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Abstract

The purpose of this paper is to model daily returns of the WIG20 index. The idea
is to consider a model that explicitly takes changes in the amplitude of the clusters of
volatility into account. This variation is modelled by a positive-valued deterministic
component. A novelty in specification of the model is that the deterministic component
is specified before estimating the multiplicative conditional variance component. The
resulting model is subjected to misspecification tests and its forecasting performance
is compared with that of commonly applied models of conditional heteroskedasticity.
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1 Introduction

The WIG20 index of the Warsaw Stock Exchange has been published since 16 April 1994.

It is based on the value of a portfolio with shares in 20 major and most liquid companies

in the main stock market. A detailed description and history of the index can be found in

Brdyś, Borowa, Idźkowiak and Brdyś (2009). During its first year it did not yet comprise

20 companies and was very volatile. The index has now been published for more than

22 years, so its daily values form a rather long financial time series. There are not many

published studies (in English) that analyse the (logarithmic) returns of the WIG20 index.

The set of papers in which GARCH(1,1) models are fitted to the daily returns of WIG20

contains two in which the object of interest was the performance of GARCH in estimating

the Value at Risk (Makiel, 2012, or Malecka, 2013). Joint volatility of WIG20 and a large

number of foreign stock indices using Copula-GARCH was the concern of Czapkiewicz

and Basiura (2014). These papers did not report any GARCH parameter estimates.

In these papers modelling returns of WIG20 using GARCH an implicit assumption has

been that the return process is weakly stationary. In this work we question this assumption

using a rather long series of WIG20 returns and test weak stationarity against the alter-

native that the variance of the process is time-varying. Early proponents of this view were

Diebold (1986) and Lamoureux and Lastrapes (1990) who argued that high persistence in

return series as viewed through GARCH may be due to shifts in the unconditional variance

of the process. There is a growing literature based on a multiplicative decomposition of

the return variance into a conditional variance component and a deterministic component

describing changes in the unconditional variance. Examples include Feng (2004), van Bel-

legem and von Sachs (2004), Engle and Rangel (2008), Brownlees and Gallo (2010) and

Mazur and Pipień (2012). In this work we follow the line of research started by Amado and

Teräsvirta (2008), see also Amado and Teräsvirta (2013, 2014, 2017). The deterministic

component is a linear combination of logistic or generalised logistic functions in which the

transition variable is (rescaled) time.

One of our aims is to complete the previous literature by providing a comprehensive

analysis of daily log returns of the WIG20 index using the best practices. We follow

the modelling procedure outlined in Amado and Teräsvirta (2017) with modifications
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suggested in Silvennoinen and Teräsvirta (2016). This will be interesting per se, but

we also consider the performance of these multiplicative time-varying GARCH models in

forecasting and compare it to that of the standard GARCH(1,1) model. For this purpose

we save a part of the log return series for out-of-sample forecasting.

The paper is also intended to serve as an example of what a careful analysis of a

return series in the GARCH framework may require. It is structured as follows. The

model is introduced in Section 2. Specification issues are discussed in Section 3, parameter

estimation in Section 4 and model evaluation in Section 5. The application of the modelling

strategy to the WIG20 series is described in Section 6. There is also a brief description

of the data. Results from fitting two variants of the Spline-GARCH model of Engle and

Rangel (2008) to the WIG20 series are reported in Section 7. In Section 8 the early

observations until 1 April 2004 are discarded and our model as well as the Spline-GARCH

one are fitted to the remaining subseries. Section 9 is devoted to out-of-sample forecasting

and forecast comparisons. Section 10 concludes.

2 The model

The model under consideration is the time-varying GJR–GARCH model of Amado and

Teräsvirta (2008, 2013, 2017). It contains a deterministic component that changes smoothly

over time. To define the model, let

yt = E(yt|Ft−1) + εt (1)

where Ft−1 contains the historical information available at time t − 1. For simplicity, it

is assumed that E(yt|Ft−1) = 0. The innovation sequence {εt} has a conditional mean

E(εt|Ft−1) = 0, and variance σ2
t . The innovations are assumed to have the standard de-

composition

εt = ζtσt (2)
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where {ζt} ∼ iid(0, 1), Eζ3
t = 0, and E|ζ2

t |2+φ < ∞, φ > 0. The time-varying variance σ2
t

is further decomposed multiplicatively such that

σ2
t = htgt (3)

where ht describes the short-run dynamics of the variance of the returns, whereas gt is

a positive-valued deterministic component. The conditional variance component ht is

modelled as the GJR–GARCH(1, 1) process of Glosten, Jagannathan and Runkle (1993):

ht = α0 + α1φ
2
t−1 + κ1φ

2
t−1I(φt−1 < 0) + β1ht−1 (4)

where φt = εt/g
1/2
t and I(A) is the indicator variable, defined as I(A) = 1 when A is true,

and zero otherwise. Equation (4) is assumed to satisfy the set of conditions for positivity

and stationarity of the conditional variance of φt. This implies α0 > 0, α1 > 0, α1+κ1 > 0,

β1 ≥ 0, and α1 + κ1/2 + β1 < 1. Higher-order representations of (4) are possible, but in

applications of the GJR–GARCH model found in the literature the order invariably equals

one.

The GJR–GARCH(1, 1) model is nested in (3) when gt ≡ 1. The unconditional variance

component gt is smooth and time-varying, introducing nonstationarity into σ2
t . It is defined

as follows:

gt(t/T ;θ1) = gt = δ0 +

r∑
l=1

δlGl(t/T ; γl, cl) (5)

where θ1 = (δ′,γ ′, c′1, ..., c
′
r)
′ ∈ Θ1 = (∆×Γ×C), with δ = (δ0, δ1, ..., δr)

′, γ = (γ1, ..., γr)
′,

c′l = (cl1, ..., clKl
)′, l = 1, ..., r, is an element of the parameter space of gt. The transition

function in (5) is the general logistic transition function:

Gl(t/T ; γl, cl) =

(
1 + exp

{
−γl

Kl∏
k=1

(t/T − clk)

})−1

(6)

It is a continuous and non-negative function bounded between zero and one. We make the

following assumptions about (5) and (6); see Amado and Teräsvirta (2017):

AG1. The elements of δ ∈ ∆ are restricted such that δ0 > 0 is fixed, maxj=1,...,q |δj |

≤Mδ <∞ and infθ1∈Θ1 gt(θ1, t/T ) ≥ gmin > 0.
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AG2. The slope parameter γl > 0, l = 1, ..., r, and the location parameters c1k < c2k <

... < crk.

AG2 and δ0 fixed in AG1 are identifying restrictions. The latter is needed because ht

contains a free intercept and the decomposition (3) is multiplicative. The restriction δ0 = 1

is notationally convenient. Any positive constant will do, although from the computational

point of view some choices are better than some others. This constant has to be fixed to

achieve identification.

The transition function allows the unconditional variance to change smoothly between

regimes as a function of the transition variable t/T. The parameters cl and γl determine

the location and the speed of the transition between different regimes. When r = K1 = 1,

the function gt increases monotonically over time from 1 to 1+δ1 when δ1 > 0 or decreases

from 1 to 1 + δ1 when −1 < δ1 < 0, with the location centred at t/T = c1. The slope

parameter γl in (6) controls the degree of smoothness of the transition: the larger γl, the

faster the transition is between the extreme regimes. For example, when r = K1 = 1 and

γ1 → ∞, gt collapses into a step function. When γl is large, it is numerically convenient

to use a transform γl = exp{ηl} and estimate ηl; see Goodwin, Holt and Prestemon (2011)

or Silvennoinen and Teräsvirta (2016). For other transformations that alleviate potential

numerical problems when γl is large, see Chan and Theoharakis (2011) and Ekner and

Nejstgaard (2013).

Equations (1)−(6) define the time-varying GJR–GARCH (TVGJR–GARCH) model.

The unconditional variance in this model is time-varying and equals Eε2
t =Eζ2

t htgt =

gtEht. This means that when δ1 = . . . = δr = 0, the unconditional variance Eε2
t = δ0Eht

(constant). When δl 6= 0 for r > 1 and Kl ≥ 1, equations (5) and (6) form a very

flexible parameterisation capable of describing nonmonotonic deterministic changes in the

unconditional variance. How to find out that gt is a positive constant or, more generally,

how to select r, will be discussed in the next section.

3 Specification of the model

Specification of gt is a data-driven process. As already indicated, the number of transitions

r is not known and has to be determined (r = 0 is also possible). In each transition
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function, Kl has to be decided. The common alternatives are Kl = 1 and Kl = 2. Since a

model with r + s transitions, s > 0, is not identified when the true number of transitions

equals r, this number has to be found by proceeding from specific to general. Amado and

Teräsvirta (2017) first fit a GARCH or GJR–GARCH to the series and then determine r by

a sequence of specification tests, adding one transition to the model at a time. The order

of the logistic function can be determined by a sequence of tests as in smooth transition

autoregressive models; see Teräsvirta (1994).

Silvennoinen and Teräsvirta (2016) observed that power of the test Amado and Teräsvirta

(2017) suggested may suffer from the fact that under the alternative the estimates of the

sum α1 + κ1/2 + β1 tend to one. This is a natural outcome as α1 + κ1/2 + β1 < 1

is a necessary and sufficient condition for weak stationarity in first-order GJR–GARCH

models. The model thus tries to accommodate as much nonstationarity generated by the

deterministic component as possible. To avoid this, their solution was to specify r first,

without estimating the GARCH component.

Due to leaving the conditional variance unspecified for the purpose of focusing on the

specification of the deterministic, unconditional component has the implication that the

test statistic no longer has its standard asymptotic distribution. Ignoring this will lead to

a size distortion of the test. This problem is overcome by computing the p-values for the

tests via simulation, where an artificial GARCH process is used to generate an imitation of

the actual data set. This works well in simulations in which the GARCH model is known,

and it turns out that size-adjusted power vastly exceeds that of the misspecification test

applied in Amado and Teräsvirta (2017). The situation becomes slightly more complicated

in applications where the form of neglected heteroskedasticity is unknown.

Investigations in Hall, Silvennoinen and Teräsvirta (2017) have led to the conclusion

that special attention is to be placed on matching the persistence of the GARCH process

present in the data. On the contrary, other features, such as implied kurtosis or relative

balance of weights of the GARCH parameters only have a negligible effect on the perfor-

mance of the test. As this measure of persistence is quite obviously difficult to estimate

in the presence of the time-varying variance component, we proceed to estimate the stan-

dard GARCH(1,1) model over a rolling window of length 1000 observations. For each,

we compute the implied persistence as well as the measure of kurtosis. If the uncondi-
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tional variance indeed varies over time, most such windows may be expected to contain a

source for nonstationarity, and hence the persistence estimate appears to be higher than

it actually is. We therefore choose the 10th and the 25th percentiles of the resulting

persistence distribution. The corresponding persistence measures are 0.95 and 0.97. Ex-

cess kurtosis turns out to stay fairly constant, just below one, over the windows with the

aforementioned persistence levels, thus being a close match with the kurtosis implied by

the estimated GARCH models. Using the results in He and Teräsvirta (1999) we then

backtrack the corresponding GARCH parameters to be used in simulating the distribution

of test statistic and calculating the p-values. Due to the higher level of persistence, using

the latter measure (0.97) is expected to result in more conservative conclusions than the

ones from using the former (0.95).

To summarise, the approach used here proceeds with sequential testing for an addi-

tional transition in gt by increasing r in equation (5) while keeping Kl = 1 in equation (6).

After the final shape of the deterministic component is specified, the resulting sequence

of single transitions may be simplified and merged into fewer transitions but with Kl = 2.

We note that the sequence of tests proposed in Teräsvirta (1994) could in principle be

used for specifying the order Kl of the additive transitions. However, as we have to rely

on simulations to obtain p-values for the test statistic, it turns out to be impractical to

carry out the test sequence as it was originally proposed. This has mostly to do with

controlling for convergence and acceptance of particular simulation rounds. This has been

left for future research, as one can devise alternative methods for overcoming such is-

sues. The performance of each of them must, however, be analysed before making any

recommendations.

Instead, our approach here is to assess the strength of rejection of the null hypothesis

in the test in Silvennoinen and Teräsvirta (2016) where the linear approximation for the

transition under test is of linear, quadratic, or cubic form. These tests are labelled here

as LM1, LM2, and LM3, respectively, the last one being the test originally proposed in

Silvennoinen and Teräsvirta (2016). Lack of power in each is most likely to be due to either

under- or over-fitting the transition that is being tested. Hence, comparison of p-values

and the test statistic values (recall that in absence of GARCH, the distributions of the

three statistics are χ2
1, χ2

2, and χ2
3, respectively), together with visual inspection of the
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data series may be used to guide the choice Kl.

4 Estimation of the model

Estimation of the parameters of the TVGJR–GARCH model is carried out by maximum

likelihood. In previous work it has turned out that straightforward maximisation runs into

convergence problems. A better way of maximise the log-likelihood is to do it by dividing

each iteration into two parts. This has been discussed by Song, Fan and Kalbfleisch (2005).

In addition to a numerical superiority this approach has a strong theoretical advantage.

Using the results of Song et al. (2005), Amado and Teräsvirta (2013) were able to show

that, under regularity conditions, maximum likelihood estimators of the parameters of the

TVGJR–GARCH model are consistent and asymptotically normal. This makes it possible

to consider misspecification tests for the model, see Amado and Teräsvirta (2017). This

result also applies to time-varying variance (TVV) models where ht ≡ 1. This fact justifies

the sequential testing approach to determining the number of transitions.

5 Evaluation of the model

The estimated TVGJR–GARCH model can be evaluated both formally using misspecifi-

cation tests and informally by looking at the estimates of ht. They can be expected to

satisfy α̂1 + κ̂1/2 + β̂1 < 1 by some margin. If this is not the case, there may be unmod-

elled nonstationary left in the process, so the model would not be satisfactory. Formal

misspecification tests are generalisations of tests in Lundbergh and Teräsvirta (2002) as

discussed in Amado and Teräsvirta (2017). In this work we apply the test called ’ARCH

nested in GARCH’. Combining (2) and (3) gives εt = ζt(htgt)
1/2, where ζt ∼ iid(0, 1).

This is the situation under the null hypothesis. Under the alternative, εt = zt(htgtft)
1/2,

where now zt ∼ iid(0, 1), and ft = 1+
∑r

j=1 ψjζ
2
t−j . This means that under the alternative

there is unmodelled dependence in ζt, characterised by an ARCH(r) process. Another

alternative, not considered here, is that ft = 1 +
∑r

j=1 ψjx
2
t−j , where x2

t is an observable

positive-valued stationary random variable.

There is another, more straightforward, way of looking for unmodelled structure: test-

ing for higher-order GARCH. Bollerslev (1986) already derived the relevant test statistics.
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Another test applied in this work is the test of TVGJR–GARCH against smooth transition

TVGJR–GARCH, proposed by Hagerud (1997). It is a test of linearity of ht. Under the

alternative,

ht = α0 + α1φ
2
t−1 + κ1φ

2
t−1I(φt−1 < 0) + β1ht−1

+ {α01 + α11φ
2
t−1 + κ11φ

2
t−1I(φt−1 < 0)}G(φt−1; γ, c) (7)

where

G(φt−1; γ, c) = (1 + exp{−γ
L∏
l=1

(φt−1 − c)})−1, γ > 0. (8)

Under H0: γ = 0, the transition function (8) is constant and the model thus a TVGJR–

GARCH model. For details of the test, see Hagerud (1997) or Lundbergh and Teräsvirta

(2002). It should be mentioned, however, that the smooth transition GJR–GARCH is

a generalisation of the standard GJR–GARCH model, where (in the first-order case)

I(φt−1 < 0) is replaced by (8):

ht = α0 + α1φ
2
t−1 + κ1φ

2
t−1G(φt−1; γ, c) + β1ht−1.

The null hypothesis is γ = 0 in (7). The test of this hypothesis can be viewed as a test

of the hypothesis that asymmetry in the response of the conditional variance to φt−1, the

lagged rescaled return, is adequately described by the component κ1φ
2
t−1I(φt−1 < 0) in

(4). Test results appear in Section 6.4.

6 Fitting the model to WIG20 returns (full sample)

6.1 The data

In this section we consider modelling the WIG20 daily percentage logarithmic returns

from 3 January 1996 until 31 March 2015. The series that has 4777 observations appears

in Figure 1. We exclude the early observations of the index, established in April 1994,

from the analysis because early on the index comprised only a small number (less than

20) stocks and was very volatile. The most recent observations from 1 April 2015 up until

30 April 2016 in our time series are saved for forecasting.
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Figure 1: Daily logarithmic returns of WIG20, from 3 January 1996 to 31 March 2015.
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Figure 1 shows that the amplitude of the clusters is fairly high between 1997 and

2003 with a couple of very high (in absolute values) returns and decreases thereafter.

There is a new increase that culminates around 2009 and a short but distinct spurt in

2011. Table 1 contains some statistics of the returns. It is seen that while the standard

skewness measure indicates negative skewness, this is completely non-existent in the robust

skewness measure based on quantiles. The observed skewness is due to a very small number

of negative returns that do not have a counterweight on the positive side. The idea of

WIG20 εt/ĝ
1/2
t

Minimum −14.16 −6.295
Maximum 13.71 6.093
Mean 0.023 0.017
Std. Dev. 1.739 0.965
Skewness −0.241 −0.226
Rob. SK −0.006 0.008
Ex. Kurt. 4.581 2.387
Rob. KR 0.180 0.123

Table 1: Statistics for the WIG20 log return series and the rescaled series εt/ĝ
1/2
t , 3

January 1996 to 31 March 2015.
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skewing the whole error distribution is not supported by the robust skewness measure,

and is not considered here.

6.2 Specification of the model

As already mentioned, specification begins by assuming that the conditional heteroskedas-

ticity is constant, ht ≡ 1 in (3). Constancy of the deterministic component is tested using

the Lagrange multiplier test for LM3 described in Hall et al. (2017), as well as using the

LM2 and LM1 tests, as explained in Section 3. The nonrobust and robust versions are

used, and the p-values are found by simulation as described in Section 3. The results can

be found in Table 2.

The null hypothesis is rejected, but attempts to estimate the alternative fail, which is

due to the fact that the third-order Taylor approximation to the alternative is not suffi-

ciently adequate. Consequently, the tests used to determine K1 in (6) yield inconclusive

results. The solution, resembling the one in Amado and Teräsvirta (2014) who were mod-

elling an approximately 23000 observations long daily return series, consists of splitting

the time series into two and specifying gt separately for these two subseries. Constancy

is rejected for both subseries. The shape of the transitions is determined as described

in Section 3. Based on the p-values, a quadratic shape is preferred for both subseries

(this being most clear in the robust test results), and hence the conclusion is that both

transitions have K1 = 2 in (6).

However, to avoid compromising the fit of the model for the sake of saving a few

parameters at this stage, a single transition with K1 = 2 is estimated as two transitions

with K = 1 in each instead. There is no evidence to suggest that the first subseries would

require additional transitions. Testing for an additional transition in the second subseries

results in adding another one, and this new transition is deemed to be a second-order one.

Hence, two first-order transitions are added to represent it, and a model with r = 4 is

estimated. At this point, the nonrobust LM test does not provide evidence of yet another

transition, but the robust test is pointing in the opposite direction.

The subseries are then joined and the TVV model with the six first-order ‘subtran-

sitions’ estimated. The estimated model is then tested against a TVV model with an

additional transition. The p-values exceed 5%, and the model is thus deemed adequate.
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GJR–GARCH α0 α1 κ1 β1 α1 + κ1/2 + β1

0.023
(0.008)

0.046
(0.009)

0.043
(0.012)

0.927
(0.013)

0.994

TVGJR–GARCH α0 α1 κ1 β1 α1 + κ1/2 + β1

0.030
(0.009)

0.039
(0.009)

0.055
(0.016)

0.901
(0.018)

0.968

Table 3: Estimated GARCH components of the GJR–GARCH and TVGJR–GARCH
model for the WIG20 log return series, 2 January 1996 to 31 March 2015. Standard
deviation estimates in parentheses.

As a robustness check against overfitting, the full data set is used to estimate a model

with four first-order ‘subtransitions’. The null hypothesis of four transitions is rejected for

the LM1 and LM2 tests, however, and the shape of this transition found to be similar to

the preceding ones, K = 2 in (6). This again points towards a model with six first-order

transitions.

The final step consists of assessing the parameter estimates from the TVV model with

six transitions. It turns out that the speed and location parameter estimates coincide

such that the six transitions can be paired to form three second-order transitions. These

transitions form the final specification of the deterministic component of the model.

6.3 Parameter estimation

The parameter estimates of the TVV model serve as starting-values for estimating the

TVGJR–GARCH model, which is carried out by estimation by parts; see Song et al.

(2005) and Amado and Teräsvirta (2013). The estimates can be found in Table 3. The

estimates of the GJR–GARCH model are included in the same table for comparison. It

is seen that the persistence, as measured by α̂1 + κ̂1/2 + β̂1 decreases considerably from

0.990 to 0.968 when gt is included in the model. This has implications for forecasting.

The decrease is mainly ascribed to β1, the coefficient of the lagged conditional variance.

This is in line with previous studies; see for example Amado and Teräsvirta (2014, 2017).

The estimated deterministic component equals (standard deviation estimates in paren-

theses)

ĝt = 11.643
(−)

− 8.269
(0.328)

G1(t/T ; γ̂1, ĉ1)− 7.543
(0.602)

G2(t/T ; γ̂2, ĉ2) + 5.232
(0.584)

G3(t/T ; γ̂3, ĉ3), (9)
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where the transitions are

G1(t/T ; γ̂1, ĉ1) = (1 + exp{−2.104
(0.155)

(t/T − 0.141
(0.016)

)2})−1

G2(t/T ; γ̂2, ĉ2) = (1 + exp{−3.176
(0.103)

(t/T − 0.683
(0.006)

)2})−1

G3(t/T ; γ̂3, ĉ3) = (1 + exp{−5.677
(0.243)

(t/T − 0.770
(0.003)

)2})−1.

As already discussed, the intercept in (9) is fixed and so does not have a standard deviation.

Interestingly, in all transitions the location parameters c1 and c2 are estimated to be equal.

This means that the transitions are not very ’broad-shouldered’ but instead rather smooth.

This can be seen from Figure 2. The apparent asymmetry of the second and the third

transition is due to the fact that they overlap.

Figure 2: Conditional standard deviations of WIG20 returns from the GJR–GARCH

model (grey curve) and ĝ
1/2
t from the estimated TVGJR–GARCH model.
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The effect of the estimated deterministic component (9) on the dependence structure

of the absolute returns is visible in Figure 3. The original autocorrelations decay very

slowly as a function of the lag. This phenomenon, present in many sufficiently long daily

return series, has prompted researchers to model these series as a long memory process

using Fractionally Integrated GARCH; see for example Baillie, Bollerslev and Mikkelsen

13



(1996) or Davidson (2004). The autocorrelations of rescaled or standardised absolute

Figure 3: First 250 autocorrelations of absolute values |εt| of the WIG20 index and the

rescaled series |εt|/ĝ1/2
t .

Standardised WIG20 returns 
WIG20 returns 
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returns decay appreciably faster than the original ones. They are from the first lag clearly

lower than the original ones that are positive up until lag 250. There is still a bump

between lags 30 and 60 in the former suggesting that the deterministic component may

not have removed all long run dependence. What the deterministic component does to

the conditional variance can be seen from Figure 4. The figure shows that rescaling

removes trendlike movements in conditional standard deviations between the years 1998

and 2003, and 2007 and 2011. Furthermore, the spikes in the graph of conditional standard

deviations from the GJR–GARCH model are of different magnitude, whereas the ones

from the TVGJR–GARCH model are approximately of the same size. These standard

deviations are determined up to a constant, that is, they are relative, as opposed to

absolute, entities. This is because changes in the fixed intercept δ0 affect the level of the

two curves in Figure 4.
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Figure 4: Conditional standard deviations of WIG20 retuns from the GJR-GARCH model
(blue curve) and from the TVGJR-GARCH model (red curve).
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6.4 Evaluation

The estimated model is evaluated using misspecification tests discussed in Section 5. The

results appear in Table 4. The test no ARCH in GARCH is an extension of a corresponding

test in Lundbergh and Teräsvirta (2002), whereas the tests of higher-order GARCH are

the ones by Bollerslev (1986) and modified for testing the TVGJR–GARCH. The robust

tests (LM Rob) are the previous tests robustified as suggested by Wooldridge (1991), see

Lundbergh and Teräsvirta (2002). Since it is well known that the nonrobust tests are

positively size-distorted even in large samples, use of robust tests is encouraged. The

results show that if we trust the robust versions the GJR–GARCH model passes all tests

(it did fail the test of gt being constant). The TVGJR–GARCH model fails one of the

tests of higher-order GARCH. This may be surprising at first because the GJR-GARCH

model passes the same test. Sometimes, however, it becomes possible to ‘see’ a defect in

an estimated model only after bigger problems have been taken care of.
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No ARCH-in-GARCH GARCH(1,1) GARCH(1,1) No ST–
vs. vs.

r = 1 r = 5 r = 10 GARCH(1,2) GARCH(2,1) GARCH

GJR
LM test 8.326 18.34 20.61 2.841 0.003 9.357
p-value 0.004 0.003 0.024 0.092 0.953 0.009
LM Rob test 1.588 5.135 7.287 2.352 0.002 1.152
p-value 0.208 0.400 0.698 0.125 0.968 0.562

TV–GJR
LM test 5.279 11.22 13.09 9.393 3.244 7.396
p-value 0.022 0.047 0.219 0.002 0.072 0.025
LM Rob test 1.030 7.867 10.37 7.360 0.616 0.897
p-value 0.310 0.160 0.409 0.007 0.433 0.639

Table 4: Nonrobust and robust misspecification tests for the estimated GJR–GARCH
(upper panel) and TVGJR–GARCH (lower panel) model for the WIG20 log return series.

7 Spline-GARCH results

For comparison, we also present results of fitting the Spline-GARCH model to the series.

Engle and Rangel (2008) used BIC of Rissanen (1978) and Schwarz (1978) to determine

the number of (equidistant) knots in quadratic spline. The result can be seen in Figure 5.

If, instead, the number of knots is selected by AIC of Akaike (1974), the corresponding

curve in this figure follows the series more closely and bears some resemblance to Figure 2.

Both have three local maxima, whereas the curve selected by BIC is very close to a straight

line. This suggests that one might want to compute the deterministic component using

different numbers of knots beginning from a small number quite like in sequential testing.

Where to stop would be an interesting research question.

The GARCH equations of Spline-GARCH can be found in Appendix A. As may be

expected, the GARCH equation of the AIC-based model has lower persistence than the

BIC-based one. In fact, the persistence of the latter equals 0.986 and is thus still quite

close to one. For the former, the corresponding figure equals 0.967, which is practically

the same as the one in Table 3 for the TVGJR–GARCH model.

In general, our test results indicate that the deterministic component cannot be ne-

glected when modelling the WIG20 daily returns. The effect of excluding or including this

component on forecasting is studied in the next section.
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Figure 5: Conditional standard deviations of WIG20 returns from the GJR-GARCH model
(grey curve), exponential quadratic spline when the number of knots is determined by BIC
(blue curve) and when it is done by AIC (red curve).
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8 Fitting the model to WIG20 log returns (partial sample)

In this section we discuss modelling a more recent part of the return series from 1 April

2004 to 31 March 2015. This is done for two main reasons. First, it is interesting to see

how much ĝt changes, if it does, compared to the corresponding part of this component

in (9). Second, it may not be necessary to use all observations when constructing a TV–

GARCH model for forecasting. There is evidence of this in Amado and Teräsvirta (2014)

who modelled daily returns of the Dow-Jones index with almost 23000 observations using

the TVGJR–GARCH model. It turned out, perhaps not surprisingly, that a model based

on a much shorter subseries generated more accurate forecasts than the model estimated

from the original series. Whether or not something similar occurs here will be investigated.

Sequential testing for the number of transitions from the previous Section suggests two

shifts, each with K = 2. The estimated GARCH equations in Table 5 have not changed

much compared to the ones in Table 3. The change in persistence when one moves from

GJR–GARCH to TVGJR–GARCH is of the same magnitude as before. However, in the
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GJR–GARCH α0 α1 κ1 β1 α1 + κ1/2 + β1

0.020
(0.007)

0.034
(0.009)

0.050
(0.016)

0.931
(0.011)

0.990

TVGJR–GARCH α0 α1 κ1 β1 α1 + κ1/2 + β1

0.029
(0.009)

0.005
(0.012)

0.088
(0.020)

0.908
(0.026)

0.957

Table 5: Estimated GARCH components of the GJR-GARCH and TVGJR-GARCH
model for the WIG20 log return series, 1 April 2004 to 31 March 2015. Standard de-
viation estimates in parentheses.

TVGJR–GARCH model the evidence of asymmetric response of the conditional variance

to shocks is now quite pronounced as κ̂1 has increased whereas α̂1 has shrunk and is no

longer significant. The deterministic component has the following form:

ĝt = 20.689
(−)

− 4.405
(0.549)

G1(t/T ; γ̂1, ĉ1)− 14.596
(0.537)

G2(t/T ; γ̂2, ĉ2)

where

G1(t/T ; γ̂1, ĉ1) = (1 + exp{−2.356
(0.207)

(t/T − 0.339
(0.017)

)2})−1

G2(t/T ; γ̂2, ĉ2) = (1 + exp{−5.097
(0.188)

(t/T − 0.469
(0.004)

)2})−1.

There are now two transitions and the shape of ĝ
1/2
t is depicted in Figure 6. By comparing

this figure with Figure 2 it is seen that the increase in ĝ
1/2
t around 2009 is more pronounced

in the former than the latter, but otherwise the two curves look fairly similar. The small

hump around 2012 in Figure 2 has, however, vanished in Figure 6. As the counterpart

of Figure 4, Figure 8 shows the same situation: the apparent nonstationarity around

2007–2010 in conditional heteroskedasticity is evened out after rescaling.

The autocorrelations of the absolute returns and those of εt/ĝ
1/2
t appear in Figure 7.

The former autocorrelations are positive for all 250 lags. The plateau between lags 30 and

60 in rescaled absolute returns is still visible but is much weaker than in Figure 3. The

difference between the two curves is as substantial as before. To save space, results of the

misspecification tests for the models are not reported here. They are rather similar to the

ones in Table 4.

For comparison, we fitted two Spline-GARCH models to the subseries. Even here we
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Figure 6: Conditional standard deviations from the GJR-GARCH(1,1) model (grey curve)

and estimated ĝ
1/2
t (red curve) from the TVGJR-GARCH(1,1) model for the WIG20 daily

returns, both from 1 April 2004 to 31 March 2015.
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Figure 7: First 250 autocorrelations of absolute values |εt| of the WIG20 index and the

rescaled series |εt|/ĝ1/2
t , subsample.
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Figure 8: Conditional standard deviations of WIG20 retuns from the GJR-GARCH model
(blue curve) and from the TVGJR-GARCH model (red curve), for the subperiod 1 April
2004 - 31 March 2015.
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selected the knots using both AIC and BIC. The results can be found in Figure 9. The

spline obtained by BIC is still very parsimonious, no knots, but it now bends more than

the previous one. The main reason for this is that the period containing the first hump

visible in Figure 5 is not included in the shorter series. As before, the spline generated by

AIC follows the conditional standard deviation from GARCH quite closely. Which one of

the two choices is more appropriate when the Spline-GARCH model is put into practical

use will be discussed in the next section.

9 Forecasting

9.1 Full sample

In this section we consider forecasting with the TVGJR–GARCH model and compare the

forecasts with corresponding outcomes from GJR–GARCH and Spline-GARCH models.

The forecasting period comprises the returns from 1 April 2015 up until 30 April 2016.

In place of the unobserved volatility we use squared daily return which, as discussed in

Patton (2011) is an unbiased volatility proxy. The measures of forecasting accuracy are
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Figure 9: Conditional standard deviations of WIG20 returns from the GJR-GARCH model
(grey curve), exponential quadratic spline when the number of knots is determined by BIC
(blue curve) and when it is done by AIC (red curve), for the period 1 April 2004 - 31 March
2015.
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thus formed with respect to this proxy. We also want to find out whether the accuracy

of the forecasts depends on the estimation period. This question becomes interesting

when the deterministic component of the model is not constant. For a standard GARCH

or GJR–GARCH model using a subperiod instead of the whole series to estimate the

parameters does not make much sense when the model is correctly specified.

For the TVGJR–GARCH model the forecasts are constructed by assuming that the

value of the deterministic component does not change during the forecasting period from

what it is at the end of the estimation period. The same rule is applied to Spline-GARCH,

which means that the spline is not extrapolated into the forecasting period. The forecasting

horizon varies from one to 120 days. In Table 6 we report the Root Mean Square Forecast

Error (RMSFE) which for our volatility proxy is a robust loss function, see Patton (2011).

In the same table, however, we also include results based on the Mean Absolute Forecast

Error (MAFE) and the Median Squared Forecast Error (MedSFE).

The results show that Spline-GARCH (BIC) yields the most accurate forecasts by all

criteria of comparison, whereas Spline-GARCH (AIC) generates the least accurate ones.
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GJR–GARCH TVGJR–GARCH

Horizon MedSFE MAFE RMSFE MedSFE MAFE RMSFE

h = 1 1.607 1.681 2.825 0.811 1.437 2.656
h = 5 1.667 1.713 2.833 0.779 1.417 2.653
h = 10 2.021 1.787 2.872 0.840 1.433 2.679
h = 20 2.415 1.909 2.928 0.810 1.422 2.716
h = 60 3.319 2.167 3.250 0.744 1.474 2.977
h = 90 3.987 2.219 3.298 0.670 1.458 3.103
h = 120 5.006 2.278 2.570 0.650 1.353 2.261

Spline-GARCH (AIC) Spline-GARCH (BIC)

Horizon MedSFE MAFE RMSFE MedSFE MAFE RMSFE

h = 1 2.549 2.706 5.215 0.629 1.133 2.039
h = 5 2.289 2.647 5.224 0.593 1.134 2.038
h = 10 2.250 2.661 5.282 0.653 1.154 2.054
h = 20 1.664 2.608 5.405 0.713 1.182 2.088
h = 60 1.127 2.764 5.998 0.700 1.228 2.267
h = 90 0.974 2.747 6.264 0.691 1.197 2.331
h = 120 0.925 2.538 4.665 0.696 1.129 1.684

Table 6: Root mean squared, mean absolute and median squared forecast errors for fore-
casts from various models, estimation period 2 January 1996 - 31 March 2015.

Forecasting horizon

Model h = 1 h = 5 h = 10 h = 20 h = 60 h = 90 h = 120

TVGJR–GARCH 35.47 37.16 38.68 40.38 40.29 23.41 52.69
Spline-GARCH (AIC) −190.0 −187.1 −183.8 −176.4 −149.8 −131.1 −127.1
Spline-GARCH (BIC) 246.1 244.6 240.8 242.4 210.6 172.6 225.7

Table 7: Values of the out-of-sample F-test for the models. Benchmark: GARCH or
GJR–GARCH.
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Horizon

Model h = 1 h = 5 h = 10 h = 20 h = 60 h = 90

GARCH 0.641* 0.500* 0.556* 0.310* 0.374* 0.881*
GJR-GARCH 0.541* 0.518* 0.458* 0.327* 0.240* 0.741*
TVGJR-GARCH 1.000* 1.000* 1.000* 1.000* 0.374* 0.780*
Spline-GARCH (BIC) 0.641* 0.518* 0.556* 0.327* 0.374* 0.879*
Spline-GARCH (AIC) 0.012 0.088 0.316* 0.446* 1.000* 1.000*

Table 8: The model confidence set when models are compared using the mean squared
forecast error.

Horizon

Model h = 1 h = 5 h = 10 h = 20 h = 60 h = 90

GARCH 0.000 0.000 0.000 0.000 0.000 0.000
GJR-GARCH 0.000 0.000 0.000 0.000 0.000 0.000
TVGJR-GARCH 0.000 0.000 0.000 0.010 1.000* 0.408*
Spline-GARCH (BIC) 1.000* 1.000* 1.000* 1.000* 0.038 1.000*
Spline-GARCH (AIC) 0.000 0.000 0.000 0.000 0.000 0.000

Table 9: The model confidence set when models are compared using the mean absolute
forecast error.

The difference is due to the fact that the end-point of the spline in the latter is ‘too low’

when compared to the former, see Figure 5. This has a dramatic effect on the accuracy of

the forecasts. Note that the final level of the spline cannot be compared to the level of the

deterministic component of the TVGJR–GARCH model in Figure 2. As already discussed,

the level in that model is a relative concept. What matters is α̂0δ0 as the change in δ0 in

(5) affects the estimate of α0 in (4). Table 7 contains the values of the out-of-sample F -test

(OOS-F) for the TVGJR- and Spline-GARCH models. The benchmark is the GARCH or

GJR-GARCH model. All values indicate significance at the level 0.05. The minus sign

shows that the roles of the null and the alternative have changed: Spline-GARCH (AIC) is

the null model and produces significantly more inaccurate forecasts than GARCH. These

figures agree with the ones in Table 6.

Another way of sorting out inferior models is to construct model confidence sets (MCS),

see Hansen, Lunde and Nason (2011). The results in Table 8 show that when the mean

squared error is used for comparing the models, only Spline-GARCH (AIC) falls outside

the confidence set when the forecasting horizon is sufficiently short. When the selection is

based on MAFE, see Table 9, the distinctions are sharper, and at short horizons Spline-

GARCH (BIC) is the sole member of MCS up until h = 20. When h ≥ 60, the TVGJR–
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GJR–GARCH TVGJR–GARCH

Horizon MedSFE MAFE RMSFE MedSFE MAFE RMSFE

h = 1 1.387 1.635 2.811 0.337 0.908 1.655
h = 5 1.423 1.654 2.817 0.350 0.898 1.655
h = 10 1.682 1.703 2.850 0.357 0.905 1.673
h = 20 1.824 1.776 2.890 0.361 0.900 1.694
h = 60 2.124 1.901 3.152 0.373 0.939 1.849
h = 90 2.313 1.870 3.205 0.333 0.936 1.930
h = 120 2.550 1.821 2.338 0.336 0.871 1.401

Spline-GARCH (AIC) Spline-GARCH (BIC)

Horizon MedSFE MAFE RMSFE MedSFE MAFE RMSFE

h = 1 2.920 2.981 5.905 0.974 1.517 2.788
h = 5 2.489 2.930 5.934 0.964 1.513 2.792
h = 10 2.405 2.938 6.010 1.071 1.534 2.818
h = 20 1.793 2.895 6.167 1.046 1.551 2.871
h = 60 1.120 3.113 6.840 0.793 1.583 3.143
h = 90 0.983 3.114 7.144 0.674 1.511 3.240
h = 120 0.983 2.871 5.340 0.587 1.405 2.365

Table 10: Root mean squared, mean absolute and median squared forecast errors for
forecasts from various models, estimation period 1 April 2004 - 31 March 2015.

GARCH model also belongs to MCS.

9.2 Subsample from April 2004

As already mentioned, in the light of results in Amado and Teräsvirta (2014) studying the

effect of the estimation period and thus that of the deterministic component on forecasts

should be quite interesting. To this end we forecast with models estimated in Section 8.

Results can be found in Table 10. It can be seen that the TVGJR–GARCH model generates

the most accurate forecasts. They are more accurate than the corresponding ones from

the full-sample model and the most accurate of all models. One can conclude that the

estimation period matters. In this case, the starting ’level’ for forecasting, α̂0δ0, is more

favourable than in the model based on the full sample. For Spline-GARCH (BIC) the

situation is the opposite, but the forecasts from this model are still far more accurate

than those from Spline-GARCH (AIC). The former Spline-GARCH model is now roughly

at par with GJR-GARCH. This is also seen from Table 11. The Spline-GARCH model

is superior to GJR–GARCH for h ≤ 20 but loses its edge at longer horizons. This is

also obvious from results of the OOS-F test in Table 11. Forecasts from Spline-GARCH

(AIC) continue to be inferior to the others and even less accurate than the ones from
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Forecasting horizon

Model h = 1 h = 5 h = 10 h = 20 h = 60 h = 90 h = 120

TVGJR–GARCH 503.0 497.1 493.2 470.0 400.7 319.6 325.7
Spline-GARCH (AIC) −208.1 −205.4 −201.8 −194.8 −165.5 −144.0 −145.4
Spline-GARCH (BIC) 4.535 4.521 4.683 4.763 0.808 −4.971 −3.669

Table 11: Values of the out-of-sample F-test for the models. Benchmark: GARCH or
GJR–GARCH.

GJR–GARCH.

9.3 Comparing full sample and subsample forecasts

It may be asked after seeing these forecasts is whether longer return series lead to more

accurate models and volatility forecasts than shorter series. A comparison of forecasts from

models based on these samples shows that there is no clear-cut answer to this question.

Tables 6 and 10 show that accuracy of forecasts from the TVGJR–GARCH model increases

when the model is built only on the time series starting in 2004, whereas the situation

is the opposite for the Spline-GARCH (BIC) model. When the model is a GJR-GARCH

one, there is hardly any difference in RMSFE between forecasts from the two variants of

the model. Obviously, the parameter estimates do not change much when one moves from

the subsample to the complete one, although their precision should improve.

The accuracy of forecasts from TV–GARCH and Spline-GARCH models is very de-

pendent on the last value of the deterministic component because this value forms the

starting-point for forecasting. This is why there are differences in RMSFE between the

variants of the same model. This also explains why in one case estimating the model from

the subsample leads to more precise forecasts than using the whole time series, whereas

in another case the situation is the opposite. It is reassuring, however, that both the sub-

sample and full sample forecasts are more accurate than the ones from the GJR–GARCH

model. This suggests that using models with a multiplicative deterministic component for

forecasting is a good idea, although it may not always be possible to tell in advance which

multiplicative model and which observation period one should use. In the present case it

seems that the Spline-GARCH (AIC) gives a deterministic component that is quite flexi-

ble. Nevertheless, and perhaps because of this property, the final value of the deterministic
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component becomes too low and the forecasts thereby less competitive when compared to

other approaches.

10 Conclusions

In this paper we model daily logarithmic returns of the WIG20 index acknowledging the

fact that the series may be nonstationarity in the sense that the amplitude of volatility

clusters is not constant over time. Modelling is carried out in a systematic fashion, which

is emphasised in the paper. The form of the model is specified first, the parameters of the

fully specified model estimated thereafter and, finally, the estimated model is subjected

to misspecification tests. This is done both using the whole sample from the beginning of

1995 and a subsample in which the observation period starts 2 January 2004.

Forecasting performance of the TVGJR–GARCH model is compared with that of two

variants of the Spline-GARCH model. It turns out that the most accurate forecasts of

volatility are obtained using the TVGJR–GARCH model fitted to the subperiod. The

conclusion is that the length of the observation period matters, and that, measured by the

root mean squared error, models built on the longest series do not automatically provide

the best forecasts. This accords with findings reported in Amado and Teräsvirta (2014).

A general conclusion is that when the return series to be modelled are sufficiently long,

the deterministic component in the variance cannot be ignored. It may, at least in theory,

be replaced or completed by a stochastic component, although finding economic variables

that would explain variation in daily return series does not seem to be easy. Time used

in this work is a proxy for the factors and phenomena that are moving daily equity prices

but may be remarkably difficult to quantify.
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Lódzkiego, pp. 209–220.
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Appendices

A Estimated GARCH equations in the Spline-GARCH model

The estimated GARCH equations of the Spline-GARCH model when the estimation period

consists of the whole sample from 2 January 1996 to 31 March 2015 (T = 4777) are as

follows. The equation of the AIC-based model equals

ĥt = 0.033
(−)

+ 0.073
(0.005)

φ2
t−1 + 0.894

(0.008)
ht−1

so the persistence, that is, α̂1 + β̂1 = 0.967. When the number of equidistant knots is

selected using BIC as in Engle and Rangel (2008), the equation is

ĥt = 0.014
(−)

+ 0.072
(0.004)

φ2
t−1 + 0.913

(0.005)
ht−1

where α̂1 + β̂1 = 0.986.

For the subperiod from 2 January 2004 to 31 March 2015 (T = 2808) the equation for

the AIC-based model is

ĥt = 0.034
(−)

+ 0.057
(0.008)

φ2
t−1 + 0.909

(0.013)
ht−1 (10)

where α̂1 + β̂1 = 0.966. For the BIC-selected splines,

ĥt = 0.010
(−)

+ 0.064
(0.007)

φ2
t−1 + 0.926

(0.008)
ht−1 (11)

where α̂1 + β̂1 = 0.990 Even here, the persistence is clearly lower in (10) than in (11).
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