌(Y ′d, li, ri)

n
kbn+mB̌(Y ′d, lj, rj)

n
kbn+m

))
(114)

where

B̌(Y d, l, r)nj = n
l+r
4
−1 1

µlµr

bn∑
i=1

y̌(Y d, l, r)ni−1+j.

In the following, we define:

πl1,r1,l2,r2,nk,k′ (Y d, Y ′d) = y̌(Y d, li, ri)
n
k y̌(Y d, lj, rj)

n
k′ − y̌(Y ′d, li, ri)

n
k y̌(Y ′d, lj, rj)

n
k′

=
(
|∆n

k Ȳ
d|l1|∆n

k+knȲ
d|r1|∆n

k′Ȳ
d|l2|∆n

k′+knȲ
d|r2

− |∆n
k Ȳ
′d|l1|∆n

k+knȲ
′d|r1 |∆n

k′Ȳ
′d|l2|∆n

k′+knȲ
′d|r2

)
1Ck,k′ ,
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where Ck,k′ =
{
|∆n

k Ȳ
d| < υn

}
∩
{
|∆n

k+kn
Ȳ d| < υn

}
∩
{
|∆n

k′Ȳ
′d| < υn

}
∩
{
|∆n

k′+kn
Ȳ ′d| < υn

}
. Then,

from (114) it follows that

Σ̌l1,r1,l2,r2,n
ij,m (Y d)− Σ̌l1,r1,l2,r2,n

ij,m (Y ′d)

=
n
l1+r1+l2+r2−6

4

2µl1µr1µl1µr2

bNnbn c−2∑
j=0

bn∑
k=1

bn∑
k′=1

(
πl1,r1,l2,r2,nk−1+(j+1)bn+m,k′−1+(j+1)bn+m(Y d, Y ′d)− πl1,r1,l2,r2,nk−1+(j+1)bn+m,k′−1+jbn+m(Y d, Y ′d)

− πl1,r1,l2,r2,nk−1+jbn+m,k′−1+(j+1)bn+m(Y d, Y ′d) + πl1,r1,l2,r2,nk−1+jbn+m,k′−1+jbn+m(Y d, Y ′d)
)

≡ Σ̌
(1),l1,r1,l2,r2,n
ij,m (Y d, Y ′d)− Σ̌

(2),l1,r1,l2,r2,n
ij,m (Y d, Y ′d)− Σ̌

(3),l1,r1,l2,r2,n
ij,m (Y d, Y ′d) + Σ̌

(4),l1,r1,l2,r2,n
ij,m (Y d, Y ′d).

The statement in (113) is therefore reduced to showing that

Σ̌
(k),l1,r1,l2,r2,n
ij,m (Y d, Y ′d)

p→ 0, (115)

for k = 1, . . . , 4. The convergence in probability to zero of the four terms is proven with identical

techniques. It is therefore sufficient to show it for a single k, so we do it with k = 1. To this end, let

Fu(x) = F (x)1{|x1|<u}1{|x2|<u}1{|x3|<u}1{|x4|<u}, for u > 0, where F (x) = |x1|l1|x2|r1|x3|l2|x4|r2 with

x =
(
x1 x2 x3 x4

)ᵀ
. Following the line of thought used also in the proof of Theorem 2.1, we can

show that for wn = υn/
√
un with un = kn/n:

|Fwn(x+ y)− Fwn(x)| ≤ w
−2

1−2ω
n ‖x‖p+

2
1−2ω +

(
(1 + ‖x‖p)

(
‖y‖ ∧ 1 + (‖y‖ ∧ wn)p

))
,

where p = l1 + r1 + l2 + r2. Next, set x =
(
∆n
k Ȳ

d ∆n
k+kn

Ȳ d ∆n
k′Ȳ

d ∆n
k′+kn

Ȳ d
)ᵀ
/
√
un, y =(

∆n
k Ȳ
′′d ∆n

k+kn
Ȳ ′′d ∆n

k′Ȳ
′′d ∆n

k′+kn
Ȳ ′′d

)ᵀ
/
√
un. As in (101) – (102), it holds true that

E
(
‖x‖p

)
≤ K, E

(
‖y‖ ∧ 1

)
≤ Ku1−β/2

n φn and E
(
(‖y‖ ∧ wn)p

)
≤ Ku

ω(p−β)− (p−2)
2

n φn, (116)

where φn → 0 as n→ 0. Therefore,

n
l1+r1+l2+r2−6

4

2µl1µr1µl1µr2

bNnbn c−2∑
j=0

bn∑
k=1

bn∑
k′=1

E
(∣∣πl1,r1,l2,r2,nk−1+(j+1)bn+m,k′−1+(j+1)bn+m(Y d, Y ′d)

∣∣)︸ ︷︷ ︸
= O

(
u
l1+r1+l2+r2

2
n

(
un + u1−r/2

n φn + uω(4−r)−1
n φn

))

≤ Kn
4δ1−2

4

(
n−

1
2 + n

β−2
4 φn + n

l1+r1+l2+r2−2−2ω(l1+r1+l2+r2−β)
4 φn

)
≤ K

(
nδ1−1 + n

4δ1−4+β
4 φn + n

4δ1−4+l1+r1+l2+r2−2ω(l1+r1+l2+r2−β)
4 φn

)
→ 0,

which concludes the proof of (113) and, hence, Theorem 4.1. �
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Proof of Lemma 4.1. The linearity of the expectation operator implies that

E∗
(
B̌V (l, r)n∗

)
= E∗

[
B̌V (l, r)n − 1√

bn

Jn∑
j=1

∆̌B(l, r)nj uj

]

= B̌V (l, r)n − 1√
bn

Jn∑
j=1

∆̌B(l, r)njE
∗(uj).

Then, if E∗(uj) = 0, it follows that E∗
(
B̌V (l, r)n∗

)
= B̌V (l, r)n. The second part of the lemma

follows from (46) and (52), as for 1 ≤ i, j ≤ 2,

cov∗
(
n1/4B̌V (li, ri

)n∗
, n1/4B̌V (lj, rj)

n∗)
=
√
n cov∗

(
B̌V (li, ri)

n − 1√
bn

Jn∑
k=1

∆̌B(li, ri)
n
kuk, B̌V (lj, rj)

n − 1√
bn

Jn∑
k=1

∆̌B(lj, rj)
n
kuk

)

=

√
n

bn

Jn∑
k=1

∆̌B(li, ri)
n
k∆̌B(lj, rj)

n
kvar∗(uk).

Thus, if var∗(uk) = 1/2, we find that

cov∗
(
n1/4B̌V (li, ri

)n∗
, n1/4B̌V (lj, rj)

n∗) = Σ̌l1,r1,l2,r2,n
ij ,

where

Σ̌l1,r1,l2,r2,n
ij =

√
n

2bn

Jn∑
k=1

∆̌B(li, ri)
n
k∆̌B(lj, rj)

n
k .

�

Proof of Corollary 4.1. Given (25), (27), and (65) the results follows from the properties of

stable convergence. �

Proof of Corollary 4.2. The result follows directly given (57) and the consistency result of Σ̌l1,r1,l2,r2

in Theorem 4.1. �

Proof of Theorem 4.2. We again prove the theorem in model (1) only, noting that this is enough,

as it nests both (103) and (10). Write

Zn∗ =
(
Σ̌n
)−1/2

n1/4

Jn∑
j=1

Dje
∗
j ≡ n1/4

Jn∑
j=1

z∗j ,

with z∗j ≡
(
Σ̌n
)−1/2

Dje
∗
j ,

Dj =

(
∆̌B(l1, r1)nj 0

0 ∆̌B(l2, r2)nj ,

)
and e∗j =

(
uj − E∗(uj)
uj − E∗(uj)

)
where uj are i.i.d. with var∗(uj) = 1/2. Note that e∗j is an i.i.d. zero mean vector. We follow Pauly

(2011) and use a modified Cramer-Wold device to establish the bootstrap CLT. Let D = {λk : k ∈
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N} be a countable dense subset of the unit circle on R2. The proof follows by showing that for any

λ ∈ D,λᵀZ∗n
d∗→ N(0, 1), in probability-P , as n→∞. We note that

λᵀZ∗n = n1/4

Jn∑
j=1

λᵀz∗j .

It follows from Lemma 4.1 and Corollary 4.2 that E∗(λᵀZ∗n) = 0 and var∗(λᵀZ∗n) = 1 for all n. To

conclude, it thus remains to prove that λᵀZ∗n is asymptotically normally distributed, conditionally

on the original sample and with probability P approaching one. As (z∗j )
Jn
j=1 forms an independent

array—conditionally on the sample—by the Berry-Esseen bound (e.g., Katz (1963)), for some small

ε > 0 and a constant K > 0, supx∈R

∣∣∣P ∗(∑Jn
j=1 n

1/4λᵀz∗j ≤ x
)
− Φ(x)

∣∣∣ ≤ K
∑Jn

j=1E
∗
∣∣n1/4λᵀz∗j

∣∣2+ε
.

Next, we show that
∑Jn

j=1E
∗
∣∣n1/4λᵀz∗j

∣∣2+ε
= op(1). First, for a constant K independent of n (note

that the moments of e∗j do not depend on n) and any 1 ≤ j ≤ Jn by the cr-inequality:∣∣λᵀz∗j ∣∣2+ε ≤ ‖λ‖2+ε
∥∥∥(Σ̌n

)−1/2
∥∥∥2+ε

‖Dj‖2+ε‖e∗j‖2+ε.

Thus,

E∗
(
|λᵀz∗j |2+ε

)
≤ ‖λ‖2+ε

∥∥∥(Σ̌n
)−1/2

∥∥∥2+ε

‖Dj‖2+εE∗
(
‖e∗j‖2+ε

)
≤ K

∥∥∥(Σ̌n
)−1/2

∥∥∥2+ε

‖Dj‖2+ε,

implying that

Jn∑
j=1

E∗|n1/4λᵀz∗j |2+ε ≤ Kn
2+ε
4

∥∥∥(Σ̌n
)−1/2

∥∥∥2+ε
Jn∑
j=1

‖Dj‖2+ε

≤ Kn
2+ε
4

∥∥∥(Σ̌n
)−1/2

∥∥∥2+ε
Jn∑
j=1

((
∆̌B(l1, r1)nj

)2+ε
+
(
∆̌B(l2, r2)nj

)2+ε
)

≤ Kn
2+ε
4

∥∥∥(Σ̌n
)−1/2

∥∥∥2+ε
Jn∑
j=1

(
B̌(l1, r1)nj+bn − B̌(l1, r1)nj

)2+ε

+Kn
2+ε
4

∥∥∥(Σ̌n
)−1/2

∥∥∥2+ε
Jn∑
j=1

(
B̌(l2, r2)nj+bn − B̌(l2, r2)nj

)2+ε

≤ Kn
2+ε
4

∥∥∥(Σ̌n
)−1/2

∥∥∥2+ε
Jn∑
j=1

((
B̌(l1, r1)nj

)2+ε
+
(
B̌(l2, r2)nj

)2+ε
)
, (117)

where the second inequality is due to that, for any j, ‖Dj‖2 =
(
∆̌B(l1, r1)nj

)2
+
(
∆̌B(l2, r2)nj

)2
,
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while the third is by expression of ∆̌B(l, r)nj . Next, note that by definition of B̌(l, r)nj :

Jn∑
j=1

(
B̌(l, r)nj

)2+ε
=

Jn∑
j=1

(
n
l+r
4
−1 1

µlµr

bn∑
i=1

y̌(l, r)ni−1+j

)2+ε

≤ Kn( l+r4 −1)(2+ε)b1+ε
n

Jn∑
j=1

bn∑
i=1

(
y̌(l, r)ni−1+j

)2+ε

= Op

(
n(δ1−1)(1+ε)

)
.

We can therefore write (117) as follows:

Jn∑
j=1

E∗
(
|n1/4λᵀz∗j |2+ε

)
= Op

(
n

2+ε
4 n(δ1−1)(1+ε)

)
= op(1),

where the last equality follows as for ε > 2, so long as 1/2 < δ1 < 2/3, (δ1 − 1)(1 + ε) + 2+ε
4
< 0.

This completes the proof of (71). The last results then follow by application of the delta rule. �

Proof of Theorem 4.3. First, we define:

Hn∗ =
(
Σ̌n∗)−1/2

n1/4

(
B̌V (l1, r1)n∗ − E∗

(
B̌V (l1, r1)n∗

)
B̌V (l2, r2)n∗ − E∗

(
B̌V (l2, r2)n∗

) )

≡
(
Σ̌n∗)−1/2(

Σ̌n
)1/2

Zn∗,

where

Zn∗ =
(
Σ̌n
)−1/2

n1/4

(
B̌V (l1, r1)n∗ − E∗

(
B̌V (l1, r1)n∗

)
B̌V (l2, r2)n∗ − E∗

(
B̌V (l2, r2)n∗

) ).
It follows from Theorem 4.2 that Zn∗ d∗→ N(0, I2). Thus, the central limit theory for Hn∗ is

established, if we can show that
(
Σ̌n∗)−1

Σ̌n =
(
Σ̌n
)−1

Σ̌n∗ p∗→ I2. To do this, we prove that

E∗
[(

Σ̌n
)−1

Σ̌n∗
]
p∗→ I2 and var∗

[(
Σ̌n
)−1

Σ̌n∗
]
p∗→ 0. (118)

The first equation in (118) holds by the definition of Σ̌n and Σ̌n∗. Next, again by definition:

var∗
[(

Σ̌n
)−1(

Σ̌n∗)] =
[(

Σ̌n
)−1 ⊕

(
Σ̌n
)−1
]

var∗

(√
n

bn

var∗(u)

E∗(u2)

Jn∑
j=1

ξ̌j ξ̌
ᵀ
j u

2
j

)

=

(√
n

bn

var∗(u)

E∗(u2)

)2[(
Σ̌n
)−1 ⊕

(
Σ̌n
)−1
] Jn∑
j=1

var∗
(
ξ̌j ξ̌

ᵀ

j u
2
j

)
= var∗(u2)

(
var∗(u)

E∗(u2)

)2[(
Σ̌n
)−1 ⊕

(
Σ̌n
)−1
] n
b2
n

Jn∑
j=1

(
ξ̌j ξ̌
ᵀ
j

)
⊕
(
ξ̌j ξ̌
ᵀ
j

)
.
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As in the proof of Theorem 4.2 in Hounyo (2017):

E

(∥∥∥∥ nb2
n

Jn∑
j=1

(
ξ̌j ξ̌
ᵀ
j

)
⊕
(
ξ̌j ξ̌
ᵀ
j

)∥∥∥∥
)
≤ K

n

b2
n

Jn∑
j=1

(√
E
(∣∣B̌(l1, r1)nj

∣∣4)√E
(∣∣B̌(l2, r2)nj

∣∣4)
+

√
E
(∣∣B̌(l1, r1)nj+bn

∣∣4)√E
(∣∣B̌(l2, r2)nj

∣∣4)
+

√
E
(∣∣B̌(l1, r1)nj

∣∣4)√E
(∣∣B̌(l2, r2)nj+bn

∣∣4)
+

√
E
(∣∣B̌(l1, r1)nj+bn

∣∣4)√E
(∣∣B̌(l2, r2)nj+bn

∣∣4)) ≤ K
b2
n

n2
→ 0,

where the last inequality follows, because
l + r − 1

2(l + r − β)
≤ $ < 1/2 means that

√
E
(∣∣B̌(l, r)nj

∣∣4) ≤
K
b2
n

n2
. As Jn = O(n) and bn = O

(
nδ1
)

such that 1/2 < δ1 < 2/3 from (44), it follows that

var∗
[(

Σ̌n
)−1

Σ̌n∗
]
p∗→ 0.

This finishes the proof of the first part Theorem 4.3. The last result again follows by a direct

application of the delta rule. �

Proof of Proposition 3.1. To begin with, notice that(√
m∆m

(t−1)m+iY
)2

=
(√

m∆m
(t−1)m+iX

)2
+
√
m
(√

m∆m
(t−1)m+iX

)(
∆m

(t−1)m+iε
)

+m
(
∆m

(t−1)m+iε
)2
.

Thus, for s ∈ [t− 1 + (j − 1)/m, t− 1 + j/m), where j = 1, . . . ,m and t = 1, . . . , T ,

σ̂2
u,s =

1

T

T∑
t=1

(√
m∆m

(t−1)m+jX
)2

+

√
m

T

T∑
t=1

(√
m∆m

(t−1)m+jX
)(

∆m
(t−1)m+jε

)
+
m

T

T∑
t=1

(
∆m

(t−1)m+jε
)2 − m

T

T∑
t=1

[
v̂ar
(
ε(t−1)+(j−1)/m

)
+ v̂ar

(
ε(t−1)+j/m

)]
.

(119)

The proof now proceeds in three steps, where we show that:

1

T

T∑
t=1

(√
m∆m

(t−1)m+jX
)2

= σ2
u,s +OL2

(
T−1/2m1/4

)
, (120)

√
m

T

T∑
t=1

(√
m∆m

(t−1)m+jX
)(

∆m
(t−1)m+jε

)
= OP

(√
m/T

)
, (121)

and

m

T

T∑
t=1

(
∆m

(t−1)m+jε
)2

=
m

T

T∑
t=1

(
var
(
εt−1+(j−1)/m

)
+ var

(
εt−1+j/m)

)
+OP

(
mT−1/2

)
. (122)
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To show step 1, we define:

αm(t−1)m+j ≡
√
mσt−1+(j−1)/m∆m

(t−1)m+jW and χm(t−1)m+j ≡
√
m∆m

(t−1)m+jX − αm(t−1)m+j.

We also set

σ̃2
u,s ≡

1

T

T∑
t=1

σ2
t−1+(j−1)/m.

Now, the proof is complete, if we can show that:

σ̃2
u,s − σ2

u,s = OL2

(
T−1/2

)
, (123)

1

T

T∑
t=1

|αm(t−1)m+j|2 − σ̃2
u,s = OL2

(
T−1/2

)
, (124)

and

1

T

T∑
t=1

((√
m∆m

(t−1)m+jX
)2 − |αm(t−1)m+j|2

)
= OL2

(
T−1/2m1/4

)
. (125)

As for (123), note that

σ̃2
u,s ≡

1

T

T∑
t=1

σ2
t−1+(j−1)/m =

σ2
u,(j−1)/m

T

T∑
t=1

σ2
sv,t−1+(j−1)/m.

Now, by Assumption (D2) we deduce that

var
(
σ̃2
u,s

)
≤ K

T

(
1 + 2

∞∑
k=0

cov
(
σ2
sv,1, σ

2
sv,1+k

))
.

Hence (123) follows.

Next, (124) can be verified by martingale techniques. First, we write

1

T

T∑
t=1

|αm(t−1)m+j|2 − σ̃2
u,s =

1

T

T∑
t=1

(
|αm(t−1)m+j|2 − E

(
|αm(t−1)m+j|2 | Ft−1+ j−1

m

))
.

Then,

E

[
1

T

T∑
t=1

|αm(t−1)m+j|2 − σ̃2
u,s

]2

=
1

T 2

T∑
t=1

E

(
|αm(t−1)m+j|2 − E

(
|αm(t−1)m+j|2 | Ft−1+ j−1

m

))2

=
2

T 2

T∑
t=1

σ4
t+(j−1)/m.

Treating the error T−1

T∑
t=1

((√
m∆m

(t−1)+jX
)2 − |αm(t−1)m+j|2

)
from (125)) is the hardest one. In

the following, we denote

X ′t = X0 +

∫ t

0

a′′sds+

∫ t

0

σsdWs and X ′′t = Xt −X ′t =
(
δ1{|δ|≤1}

)
?
(
µ
t
− νt

)
,
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where

a′′t = as +
(
δ1{|δ|>1}

)
? νt

is bounded.

Also, note that an error OL2

(
T−1/2m1/4

)
appears, when we are dealing with terms that do

not have a martingale structure (i.e., the jump component of X). Here, Corollary 2.1.9 of Jacod

and Protter (2012) plays a key role in the proof, because it turns out the discontinuous part is

asymptotically negligible in front of its Brownian part on a vanishing interval of the form [t− 1 +

(i− 1)/m, t− 1 + i/m).

The definition of χm(t−1)m+j and Assumption (V) yields the decomposition:

χm(t−1)m+j =
√
m∆m

(t−1)m+jX − αm(t−1)m+j

=
√
m∆m

(t−1)m+jX
′ +
√
m∆m

(t−1)m+jX
′′ − αm(t−1)m+j

=
√
m

(∫ t−1+ j
m

t−1+ j−1
m

a′′sds+

∫ t−1+ j
m

t−1+ j−1
m

(
σs − σt−1+ j−1

m

)
dWs + ∆m

(t−1)m+jX
′′

)
≡ χm(t−1)m+j(1) + χm(t−1)m+j(2) + χm(t−1)m+j(3),

where

χm(t−1)m+j(1) =
√
m

(
1

m
a′′
t−1+ j−1

m

+

∫ t−1+ j
m

t−1+ j−1
m

[
σ̃t−1+ j−1

m

(
Ws −Wt−1+ j−1

m

)
+ ṽs

(
Bs −Bt−1+ j−1

m

)]
dWs

)
,

χm(t−1)m+j(2) =
√
m

(∫ t−1+ j
m

t−1+ j−1
m

(
a′′s − a′′t−1+ j−1

m

)
ds+

∫ t−1+ j
m

t−1+ j−1
m

[∫ s

t−1+ j−1
m

ãsdu

]
dWs

)

+
√
m

(∫ t−1+ j
m

t−1+ j−1
m

(
σ̃u − σ̃t−1+ j−1

m

)
dWs +

[∫ s

t−1+ j−1
m

(
ṽu − ṽt−1+ j−1

m

)
dBs

]
dWs

)
,

χm(t−1)m+j(3) =
√
m∆m

(t−1)m+jX
′′.

Together with the assumptions behind Proposition 3.1, we can then appeal to the Burkholder and

Cauchy-Schwarz inequality (first and second expression) and Lemma 2.1.5 in Jacod and Protter

(2012) with p = 4 (last estimate) to deduce that:

χm(t−1)m+j(1) = OL4

(
m−1/2

)
, χm(t−1)m+j(2) = OL4

(
m−1

)
, χm(t−1)m+j(3) = OL4

(
m1/4

)
. (126)

Next, let f(x) = x2 so that f ′(x) = 2x. Then, by Taylor expansion:

1

T

T∑
t=1

((√
m∆m

(t−1)m+jX
)2−|αm(t−1)m+j|2

)
= Am(t−1)m+j(1)+Am(t−1)m+j(2)+Am(t−1)m+j(3)+OL2

(
T−1/2

)
,

where

Am(t−1)m+j(k) =
2

T

T∑
t=1

(
αm(t−1)m+jχ

m
(t−1)m+j(k)

)
,
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for k = 1, 2 and 3. Note the following martingale difference property:

Am(t−1)m+j(k) = E
(
αm(t−1)m+jχ

m
(t−1)m+j(k) | Ft−1+ j−1

m

)
= 0,

for k = 1, 2 and 3. Thus, from the Cauchy-Schwarz inequality

E
[
|Am(t−1)m+j(1)|2

]
=

4

T 2

T∑
t=1

E
[
|
(
αm(t−1)m+jχ

m
(t−1)m+j(1)

)
|2
]

≤ 4

T 2

T∑
t=1

(
E|
(
αmj+tm

)
|4
)1/2 (

E|
(
χmj+tm (1)

)
|4
)1/2

.

Thus, given (126) and the fact that αm(t−1)m+j = OL4(1), it follows that

Am(t−1)m+j(1) = OL2

(
T−1/2m−1/2

)
, Am(t−1)m+j(2) = OL2

(
T−1/2m−1

)
, and Am(t−1)m+j(3) = OL2

(
T−1/2m1/4

)
.

This shows (125), and then we conclude that:

1

T

T∑
t=1

(√
m∆m

(t−1)m+jX
)2

= σ2
u,s +OL2

(
T−1/2

)
+OL2

(
T−1/2m−1/2

)
+OL2

(
T−1/2m−1

)
+OL2

(
T−1/2m1/4

)
= σ2

u,s +OL2

(
T−1/2m1/4

)
,

which completes the entire proof of step 1. We move forward to step 2. To deduce (121), we write:

T∑
t=1

(√
m∆m

(t−1)m+jX
)(

∆m
(t−1)m+jε

)
=

T∑
t=1

(√
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(t−1)m+jX
)
εt−1+j/m−

T∑
t=1

(√
m∆m

(t−1)m+jX
)
εt−1+(j−1)/m.

Note that from (5) and as εt is independently distributed with X ⊥⊥ ε:
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Then, we get

E

[(√
m

T

T∑
t=1

(√
m∆m

(t−1)m+jX
)
εt−1+k/m

)2

| X

]
=
m

T
ω2

[
1

T

T∑
t=1

(√
m∆m

(t−1)m+jX
)2
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]
,

for k = j and j − 1. And from T−1

T∑
t=1

(√
m∆m

(t−1)m+jX
)2

= OP (1) and σ2
u,t being bounded:

√
m

T

T∑
t=1

(√
m∆m

(t−1)m+jX
)
εt−1+k/m = OP

(
T−1/2m1/2

)
,

for k = j and j − 1. This establishes (121). To show (122), note that because
(
∆m

(t−1)m+jε
)2

is a

1-dependent sequence: E
[(
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Hence,

1

T

T∑
t=1

(
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(t−1)m+jε
)2
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1

T
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t=1
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It follows that

m

T
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,

so (122) holds. Inserting (120) – (122) into (119):

σ̂2
u,s = σ2
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−m
T
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.

At last, we note that when v̂ar
(
εt−1+(j−1)/m

)
is given by (32), it holds that

1
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Hence, (31) reduces to:

σ̂2
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,

which completes the proof. �
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Kolokolov, A., and R. Renò, 2016, “Efficient multipowers,” Working paper, University of Verona.

, 2017, “Jumps or flatness?,” Working paper, University of Verona.

Lee, S. S., and P. A. Mykland, 2008, “Jumps in financial markets: A new nonparametric test and jump
dynamics,” Review of Financial Studies, 21(6), 2535–2563.

Li, J., V. Todorov, and G. Tauchen, 2013, “Volatility occupation times,” Annals of Statistics, 41(4),
1865–1891.

, 2016, “Estimating the volatility occupation time via regularized Laplace inversion,” Econometric
Theory, 32(5), 1253–1288.

Liu, R. Y., 1988, “Bootstrap procedures under some non-i.i.d. models,” Annals of Statistics, 16(4), 1696–
1708.

Mammen, E., 1993, “Bootstrap and wild bootstrap for high dimensional linear models,” Annals of Statis-
tics, 21(1), 255–285.

Mancini, C., 2009, “Non-parametric threshold estimation for models with stochastic diffusion coefficient
and jumps,” Scandinavian Journal of Statistics, 36(2), 270–296.

Mancini, C., and F. Gobbi, 2012, “Identifying the Brownian covariation from the co-jumps given discrete
observations,” Econometric Theory, 28(2), 249–273.

Mandelbrot, B. B., 1963, “The variation of certain speculative prices,” Journal of Business, 36(4), 394–419.

Mykland, P. A., and L. Zhang, 2009, “Inference for continuous semimartingales observed at high frequency:
A general approach,” Econometrica, 77(5), 1403–1445.

, 2017, “Assessment of uncertainty in high frequency data: The observed asymptotic variance,”
Econometrica, 85(1), 197–231.

Pauly, M., 2011, “Weighted resampling of martingale difference arrays with applications,” Electronic Jour-
nal of Statistics, 5(1), 41–52.

Podolskij, M., and M. Vetter, 2009a, “Bipower-type estimation in a noisy diffusion setting,” Stochastic
Processes and their Applications, 119(9), 2803–2831.

, 2009b, “Estimation of volatility functionals in the simultaneous presence of microstructure noise
and jumps,” Bernoulli, 15(3), 634–658.

, 2010, “Understanding limit theorems for semimartingales: A short survey,” Statistica Neerlandica,
64(3), 329–351.

Podolskij, M., and K. Wasmuth, 2013, “Goodness-of-fit testing for fractional diffusions,” Statistical Infer-
ence for Stochastic Processes, 16(2), 147–159.

Politis, D. N., J. P. Romano, and M. Wolf, 1999, Subsampling, vol. 1. Springer-Verlag.

Shao, X., 2010, “The dependent wild bootstrap,” Journal of the American Statistical Association, 105(489),
218–235.

60



Taylor, S. J., and X. Xu, 1997, “The incremental volatility information in one million foreign exchange
quotations,” Journal of Empirical Finance, 4(4), 317–340.

Todorov, V., and T. Bollerslev, 2010, “Jumps and betas: A new framework for disentangling and estimating
systematic risks,” Journal of Econometrics, 157(2), 220–235.

Todorov, V., and G. Tauchen, 2010, “Activity signature functions for high-frequency data analysis,” Jour-
nal of Econometrics, 154(2), 125–138.

, 2011, “Volatility jumps,” Journal of Business and Economic Statistics, 29(3), 356–371.

, 2012, “The realized Laplace transform of volatility,” Econometrica, 80(3), 11051127.

Todorov, V., G. Tauchen, and I. Grynkiv, 2014, “Volatility activity: Specification and estimation,” Journal
of Econometrics, 178(1), 180–193.

Vetter, M., 2008, “Estimation methods in noisy diffusion models,” Ph.D. thesis, Ruhr-Universität Bochum.

, 2010, “Limit theorems for bipower variation of semimartingales,” Stochastic Processes and their
Applications, 120(1), 22–38.

Vetter, M., and H. Dette, 2012, “Model checks for the volatility under microstructure noise,” Bernoulli,
18(4), 1421–1447.

Wood, R. A., T. H. McInish, and J. K. Ord, 1985, “An investigation of transactions data for NYSE stocks,”
Journal of Finance, 40(3), 723–739.

Wu, C. F. J., 1986, “Jackknife, bootstrap and other resampling methods in regression analysis,” Annals of
Statistics, 14(4), 1261–1295.

Xiu, D., 2010, “Quasi-maximum likelihood estimation of volatility with high frequency data,” Journal of
Econometrics, 159(1), 235250.

Zhang, L., 2006, “Efficient estimation of stochastic volatility using noisy observations: A multi-scale ap-
proach,” Bernoulli, 12(6), 1019–1043.

Zhang, L., P. A. Mykland, and Y. Aı̈t-Sahalia, 2005, “A tale of two time scales: determining integrated
volatility with noisy high-frequency data,” Journal of the American Statistical Association, 100(472),
1394–1411.

61



Research Papers 
2017 

 
 

 

 

 

2017-13: Niels S. Grønborg, Asger Lunde, Allan Timmermann and Russ Wermers: 
Picking Funds with Confidence 

2017-14: Martin M. Andreasen and Anders Kronborg: The Extended Perturbation 
Method: New Insights on the New Keynesian Model 

2017-15: Andrea Barletta, Paolo Santucci de Magistris and Francesco Violante: A Non-
Structural Investigation of VIX Risk Neutral Density 

2017-16: Davide Delle Monache, Stefano Grassi and Paolo Santucci de Magistris: Does 
the ARFIMA really shift? 

2017-17: Massimo Franchi and Søren Johansen: Improved inference on cointegrating 
vectors in the presence of a near unit root using adjusted quantiles 

2017-18: Matias D. Cattaneo, Michael Jansson and Kenichi Nagasawa: Bootstrap-Based 
Inference for Cube Root Consistent Estimators 

2017-19: Daniel Borup and Martin Thyrsgaard: Statistical tests for equal predictive 
ability across multiple forecasting methods 

2017-20: Tommaso Proietti and Alessandro Giovannelli: A Durbin-Levinson Regularized 
Estimator of High Dimensional Autocovariance Matrices 

2017-21: Jeroen V.K. Rombouts, Lars Stentoft and Francesco Violante: Variance swap 
payoffs, risk premia and extreme market conditions 

2017-22: Jakob Guldbæk Mikkelsen: Testing for time-varying loadings in dynamic 
factor models 

2017-23: Roman Frydman, Søren Johansen, Anders Rahbek and Morten Nyboe Tabor: 
The Qualitative Expectations Hypothesis: Model Ambiguity, Concistent 
Representations of Market Forecasts, and Sentiment 

2017-24: Giorgio Mirone: Inference from the futures: ranking the noise cancelling 
accuracy of realized measures 

2017-25: Massimiliano Caporin, Gisle J. Natvik, Francesco Ravazzolo and Paolo 
Santucci de Magistris: The Bank-Sovereign Nexus: Evidence from a non-
Bailout Episode 

2017-26: Mikkel Bennedsen, Asger Lunde and Mikko S. Pakkanen: Decoupling the short- 
and long-term behavior of stochastic volatility 

2017-27: Martin M. Andreasen, Jens H.E. Christensen and Simon Riddell: The TIPS 
Liquidity Premium 

2017-28: Annastiina Silvennoinen and Timo Teräsvirta: Consistency and asymptotic 
normality of maximum likelihood estimators of a multiplicative time-varying 
smooth transition correlation GARCH model 

2017-29: Cristina Amado, Annastiina Silvennoinen and Timo Teräsvirta: Modelling and 
forecasting WIG20 daily returns 

2017-30: Kim Christensen, Ulrich Hounyo  and Mark Podolskij: Is the diurnal pattern 
sufficient to explain the intraday variation in volatility? A nonparametric 
assessmentfafa 


