
Department of Economics and Business Economics 

Aarhus University 

Fuglesangs Allé 4 

DK-8210 Aarhus V 

Denmark 

Email: oekonomi@au.dk  

Tel: +45 8716 5515 

 

 

 
 
 
 
 
 
 

 
 

 
 

 
 
 

 

Consistency and asymptotic normality of maximum 

likelihood estimators of a multiplicative time-varying 

smooth transition correlation GARCH model 

 

Annastiina Silvennoinen and Timo Teräsvirta 

 

CREATES Research Paper 2017-28 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:oekonomi@au.dk


Consistency and asymptotic normality of
maximum likelihood estimators of a multiplicative

time-varying smooth transition correlation
GARCH model

Annastiina Silvennoinen∗ and Timo Teräsvirta†‡
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Abstract

A new multivariate volatility model that belongs to the family of con-
ditional correlation GARCH models is introduced. The GARCH equations
of this model contain a multiplicative deterministic component to describe
long-run movements in volatility and, in addition, the correlations are de-
terministically time-varying. Parameters of the model are estimated jointly
using maximum likelihood. Consistency and asymptotic normality of max-
imum likelihood estimators is proved. Numerical aspects of the estimation
algorithm are discussed. A bivariate empirical example is provided.
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1 Introduction

Forecasting volatility is important for investors and portfolio managers alike. Multi-
variate models of generalized autoregressive conditional heteroskedasticity (GARCH)
provide a useful way of generating (short-run) forecasts for that purpose. Research
on these models has been lively ever since Bollerslev, Engle and Wooldridge (1988)
introduced the first multivariate model, and the number of applications has been
steadily increasing over the years. Developments in that area have been summed up
in surveys such as Bauwens, Laurent and Rombouts (2006) and Silvennoinen and
Teräsvirta (2009b). It appears that the most popular class of multivariate GARCH
models is the class of conditional correlation GARCH (CC-GARCH) models in-
troduced by Bollerslev (1990). In the original model the conditional correlations
were constant, hence the name Constant Conditional Correlation (CCC-GARCH)
model, but this restriction has later been removed by parameterising the change
in conditional correlations. The most frequently applied CC-GARCH model is the
Dynamic CC (DCC-) GARCH model by Engle (2002). Tse and Tsui (2002) intro-
duced a similar model which they called the Varying Correlation (VC-) GARCH
model. Other CC-GARCH models worth mentioning include the Markov-Switching
CC-GARCH model of Pelletier (2006), the Smooth Transition CC (STCC-) GARCH
model, see Silvennoinen and Teräsvirta (2005, 2009a, 2015), the Dynamic Equicorre-
lation GARCH (DECO) model by Engle and Kelly (2012) and Multivariate GARCH
with covariance breakdowns by Jin and Maheu (2016). Time-varying correlations
may also be estimated nonparametrically as in Hafner, van Dijk and Franses (2006)
or Long, Su and Ullah (2011).

Although many of these models are in widespread use, there is no asymptotic
theory available for maximum likelihood (ML) estimators of the parametric models.
While the GARCH equations can be estimated consistently and the ML estimators of
their parameters have been shown to be normal under standard regularity conditions,
corresponding results for the complete CC-GARCH models do not exist. Standard
asymptotic inference is routinely applied in connection with dynamic CC-GARCH
models but, as pointed out by Engle and Kelly (2012), ’a rigorous analysis of asymp-
totic theory for multivariate GARCH processes remains an important unanswered
question’. The most general asymptotic results are limited to CCC-GARCH mod-
els and appeared in Ling and McAleer (2003). These authors considered a model
that also contains a conditional mean of autoregressive moving-average (ARMA)
type, and the conditional variance component is an Extended Conditional GARCH
specification, see Jeantheau (1998), which allows spillover effects between the assets.
This asymptotic theory makes it possible to test the constant conditional correlation
assumption by Lagrange multiplier or score tests, see Tse (2000), Péguin-Feissolle
and Sanhaji (2016) and Silvennoinen and Teräsvirta (2009a, 2015) for examples.
Testing specification of the GARCH equations is possible as well, see for instance
Bollerslev (1986), Li and Mak (1994), Lundbergh and Teräsvirta (2002), Nakatani
and Teräsvirta (2009) and Pedersen (2017).

It is well known that standard (weakly) stationary GARCH models are not suit-
able for modelling long (daily) return series because of nonstationarity. This dif-
ficulty has been tackled by applying Integrated GARCH, see Engle and Bollerslev
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(1986), and Fractionally Integrated GARCH (FIGARCH) models, Baillie, Bollerslev
and Mikkelsen (1996), but few generalisations to multivariate GARCH exist in the
literature. Conrad, Karanasos and Zeng (2011) defined the Multivariate Fraction-
ally Integrated Asymmetric Power ARCH (FIAPARCH) model and applied bivariate
and trivariate versions of it to various stock index return series. In that model, the
conditional correlations are constant. Dark (2015) recently introduced a multivari-
ate model whose GARCH equations are of FIGARCH type while the conditional
correlations are dynamic as in Engle (2002) and asymmetric as well.

Another way of dealing with the aforementioned nonstationarity is to model it by
extending the GARCH model by a multiplicative deterministic component. Early
examples of this are Feng (2004) and van Bellegem and von Sachs (2004) who es-
timated the deterministic component nonparametrically. Engle and Rangel (2008)
and Brownlees and Gallo (2010) used quadratic exponential splines and Mazur and
Pipień (2012) applied the Fourier Flexible Form by Gallant (1981). Amado and
Teräsvirta (2008, 2013, 2014b, 2017) used a linear combination of logistic func-
tions of rescaled time, which resulted in the Multiplicative Time-Varying GARCH
(MTV-GARCH) model. A multivariate GARCH model that contains a determinis-
tic component was introduced in Hafner and Linton (2010), but their GARCH model
was the so-called BEKK-GARCH by Engle and Kroner (1995). Recently, Amado
and Teräsvirta (2014a) generalised the MTV-GARCH model to the vector case. In
that MTV-CC-GARCH model, the conditional correlations were either constant as
in Bollerslev (1990), or dynamic as in Engle (2002) or Tse and Tsui (2002). Needless
to say, no asymptotic inference is available for that model either, although under
regularity conditions ML estimators of parameters in the MTV-GARCH equations
are consistent and asymptotically normal; see Amado and Teräsvirta (2013).

In this work, the multivariate MTV-CCC-GARCH model is generalised by defin-
ing the time-varying correlations as in STCC-GARCH but assuming that the tran-
sition variable is rescaled time. The main contribution of this paper is that ML
estimators of the parameters of this MTV-TVC-GARCH model, TVC model for
short, are shown to be consistent and asymptotically normal. This may be the first
time when such a result is available for multivariate CC-GARCH models with time-
varying correlations. Maximum likelihood estimates of parameters are fully efficient.
Unlike the DCC- or VC-GARCH model that rely on GARCH-type conditional corre-
lations and thus, at least in principle, describe clustering in conditional correlations,
the TVC model is designed to characterise long-run movements in correlations. Esti-
mation of parameters of the highly nonlinear TVC model is numerically demanding
and requires a good optimisation algorithm.

The plan of the paper is as follows. The TVC model is presented in Section 2 and
its log-likelihood in Section 3. Consistency of ML estimators when the conditional
variance component is assumed constant is considered in Section 4. The information
matrix for this restricted model is defined in Section 5 and asymptotic normality of
the ML estimators studied in Section 6. After defining the relevant Hessian matrix
in Section 7, ML estimation of the complete model including the GARCH compo-
nent is discussed in Section 8 where asymptotic normality of the ML estimators is
established. The estimation algorithm is described and some numerical aspects of
estimation are highlighted in Section 9. Section 10 contains an empirical example.
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Conclusions can be found in Section 11.

2 The model

The model considered in this work is the multivariate multiplicative time-varying
Smooth Transition Conditional Correlation GARCH model with deterministically
time-varying correlations, that is, the TVC model. The observable stochastic N × 1
vector εt is decomposed in the customary fashion as

εt = H
1/2
t zt = StDtzt (1)

where zt is a vector of independent random variables with Ezt = 0 and a positive
definite deterministically varying covariance matrix cov(zt) = Pt. It follows that

P
−1/2
t zt = ζt ∼ iid(0, IN). Time may be replaced by a stationary random variable

that is independent of zt. The diagonal N × N matrix H
1/2
t = StDt, where the

deterministic matrix St = diag(g
1/2
1t , ..., g

1/2
Nt ) has positive diagonal elements for all

t, and Dt = diag(h
1/2
1t , ..., h

1/2
Nt ) contains the conditional standard deviations of the

elements of S−1
t εt = (ε1t/g

1/2
1t , ..., εNt/g

1/2
Nt )′. Following Amado and Teräsvirta (2008,

2013, 2014a,b, 2017), the diagonal elements of S2
t are defined as follows:

git = 1 +

ri∑
j=1

δijGij(γij, cij; t/T ) (2)

i = 1, ..., N, where the (generalised) logistic function

Gij(γij, cij; t/T ) = (1 + exp{−γij
Kij∏
k=1

(t/T − cijk)})−1, γij > 0 (3)

and cij = (cij1, ..., cijKij)
′ such that cij1 ≤ ... ≤ cijKij . Both γij > 0 and cij1 ≤

... ≤ cijKij are identification restrictions. The intercept in (2) is set to one for
notational convenience. Although any known positive constant will do, in practice
some choices are numerically better motivated than others. This will be further
discussed in Section 9.

As discussed in earlier papers, the idea of git is to normalise or rescale the ob-
servations. Left-multiplying (1) by S−1

t yields

φt = S−1
t εt = Dtzt

where φt is assumed to have a standard stationary GARCH representation with the
conditional covariance matrix E{φtφ′t|Ft−1} = DtPtDt. It follows that the ith first-
order GJR-GARCH(1,1,1) equation, see Glosten, Jagannathan and Runkle (1993),
is

hit = αi0 + αi1φ
2
i,t−1 + κi1I(φt−1 < 0)φ2

i,t−1 + βi1hi,t−1 (4)

where I(A) is an indicator function: I(A) = 1 when A occurs, zero otherwise. (Note
that εt and φt have the same sign.) The standard GARCH(1,1) model is obtained
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by setting κi1 = 0. A higher-order structure is possible, although there do not seem
to exist applications of the GJR-GARCH model of order greater than one.

In this work, Pt is defined as in smooth transition conditional correlation model
of Silvennoinen and Teräsvirta (2005, 2015):

Pt = Gt(t/T, γ, c)P(1) + {1−Gt(t/T, γ, c)}P(2) (5)

where P(1) and P(2), P(1) 6= P(2), are positive definite correlation matrices, and

Gt(t/T, γ, c) = (1 + exp{−γ
K∏
k=1

(t/T − ck)})−1, γ > 0 (6)

and c1 ≤ ... ≤ cK . As a convex combination of P(1) and P(2), Pt is positive definite.
The resulting model is a Multiplicative Time-Varying Smooth Transition Condi-
tional Correlation GARCH (TVC) model. A bivariate STCC-GARCH model with
time as the transition variable was first considered by Berben and Jansen (2005). A
similar MTV-Conditional Correlation GARCH model but with different definitions
for Pt was discussed in Amado and Teräsvirta (2014a).

3 The log-likelihood

3.1 Notation

Let θg = (θ′g1, ...,θ
′
gN)′ be the parameter vector containing the parameters of St.

If Kij = 1 in (3) for simplicity, then θgi = (δ′i,γ
′
i, c
′
i)
′, with δi = (δi0, δi1, ..., δiri)

′,
γi = (γi1, ..., γiri)

′, and ci = (ci1, ..., ciri)
′, i = 1, ..., N. The subscript i refers to the

ith diagonal element of St. Analogously, let θh = (θ′h1, ...,θ
′
hN)′ be the parameter

vector containing the parameters of Dt, where θhi is the parameter vector of h
1/2
it ,

the ith diagonal element of Dt. For example, if the model is a GJR-GARCH(1,1,1)
model, then θhi = (αi0, αi1, κi1, βi1)′. The vector θρ = (ρ′1,ρ

′
2, γ, c

′)′, where c =
(c1, ..., cK)′ and ρi = vecl(P(i)), i = 1, 2, contains the parameters in Pt. The whole
parameter vector of the model is denoted as θ = (θ′g,θ

′
h,θ

′
ρ)
′ and, whenever needed,

θ0 = ((θ0
g)
′, (θ0

h)
′, (θ0

ρ)
′)′ is the true parameter vector. The following notation is

used: St = St(θg), Dt = Dt(θh,θg) and Pt = Pt(θρ). Also, P 0
t = Pt(θ

0
ρ) is the true

correlation matrix. That Dt is a function of both θh and θg is a consequence of the
fact that

hit = αi0 + αi1(ε2
i,t−1/gi,t−1) + κi1I(εt−1 < 0)(ε2

i,t−1/gi,t−1) + βi1hi,t−1.

Furthermore, let 0k be a k-dimensional null vector, 0k×m a k × m null matrix,
Ik a k × k identity matrix, and 1k a k-dimensional vector of ones. Finally, the

symbol
p→ signifies convergence in probability, whereas

d→ represents convergence in
distribution.
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3.2 Log-likelihood and score

Assuming normal and independent errors, the log-likelihood function of the model
(the log conditional density of ζt) for observation t (ignoring the constant) becomes

ln f(ζt|θ,Ft−1)

= −(1/2) ln |StDtPtDtSt| − (1/2)ε′t{StDtPtDtSt}−1εt

= − ln |St| − ln |Dt| − (1/2) ln |Pt| − (1/2)ε′t{StDtPtDtSt}−1εt (7)

where Ft−1 contains the conditioning information. Since St and Dt are diagonal,
one may write

ln f(ζt|θ,Ft−1) = −(1/2)
N∑
i=1

ln gi(θgi; t/T )− (1/2)
N∑
i=1

lnhit(θhi,θgi)

−(1/2) ln |Pt| − (1/2)ε′t{StDtPtDtSt}−1εt. (8)

In order to consider asymptotic properties of the maximum likelihood estimator
of θ, the focus will first be on the submodel in which Dt = IN . Apart from the
error term ζt, this is a completely deterministic model. Let θ1 = (θ′g,θ

′
ρ)
′ and

θ0
1 = ((θ0

g)
′, (θ0

ρ)
′)′. Assuming, for notational simplicity, that c = c, the score of the

log-likelihood function for observation t equals

∂

∂θ1

ln f(ζt|θ1) = st(θ1) = (s′t(θg), s
′
t(θρ))

′ (9)

where

st(θg) = (s′t(θg1), ..., s′t(θgN))′ (10)

st(θρ) = (s′t(ρ1), s′t(ρ2), st(γ), st(c))
′. (11)

The form of the sub-blocks in (10) and (11) is given in the following lemma:

Lemma 1 The blocks (10) and (11) of (9) for observation t when Dt = IN in (8),
have the following representations:

st(θgi) =
1

2git

∂git
∂θgi

(z′teie
′
iP
−1
t zt − 1)

where ei = (0′i−1, 1,0
′
N−i)

′, i = 1, ..., N, and

st(θρ) = −(1/2)
∂vec(Pt)

′

∂θρ
{vec(P−1

t )− (P−1
t ⊗ P−1

t )vec(ztz
′
t)}.

Dividing ∂vec(Pt)
∂θ′ρ

into four sub-blocks as follows:

∂vec(Pt)

∂θ′ρ
=

[
∂vec(Pt)

∂ρ′1
,
∂vec(Pt)

∂ρ′2
,
∂vec(Pt)

∂γ
,
∂vec(Pt)

∂c

]
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the two N2 ×N(N − 1)/2 blocks are

∂vec(Pt)

∂ρ′1
= (1−Gt)

∂vec(P(1))

∂ρ′1
(12)

∂vec(Pt)

∂ρ′2
= Gt

∂vec(P(2))

∂ρ′2
(13)

and two N2 × 1 vectors

∂vec(Pt)

∂γ
= Gt(1−Gt)(t/T − c)vec(P(2) − P(1))

and
∂vec(Pt)

∂c
= −γGt(1−Gt)vec(P(2) − P(1)).

Proof: See Appendix 12. Formulas (12) and (13) can be combined into an N2 ×
N(N − 1) matrix:

∂vec(Pt)

∂ρ′
= (1−Gt)

∂vec(P(1))

∂ρ′
+Gt

∂vec(P(2))

∂ρ′
.

4 Consistency

Direct maximum likelihood (ML) estimation of θ from (8) is numerically very diffi-
cult. To alleviate the computational burden it is preferable to divide the maximisa-
tion problem into parts instead of maximising the whole log-likelihood at once. This
is useful from the numerical point of view, but maximisation by parts has an even
more important role to play. Following Song, Fan and Kalbfleisch (2005) it allows
us to derive asymptotic properties for the ML estimator of θ, when the two parts of
each iteration consist of first estimating θ1 and then estimating the GARCH param-
eter vector θh conditionally on the obtained estimate of θ1. For reasons that will
become clear in Section 8, we begin by considering both consistency and asymptotic
normality of the ML estimator θ̂1 of θ1 in this framework. Our results may be viewed
as generalisations of the ones in Amado and Teräsvirta (2013) who considered ML
estimation of a single multiplicative TV-GARCH equation.

As already mentioned, the focus will be on the restricted model with Dt =
IN . Under this restriction, the intercept in (2) is a free parameter, which leads to
redefining git as

git(δi,γi, ci; t/T ) = δi0 +

ri∑
j=1

δijGij(γij, cij; t/T ), i = 1, ..., N. (14)

We make the following assumptions:

AG1. The parameter space Θ1 = {∆ × Γ × C × P} is compact, where δ ∈ ∆,
γ ∈ Γ, c ∈ C, and ρ ∈ P.

AG2. The log-likelihood has a unique maximum at the true parameter θ0
1 which

is an interior point of Θ1.
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AG3. The elements of δ ∈ ∆ are restricted such that maxj=1,...,ri;i=0,1,...,N |δij|
≤ Mδ < ∞ and infδi∈∆ git(t/T, δi,γi, ci) > 0 for each i = 1, ..., N . In particular,∑j

k=0 δik > 0, j = 0, 1, ..., ri, and, for identification reasons, δij 6= 0, for j = 1, ..., ri
and i = 1, ..., N . For any pair (i,m), i 6= m, there exists at least one time-point
t such that git 6= gmt. Furthermore, the positive intercepts δi0, i = 1, ..., N , are
assumed known, so that the corresponding αi0 > 0, i = 1, ..., N , in (4) are free
parameters.

AG4. The slope parameters γij > 0 and ci1 < . . . < ciri , j = 1, ..., ri, i = 1, ..., N .
AG5. The matrices P(1) and P(2) in (5) are positive definite correlation matrices

for ρ ∈ P , P(1) 6= P(2). Furthermore, γ > 0 and c1 ≤ . . . ≤ ck in (6).

AG6. Eζ
2(2+φ)
it <∞ for some φ > 0 and i = 1, ..., N.

The assumption AG4 is necessary for AG2 but is stated separately. It follows from
AG5 that Pt is positive definite because it is a convex combination of P(1) and P(2).
The inequalities γ > 0 and c1 ≤ ... ≤ ck are required for uniqueness of (6). If
cj = cj+1, then the product (t/T − ci)(t/T − ci+1) = (t/T − ci)

2 in (6), i.e., one
parameter less is estimated. AG6 is required in proving asymptotic normality in
the case where the errors are not normal. The consistency result is formulated as
follows:

Theorem 1 Consider the multiplicative time-varying smooth transition conditional
correlation GARCH model (1), (3), (5), (6) and (14), where Dt = IN . Let θ̂1 be the
maximum likelihood estimator of θ0

1 = ((θ0
g)
′, (θ0

ρ)
′)′. Suppose that the assumptions

AG1-AG5 hold and that ζt ∼ iid(0N , IN). Then θ̂1 is consistent for θ0
1.

Proof: See Appendix 12.
It should be noted, however, that when Dt = IN , the term ‘conditional corre-

lation’ is misleading. The time-varying correlations are unconditional because the
transition variable controlling the change is time both in the GARCH (sic!) equa-
tions and correlations.

5 Information matrix and second partial deriva-

tives of the likelihood

5.1 Information matrix

Let S0
t be the true diagonal matrix, that is, S0

t = St(θ
0
g), where θ0

g is the true
parameter vector. Let P 0

t be the true covariance matrix, so εt is decomposed as εt =
S0
t (P

0
t )1/2ζt, where ζt ∼ iid(0N , IN). The information matrix of the log-likelihood

LT = (1/T )
T∑
t=1

ln f(ζt|θ1) (15)

is given by the following result:
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Lemma 2 The information matrix of the log-likelihood (15) equals

B(θ0
1) =

∫ 1

0

Esr(θ
0
1)s′r(θ

0
1)dr

where the element of the score sr(θ
0
1) at r = t/T is defined in Lemma 1.

Proof: See Appendix 12.
To illustrate the structure of the information matrix, we present the expressions

of the expectations of its four blocks at time t. For this purpose, define the (N,N)
commutation matrix K: the N ×N (i, j) block of K equals eje

′
i, i, j = 1, ..., N, see

for example Lütkepohl (1996, pp. 115–118). Furthermore, to simplify the notation,
set g0

it = git|θ1=θ01
and ∂g0

it/∂θ1 = ∂git/∂θ1|θ1=θ01
, i = 1, ..., N. The expectations can

be found in the following lemma:

Lemma 3 The expectations of the four blocks of the information matrix at (rescaled)
time t/T are

B0
t = Est(θ

0)s′t(θ
0) = E

[
st(θ

0
g)s
′
t(θ

0
g) st(θ

0
g)s
′
t(θ

0
ρ)

st(θ
0
ρ)s
′
t(θ

0
g) st(θ

0
ρ)s
′
t(θ

0
ρ)

]
where the (i, j) sub-block of Est(θ

0
g)s
′
t(θ

0
g), i 6= j, equals

Est(θ
0
gi)s

′
t(θ

0
gj) =

1

4g0
itg

0
jt

∂g0
it

∂θgi

∂g0
jt

∂θ′gj
(e′iP

0
t ej)(e

′
i(P

0
t )−1ej)

and for i = j, where

Est(θ
0
gi)s

′
t(θ

0
gi) =

1

4(g0
it)

2

∂g0
it

∂θgi

∂g0
it

∂θ′gi
(1 + e′i(P

0
t )−1ei)

Furthermore, the ith sub-block of Est(θ
0
ρ)s
′
t(θ

0
g) equals

Est(θ
0
gi)s

′
t(θ

0
ρ) =

1

4

∂g0
it

∂θgi
{(e′i ⊗ e′i)((P 0

t )−1 ⊗ IN)

+(e′i ⊗ e′i)(IN ⊗ (P 0
t )−1}∂vec(P 0

t )

∂θ′ρ

i = 1, ..., N, and

Est(θρ)s
′
t(θρ) =

1

4

∂vec(P 0
t )′

∂θρ
{(P 0

t )−1 ⊗ (P 0
t )−1

+((P 0
t )−1 ⊗ IN)K(IN ⊗ (P 0

t )−1)}∂vec(P 0
t )

∂θρ
.

Proof: See Appendix 12.
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5.2 Second partial derivatives of the log-likelihood

Determining the Hessian matrix of the log-likelihood requires the second derivatives
of (7) with respect to θg and θρ. They are defined by the following four lemmas:

Lemma 4 Consider the log-likelihood (7) with Dt = IN . Its second partial deriva-
tives with respect to θgi and θgj are as follows:

∂2 ln f(ζt|θ1)

∂θgj∂θ′gi
= − 1

4gjtgit

∂gjt
∂θgj

∂git
∂θ′gi

e′jP
−1
t eie

′
iztz

′
tej

for i, j = 1, ..., N, i 6= j, and

∂2 ln f(ζt|θ1)

∂θgi∂θ′gi
= − 1

2git
{ 1

git

∂git
∂θgi

∂git
∂θ′gi

− ∂2git
∂θgi∂θ′gi

}(e′iP−1
t ztz

′
tei − 1)

− 1

4g2
it

∂git
∂θgi

∂git
∂θ′gi

e′iP
−1
t (IN + eie

′
i)ztz

′
tei (16)

for i = j, i = 1, ..., N. In (16),

∂2git
∂θgi∂θ′gi

=

[
0 0′ri 0′2ri

03ri 03ri×ri D22i

]
where the 3ri × 2ri matrix D22i equals

D22i =

 diag(giδγ1t, ..., giδγrit) diag(giδc1t, ..., giδcrit)
diag(giγγ1t, ..., giγγrit) diag(giγc1t, ..., giγcrit)
diag(gicγ1t, ..., giδγrit) diag(gicc1t, ..., giccrit)

 (17)

with

giδγjt = δijGijt(1−Gijt)(t/T − cij)
giδcjt = −γijδijGijt(1−Gijt)

giγγjt = δijGijt(1−Gijt)(1− 2Gijt)(t/T − cij)2

giccjt = γ2δijGijt(1−Gijt)(1− 2Gijt)

and
giγcjt = −γjδijGijt(1−Gijt)(1− 2Gijt)(t/T − cij)

j = 1, ..., ri.

Proof: See Appendix 12.

Lemma 5 Setting θρ = (ρ′1,ρ
′
2, γ, c)

′, the cross derivatives of (7) with Dt = IN
with respect to θgi and θρ are

∂2 ln f(ζt|θ1)

∂θgi∂θρ
= − 1

2git

∂git
∂θgi

(ei ⊗ ei)′(ztz′tP−1
t ⊗ P−1

t )
∂vec(Pt)

∂θρ
. (18)
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Furthermore, denoting ρ = (ρ′1,ρ
′
2)′, the second partial derivatives of (7) with Dt =

IN with respect to ρ = (ρ′1,ρ
′
2)′ are

∂2 ln f(ζt|θ1)

∂ρ′∂ρ
= −1

2
{∂vec(Pt)

∂ρ′
{P−1

t ⊗ P−1
t

−(P−1
t ztz

′
tP
−1
t ⊗ P−1

t + P−1
t ⊗ P−1

t ztz
′
tP
−1
t )}∂vec(Pt)

∂ρ
}. (19)

Proof: See Appendix 12.
The corresponding derivatives with respect to γ and c, the parameters in the

transition function of the correlation matrix, have a slightly different structure and
are formulated in the next lemma.

Lemma 6 The second derivatives of (7) with Dt = IN with respect to the parame-
ters γ and c in the transition function of the correlation matrix Pt are as follows:

∂2 ln f(ζt|θ1)

∂x∂y
= −1

2

∂2vec(Pt)
′

∂x∂y
{vec(P−1

t )− vec(P−1
t ztz

′
tP
−1
t )}

−1

2

∂vec(Pt)
′

∂x
{P−1

t ⊗ P−1
t

−(P−1
t ztz

′
tP
−1
t ⊗ P−1

t + P−1
t ⊗ P−1

t ztz
′
tP
−1
t )}∂vec(Pt)

∂y
(20)

for x, y = γ, c. In (20),

∂2vec(Pt)

∂γ2
=

∂2

∂γ2
{(1−Gt)vec(P(1)) +Gtvec(P(2))}

= Gt(1−Gt)(1− 2Gt)(t/T − c)2vec(P(2) − P(1)) (21)

∂2vec(Pt)

∂c2
=

∂2

∂c2
{(1−Gt)vec(P(1)) +Gtvec(P(2))}

= γ2Gt(1−Gt)(1− 2Gt)vec(P(2) − P(1)) (22)

and

∂2vec(Pt)

∂γ∂c
=

∂2

∂γ∂c
{(1−Gt)vec(P(1)) +Gtvec(P(2))}

= −γGt(1−Gt)(1− 2Gt)(t/T − c)vec(P(2) − P(1)). (23)

Proof: See Appendix 12.
Ultimately, we present the second partial derivatives of (7) with Dt = IN with

respect to ρ and γ = (γ, c)′.

Lemma 7 The second partial derivatives of (7) with Dt = IN with respect to ρ and
γ = (γ, c)′ are as follows:

∂2 ln f(ζt|θ1)

∂ρ′∂γ
= −1

2

∂2vec(Pt)

∂γ∂ρ′
{vec(P−1

t )− vec(P−1
t ztz

′
tP
−1
t )}

−1

2

∂vec(Pt)

∂ρ′
{P−1

t ⊗ P−1
t

−(P−1
t ztz

′
tP
−1
t ⊗ P−1

t + P−1
t ⊗ P−1

t ztz
′
tP
−1
t )}∂vec(Pt)

∂γ
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with
∂2vec(Pt)

∂γ∂ρ′
=

[
∂2vec(Pt)

∂γ∂ρ′
,
∂2vec(Pt)

∂c∂ρ′

]
. (24)

The two N(N − 1)×N2 blocks of the matrix (24) are

∂2vec(Pt)

∂x∂ρ′
= Gt(1−Gt)a(x)

∂vec(P(2) − P(1))

∂ρ′
.

with x = γ, c, where a(x) = (t/T − c) for x = γ and a(x) = −γ for x = c.

Proof: Omitted.

6 Asymptotic normality

To prove asymptotic normality of the consistent ML estimator θ̂1 of θ1, we make
the following additional assumption:

AN1.
∫

supθ1∈N1
|| ∂
∂θ1
f(ζt|θ1)||dζ <∞ and

∫
supθ1∈N1

|| ∂2

∂θ1∂θ′1
f(ζt|θ1)||dζ <∞,

where || · || is the Euclidean norm.

AN1 is a standard regularity condition. We state the following result:

Theorem 2 Consider the time-varying smooth transition conditional correlation
GARCH model (1), (14), (3), (5) and (6) where Dt = IN . Let θ̂1 be the maxi-
mum likelihood estimator of θ0

1 defined in Theorem 1. Suppose that the conditions
AG1-AG6 and AN1 hold with the modification that AG6 is strengthened to ζt ∼
iidN (0, IN). Then √

T (θ̂1 − θ0
1)

d→ N(0,B(θ0
1)−1)

as T →∞.

Proof: See Appendix 12.
The maximum likelihood estimator θ̂1 is consistent and asymptotically normal

but not efficient because it is assumed that Dt = IN in (7). The fact that θ̂1 is
consistent means, however, that the estimator provides a starting-point for further
iterations during which the parameters in Dt are estimated as well.

7 Average Hessian and Expected Hessian

If the errors ζt are not multivariate normal, the asymptotic covariance matrix of θ̂1

has to be modified to fit this situation. For this purpose, we consider the average
Hessian matrix of the log-likelihood and its expectation. Section 5.2 already con-
tains the second partial derivatives of (8) with Dt = IN that are needed in these
considerations. We state the following result:

11



Theorem 3 Suppose that the assumptions of Theorem 2 hold. Denote θ1 = (θ′g,θ
′
ρ)
′ ∈

Θ1 and let

AT (θ̂1) =

[
AgT (θ̂g) AgPT (θ̂g, θ̂ρ)

APgT (θ̂ρ, θ̂g) APT (θ̂ρ)

]
be the average Hessian evaluated at θ1 = θ̂1, where

AgT (θ̂1) =
1

T

T∑
t=1

∂2 ln f(ζt|θ̂1)

∂θg∂θ′g

AgPT (θ̂1) =
1

T

T∑
t=1

∂2 ln f(ζt|θ̂1)

∂θg∂θ′ρ

and

APT (θ̂1) =
1

T

T∑
t=1

∂2 ln f(ζt|θ̂1)

∂θρ∂θ′ρ
.

Then, as T →∞, θ̂1
p→ θ1 and, consequently,

AT (θ̂1)
p→ A(θ0

1) =

[
Ag(θ

0
1) AgP (θ0

1)
APg(θ

0
1) AP (θ0

1)

]
where θ0

1 = (θ0′
g ,θ

0′
ρ )′ is the true parameter. More specifically, the (j, i) element of

Ag(θ
0
1) equals

[Ag(θ
0
1)]ji = −1

4

∫ 1

0

1

g0
jrg

0
ir

∂g0
jr

∂θgj

∂g0
ir

∂θ′gi
e′j(P

0
r )−1eie

′
iP

0
r ejdr

for i 6= j, and

[Ag(θ
0
1)]ii = −1

4

∫ 1

0

1

(g0
it)

2

∂g0
ir

∂θgi

∂g0
ir

∂θ′gi
(1 + e′i(P

0
r )−1ei)dr

for i = j. Furthermore, the ith block of AgP (θ0
1) has the form

[AgP (θ0
1)]i = −1

2

∫ 1

0

1

g0
ir

∂g0
ir

∂θgi
(ei ⊗ ei)′{IN ⊗ (P 0

r )−1}∂vec(P 0
r )

∂θ′ρ
dr

and, finally,

AP (θ0
ρ) = −1

2

∫ 1

0

∂vec(P 0
r )

∂θ′ρ
{(P 0

r )−1 ⊗ (P 0
r )−1}∂vec(P 0

r )

∂θρ
dr.

Proof: See Appendix 12.
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8 Maximum likelihood estimation of the complete

model

As discussed in Amado and Teräsvirta (2013), ML estimation of MTV-GARCH
models is numerically very difficult if the log-likelihood is maximised for all parame-
ters at once. The situation does not become any easier if the model is a TVC model.
It is therefore advantageous to split the estimation problem into two components
and iterate between them. This is called maximisation by parts by Song et al. (2005)
who give examples and consider the asymptotic theory behind this scheme. They
are able to show that under regularity conditions, each iteration leads to consis-
tent and asymptotically normal ML estimators, and the efficiency of the estimators
increases with the increasing number of iterations. Amado and Teräsvirta (2013)
applied maximisation by parts to the problem of maximising the log-likelihood of
the MTV-GARCH model, and we shall do the same for the MTV-STCC-GARCH
model. As in Section 3, the first parameter vector equals θ1 = (θ′g,θ

′
ρ)
′ and con-

tains the parameters of the deterministic part, whereas θh contains the GARCH
parameters.

Supposing that our GARCH equations are of GJR-GARCH type, we make the
following assumptions that hold for each of them in (1), see Amado and Teräsvirta
(2013):

AH1. In (4), αi0 ≥ 0, αi0 + κi1 > 0, βi1 ≥ 0, and αi1 + κi1/2 + βi1 < 1 for
i = 1, ..., N.

AH2. The parameter subspaces {αi0 × κi × αi × βi}, i = 1, ..., N, are compact,
the whole space Θh is compact, and the true parameter value θ0

h is an interior point
of Θh.

AH3. Eφ4
it <∞.

AH1 is the necessary and sufficient weak stationarity condition for the ith first-
order GJR-GARCH equation. Conditions AH2 and AH3 are standard regularity
conditions required for proving asymptotic normality of ML estimators of θhi, i =
1, ..., N. We state the following result:

Theorem 4 Consider the GARCH model (1) with (2) and εt = StDtzt with D0
t .

Suppose that Assumptions AG6 and AH1-3 hold. Furthermore, assume that φt =
S−1
t εt holds. Then the maximum likelihood estimators of θhi, i = 1, ..., N , that is,

the maximum likelihood estimator θ̂h of θh, are consistent and

√
T (θ̂h − θh)

d→ N(0N ,Vh) (25)

as T →∞, where Vh is the asymptotic covariance matrix of θ̂h given θ0
1.

Proof: This result is proved in Amado and Teräsvirta (2013) for a single GJR-
GARCH equation. When assumptions AG6 and AH1-AH3 hold for all equations
simultaneously and the ML estimator θ̂h is conditioned on θ1 = θ0

1 that includes
θρ = θ0

ρ the asymptotic result (25) is valid. �

13



In Theorem 4 it is assumed that θ0
1 is known, which is not the case in practice,

and we have to consider the situation in which θ0
1 is estimated. The log-likelihood

LT (θ) = (1/T )
T∑
t=1

ln f(ζt|θ,Ft−1)

can be decomposed as follows:

LT (θ) = LT (θ1) + LT (θ1,θh). (26)

Given the available data, (26) is maximised numerically. Assuming the results in
Theorems 2 and 4 are valid and using the result in Song et al. (2005, Theorem

3), we are able to conclude that after the kth iteration, the ML estimator θ̂(k) =

((θ̂
(k)
1 )′, (θ̂

(k)
h )′)′ is consistent and asymptotically normal, that is,

√
T (θ̂(k) − θ0)

d→ N(0N ,V
(k))

where V (k) is the asymptotic covariance matrix after k iterations, see Song et al.
(2005). When k →∞, V (k) → V , where V is the asymptotic covariance matrix of√
T (θ̂ − θ0), θ̂ being the final ML estimator of θ0 = ((θ0

1)′, (θ0
h)
′)′.

It should be noted that while the proof of Theorem 3 in Song et al. (2005)
requires validity of the so-called information dominance condition, this condition is
not needed here because consistency of θ̂1 holds due to Theorem 1.

9 Numerical considerations

The slope parameter γij in (3) may be numerically difficult to estimate when it is
large. Reasons for this difficulty are discussed for example in Teräsvirta, Granger and
Tjøstheim (2010, p. 403). In practice it may be useful to apply the transformation
γij = exp{ηij}, in which case ηij need not be restricted. The motivation for this
transformation is that estimating ηij instead of γij is numerically convenient in
cases where γij is large, see Goodwin, Holt and Prestemon (2011) or Silvennoinen
and Teräsvirta (2016) for discussion. There is another advantage: the identifying
restriction γ > 0 becomes redundant because exp{ηij} > 0 for any finite ηij.

As already discussed, estimation of parameters is not a simple task, and the
log-likelihood function has to be maximised such that every iteration is split into
four stages. To study this, rewrite (26) as follows:

LT (θ) = −
N∑
i=1

T∑
t=1

ln gi(θgi; t/T )−
N∑
i=1

T∑
t=1

lnhit(θhi,θgi)

−(1/2)
T∑
t=1

ln |Pt(θρ)|

−(1/2)
T∑
t=1

ε′t{St(θg)Dt(θh,θg)Pt(θρ)Dt(θh,θg)St(θg)}−1εt.

14



Let

gi(θgi; t/T ) = δi0 +

ri∑
j=1

δijGij(γij, cij; t/T ) (27)

(note the free intercept δi0). Estimation proceeds as follows.

Step 1. Assume lnhit(θhi,θgi) = 0, i = 1, ..., N, and estimate parameters θg =
(θg1, ...,θgN)′, i = 1, ..., N, equation by equation, assuming Pt(θρ) = IN . De-

note the estimate St(θ̂
(1,1)
g ). This means that the deterministic components

gi(θgi; t/T ) have been estimated once, including the intercept δ0i in (27).

Step 2. Estimate Pt(θρ) given θg = θ̂
(1,1)
g . This requires a separate iteration be-

cause Pt(θρ) is nonlinear in parameters, see (5) and (6). Denote the estimate

Pt(θ̂
(1,1)
ρ ).

Step 3. Re-estimate St(θg) assuming Pt(θρ) = Pt(θ̂
(1,1)
ρ ). This yields St(θ̂

(1,2)
g ).

Then re-estimate Pt(θρ) given θg = θ̂
(1,2)
g . Iterate until convergence. Let the

result after R1 iterations be St(θg) = St(θ̂
(1,R1)
g ) and Pt(θρ) = Pt(θ̂

(1,R1)
ρ ).

The resulting estimates are maximum likelihood ones under the assumption
Dt(θh,θg) = IN .

Step 4. Estimate θh from Dt(θh, θ̂
(1,R1)
g ) using Pt(θρ) = Pt(θ̂

(1,R1)
ρ ). This is a stan-

dard multivariate conditional correlation GARCH estimation step as in Boller-
slev (1990), because St(θ̂

(1,R1)
g ) is fixed and does not affect the maximum, and

Pt(θ̂
(1,R1)
ρ ) is known. In total, steps 1–4 form the first iteration of the maximi-

sation algorithm. Denote the estimate θ̂
(1)
h .

Step 5. Estimate θg from St(θg) keeping Dt(θ̂
(1)
h , θ̂

(1,R1)
g ) and Pt(θ̂

(1,R1)
ρ ) fixed.

This step is analogous to the first part of Step 3. The difference is that
Dt(θ̂

(1)
h , θ̂

(1,R1)
g ) 6= IN . Denote the estimator St(θ̂

(2,1)
g ).

Step 6. Estimate Pt(θρ) given θg = θ̂
(2,1)
g and θh = θ̂

(1)
h . Denote the estimator

Pt(θ̂
(2,1)
ρ ). Iterate until convergence, R2 iterations. The result: St(θg) =

St(θ̂
(2,R2)
g ) and Pt(θρ) = Pt(θ̂

(2,R2)
ρ ).

Step 7. Estimate θh from Dt(θh, θ̂
(2,R2)
g ) using Pt(θρ) = Pt(θ̂

(2,R2)
ρ ) (St(θ̂

(2,R2)
g ) is

fixed). The result: θh = θ̂
(2)
h . This completes the second full iteration.

Step 8. Repeat steps 5–7 and iterate until convergence.

For identification reasons, δ0i, i = 1, ..., N, is frozen to δ0i = δ̂
(1,R1)
0i . This frees the

intercepts in θhi. Any positive constant would do for δ0i, but for numerical reasons
the intercepts are fixed to the values they obtain after the first iteration when θh is
not yet estimated a single time.
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10 Empirical example

As an illustration we consider daily log-returns of the S&P 500 index and the 30-year
US Treasury bill from 3 January 2000 to 6 July 2015, 4046 observations. The series
appear in Figures 1 and 2.

It is seen that the amplitude of volatility clusters varies strongly over time in
both series. After a turbulent period until about the year 2004, relative calm prevails
until late 2007 and again from about 2011-2012 onwards. The stock returns are
more volatile than bond returns. There are a few extremely large absolute returns
in Figure 1.

For a later comparison, we fit a first-order GJR-GARCH model to index returns
εSt and a standard first-order GARCH model to bond returns εBt . This results in
the following two equations:

ĥSt = 0.0189
(0.0027)

+ 0.164
(0.0150)

I(εSt−1 < 0)(εSt−1)2 + 0.901
(0.0081)

ĥSt−1 (28)

and
ĥBt = 5× 10−4

(2×10−4)
+ 0.0290

(0.0037)
(εBt−1)2 + 0.968

(0.0040)
ĥBt−1 (29)

Persistence is high in both cases: κ̂1/2 + β̂1 = 0.983 in (28) and α̂1 + β̂1 = 0.997
in (29), as the GARCH models try to accommodate the nonstationarity present in
the series. We set α1 = 0 in (28) because it was originally estimated extremely
close to the boundary value zero. The estimated conditional standard deviations
(ĥSt )1/2 and (ĥBt )1/2 appear in Figures 3 and 4. It is seen that they do contain
level shifts (equation (28)) and large bumps (equation (29)) that are indications of
nonstationarity.

Next we fit a TVC model to these two series. The sequence of specification tests
described in a companion paper Hall, Silvennoinen and Teräsvirta (2017) suggests
three transitions for the TV-GARCH component of the index return and two for
the bond return equation. The estimated equations can be found in Appendix 13.
The deterministic components are graphed in Figures 5 and 6. A comparison of
Figure 5 with Figure 3 shows that, as expected, the shape of ĝSt follows level shifts
in Figure 3. The first transition is very rapid, and the remaining two with opposite
signs (see equation (68)) are responsible for the slightly asymmetric peak around
2009. Similarly, the shape of the deterministic component in Figure 6 agrees with
movements in Figure 4.

The rescaling effect of the deterministic component becomes obvious from Fig-
ures 7 and 8 depicting rescaled returns εSt /(ĝ

S
t )1/2 (index returns) and εBt /(ĝ

B
t )1/2

(T-bill returns). The amplitude changes in Figures 1 and 2 have disappeared, and
the series look more (weakly) stationary. Estimates of kurtosis have decreased from
13.7 to 8.2 (index returns) and from 7.3 to 5.2 (T-bill returns). However, the largest
rescaled absolute S&P500 returns still stick out, although their relative magnitude
is smaller than in Figure 1.

Another way of illustrating the effect of rescaling on the results is to look at the
rescaled conditional standard deviations from equations (67) and (70). They can
be found in Figures 9 and 10. Standard deviations for the index returns now look
stationary, except two sharp peaks, and the persistence measure κ̂1/2 + β̂1 = 0.954,
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Figure 1: S&P 500 index daily log-returns, 3 January 2000 - 6 July 2015.
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Figure 2: 30-year Treasury bill daily log-returns, 3 January 2000 - 6 July 2015.
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Figure 3: Estimated conditional standard deviations from the equation (28).
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Figure 4: Estimated conditional standard deviations from the equation (29).
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Figure 5: Estimated deterministic component ĝSt from equation (68).
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Figure 6: Estimated deterministic component ĝBt from equation (71).
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Figure 7: Rescaled S&P500 index returns, 3 January 2000 - 6 July 2015.
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Figure 8: Rescaled 30-year Treasury bill returns, 3 January 2000 - 6 July 2015.
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Figure 9: Rescaled conditional standard deviations for S&P500 index returns from
equation (67), 3 January 2000 - 6 July 2015.
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Figure 10: Rescaled conditional standard deviations for 30-year Treasury bill returns
from equation (70), 3 January 2000 - 6 July 2015.
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a decrease from 0.983. The corresponding ones for the T-bill returns seem somewhat
more persistent. Even there, the persistence measure has decreased from 0.997 to
0.986.

Yet another way of looking at the contribution of gt is to compare autocorrela-
tions of ε2

t with those of ε2
t/ĝt. For the S&P500 returns, they appear in Figure 11.

The original autocorrelations are positive until about lag 200, whereas the rescaled
ones approach zero more quickly. Their decay rate is closer to exponential, which is
the case for autocorrelations from the weakly stationary GARCH(1,1) model.

The squared autocorrelations for bond returns in Figure 12 look different.They
are low but positive and persistent. Rescaling reduces them further. Even if we fol-
lowed a standard procedure and fitted a first-order GARCH model to these returns,
that may not seem an optimal choice. A look at the lower panel gives the impression
that there is not much nonlinear dependence left to be modelled after rescaling. The
question then is: what does the persistence value 0.972 for the GARCH component
of the model really tell us? It seems that completing this figure with information
from the autocorrelations of ε2

t/ĝt is quite useful.
Finally, Figure 13 contains the time-varying correlations. They are clearly neg-

ative until 2003, rise slightly above zero thereafter and rather quickly drop to their
previous level at the outset of the financial crisis in 2007. This shape also becomes
visible, albeit smoother than in the figure, when a window of raw correlations be-
tween ẑSt = εSt /(ĥ

S
t ĝ

S
t )1/2 and ẑBt = εBt /(ĥ

B
t ĝ

B
t )1/2 is moved over the observation

period. The shift is very systematic and as such difficult to describe by a VC- or
DCC-GARCH model. The reason is that these models contain the assumption that
the correlations fluctuate around a constant level during the observation period. It
would seem possible to incorporate a more short-run stochastic component to the
correlations, see Silvennoinen and Teräsvirta (2009a), but such an extension is left
for the future.

11 Conclusions

In this paper we examine a special case of the MTV-STCC-GARCH with determin-
istically time-varying correlations or the TVC model in which the transition function
is rescaled time. An advantage of TVC is that time-varying correlations can vary
smoothly but also systematically. For example, the correlations can change from
one level to another and remain there. In VC- or DCC-GARCH models the condi-
tional correlations by definition fluctuate (or cluster) around constant values. We
show that the ML estimators of parameters of the TVC model are consistent and
asymptotically normal. This allows us, among other things, to construct tests to test
constancy (CCC-GARCH) against TVC and, in particular, determine the number
of transitions in TVC-type correlation matrices by sequential testing. Furthermore,
it is possible to derive misspecification tests for this model. These modelling issues
are considered in a companion paper Hall et al. (2017).

Engle and Kelly (2012) studied a special case of the DCC-GARCH, the dynamic
equicorrelation model or DECO, in which, as the name suggests, all correlations
are identical. This can be a useful model in situations where the number of series
to be modelled and thus the number of parameters are both large. Deriving its
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Figure 11: First 250 autocorrelations of daily squared (top panel) and rescaled
squared returns of the S&P500 index, 3 January 2000 - 6 July 2015.
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Figure 12: First 250 autocorrelations of daily squared (top panel) and rescaled
squared returns of the 30-year Treasury bill, 3 January 2000 - 6 July 2015.
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Figure 13: Time-varying correlations between daily S&P 500 index and 30-year
Treasury bill returns from equation (72), 3 January 2000 - 6 July 2015.

TVC counterpart, the Time-Varying Equicorrelation (TVEC) model which in turn
is a special case of the TVC model, is a straightforward exercise. Since asymptotic
properties of the ML estimators are known in the general TVC case they are also
known in the restricted TVEC case. This will allow us to build TVEC models using
statistical tests, and we could also test TVEC against TVC. This work as well as
extensions to the TVC model such as the double TVC model, see Silvennoinen and
Teräsvirta (2009a), will be left for the future.

Finally, it should be mentioned once more that in this work focus has been on
estimation of parameters and asymptotic properties of maximum likelihood estima-
tors. Other aspects of modelling will be studied in detail in Hall et al. (2017).
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Amado, C. and Teräsvirta, T.: 2017, Specification and testing of multiplicative time-
varying GARCH models with applications, Econometric Reviews 36, 421–446.

Anderson, T. W.: 2003, An Introduction to Multivariate Statistical Analysis, 3rd
edn, Wiley, New York.

Baillie, R. T., Bollerslev, T. and Mikkelsen, H. O.: 1996, Fractionally integrated gen-
eralized autoregressive conditional heteroskedasticity, Journal of Econometrics
74, 3–30.

Bauwens, L., Laurent, S. and Rombouts, J. V. K.: 2006, Multivariate GARCH
models: A survey, Journal of Applied Econometrics 21, 79–109.

Berben, R.-P. and Jansen, W. J.: 2005, Comovement in international equity markets:
A sectoral view, Journal of International Money and Finance 24, 832–857.

Bollerslev, T.: 1986, Generalized autoregressive conditional heteroskedasticity, Jour-
nal of Econometrics 31, 307–327.

Bollerslev, T.: 1990, Modelling the coherence in short-run nominal exchange rates:
A multivariate generalized ARCH model, Review of Economics and Statistics
72, 498–505.

Bollerslev, T., Engle, R. F. and Wooldridge, J. M.: 1988, A capital asset pricing
model with time-varying covariances, Journal of Political Economy 96, 116–
131.

Brownlees, C. T. and Gallo, G. M.: 2010, Comparison of volatility measures: A risk
management perspective, Journal of Financial Econometrics 8, 29–56.

Conrad, C., Karanasos, M. and Zeng, N.: 2011, Multivariate fractionally integrated
APARCH modeling of stock market volatility: A multi-country study, Journal
of Empirical Finance 18, 147–159.

Dark, J.: 2015, A multivariate conditional correlation model with long memory
dependence and asymmetries, Working paper, University of Melbourne.
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12 Proofs

Proof of Lemma 1: We begin by introducing the following lemma.

Lemma 8 The first partial derivatives

∂ ln |Pt|
∂vec(Pt)

= vec(P−1
t )

∂(z′tP
−1
t zt)

∂vec(P−1
t )

= vec(ztz
′
t)

and
∂vec(P−1

t )′

∂vec(Pt)
= −(P−1

t ⊗ P−1
t ). (30)

Proof: See Lütkepohl (1996).

Now we can prove Lemma 1. Consider first the ith element of (10):

st(θgi) =
∂ ln f(ζt|θ1)

∂θgi
= −∂ ln git

2∂θgi
− ∂z′tP

−1
t zt

2∂θgi
. (31)

The second term on the r.h.s. becomes

∂z′tP
−1
t zt

∂θgi
=

∂z′t
∂θgi

∂z′tP
−1
t zt

∂zt

=
2∂z′t
∂θgi

P−1
t zt (32)
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where, letting ei = (0′i−1, 1,0
′
N−i)

′, the (3ri + 1)×N matrix ∂z′t/∂θgi equals

∂z′t
∂θgi

=
∂

∂θgi
(ε1tg

−1/2
1t , ..., εNtg

−1/2
Nt )

= (03r1+1, ...,03ri−1+1,−
εit

2g
3/2
t

∂git
∂θgi

,03ri+1+1, ...,03rN+1)

= − 1

2git

∂git
∂θgi

(0, ..., 0, εitg
−1/2
it , 0, ..., 0) = −zit

1

2git

∂git
∂θgi

e′i. (33)

Denoting zit = z′tei and inserting (33) into (32) yields

∂z′tP
−1
t zt

∂θgi
= − 1

git

∂git
∂θgi

z′teie
′
iP
−1
t zt.

Plugging this into (31) yields the following (3ri + 1)-vector:

st(θgi) =
1

2git

∂git
∂θgi

(z′teie
′
iP
−1
t zt − 1) (34)

i = 1, ..., N. In order to obtain (11), write

∂ ln |Pt|
∂θ′ρ

=
∂ ln |Pt|
∂vec(Pt)′

∂vec(Pt)

∂θ′ρ
(35)

and
∂(z′tP

−1
t zt)

∂θ′ρ
=
∂(z′tP

−1
t zt)

∂vec(P−1
t )′

∂vec(P−1
t )

∂vec(Pt)′
∂vec(Pt)

∂θ′ρ
. (36)

Applying Lemma 8 to (35) and (36), one obtains

∂ ln |Pt|
∂θρ

=
∂vec(Pt)

′

∂θρ
vec(P−1

t )

and
∂(z′tP

−1
t zt)

∂θρ
= −∂vec(Pt)

′

∂θρ
(P−1

t ⊗ P−1
t )vec(ztz

′
t)

so

st(θρ) =
∂ ln f(ζt|θ1)

∂θρ
= −(1/2)

∂vec(Pt)
′

∂θρ
{vec(P−1

t )

−(P−1
t ⊗ P−1

t )vec(ztz
′
t)}.

The expressions for ∂vec(Pt)/∂ρi, i = 1, 2, ∂vec(Pt)/∂γ and ∂vec(Pt)/∂c follow
immediately from the definition of Pt in (5). The elements of ∂vec(Pt)/∂ρi are
either zeroes or equal Gt or 1−Gt. �

Proof of Theorem 1: In order to prove consistency, we verify the conditions of
the following general result:

Theorem (Newey and McFadden, 1994, Theorem 2.5): Suppose that ζt, t =
1, 2, ... are iid with p.d.f f(ζt|θ0

1) and that
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(i) if θ1 6= θ0
1 then f(ζt|θ1) 6= f(ζt|θ0

1);
(ii) θ0

1 ∈ Θ1 is an interior point of Θ1, which is compact;
(iii) ln f(ζt|θ1) is continuous at each θ1 ∈ Θ1 with probability 1;
(iv) E supθ1∈Θ1

| ln f(ζt|θ1)| <∞.
Proof: (i) This is an uniqueness condition. When |δij| = 0 or γij = 0 for at least
one j = 1, ..., ri and i = 1, ..., N , the model is not identified and (i) does not hold.
Assumptions AG3 and AG4 exclude this case. The assumption ci1 < ... < ciri ,
j = 1, ..., ri, i = 1, ..., N, in AG4 determines the order of transition functions and is
thus also required for identification (excludes exchangeability of transitions). The
requirement in AG3 that for any pair (i,m), i 6= m, there exists at least one time-
point t such that git 6= gmt excludes duplicate transitions. The correlation matrix
is not identified if P(1) = P(2) or γ > 0. AG5 excludes these possibilities. These
conditions are required for uniqueness assumed in AG2. Note, however, that when
hit ≡ 1, δi0 > 0 is a free parameter, i = 1, ..., N .

(ii) This is satisfied due to Assumption AG1.
(iii) This follows from Lemma 1.
In order to show (iv), notice that zt = (S0

t )
−1εt, where {zt} is a sequence of

independent random variables with Eztz
′
t = P 0

t , and

S0
t = diag{g1/2(θ0

g1; t/T ), ..., g1/2(θ0
gN ; t/T ))}. (37)

In (37), θ0
gi is the true parameter vector for the ith diagonal element of S0

t . Likewise,

P 0
t is the true correlation matrix and (P 0

t )1/2 = C0
t (Λ0

t )
1/2(C0

t )′ is positive definite
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t = C0
t Λ

0
t (C

0
t )′ is positive definite. Then
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The absolute log density for observation t equals
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Applying the triangle inequality to (38) leads to

|f(ζt|θ1)| ≤ (1/2)
N∑
i=1

| ln g(θgi; t/T )|+ (1/2)
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where λit(θρ) > 0 is the ith eigenvalue of Pt, i = 1, ..., N, and C1 is a generic positive
constant. Then
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30



where C2 is a generic positive constant, because the matrices in (39) have finite
elements for all θ1 ∈ Θ1. Thus, for all θ1 ∈ Θ1,

E|f(ζt|θ1)| ≤ C1 + C2 <∞

which verifies (iv) and concludes the proof. �

Proof of Lemma 2: First define

B̂T (θ0
1) =

1

T

T∑
t=1

st(θ
0
1)s′t(θ

0
1).

which is positive definite for T >
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i=1 ri+N(N+2)+2, the dimension of θ0
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the law of large numbers and assuming that AG5 and AG6 hold,
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Est(θ
0
1)s′t(θ

0
1) + op(1).

Due to the fact that the transition variable is (rescaled) time, we apply triangular
array asymptotics, see for example Hillebrand, Medeiros and Xu (2013), although
this is not emphasised in the proof. Let [Tr] = t, where 0 < r ≤ 1. It follows that
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as T → ∞. B(θ0
1) is positive definite because B̂T (θ0

1) is positive definite for T >∑N
i=1 ri +N(N + 2) + 2. �

Proof of Lemma 3: From Lemma 1 it follows that
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see Anderson (2003, p. 64), and

Ee′iztz
′
t(P

0
t )−1ei = 1

one obtains
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The expectation (41) exists due to AG6. Similarly, for i = j,
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Next, consider

Est(θ
0
ρ)s
′
t(θ

0
ρ) = E

1

4

∂vec(P 0
t )′

∂θρ
[vec((P 0

t )−1)− {(P 0
t )−1 ⊗ (P 0

t )−1}(zt ⊗ zt)]

×[vec((P 0
t )−1)− {(P 0

t )−1 ⊗ (P 0
t )−1}(zt ⊗ zt)]′

×∂vec(P 0
t )

∂θ′ρ
. (42)

Since
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Applying (43) and (44) to (42) yields
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Finally, consider
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Application of (40) and (44) to (45) and some matrix manipulation give

Est(θρ)s
′
t(θ

0
gi)

=
1

4g0
it

∂vec(P 0
t )′

∂θρ
{(P 0

t )−1 ⊗ IN + IN ⊗ (P 0
t )−1}(ei ⊗ ei)

∂git
∂θ′gi

which is the desired result. �

Proof of Lemma 4: As before, let
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when i 6= j. The first term on the r.h.s of (46) vanishes because ∂g−1
it /∂θgj = 03rj+1
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and the second one because ∂2g−1
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−1
t zt

∂θgj
=

∂zt
∂θgj

∂z′teie
′
iP
−1
t zt

∂zt

=
∂zt
∂θgj

(eie
′
iP
−1
t + P−1

t eie
′
i)zt

= − zjt
2gjt

∂gjt
∂θgj

e′j(eie
′
iP
−1
t + P−1

t eie
′
i)zt

= − 1

2gjt

∂gjt
∂θgj

e′jP
−1
t eie

′
iztz

′
tej.

Then
∂2 ln f(ζt|θ1)

∂θgj∂θ′gi
= − 1

4gjtgit

∂git
∂θgj

∂git
∂θ′gi

e′jP
−1
t eie

′
iztz

′
tej.

Next assume i = j. Then the first term on the r.h.s. of (46) becomes

1

2
(
∂

∂θgi

1

git
)
∂git
∂θ′gi

(e′iP
−1
t ztz

′
tei − 1) = − 1

2g2
it

∂git
∂θgi

∂git
∂θ′gi

(e′iP
−1
t ztz

′
tei − 1).

Now consider

∂z′teie
′
iP
−1
t zt

∂θgi
=

∂zt
∂θgi

∂z′teie
′
iP
−1
t zt

∂zt

= − zit
2git

∂git
∂θgi

e′i(eie
′
iP
−1
t + P−1

t eie
′
i)zt

= − 1

2git

∂git
∂θgi

e′iP
−1
t (IN + eie

′
i)ztz

′
tei.

Finally,

∂2 ln f(ζt|θ1)

∂θgi∂θ′gi
= −{ 1

2g2
it

∂git
∂θgi

∂git
∂θ′gi

− 1

2git

∂2git
∂θgi∂θ′gi

}(e′iP−1
t ztz

′
tei − 1)

− 1

4g2
it

∂git
∂θgi

∂git
∂θ′gi

e′iP
−1
t (IN + eie

′
i)ztz

′
tei.

This is the desired result. The expressions for the elements of (17) can be found in
Amado and Teräsvirta (2013, Lemma A.2). �

In proving Lemma 5, we use the following result:

Lemma 9 (Eklund and Teräsvirta, 2007):

∂

∂ρ
{∂vec(Pt)

∂ρ′
vec(P−1

t )} = −∂vec(Pt)

∂ρ′
(P−1

t ⊗ P−1
t )

∂vec(Pt)

∂ρ
(47)

where ρ = (ρ′1,ρ
′
2)′ (so the matrix (47) is N(N − 1)×N(N − 1)), and

∂

∂ρ
{∂vec(Pt)

∂ρ′
vec(P−1

t ztz
′
tP
−1
t )}

= −∂vec(Pt)

∂ρ′
(P−1

t ztz
′
tP
−1
t ⊗ P−1

t + P−1
t ⊗ P−1

t ztz
′
tP
−1
t )

∂vec(Pt)

∂ρ
. (48)
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Proof of Lemma 5: Consider first ∂2 ln f(ζt|θ1)/(∂θ′gi∂ρ) and write

∂

∂ρ

∂ ln f(ζt|θ1)

∂θ′gi
=

1

2git

∂git
∂θ′gi

∂

∂ρ
(zite

′
iP
−1
t zt − 1).

where
zite

′
iP
−1
t zt = zitvec(e′iP

−1
t zt) = zit(z

′
t ⊗ e′i)vec(P−1

t ).

Differentiation gives

zit
∂

∂ρ
(z′t ⊗ e′i)vec(P−1

t )

= zit(z
′
t ⊗ e′i)

vec(P−1
t )

∂ρ
= zit(z

′
t ⊗ e′i)

∂vec(P−1
t )

∂vec(Pt)

∂vec(Pt)

∂ρ
. (49)

Applying (30) to (49) yields

zit
∂

∂ρ
(z′t ⊗ e′i)vec(P−1

t ) = −zit(z′t ⊗ e′i)(P−1
t ⊗ P−1

t )
∂vec(Pt)

∂ρ

= −(e′iztz
′
t ⊗ e′i)(P−1

t ⊗ P−1
t )

∂vec(Pt)

∂ρ

so

∂2 ln f(ζt|θ1)

∂θgi∂ρ
= − 1

2git

∂git
∂θ′gi

(e′iztz
′
t ⊗ e′i)(P−1

t ⊗ P−1
t )

∂vec(Pt)

∂ρ

= − 1

2git

∂git
∂θ′gi

(ei ⊗ ei)′(ztz′tP−1
t ⊗ P−1

t )
∂vec(Pt)

∂ρ
.

This takes care of the first part of the lemma. To prove the second part, note that
the relevant block of the score equals

∂ ln f(ζt|θ1)

∂ρ
= st(ρ) = −(1/2)

∂vec(Pt)

∂ρ′
{vec(P−1

t )− vec(P−1
t ztz

′
tP
−1
t )}

so its derivative may be written as

st(ρ)

∂ρ
= −(1/2)

∂

∂ρ
[
∂vec(Pt)

∂ρ′
{vec(P−1

t )− vec(P−1
t ztz

′
tP
−1
t )}]. (50)

The elements of ∂vec(Pt)
∂ρ′

in (50) are either zeroes or ones multiplied by Gt or 1−Gt.

Then, with slight abuse of notation, ∂2vec(Pt)/(∂ρ
′∂ρ) = 0. Applying Lemma 9 to

(50) gives

∂st(ρ)

∂ρ
= (1/2){∂vec(Pt)

∂ρ′
(P−1

t ⊗ P−1
t )

∂vec(Pt)

∂ρ

−∂vec(Pt)

∂ρ′
(P−1

t ztz
′
tP
−1
t ⊗ P−1

t + P−1
t ⊗ P−1

t ztz
′
tP
−1
t )

∂vec(Pt)

∂ρ
}

which is the desired result. �
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Proof of Lemma 6: The second derivative of (7) with respect to γ can be written
as follows:

∂2 ln f(ζt|θ1)

∂γ2
=

∂

∂γ

∂ ln f(ζt|θ1)

∂γ

= −1

2

∂

∂γ
(
∂vec(Pt)

′

∂γ
{vec(P−1

t )− vec(P−1
t ztz

′
tP
−1
t )}

= −1

2

∂2vec(Pt)
′

∂γ2
{vec(P−1

t )− vec(P−1
t ztz

′
tP
−1
t )}

−1

2
(
∂vec(Pt)

′

∂γ

∂

∂γ
{vec(P−1

t )− vec(P−1
t ztz

′
tP
−1
t )}. (51)

Applying Lemma 9 to (51) yields

∂2 ln f(ζt|θ1)

∂γ2
= −1

2

∂2vec(Pt)
′

∂γ2
{vec(P−1

t )− vec(P−1
t ztz

′
tP
−1
t )}

−1

2

∂vec(Pt)
′

∂γ
{P−1

t ⊗ P−1
t

−(P−1
t ztz

′
tP
−1
t ⊗ P−1

t + P−1
t ⊗ P−1

t ztz
′
tP
−1
t )}∂vec(Pt)

∂γ
.

Expressions for the derivatives ∂2 ln f(ζt|θ)/∂c2 and ∂2 ln f(ζt|θ)/(∂γ∂c) are ob-
tained in a similar fashion. The expressions for (21), (22) and (23) in (20) can be
found by straightforward calculation. �

Proof of Theorem 2: To prove this result, we verify the conditions in the following
theorem.

Theorem (Newey and McFadden, Theorem 3.3). Suppose that ζt, t = 1, 2, ... are
iid with p.d.f f(ζt|θ0

1), the assumptions of the consistency theorem are satisfied, and
that

(i) θ0
1 is an interior point of Θ1.

(ii) f(ζt|θ1) is twice continuously differentiable in a neighbourhood N1 of θ0
1.

(iii)
∫

supθ1∈N1
|| ∂
∂θ1
f(ζt|θ1)||dζ < ∞ and

∫
supθ1∈N1

|| ∂2

∂θ1∂θ′1
f(ζt|θ1)||dζ < ∞,

where || · || is the Euclidean norm.
(iv) Matrix B(θ0

1) = E ∂
∂θ1

ln f(ζt|θ1) ∂
∂θ′1

ln f(ζt|θ1) exists and is nonsingular.

(v) E supθ1∈N1
|| ∂2

∂θ1∂θ′1
ln f(ζt|θ1)|| <∞.

Then
√
T (θ̂1 − θ0

1)
d→ N(0,B(θ0

1)−1) as T →∞.
Condition (i) is satisfied by AG2. Condition (ii) holds due to Lemmas 1, 4, 5

and 6. Condition (iii) is satisfied due to AN1. Validity of (iv) follows from Lemma
2. To validate Condition (v), define

||∂
2 ln f(ζt|θ1)

∂θ1∂θ′1
|| = ||

[
∂2 ln f(ζt|θ1)
∂θg∂θ′g

∂2 ln f(ζt|θ1)
∂θg∂θ′ρ

∂2 ln f(ζt|θ1)
∂θρ∂θ′g

∂2 ln f(ζt|θ1)
∂θρ∂θ′ρ

]
||

where
∂2 ln f(ζt|θ1)

∂θg∂θ′g
= diag(

∂2 ln f(ζt|θ1)

∂θg1∂θ′g1
, ...,

∂2 ln f(ζt|θ1)

∂θgN∂θ′gN
)
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and
∂2 ln f(ζt|θ1)

∂θg∂θ′ρ
= (

∂2 ln f(ζt|θ1)

∂θg1∂θ′ρ
, ...,

∂2 ln f(ζt|θ1)

∂θgN∂θ′ρ
).

Then, by definition,

||∂
2 ln f(ζt|θ1)

∂θ1∂θ′1
|| = {

N∑
i=1

||∂
2 ln f(ζt|θ1)

∂θgi∂θ′gi
||2 + 2

N∑
i=1

||∂
2 ln f(ζt|θ1)

∂θgi∂θ′ρ
||2

+||∂
2 ln f(ζt|θ1)

∂θρ∂θ′ρ
||2}1/2

It follows, by triangular inequality, that

||∂
2 ln f(ζt|θ1)

∂θ1∂θ′1
|| ≤

N∑
i=1

||∂
2 ln f(ζt|θ1)

∂θgi∂θ′gi
||+ 2

N∑
i=1

||∂
2 ln f(ζt|θ1)

∂θgi∂θ′ρ
||

+||∂
2 ln f(ζt|θ1)

∂θρ∂θ′ρ
||. (52)

The terms in (52) will be studied one by one, beginning with terms in the first sum
on the r.h.s. of (52). We state the following result:

Lemma 10 The expectation of ||∂
2 ln f(ζt|θ1)
∂θgi∂θ′gi

|| is finite for all t and i = 1, ..., N.

Proof: Slight manipulation of the result in Lemma 4 gives

∂2 ln f(ζt|θ1)

∂θgi∂θ′gi
= − 1

g2
it

∂git
∂θgi

∂git
∂θ′gi

e′iP
−1
t ztz

′
tei.

where git is positive and finite and the elements of

∂git
∂θgi

= (1, G1t,
∂G1t

∂γ1

,
∂G1t

∂c1

, ..., Gr1t,
∂Gr1t

∂γr1
,
∂Gr1t

∂cr1
)

are finite for all i, t, and θgi ∈ N1. Then

||∂
2 ln f(ζt|θ1)

∂θgi∂θ′gi
|| ≤ C1|e′iP−1

t ztz
′
tei|

where C1 is a generic positive constant. Pt → P 0
t implies

e′iP
−1
t Eztz

′
tei = e′iP

−1
t P 0

t ei → 1

Then, for θgi ∈ N1, and for all i, t,

E||∂
2 ln f(ζt|θ1)

∂θgi∂θ′gi
|| ≤ C1|e′iP−1

t P 0
t ei| <∞. �

Lemma 11 The expectation of ||∂
2 ln f(ζt|θ1)
∂θgi∂θ′ρ

|| is finite for all t and i = 1, ..., N.
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Proof: Lemma 5 states that

∂2 ln f(ζt|θ1)

∂θgi∂θ′ρ
= − 1

2git

∂git
∂θ′gi

(e′iztz
′
t ⊗ e′i)(P−1

t ⊗ P−1
t )

∂vec(Pt)

∂θρ
. (53)

Consider

||∂
2 ln f(ζt|θ1)

∂θgi∂θ′ρ
|| =

1

2|git|
|| ∂git
∂θ′gi

(e′iztz
′
t ⊗ e′i)(P−1

t ⊗ P−1
t )

∂vec(Pt)

∂θρ
||

≤ 1

2|git|
|| ∂git
∂θ′gi
|| × ||e′iztz′t ⊗ e′i||

×||P−1
t ⊗ P−1

t || × ||
∂vec(Pt)

∂θρ
||

≤ C3||e′iztz′t ⊗ e′i||.

where C3 is a generic positive constant, because also the elements of P−1
t and ∂vec(Pt)

∂θρ

are also finite for θρ ∈ N1, and all t. Furthermore,

E||e′iztz′t ⊗ e′i|| = ||e′iP 0
t ⊗ e′i|| ≤ C4 <∞

for θρ ∈ N1, and all t, so

E||∂
2 ln f(ζt|θ1)

∂θgi∂θ′ρ
|| = C3C4 <∞. �

Lemma 12 The expectation of ||∂
2 ln f(ζt|θ1)
∂θρ∂θ′ρ

|| is finite for all t.

Proof: The following block division is applied in proving the result:

∂2 ln f(ζt|θ1)

∂θρ∂θ′ρ
=


∂2 ln f(ζt|θ1)

∂ρ∂ρ′
∂2 ln f(ζt|θ1)

∂ρ∂γ
∂2 ln f(ζt|θ1)

∂ρ∂c
∂2 ln f(ζt|θ1)

∂γ2
∂2 ln f(ζt|θ1)

∂γ∂c
∂2 ln f(ζt|θ1)

∂c2

 . (54)

The square of the Euclidean norm of (54) using these blocks equals

||∂
2 ln f(ζt|θ1)

∂θρ∂θ′ρ
||2 = ||∂

2 ln f(ζt|θ1)

∂ρ∂ρ′
||2 + 2||∂

2 ln f(ζt|θ1)

∂ρ∂γ
||2

+||∂
2 ln f(ζt|θ1)

∂γ2
||2 + ||∂

2 ln f(ζt|θ1)

∂c2
||2

+2||∂
2 ln f(ζt|θ1)

∂γ∂c
||2 (55)

which implies

||∂
2 ln f(ζt|θ1)

∂θρ∂θ′ρ
|| ≤ ||∂

2 ln f(ζt|θ1)

∂ρ∂ρ′
||+
√

2||∂
2 ln f(ζt|θ1)

∂ρ∂γ
||

+||∂
2 ln f(ζt|θ1)

∂γ2
||+ ||∂

2 ln f(ζt|θ1)

∂c2
||

+
√

2||∂
2 ln f(ζt|θ1)

∂γ∂c
||. (56)
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Consider the first term on the r.h.s. of (56). By Lemma 5 one can write

||∂
2 ln f(ζt|θ1)

∂ρ∂ρ′
|| = ||1

2
{∂vec(Pt)

∂ρ′
(P−1

t ⊗ P−1
t )

∂vec(Pt)

∂ρ
||

+2||∂vec(Pt)

∂ρ′
(P−1

t ztz
′
tP
−1
t ⊗ P−1

t )
∂vec(Pt)

∂ρ
||

= C5 + C6||P−1
t ztz

′
tP
−1
t ⊗ P−1

t ||

where C5 and C6 are generic positive constants. Then

E||∂
2 ln f(ζt|θ1)

∂ρ∂ρ′
|| = C5 + C6E||P−1

t ztz
′
tP
−1
t ⊗ P−1

t ||

≤ C5 + C6||P−1
t P 0

t P
−1
t ⊗ P−1

t ||.

As θρ → θ0
ρ, ||P−1

t P 0
t P

−1
t ⊗P−1

t || → ||P−1
t ⊗P−1

t || <∞. It follows that ||P−1
t P 0

t P
−1
t ⊗

P−1
t || ≤ C7 <∞ for θρ ∈ N1, and

E||∂
2 ln f(ζt|θ1)

∂ρ∂ρ′
|| ≤ C5 + C6C7 <∞

for θρ ∈ N1, and all t. Similar arguments apply to the other blocks as the elements

of ∂vec(Pt)
∂γ

and ∂vec(Pt)
∂c

are finite for all t. Thus,

E||∂
2 ln f(ζt|θ1)

∂θρ∂θ′ρ
|| <∞

for θρ ∈ N1, and all t. �

Condition (v) can now be verified by applying Lemmas 10–12 to (52). This
completes the proof of Theorem 2. �

Proof of Theorem 3: First we introduce some notation that agrees with the one
used in the theorem. Let

AT (θ1) =

[
AgT (θ1) AgPT (θ1)
APg(θ1) APT (θ1)

]
(57)

where θ1 = (θ′g,θ
′
ρ)
′, be the average Hessian evaluated at θ1 ∈ Θ1, and

AgT (θ1) =
1

T

T∑
t=1

∂2 ln f(ζt|θ1)

∂θg∂θ′g
(58)

AgPT (θ1) =
1

T

T∑
t=1

∂2 ln f(ζt|θ1)

∂θg∂θ′ρ
(59)

and

APT (θ1) =
1

T

T∑
t=1

∂2 ln f(ζt|θ1)

∂θρ∂θ′ρ
.

The bulk of the proof consists of proving the following result:
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Lemma 13 Suppose that the assumptions of Theorem 2 hold and define a neigbour-
hood Nδ ⊂ Θ1 of θ0

1 such that for all θ1 ∈ Nδ, ||θ1 − θ0
1|| < δ, δ > 0. Let (57) now

be the average Hessian evaluated at θ1 ∈ Nδ, whereas

AT (θ0
1) =

1

T

T∑
t=1

E
∂2 ln f(ζt|θ0

1)

∂θ1∂θ′1

is the expected Hessian. Then, for θ1 → θ0
1, the (j, i) block of (58), j 6= i, becomes

AgjgiT (θ1) → −1

4

∫ 1

0

1

g0
jrg

0
ir

∂g0
jr

∂θgj

∂g0
ir

∂θ′gi
e′j(P

0
r )−1eie

′
iP

0
r ejdr

= Agjgi(θ
0
1)

and for i = j,

AgigiT (θ1) → −1

4

∫ 1

0

1

(g0
ir)

2

∂g0
ir

∂θgi

∂g0
ir

∂θ′gi
(1 + e′i(P

0
r )−1ei)dr

= Agigi(θ
0
1).

The ith block of (59) has the form

AgPT (θ1) → −1

2

∫ 1

0

1

g0
ir

∂g0
ir

∂θgi
(ei ⊗ ei)′{IN ⊗ (P 0

r )−1}∂vec(P 0
r )

∂θ′ρ
dr

= AgP (θ0
1)

and

APT (θ1) → −1

2

∫ 1

0

∂vec(P 0
r )

∂θ′ρ
{(P 0

r )−1 ⊗ (P 0
r )−1}∂vec(P 0

r )

∂θρ
dr

= AP (θ0
1).

as T →∞. Summing up,

AT (θ1)
p→ A(θ0

1) =

[
Ag(θ

0
1) AgP (θ0

1)
APg(θ

0
1) AP (θ0

1)

]
as θ1 → θ0

1 and T →∞.

Proof: First consider

AgT (θ1) =

 Ag1g1T (θ1) ... Ag1gNT (θ1)
...

AgNg1T (θ1) AgNgNT (θ1)


from (58), where, for i 6= j, the (j, i)-block equals

AgjgiT (θ1) =
1

T

T∑
t=1

∂2 ln f(ζt|θ1)

∂θgj∂θ′gi

= − 1

T

T∑
t=1

1

gjtgit

∂git
∂θgj

∂git
∂θ′gi

e′jP
−1
t eie

′
iztz

′
tej.
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As {ζt} is a sequence of iid(0N , IN) vectors and zt = (St)
−1S0

t (P
0
t )1/2ζt, where S0

t =
diag(g0

1t, ..., g
0
Nt) and g0

it = gi(θ
0
gi; t/T ), i = 1, ..., N, the corresponding block of the

expected Hessian evaluated at θ = θ1 equals

AgjgiT (θ1,θ
0
1) =

1

T

T∑
t=1

E
∂2 ln f(ζt|θ1)

∂θgj∂θ′gi

= − 1

4T

T∑
t=1

1

gjtgit

∂git
∂θgj

∂git
∂θ′gi

e′jP
−1
t eie

′
iEztz

′
tej

= − 1

4T

T∑
t=1

1

gjtgit

∂git
∂θgj

∂git
∂θ′gi

e′jP
−1
t eie

′
i(M

0
t )2ej

where
(M 0

t )2 = (St)
−1S0

t (P
0
t )S0

t (St)
−1.

Then, for θ1 ∈ Nδ ⊂ Θ1,

AgjgiT (θ1) = AgjgiT (θ1,θ
0
1) + op(1).

Since gjt and git are deterministic, we again apply triangular array asymptotics to
find the probability limit of AgjgiT (θ1,θ

0
1). Denoting t = [Tr] and assuming i 6= j

leads to

AgjgiT (θ1,θ
0
1)

= − 1

4T

T∑
t=1

1

gj[Tr]gi[Tr]

∂gj[Tr]
∂θgj

∂gi[Tr]
∂θ′gi

e′jP
−1
[Tr]eie

′
i(M

0
[Tr])

2ej}

= −1

4

T∑
t=1

∫ (t+1)/T

t/T

1

gj[Tr]gi[Tr]

∂gj[Tr]
∂θgj

∂gi[Tr]
∂θ′gi

e′jP
−1
[Tr]eie

′
i(M

0
[Tr])

2ejdr

= −1

4

∫ (T+1)/T

1/T

1

gj[Tr]gi[Tr]

∂gj[Tr]
∂θgj

∂gi[Tr]
∂θ′gi

e′jP
−1
[Tr]eie

′
i(M

0
[Tr])

2ejdr

→ −1

4

∫ 1

0

1

gjrgir

∂gjr
∂θgj

∂gir
∂θ′gi

e′jP
−1
r eie

′
i(M

0
r )2ejdr = Agjgi(θ1,θ

0
1) (60)

as t→ T and T →∞ with t/T → 1. That P−1
[Tr] → P−1

r when T →∞ follows from
P[Tr] → Pr and continuity of the inverse transformation. Likewise,

AgigiT (θ1) =
1

T

T∑
t=1

∂2 ln f(ζt|θ1)

∂θgi∂θ′gi

= − 1

2T

T∑
t=1

1

git
[{ 1

git

∂git
∂θgi

∂git
∂θ′gi

− ∂2git
∂θgi∂θ′gi

}(e′iP−1
t ztz

′
tei − 1)

− 1

2git

∂git
∂θgi

∂git
∂θ′gi

e′iP
−1
t (IN + eie

′
i)ztz

′
tei]
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and

AgigiT (θ1,θ
0
1) =

1

T

T∑
t=1

E
∂2 ln f(ζt|θ1)

∂θgi∂θ′gi

= − 1

2T

T∑
t=1

1

git
[{ 1

git

∂git
∂θgi

∂git
∂θ′gi

− ∂2git
∂θgi∂θ′gi

}(e′iP−1
t (M 0

t )2ei − 1)

− 1

2git

∂git
∂θgi

∂git
∂θ′gi

e′iP
−1
t (IN + eie

′
i)(M

0
t )2ei].

Proceeding as above,

AgigiT (θ1,θ
0
1)

p→ −1

2

∫ 1

0

[
1

gir
{ 1

gir

∂gir
∂θgi

∂gir
∂θ′gi

− ∂2gir
∂θgi∂θ′gi

}(e′iP−1
r (M 0

r )2ei − 1)]dr

−1

4

∫ 1

0

1

g2
it

∂gir
∂θgi

∂gir
∂θ′gi

e′iP
−1
r (IN + eie

′
i)(M

0
r )2eidr

= Agigi(θ1,θ
0
1). (61)

Let θ1 → θ0
1, which implies St → S0

t and Pt
p→ P 0

t . Since the inverse transformation
is continuous, the continuous mapping theorem applies, so S−1

t → (S0
t )
−1, which

leads to S−1
t S

0
t → IN or (M 0

t )2 → P 0
t . Furthermore, by the same theorem, P−1

t →
(P 0

t )−1. Applying this to (60) yields

Agjgi(θ1,θ
0
1) → −1

4

∫ 1

0

1

g0
jrg

0
ir

∂g0
jr

∂θgj

∂g0
ir

∂θ′gi
e′j(P

0
r )−1eie

′
iP

0
r ejdr

= Agjgi(θ
0
1)

where g0
`r = g(r,θ0

g`), and ∂g0
`r/∂θg` = ∂g`r/∂θg`|θg`=θ0g` , ` = i, j, for all i, j = 1, ..., N.

Note that e′j(P
0
r )−1ei is the (j, i) element of (P 0

r )−1 and e′iP
0
r ej is the (i, j) element

of e′iP
0
r ej.

Applying the same arguments to (61) yields

Agigi(θ1,θ
0
1) → −1

4

∫ 1

0

1

(g0
it)

2

∂g0
ir

∂θgi

∂g0
ir

∂θ′gi
(1 + e′i(P

0
r )−1ei)dr

= Agigi(θ
0
1)

because P 0
r is a correlation matrix, so e′iP

0
r ei = 1, i = 1, ..., N .

More generally,

AgT (θ1,θ
0
1)

p→ [Agjgi(θ1,θ
0
1)]

= Ag(θ1,θ
0
1)

as T →∞, and

Ag(θ1,θ
0
1) → [Agjgi(θ1,θ

0
1)]

= Ag(θ
0
1).
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as θ1 → θ0
1.

To obtain the desired result, apply the triangular inequality using previous results
to the difference ||AgT (θ1)−Ag(θ

0
1)||. This yields

||AgT (θ1)−Ag(θ
0
1)||

≤ ||AgT (θ1)−AgT (θ1,θ
0
1)||+ ||AgT (θ1,θ

0
1)−Ag(θ1,θ

0
1)||

+||Ag(θ1,θ
0
1)−Ag(θ

0
1)||

≤ op(1) + ||AgT (θ1,θ
0
1)−Ag(θ1,θ

0
1)||

+ sup
θ1∈Nδ

||Ag(θ1,θ
0
1)−Ag(θ

0
1)||

p→ 0 (62)

as θ1 → θ0
1 and T →∞, where

[Ag(θ
0
1)]ji = −1

4

∫ 1

0

1

g0
jrg

0
ir

∂g0
ir

∂θgj

∂g0
ir

∂θ′gi
e′j(P

0
r )−1eie

′
iP

0
r ejdr.

Similarly, taking expectations and letting T →∞,

AgPT (θ1,θ
0
1)

= − 1

2T

T∑
t=1

1

git

∂git
∂θgi

(ei ⊗ ei)′(Eztz′tP−1
t ⊗ P−1

t )
∂vec(Pt)

∂θ′ρ

p→ −1

2

∫ 1

0

1

gir

∂gir
∂θgi

(ei ⊗ ei)′{(M 0
r )2P−1

r ⊗ P−1
r }

∂vec(Pr)

∂θ′ρ

= AgP (θ1,θ
0
1). (63)

Letting θ1 → θ0
1 in (63) gives

AgP (θ1,θ
0
1)→ −1

2

∫ 1

0

1

g0
ir

∂g0
ir

∂θgi
(ei ⊗ ei)′{IN ⊗ (P 0

r )−1}∂vec(P 0
r )

∂θ′ρ
dr

= AgP (θ0
1).

Considerations similar to the ones in (62) lead to

||AgPT (θ1)−AgP (θ0
1)|| p→ 0 (64)

as θ1 → θ0
1 and T →∞.

Denoting
∂vec(P 0

r )

∂θρ
=
∂vec(Pr)

∂θρ
|θρ=θ0ρ
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one obtains

APT (θ1,θ
0
1) =

1

T

T∑
t=1

E
∂2 ln f(ζt|θ1)

∂θ′ρ∂θρ

= − 1

2T

T∑
t=1

∂2vec(Pt)

∂θ′ρ∂θρ
{vec(P−1

t )− vec(P−1
t (M 0

r )2P−1
t )}

− 1

2T

T∑
t=1

∂vec(Pt)

∂θ′ρ
{P−1

t ⊗ P−1
t

−(P−1
t (M 0

r )2P−1
t ⊗ P−1

t + P−1
t ⊗ P−1

t (M 0
r )2P−1

t )}∂vec(Pt)

∂θρ
.

As T →∞,

APT (θ1,θ
0
1)

p→ −1

2

∫ 1

0

∂vec(Pr)

∂θ′ρ
{P−1

r ⊗ P−1
r

−(P−1
r (M 0

r )2P−1
r ⊗ P−1

r + P−1
r ⊗ P−1

r (M 0
r )2P−1

r )}∂vec(Pr)

∂θρ

= AP (θ1,θ
0
1). (65)

Finally, letting θ1 → θ0
1 in (65),

AP (θ1,θ
0
1) → −1

2

∫ 1

0

∂vec(P 0
r )

∂θ′ρ
{(P 0

r )−1 ⊗ (P 0
r )−1}∂vec(P 0

r )

∂θρ
dr

= AP (θ0
1).

As in the two previous cases, using the triangular inequality leads to the conclusion
that

||APT (θ1)−AP (θ0
1)|| p→ 0 (66)

as θ1 → θ0
1 and T →∞. Finally, due to (62), (64) and (66),

||AT (θ1)−A(θ0
1)|| ≤ ||AgT (θ1)−Ag(θ

0
1)||+ 2||AgPT (θ1)−AgP (θ0

1)|| p→
+||AgPT (θ1)−AgP (θ0

1)|| p→ 0

as θ1 → θ0
1 and T →∞. This completes the proof. �

The theorem is now proved by replacing θ1 ⊂ Nδ above by the consistent esti-
mator θ̂1 and applying Lemma 13. �

13 Estimated TVC equations

The estimated equations for the variance components and the estimated correlation
equation are as follows (the figures in parentheses are standard deviation estimates):

S&P 500 returns:

ĥSt = 0.043
(0.0054)

+ 0.164
(0.0156)

I(εSt−1 < 0)
(εSt−1)2

ĝSt−1

+ 0.872
(0.0110)

ĥSt−1 (67)
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where
ĝSt = 2.18− 1.42

(0.145)
GS

1t + 8.71
(1.42)

GS
2t − 8.83

(1.42)
GS

3t (68)

with
GS

1t = (1 + exp{− exp{12.6
(−)
}(t/T − 0.232

(0.0008)
)})−1 (69)

GS
2t = (1 + exp{− exp{ 3.27

(0.387)
}(t/T − 0.54

(0.0034)
)})−1

and
GS

3t = (1 + exp{− exp{ 2.79
(0.057)

}(t/T − 0.63
(0.011)

)})−1.

T-bill returns:

ĥBt = 0.0142
(0.0045)

+ 0.0277
(0.0044)

(εBt−1)2

ĝBt−1

+ 0.958
(0.0077)

ĥBt−1. (70)

where
ĝBt = 0.196 + 6.59

(0.39)
GB

1t − 6.69
(0.39)

GB
2t (71)

with
GB

1t = (1 + exp{− exp{ 3.15
(0.106)

}(t/T − 0.518
(0.0008)

)})−1

and
GB

2t = (1 + exp{− exp{ 3.03
(0.113)

}(t/T − 0.521
(0.0008)

)})−1.

The correlation equation has the following form:

ρ̂t = 0.0495
(0.037)

Gt − 0.332
(0.015)

(1−Gt) (72)

where
Gt = (1 + exp{− exp{13.0

(−)
}(t/T − 0.26

(0.0001)
)(t/T − 0.46

(0.0008)
})−1. (73)

Standard deviations of the large slope estimates η̂ in (69) and (73) are not given (they
have been computed) because the corresponding transitions are very steep. The
steep slopes, almost thresholds, make the Hessian ill-conditioned, and in computing
this matrix these components have been removed. The purpose of not reporting the
standard deviations is to remind the reader that the corresponding partial derivatives
have been excluded from the Hessian. Also recall that for identification reasons, the
intercept in equations (68) and (71) is fixed.
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