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Abstract

We study the empirical properties of realized volatility of the E-mini S&P 500 futures con-

tract at various time scales, ranging from a few minutes to one day. Our main finding is that

intraday volatility is remarkably rough and persistent. What is more, by further studying daily

realized volatility measures of close to two thousand individual US equities, we find that both

roughness and persistence appear to be universal properties of volatility. Inspired by the empir-

ical findings, we introduce a new class of continuous-time stochastic volatility models, capable

of decoupling roughness (short-term behavior) from long memory and persistence (long-term

behavior) in a simple and parsimonious way, which allows us to successfully model volatility at

all intraday time scales. Our prime model is based on the so-called Brownian semistationary

process and we derive a number of theoretical properties of this process, relevant to volatil-

ity modeling. As an illustration of the usefulness our new models, we conduct an extensive

forecasting study; we find that the models proposed in this paper outperform a wide array of

benchmarks considerably, indicating that it pays off to exploit both roughness and persistence

in volatility forecasting.
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1 Introduction

Intraday modeling of asset return volatility is of importance in several applications, including

derivatives pricing, high-frequency trading, and risk management (Andersen et al., 2000; Rossi and

Fantazzini, 2015). The time scale at which volatility should be assessed depends on the intended

application. On the one hand, in the context of high-frequency trading, say, the relevant time scale

can be very short; a few minutes or even less. On the other hand, if the objective is to forecast

daily volatility, models using moderate frequencies, such as one hour, outperform alternative models

using very high frequencies (e.g., 5 minutes) or very low frequencies (e.g., one day), as shown in

Andersen et al. (1999).

The goal of this paper is to introduce a class of continuous-time models of volatility that are

consistent with empirical features of realized volatility at all time scales. As we will see, this requires

a model incorporating both roughness (irregular behavior at short time scales) and persistence

(strong dependence at longer time scales). While the latter property is well-established in the

literature on volatility (e.g., Bollerslev and Wright, 2000; Andersen et al., 2003), the importance

of the former has been highlighted only very recently, most notably in Gatheral et al. (2014) and

Bayer et al. (2016).

Our paper has two main contributions. The first is an in-depth empirical study of the time

series behavior of realized volatility at a wide range of time scales, ranging from a few minutes to

one day. The conclusion of this study in a nutshell is that realized volatility is rough, persistent,

and non-Gaussian.

The second contribution of the paper is to put forward a class of stochastic models that are

able to capture these three key features of volatility. In particular, we advocate the use of Brow-

nian semistationary (BSS) processes (Barndorff-Nielsen and Schmiegel, 2007, 2009) as models of

logarithmic volatility. These processes are flexible in the sense that they allow for decoupling of

the fine properties (roughness) from the long-term behavior (memory/persistence). We show that

BSS processes, under suitable specifications, can accommodate both bona fide long memory (i.e.,

non-integrable autocorrelations) and short memory (exponentially decaying autocorrelations). We

derive some general theoretical results concerning the memory properties of these processes in this

paper. Under rather general conditions, BSS processes are stationary, and they allow for easy in-

clusion of non-Gaussianity and the leverage effect. Moreover, fast and efficient simulation schemes

are available (Bennedsen et al., 2017).
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Recently, there has been considerable interest in rough models of volatility. This is due to

both theoretical developments in implied volatility modeling (Alòs et al., 2007; Fukasawa, 2017)

as well as empirical evidence based on realized volatility (Gatheral et al., 2014; Bennedsen, 2016).

An important contribution to this literature is the model suggested by Gatheral et al. (2014),

which is inspired by the fractional stochastic volatility (FSV) model of Comte and Renault (1996).

Both of these models are based on a fractional Ornstein–Uhlenbeck process, driven by a fractional

Brownian motion (fBm). While the FSV model of Comte and Renault (1996) uses an fBm with

Hurst index H > 1/2, giving rise to long memory, Gatheral et al. (2014), by contrast, switch

to an fBm with H < 1/2 to allow for roughness. They therefore term their model the rough

fractional stochastic volatility (RFSV) model. Bayer et al. (2016), motivated by option pricing and

implied volatility smile modeling, introduce another rough volatility model, the rough Bergomi

(rBergomi) model, where logaritmic volatility is modeled by a (non-stationary) Riemann–Liouville

type Gaussian process, which is often referred to as a “Type II” fractional Brownian motion in the

literature on time series models with long memory (Marinucci and Robinson, 1999).

The RFSV model has the limitation that it does not capture the long memory property of

volatility, which is often regarded as a stylized fact (e.g., Andersen et al., 2003), while the rBer-

gomi model, being non-stationary, would not exhibit realistic long-term behavior of volatility.

When designing a realistic model of volatility that allows for both roughness and flexible long-term

properties, it is important to be aware of the principle, pointed out by Gneiting and Schlather

(2004), that self-similar processes, such as the fBm, have either long memory or rough sample

paths. In contrast, the models presented in this work conveniently decouples the behavior of

volatility at short and long time scales; in particular, they accommodate both roughness and long

memory. In spite of their generality, the suggested models are simple, in terms of their mathemat-

ical structure, and parsimonious, relying on only two parameters controlling short- and long-term

behavior, respectively. Moreover, the models are easy to estimate, simulate, and forecast.

In a forecasting study, we find that our proposed models outperform a wide array of benchmark

models, especially at intraday time scales. This indicates that it is important to carefully model

both small- and large-scale behavior of stochastic volatility in forecasting.

The rest of the paper is structured as follows. In Section 2 we introduce the E-mini S&P

500 data set and present our first empirical results, demonstrating that volatility is rough, very

persistent, and non-Gaussian at intraday time scales. Section 3 extends this empirical analysis to

daily volatility data on 1 944 individual US equities from the Trades and Quotes (TAQ) database,

documenting that roughness and persistence are universal features of the volatility of financial

equities. Section 4 introduces a class of stochastic volatility models, based on BSS processes, that

are able to parsimoniously capture these empirical findings. This section also reviews simulation

methods for rough stochastic volatility models. Section 5 presents estimation results of the various

models we consider, using both parametric and semiparametric estimation procedures. Section 6

presents a forecasting study, where we compare our new models to existing volatility forecasting
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models. Section 7 concludes. Proofs of the technical results are given in Appendix A.

2 Empirical behavior of realized volatility

We consider a simple model for high-frequency asset returns, modeling the efficient log price Y =

(Yt)t≥0 of an asset by an Itô semimartingale

dYt = µtdt+ σtdBt+dJt, t ≥ 0, (2.1)

where B = (Bt)t≥0 is a standard Brownian motion, µ = (µt)t≥0 a drift process, J = (Jt)t≥0 a jump

process, and σ = (σt)t≥0 a volatility process, satisfying the usual assumptions of adaptedness and

local boundedness. Since we sample prices at high frequency, we follow the standard practice of

high-frequency financial econometrics by treating the data as noisy observations of the efficient log

price Y , contaminated by market microstructure noise,

logSt = Yt + Ut, t ≥ 0,

where U = (Ut)t≥0 is a microstructure noise process.

Our focus in this paper will be on the volatility process σ, hence we do not go into much detail

regarding the jump process J or the noise process U . We would require only mild assumptions on

these processes, such that the jump- and noise-robust estimator of the volatility process, explained

below, will be consistent. Sufficient, but not necessary, conditions for this are, e.g., that the jump

term is given by a compound Poisson process and the noise term is iid with zero-mean and finite

fourth moment, and independent of the efficient price Y (Christensen et al., 2014, Proposition 1).

Also, in the context of high-frequency returns, the drift process µ is empirically negligible, and

will be ignored from now on. The following sections will explain the data we use for S, how we

estimate the latent volatility process σ, and the subsequent empirical findings on this process.

2.1 Extraction of latent intraday volatility and description of the data

We seek to extract the realized spot volatility process (σt)t∈[0,T ], for some time horizon T > 0,

from high-frequency observations of the asset price S. As σ is not directly observable, we need

to construct a proxy for it. In particular, we are interested in assessing intraday variation of

volatility. This should be contrasted with, e.g., Gatheral et al. (2014), who consider volatility

proxies computed at daily frequency.

To this end, we first specify a step size ∆ > 0 such that T = n∆ for some large n ∈ N. Then

we aim to estimate the integrated variance (IV),

IV ∆
t :=

∫ t

t−∆
σ2
sds, t = ∆, 2∆, . . . , n∆.

Estimators of IV have been extensively studied, prominent examples being realized variance (An-

dersen et al., 2001; Barndorff-Nielsen and Shephard, 2002), realized kernels (Barndorff-Nielsen
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et al., 2008), two-scale estimators (Zhang et al., 2005), and pre-averaging methods (Jacod et al.,

2009). Except for the first, these methods are robust to market microstructure effects, which is

crucial when using prices sampled at higher frequencies (e.g., Hansen and Lunde, 2006). Further,

as we will see below, the pre-averaging methods are straightforwardly adapted to handle jumps in

the price process, which is our main reason for choosing this particular approach.

By letting ∆ be sufficiently small, and assuming that volatility does not vary too much in each

time interval of size ∆, we can use the proxy

σ̂2
t = ∆−1ÎV

∆

t , t = ∆, 2∆, . . . n∆, (2.2)

where ÎV
∆

t is an estimate of IV derived from one of the methods mentioned. A priori, we do not

want to fix any specific value of the step size ∆ to sample volatility, as the choice of this parameter

would vary from application to another, and as there is no canonical choice when ∆ is less than a

day. For this reason, we perform the subsequent analyses for various values of ∆ and, as will be

seen, our empirical findings hold for essentially all intraday, as well as daily, time scales.

The proxy (2.2) can be seen as a (finite difference) time derivative of the estimate of integrated

variance. Related estimators of spot volatility have been suggested in the literature; see, e.g.,

Kristensen (2010), Bos et al. (2012), and Zu and Boswijk (2014). In this paper we will restrict

attention to (2.2) where we estimate IV using pre-averaged measures, developed in Jacod et al.

(2009). We briefly review the implementation, following the methodology in Christensen et al.

(2014) closely.

Suppose we want to estimate IV in some interval [(i − 1)∆, i∆] for i ≥ 1 and we have N + 1

(tick-by-tick) observations, Z0, Z1, . . . , ZN , where Zi = logSti , of the log price process Z = logS

in this interval. We define the pre-averaged log returns,

r∗j,K =
1

K

 K−1∑
k=K/2

Z(j+k) −
K/2−1∑
k=0

Z(j+k)

 , j = 0, 1, . . . , N −K,

where K ≥ 2 is even. For the asymptotics to work, it is required that K = θ
√
N + o

(
N−1/4

)
,

and in our implementation we set θ = 1 and K = b
√
Nc if b

√
Nc is an even number and K =

b
√
Nc+ 1 otherwise.1 Here, bxc means the largest integer smaller than, or equal to, x ∈ R. Using

these pre-averaged returns, we suggest the following estimators of IV, which are robust to market

microstructure noise:

RV ∆∗
t =

N

N −K + 2

1

KψK

N−K+1∑
j=0

|r∗j,K |2 −
ω̂2

θ2ψK
,

BV ∆∗
t =

N

N − 2K + 2

1

KψK

π

2

N−2K+1∑
j=0

|r∗j,K ||r∗j+K,K | −
ω̂2

θ2ψK
, (2.3)

1Setting the tuning parameter θ equal to 1 was found to work well for data similar to ours in Christensen et al.

(2014). We drew the same conclusion from both simulated data mimicking our setup, as well from the actual data

analyzed later in the paper.
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where ψK := (1+2K−2)/12 and t ∈ [(i−1)∆, i∆]. The term ω̂2

θ2ψK
is a bias-correction, where ω̂2 is

an estimate of the variance of the microstructure noise process U . We use the estimator of Oomen

(2006):

ω̂2
AC = − 1

N − 1

N∑
j=2

riri−1,

where ri = Zi − Zi−1 is the i-th log return. The statistics RV ∆∗ and BV ∆∗ are the pre-averaged

analogs of the realized variance (Andersen et al., 2001) and bipower variation (Barndorff-Nielsen

and Shephard, 2004) estimators of IV, respectively. While both estimators are robust to market

microstructure noise, only BV ∆∗ is also robust to jumps in the price process. For this reason,

we will use the BV ∆∗ estimate of IV in our study. We note, however, that we also conducted

analogous analyses using RV ∆∗ and obtained largely similar results and drew essentially identical

conclusions as below, suggesting that the impact of jumps is negligible in the data studied here (cf.

also Christensen et al., 2014).2

We analyze tick-by-tick transaction data on the front month E-mini S&P 500 futures contract,

traded on the CME Globex electronic trading platform, from January 2, 2013 until December 31,

2014 excluding weekends and holidays, which results in 516 trading days. Of these days, 18 days

were not full trading days; we removed these days to arrive at a total of 498 days in our sample.

As we are interested in assessing volatility at very high frequencies, we rely on there being a lot of

trading activity on the underlying asset. For this reason we restrict our attention to the period of

the day when most trading is taking place; this is when the New York Stock Exchange (NYSE) is

open, from 9.30 a.m. until 4 p.m. Eastern Standard Time (EST).

It is well-known that intraday volatility displays significant seasonality (e.g., Andersen and

Bollerslev, 1997, 1998). In particular, the “U-shape” is ubiquitous, where volatility is high at

the opening and at the close of the market, while being lower around midday. It is important to

control for this seasonality before performing any further analyses as subsequent estimates could be

affected if one does not take this into account (Rossi and Fantazzini, 2015). We use a multiplicative

decomposition

σt = σst σ̃t, t ≥ 0,

where σs is the seasonal component and σ̃ is the deseasonalized stochastic process we are interested

in. To estimate σs we use the flexible Fourier form (FFF) approach of Andersen and Bollerslev

(1997, 1998); Figure 1 shows the output of this estimation procedure in the case ∆ = 15 minutes

(see also the similar findings in Andersen et al., 2016, Figure 1). The familiar U-shape of volatility

is evident. We then estimate σ̃2
t bŷ̃σ2

t = ∆−1ÎV
∆

t /(̂σ
s
t )

2 = ∆−1BV ∆∗
t /(̂σst )

2, t = ∆, 2∆, . . . , n∆,

2We also ran the analyses using the realized kernel estimator of Barndorff-Nielsen et al. (2008), obtaining similar

results, although this estimator is not robust to jumps either. The details can be found in the first version of this

paper, available at: https://arxiv.org/1610.00332v1.
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Figure 1: Seasonality of volatility with ∆ = 15 minutes.

and will from now on be working with these de-seasonalized data. Further, we abuse notation

slightly and will write σ even though we actually refer to the de-seasonalized process σ̃. Table

1 contains some simple descriptive statistics of this process and how it behaves as ∆ increases.3

While the skewness is positive, kurtosis becomes closer to 3, indicating that the volatility estimates

look more Gaussian as ∆ is increased. We will present additional evidence of this in Section 2.5

below.

2.2 Stationarity of volatility

Apart from intraday seasonality, volatility is widely believed to be stationary. In particular, one

does not expect volatility to wander without bound but instead to revert to some “typical” level.

In Table 1 we present results of several unit root tests applied to the data with various values of ∆.

The two classical unit root tests (ADF and PP) always reject the null of a unit root. The Hansen

and Lunde (2013) test (which is appropriate in the present case as our estimate of σ2
t is measured

with error) also rejects the presence of a unit root. This supports the hypothesis that volatility is

stationary.

2.3 Roughness of volatility

Recent studies have provided evidence that volatility is rough; see, e.g., Gatheral et al. (2014) and

Bennedsen (2016). What we mean by this is that the autocorrelation function (ACF) ρ of log

volatility, assuming that it is covariance-stationary, adheres to the asymptotic relationship

1− ρ(h) := 1− Corr(log σt, log σt+h) ∼ c|h|2α+1, |h| → 0, (2.4)

for a constant c > 0 and some α ∈
(
−1

2 , 0
)
. Here and below “∼” indicates that the ratio between

the left- and right-hand side tends to one — when the constant in this relationship is immaterial,

3The reason for considering ∆ = 65 minutes and ∆ = 130 minutes in our analysis, instead of one and two hours,

is to make sure that the 6.5-hour trading day can be divided into an integer number of time periods each of length

∆.
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Table 1: Descriptive statistics and unit root tests

∆ n Mean Skew Kurt ADF PP π̂ n(π̂ − 1)

10 minutes 19422 0.022 0.039 4.184 0.000 0.001 0.974 −500.3

15 minutes 12948 0.031 0.233 3.808 0.000 0.001 0.970 −394.7

30 minutes 6474 0.048 0.363 3.662 0.000 0.001 0.966 −220.5

65 minutes 2988 0.054 0.454 3.633 0.000 0.001 0.960 −120.6

130 minutes 1494 0.054 0.486 3.523 0.000 0.001 0.950 −75.1

1 day 498 0.061 0.420 3.410 0.000 0.001 0.830 −84.5

Descriptive statistics and unit root tests of log volatility of the E-mini S&P 500 data set. ADF and PP refer to the

p-values of the Augmented Dickey-Fuller test with automatic lag selection (no constant, no trend) and the Phillips-

Perron test, respectively. The symbol π denotes the persistence parameter of Hansen and Lunde (2013) and n(π− 1)

is the unit root test statistic from the same paper. The 1% and 5% critial values of this test are −20.7 and −14.1,

respectively.

we will denote it by the generic c, which may vary from from formula to another. We call α the

roughness index of the log volatility process. In general, α takes values in
(
−1

2 ,∞
)

but, as we

shall see, only negative values of α will be relevant for us. For stationary Gaussian processes,

the relationship (2.4) implies that the process has a modification with locally φ-Hölder continuous

trajectories for any φ ∈ (0, α + 1/2), where the index φ can be seen as a measure of roughness,

with small values indicating more roughness.4 It is worth recalling here that a standard Brownian

motion has locally φ-Hölder continuous trajectories for any φ ∈ (0, 1/2). Thus, negative values of

α suggest trajectories rougher that those of a standard Brownian motion.

Rough models of volatility are consistent with some empirically observed features of implied

volatility surfaces (Gatheral, 2006). In particular, as shown in Alòs et al. (2007) and Fukasawa

(2017), such models can accurately capture the short-time behavior of the at-the-money volatility

skew, which conventional local/stochastic volatility models based on Itô diffusions fail to capture.

To model the roughness of volatility, earlier studies have mainly relied on the “canonical” rough

process, the fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1/2). For the fBm, the

simple relationship H = α+ 1/2 holds, which means that H < 1/2 implies roughness.

2.3.1 Estimating the roughness parameter of log volatility

Consider the (second-order) variogram of log volatility:

γ2(h) := E
[
| log σt+h − log σt|2

]
, t, h ∈ R.

For a covariance-stationary stochastic process, the variogram and the ACF are connected by the

relationship

γ2(h) = 2V ar(log σt) (1− ρ(h)) , h ∈ R,

4See, e.g., Proposition 2.1 of Bennedsen (2016).
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showing that when the underlying process is covariance-stationary, the asymptotics (2.4) hold for

the variogram as well. Indeed,

γ2(h) ∼ c|h|2α+1, |h| → 0. (2.5)

This suggests a straightforward semiparametric estimation procedure for α. Namely, consider the

regression

log γ̂2(h) = b+ a log |h|+ εh, h = ∆, 2∆, . . . ,m∆, (2.6)

for some step size ∆ > 0 and an integer bandwidth parameter m ≥ 2, where γ̂(h) is the empirical

estimate of the variogram at lag h ∈ R. The relationship a = 2α+ 1 allows us to estimate α using

α̂ = â−1
2 , where â is the OLS estimate of a in (2.6). The error term in the regression (2.6) does

not satisfy the usual assumptions of OLS estimation, but inference (confidence intervals) on the

parameter α can be conducted using the bootstrap method of Bennedsen (2016), specifically tai-

lored to estimation of rough processes. Choosing the bandwidth parameter, m, optimally requires

some care. It should preferably be small, as the asymptotics in (2.4) may only hold for relatively

small values of m. However, as argued in Bennedsen (2016), choosing m slightly larger than the

minimum value of 2 makes the OLS estimation in (2.6) more robust, as it leaves more data points

for the regression. In our study, we use m = 6, while we also experimented with several other

values of m and found that the results are very robust to the choice of bandwidth.

Unfortunately, this OLS estimation approach, which is standard in the literature on rough

processes, is infeasible in our case, since we do not have access to observations of the actual log

volatility process, but only an estimate thereof (here through the pre-averaged measure BV ∗), as

explained in Section 2.1. To see why this might invalidate the OLS-based procedure, recall that

BV ∗ is a noisy estimate of IV. Suppose, for the sake of argument, that BV ∗ is representable as

BV ∆∗
t = ÎV

∆

t = IV ∆
t ηt, t = ∆, 2∆, . . . , n∆,

where {ηk∆}nk=1 is a positive iid noise sequence, independent of IV ∆. Clearly, this entails (glossing

over the deterministic seasonal factor for simplicity)

log σ̂2
t = log

(
∆−1BV ∆∗

t

)
= log

(
∆−1IV ∆

t ηt
)

= log
(
∆−1IV ∆

t

)
+ εt, t = ∆, 2∆, . . . , n∆,

(2.7)

where now εt := log ηt defines another iid noise sequence.

From this it is evident that, even if the term ∆−1IV ∆
t is a good approximation of the latent

volatility process σ2
t , the estimates of the roughness parameter coming from observations of the

time series log σ̂2
t will be influenced by the noise-term εt. Indeed, one might even wonder whether

the findings of roughness of volatility are explained by this effect.

To demonstrate that this is not the case, at least for values of ∆ that are not too small, we

propose below a noise-robust estimator of the roughness parameter α. To motivate the estimator,
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first notice that according to (2.7), the variogram of the observations can be expressed as

γ∗2(h):= E[| log σ̂2
t+h − log σ̂2

t|2]

= E[| log
(
∆−1IV ∆

t+h

)
− log

(
∆−1IV ∆

t

)
|2] + E[|εt+h − εt|2]

≈ γ2(h) + 2σ2
ε , (2.8)

where σ2
ε = V ar(εt) is the variance of the noise sequence ε and the approximation on the third line

stems from using ∆−1IV ∆
t as an approximation of σ2

t .
5 Thus, even though the variogram of log

volatility behaves as in (2.5), the logarithm of the variogram of the observations, log γ∗2(h), will not

be linear in log h, as is the case when no noise is present, cf. the relationship (2.6). Because the OLS

estimator hinges on linearity, estimates using the OLS procedure may be biased. Furthermore, at

least in the case of an iid noise sequence ε, it is easy to show that this bias is downwards. In other

words, applying the OLS estimator of α to noisy data might lead us to overestimate the roughness

of the underlying process.

To mitigate the bias, we endeavor to estimate α in a noise-robust way, by running a non-linear

least squares (NLLS) regression, inspired by (2.8) and (2.5),

γ̂∗2(h) = a+ b|h|2α+1 + ξh, h = ∆, 2∆, . . . ,m∆, (2.9)

where ξ is a noise sequence, m is the bandwidth, and γ̂∗2(h) the empirical estimate of the variogram

using the (noisy) observations. This regression has three parameters, a, b, and α, and although we

are chiefly interested in the roughness parameter α, it is useful to note that we can estimate 2σ2
ε

by the NLLS estimate of the constant a. The following theorem establishes the consistency of the

NLLS estimator under stylized high-level conditions. Its proof is carried out in Appendix A.

Theorem 2.1. Let X be a continuous process with stationary increments and variogram

γ2(h) = E[|Xt+h −Xt|2] = c0h
2α0+1, h > 0,

for a constant c0 > 0 and a roughness parameter α0 ∈ (−1/2, 1/2). Fix ∆ > 0 and let

Zi∆ = Xi∆ + ui, i = 1, . . . , n,

be equidistant observations; here u = {ui}ni=1 is a zero-mean iid sequence, independent of X,

with V ar(u1) = σ2
u > 0. Denote by γ∗2(h) the variogram of Z, let Θ denote a compact subset of

R+×R+× (−1/2, 1/2) such that (2σ2
u, c0, α0) is in the interior of Θ, and define the NLLS estimate

of θ := (a, c, α) as

θ̂ = (â, ĉ, α̂) := arg inf
θ∈Θ

m∑
k=1

(
γ̂∗2(k,∆)− a− c(k∆)2α+1

)2
,

5Actually, using the approximation ∆−1IV ∆
t = ∆−1

∫ t
t−∆

σ2
sds ≈ σ2

t will result in estimates of the roughness

parameter of σ2
t that are biased upwards, since integration is a smoothing operation, see e.g., Appendix C of Gatheral

et al. (2014) for an analysis of this phenomenon. In other words, any findings of roughness in the time series of scaled

integrated log volatility, i.e., of log
(
∆−1IV ∆

t

)
, will apply a fortiori for the time series of the (latent) spot log volatility

log σ2
t .
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with a fixed bandwidth m ≥ 3 and

γ̂∗2(k,∆) :=
1

n− k

n−k∑
j=1

|Z(j+k)∆ − Zj∆|2, k = 1, 2, . . . ,m.

Then

(â, ĉ, α̂)→ (2σ2
u, c0, α0) in probability, as n→∞.

Remark 2.1. The assumption that

γ2(h) = c0h
2α0+1, h > 0,

in Theorem 2.1 is not completely innocuous and is violated by many models of interest. For

instance, below we will propose models conforming to

γ2(h) = h2α0+1L(h), h > 0,

where the function L is slowly varying at zero, in the sense that limx→0
L(tx)
L(x) = 1 for all t > 0. It is

possible that the presence of the function L could bias the NLLS estimates. However, we conjecture

that such bias should typically be small, since, by the properties of slowly varying functions (e.g.,

Bingham et al., 1989), it is possible to find positive constants C1 and C2 such that for all ε > 0

and h sufficiently small,

C1h
2α0+1+ε ≤ γ2(h) ≤ C2h

2α0+1−ε,

indicating that any potential bias in the estimate of α0 can be made arbitrarily small by setting ∆

and m small enough. Developing an asymptotic result for the NLLS estimators under these more

general assumptions is beyond the scope of the present paper. However, we remark that in a series

of simulation studies (not reported here, but available upon request), we found strong evidence for

the conjecture that introducing the function L has only negligible impact on the NLLS estimates

of α0 in settings similar to the one considered in this paper.

The above discussion puts forward two methods for estimation of the roughness parameter α of

log volatility — one based on OLS regression (where the noise in the estimates of IV is ignored) and

another based on NLLS regression. Examples of the OLS regressions for ∆ = 15, 65 minutes are

presented in Figure 2. The plots show that log γ̂∗2(h) is approximately linear in h for small values

of h, which is evidence of the relationship (2.4) holding for time series of log volatility (or, more

accurately, for time series of pre-averaged measures of intraday integrated variance) for these values

of ∆. In Figure 3 we apply both the OLS and the NLLS estimators to the E-mini S&P 500 data to

obtain a signature plot for α, i.e., the estimated value of α is plotted as a function of the step size

∆ (on a log scale). The figure shows that for ∆ < 5 minutes, both estimators produce estimates

that are only very slightly above the lower bound −1
2 , corresponding to maximal roughness. It is

11



plausible that these values are fraught with bias stemming from measurement noise, as explained

above. Indeed, it appears that anything less than 5 minutes is simply too short a time interval to

get reasonably low-noise estimates of IV using the current methodology.

For ∆ between 5 and 10 minutes, however, the NLLS procedure results in estimates of α that are

higher than the corresponding OLS estimates, lying outside the 95% confidence bands of the OLS

estimates. While the bias of the OLS estimates persists, the NLLS procedure is able to mitigate

it, resulting in more credible estimates that are compatible with those obtained with larger values

of ∆. Finally, when ∆ ≥ 15 minutes, both estimators are in good agreement. In particular, the

NLLS estimates now lie within the confidence bands of the OLS estimates. This indicates that

the impact of noise in the estimates of IV is no longer an issue then. Below we will only consider

∆ ≥ 10 minutes, as the two estimators then give roughly the same estimates. Since the OLS

estimator (2.6) is faster, easier to implement, and less noisy in general, we will use this estimator

going forward.

It is worth pointing out that our estimates of α have been computed using time series obtained

by concatenating the volatility proxy data on successive days, ignoring overnight volatility. To

make sure that the estimates of α have not been influenced by the concatenation of the data we

also estimate α within each day, which is feasible when we have enough observations of volatility

per day (when ∆ is less than 15 minutes, say). The results, presented in Figure 4, indicate that the

estimates of α on individual days are consistent with the results on the concatenated data, seen in

Figure 3. In particular, the strong evidence of the roughness of volatility is carried over.

2.3.2 Does roughness change over time?

One may wonder whether the degree of roughness of volatility changes over time. This very question

was also studied by Gatheral et al. (2014), who divided their volatility data into two parts and

found tentative evidence that volatility was less rough during a period that overlapped with the

financial crises of 2008 and 2011.

Our methodology and data allow us to investigate this question more precisely and system-

atically. To this end, we still use transaction data on E-mini S&P 500, but now over a longer

period from January 3, 2005 until December 31, 2014. Figure 5 provides results of rolling-window

estimation of α, where the window length was 10 days, using the OLS regression (2.6) of Section

2.3 and ∆ = 15 minutes for the volatility proxy. We experimented also with different window sizes

and different values of ∆, but the results were rather consistent. Figure 5 additionally displays

the overall median over the entire period, as well as a smoothed version of the estimates. The

figure shows that α does indeed appear to vary in time. In particular, we observe several peaks

of “smoothness” that coincide with periods of market turmoil. The plot indicates the respective

dates of the onset of the subprime mortgage crisis of 2008, the Flash Crash of May 6, 2010, and

the nadir of the Greek debt crisis in 2011, which in essence concur with the peaks of the estimated

value of α.

12
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Figure 2: Estimates of α using the OLS regression (2.6) with m = 6 lags.
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Figure 3: A signature plot for α, where the estimate α̂ is plotted as a function of ∆. Estimation was

done using the OLS regression (2.6) with m = 6 lags (solid blue line with crosses). Confidence bands

(dashed blue lines) are calculated using the bootstrap method of Bennedsen (2016) with B = 999

bootstrap replications. Also shown are estimates using the robust NLLS estimation procedure (solid

red line with circles) as given in (2.9). The leftmost point corresponds to ∆ = 1 minute and the

rightmost point to ∆ = 1 day. Note that the x-axis uses log scale.

While it seems imprudent to to draw any definite conclusions from a single time series, the

findings presented here, together with the empirical evidence of Gatheral et al. (2014), seem to

indicate that volatility exhibits less roughness during periods of market turmoil, possibly due to

more sustained trading occurring in such times (see also Jaisson and Rosenbaum, 2016, for a

microstructure-based theory on the connection between trading and rough volatility).

2.4 Strong persistence of volatility

That volatility is very persistent has long been a well-established fact (e.g., Bollerslev and Wright,

2000; Andersen et al., 2003). A large body of literature has therefore focused on modeling (log)

volatility using long memory models, i.e., volatility models whose autocorrelations decay at a slow
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Figure 4: Daily estimates of α using the OLS regression (2.6) with m = 6 lags.
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Figure 5: Rolling-window estimates of α, as explained in Section 2.3.2. The volatility proxy is

computed using ∆ = 15 minutes and the smoothed version is a simple moving average filter using

75 observations on both sides of the particular estimate. The vertical dashed black lines indicate

three periods of market turmoil: September 15, 2008 (Lehman Brothers filing for bankruptcy at the

onset of the subprime mortgage crisis), May 6, 2010 (the Flash Crash), and October 1, 2011 (in

the midst of the Greek debt crisis), respectively.

polynomial rate:

ρ(h) = Corr(log σt, log σt+h) ∼ c|h|−β, |h| → ∞, (2.10)

for a constant c > 0 and some β ∈ (0,∞). When β ∈ (0, 1), the correlation function ρ is not

integrable, that is,
∫∞

0 |ρ(h)|dh = ∞, and we say that σ = (σt)t≥0 has the long memory property.

Models of log volatility that are able to reproduce the long memory property have been traditionally

built using an fBm with Hurst index H = 1− β/2 ∈ (1/2, 1) as driving noise; see, e.g., Comte and

Renault (1996), Comte (1996), Comte and Renault (1998), and Comte et al. (2012) for literature
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on continuous-time volatility models with long memory.

Paralleling the approach of Section 2.3, the relationship (2.10) provides a basis for semipara-

metric estimation of β via the OLS regression

log ρ̂(h) = a+ b log |h|+ εh, h = M∆, (M + 1)∆, . . . ,M ′∆, (2.11)

where ρ̂(h) is the empirical autocorrelation function at lag h ∈ R, b = −β, and M,M ′ ∈ N are

such that M ′ > M and M∆ is large. Figure 6 presents the OLS regressions of the form (2.11)

with step sizes ∆ = 15, 65 minutes. Further, Figure 7 shows a signature plot for β using the above

estimator, i.e., the estimated value of β is plotted as a function of the step size ∆ (with log scale).

It should be noted that semiparametric estimates of the memory parameter β tend to be somewhat

imprecise. We also found that these estimates were quite dependent on the values chosen for the

thresholds M and M ′. For this reason, we also apply a parametric estimator, obtained by fitting

an autocorrelation function from the Cauchy class,

ρCau(h) =
(
1 + |h|2α+1

)− β
2α+1 , α ∈ (−1/2, 1/2), β > 0, h ∈ R,

to the empirical autocorrelations. As argued in Gneiting and Schlather (2004), processes with this

autocorrelation function obey both (2.5) and (2.10). Further details of the parametric estimation

procedure are presented in Section 5.

As when estimating the roughness parameter α, we endeavor to estimate β in a way that

is robust to the noise introduced by using the pre-averaged measure BV ∗ in place of the actual

integrated variance IV . A similar estimation problem was considered in Hansen and Lunde (2013),

albeit in a different setup. Working again under the stylized assumption (2.7), the autocorrelation

function of the observations is

ρ∗(h) := Corr
(

log σ̂2
t+h, log σ̂2

t

)
=
V ar

(
log
(
∆−1IV ∆

t+h

)
, log

(
∆−1IV ∆

t

))
V ar

(
log
(
∆−1IV ∆

t

))
+ V ar (εt)

≈ ρ(h)

1 + δ2
, (2.12)

where

δ2 =
V ar (εt)

V ar
(
log
(
∆−1IV ∆

t

))
is the noise-to-signal ratio and the approximation in (2.12) again stems from using ∆−1IV ∆

t as a

proxy for σ2
t . Equation (2.12) shows that the OLS estimator (2.11) of β is actually robust to noise,

as the log transformation of ρ∗ entails that the logarithm of the deflating factor (1 + δ2)−1 enters

the regression (2.11) as an additive constant, so that it does not affect the estimation of β. When

employing the parametric estimator, one simply needs to include an intercept in the regression, so

that the function ρ∗Cau(h) := c · ρCau(h), where c ∈ (0, 1] is a constant, instead of ρCau(h) is fitted

to the empirical autocorrelations.6

6We found it to be helpful to work with the logarithm of both the empirical autocorrelations and ρ∗Cau(h) when

implementing the estimation procedure numerically.
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Figure 6: Estimates of β using the OLS regression (2.11) with M = bn1/4c and M ′ = bn1/3c.

100 101 102

∆ (minutes)

0

0.5

1

1.5

β̂

Semiparametric estimates
Parametric estimates
Parametric estimates (robust)

Figure 7: A signature plot for β, where β̂ is plotted as a function of ∆. The semiparametric

estimation was done using the OLS regression (2.11) with M = bn1/4c and M ′ = bn1/3c. The

parametric estimates come from the Cauchy model, as explained in Section 5. The green curve is

the noise-robust parametric estimator, cf. equation (2.12). The leftmost point corresponds to ∆ = 1

minute and the rightmost point to ∆ = 1 day.

In Figure 7, we observe that at very short time scales, volatility has a high degree of persistence

and possibly long memory, with β̂ ≈ 0.10. At longer time scales the semiparametric persistence

estimates weaken somewhat, increasing the estimated values of β. The parametric estimates stabi-

lize, however, as was the case with the roughness estimates, and these indicate that volatility is very

persistent for all values of ∆. Lastly, the difference between the parametric estimates using ρCau

and the noise-robust estimates using ρ∗Cau is practically non-existent, indicating that the impact

of the noisy measurements of IV on the parametric estimates of β, is negligible.

2.5 Non-Gaussianity of log volatility

There is some evidence that increments of log volatility follow a Gaussian distribution. This was

for instance found in the seminal papers by Andersen et al. (2001), Andersen et al. (2001), and

Barndorff-Nielsen and Shephard (2002); see also Gatheral et al. (2014) for a more recent analysis.
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Specifically, these papers examine the empirical distribution of the increments of daily logarithmic

realized variance, and find that a Gaussian distribution fits well to the empirical distribution.

We perform a similar analysis, but we consider also intraday time scales and we fit a normal-

inverse Gaussian (NIG) distribution, which is a flexible distribution with semi-heavy tails, to log

volatility data (see Barndorff-Nielsen, 1997, for details on the NIG distribution and its application

to stochastic volatility modelling). The results, given in Figure 8, suggest that increments of the log

BV ∆∗ statistics at intraday time scales (∆ < 1 day) are clearly leptokurtic, and thus non-Gaussian,

while the NIG distribution, estimated by maximum likelihood, appears to fit quite well. At the

standard time scale of one day, however, we find that, in accordance with the papers cited above, a

Gaussian distribution fits adequately to the log BV ∆∗ data, indicating some kind of aggregational

Gaussianity in log volatility. These findings are confirmed by the QQ plots in Figure 9.

We additionally studied the empirical distributions of the log BV ∆∗ statistics of the 26 blue-

chip US equities whose volatility we analyze below in Section 3. While the detailed results are

available upon request, we found that a significant number of them also exhibit non-Gaussian

behavior of log volatility, even at the longest time scale of one day. The E-mini S&P 500 contract

is very liquid and less volatile compared to most individual equities. Therefore, it seems plausible

that riskier assets, such as equities, display more non-Gaussian volatility, and that the conclusions

about non-Gaussianity of log volatility at intraday time scales apply, a fortiori, also to them.

3 Universal roughness and persistence of volatility: evidence from

close to two thousand equities

Our goal here is to study whether the findings above are only valid for the E-mini S&P 500 futures

contract, or whether they hold true more generally. We therefore study volatility data on a large

number of US equities. The data consist of daily pre-averaged bipower variation measures (i.e.,

BV ∆∗ with ∆ = 1 day), computed using transaction prices obtained from the Trades and Quotes

(TAQ) database.

The data set at our disposal runs from January 4, 1993 to December 31, 2013, while the data

on some assets might begin later than this start date or end earlier than the end date. In total

there are 10 744 assets in the sample, classified into ten industry sectors according to the Global

Industry Classification Standard.7 To make sure that the data are recent, we consider only the

period from January 2, 2003 to December 31, 2013. Additionally, to ensure the reliability of the

volatility estimates, we retain only the most liquid assets. Here, a liquid asset is characterized by

the following criteria.

(a) The asset is traded on at least 400 days.

(b) The maximum number of days when the asset is not traded (on average) every 5 minutes is

7See: https://msci.com/gics
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Figure 8: Kernel density estimates for increments of log volatility, i.e., yk = log(BV ∆∗
k∆ ) −

log(BV ∆∗
∆(k−1)), (solid blue lines), fitted Gaussian distributions (dashed red lines), and fitted NIG
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19.

(c) The estimate BV ∗ of IV is strictly positive on every day.8

After discarding the assets that do not fulfil these criteria, we are left with 1 944 liquid assets for

our analysis.9

The estimates of the roughness parameter α of volatility for the assets in the sample are

summarized in a box plot in Figure 10. A few features of this plot are worth highlighting. Firstly,

the estimates of α are all negative, mostly in the range (−0.45,−0.3), indicating pronounced

roughness. Secondly, there does not seem to be significant differences in the roughness estimates

across sectors.

Turning now to persistence properties, Figure 11 contains box plots of the estimates of β.

As explained above, the semiparametric estimator of β can be inaccurate, and in such a large

8Although IV is by definition never negative, BV ∗ can become negative due to the bias correction term appearing

in its definition (2.3).
9In an earlier version of this paper, available at: https://arxiv.org/1610.00332v1, we employed the realized

kernel estimator of Barndorff-Nielsen et al. (2008), which is guaranteed to be non-negative, enabling us to analyze

5 071 assets. The results therein are very similar to the results of the present paper.
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Figure 9: QQ plots for increments of log volatility, i.e., yk = log(BV ∆∗
k∆ ) − log(BV ∆∗

∆(k−1)). If the

data fits a particular distribution — solid red for the Gaussian distribution, dashed green for the

NIG distribution — the curve will be close to the diagonal solid black line.
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Figure 10: Box plot for α̂ by sector. Bandwidth m = 6.

data set as studied here, we obtained highly dispersed estimates (not reported here). Therefore,

we instead consider the parametric estimator β̂Cauchy based on the Cauchy model as detailed in

Section 5.10 Again, our analysis confirms the findings seen earlier. Indeed, the estimates show that

10We obtained similar results using the estimator β̂BSS derived from the Power-BSS process, also discussed in

Section 5, but for brevity these results are omitted.
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Figure 11: Box plot for β̂Cauchy by sector. Bandwidth L = dn1/3e.

log volatility is very persistent, with estimates of β mainly in the interval (0, 0.4). In particular,

there is compelling evidence of very strong persistence in volatility.

In summary, we find that roughness and persistence of log volatility extends to the volatility of

individual equities as well. Indeed, these properties appear to be universal properties of the (log)

volatility of equities.

4 Models of stochastic volatility that decouple short- and long-

term behavior

Motivated by our empirical findings above, we seek stationary real-valued stochastic processes with

arbitrary roughness index α ∈
(
−1

2 ,
1
2

)
and long-term memory structure that is independent of the

value of α. Given a process X with such properties, we then define our model for volatility as

σt = ξ exp (Xt) , t ≥ 0, (4.1)

where ξ > 0 is a free parameter.

4.1 Models for log volatility

We consider two main candidates for X: the Cauchy process and the so-called Brownian semista-

tionary process. Common to the two processes is that they, in the setting we consider here, both

have two parameters, controlling the short- and long-term behavior, respectively. We will see that

the latter process, in particular, is ideally suited to volatility modeling.

4.1.1 The Cauchy process

A flexible Gaussian process that decouples the short- and long-term behavior can be obtained by

using the Cauchy class of autocorrelation functions (Gneiting and Schlather, 2004). The result-

ing Cauchy process is a centered, stationary Gaussian process G = (Gt)t∈R with autocorrelation
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function

ρ(h) =
(
1 + |h|2α+1

)− β
2α+1 , h ∈ R, (4.2)

where α ∈
(
−1

2 ,
1
2

)
and β > 0. In particular, the process G satisfies (2.4) and (2.10).

However, the limitation of this process, from a modeling point of view, is its inherent Gaus-

sianity. Yet it is possible to go beyond Gaussianity by volatility modulation, that is, by specifying

a process

Xt =

∫ t

0
vsdGs, t ≥ 0, (4.3)

using the Cauchy process G and some additional process v = (vt)t∈R that models the volatility

of volatility. Under suitable assumptions, X will inherit the roughness properties of G, see, e.g.,

Barndorff-Nielsen et al. (2009, Example 3). It is worth stressing that since G is typically a non-

semimartingale — and with parameter values relevant to rough volatility modeling it indeed is —

the stochastic integral in (4.3) cannot be defined as an Itô integral, but pathwise Young integration

(Dudley and Norvaĭsa, 2011) needs to be used, which requires some additional assumptions on the

roughness of v. In the case where the Cauchy process G is rough, these assumptions become rather

restrictive, unfortunately — for example, v cannot be a semimartingale (with non-zero quadratic

variation).

In sum, the Cauchy class provides a convenient model that decouples roughness and memory

properties. Since the Cauchy class is characterized by a closed-form ACF, it is very easy to work

with. Moreover, as we will see in the forecasting experiment below, volatility forecasts derived

using a Cauchy class model perform rather well. However, this class of models is not easy to

extend beyond Gaussianity, which limits its applicability as a model of log volatility, in view of the

results in Section 2.5. Next, we propose a different modeling framework, where non-Gaussianity is

easy to attain.

4.1.2 The Brownian semistationary process

A stochastic process that is able to capture all of our desiderata, consisting of roughness, strong

persistence, stationarity, and non-Gaussianity is the Brownian semistationary process (BSS), which

was introduced in Barndorff-Nielsen and Schmiegel (2007, 2009). This process is defined via the

moving-average representation

Xt =

∫ t

−∞
g(t− s)vsdWs, t ≥ 0, (4.4)

where W = (W )t∈R is a standard Brownian motion defined on R, g : (0,∞) → R is a square-

integrable kernel function, and v = (vt)t∈R is an adapted, covariance-stationary volatility (of

volatility) process. Note that when v is deterministic, X is Gaussian, while a stochastic v makes

21



X non-Gaussian. In particular, when v is independent of W , we have

Xt|(vs)s≤t ∼ N
(

0,

∫ ∞
0

g(x)2v2
t−xdx

)
,

showing that the marginal distribution of Xt is a normal mean-variance mixture with conditional

variance governed by v and g. It is shown in Barndorff-Nielsen et al. (2013) that when g is given by

the so-called gamma kernel (Example 4.2 below), we can choose the normal-inverse Gaussian (NIG)

distribution as the marginal distribution of X. As we saw in Section 2.5, the NIG distribution seems

to fit to the empirical distribution of log volatility very well. This is an encouraging property of

the BSS framework, and using this as a guide to specify a model for volatility of volatility is a

promising approach, but beyond the scope of the present study. We therefore leave such extensions

for future work.

Under the assumptions given above, the process X is already well-defined and covariance-

stationary. For stationarity, integration from −∞ in (4.4) is crucial. We will now introduce

additional assumptions concerning the properties of the kernel function g, which enable us to

derive some theoretical results for X.

(A1) For some α ∈ (−1/2, 1/2)\{0},

g(x) = xαL0(x), x ∈ (0, 1], (4.5)

where the function L0 is continuously differentiable, bounded away from zero, and slowly

varying function at zero in the sense that limx↓0
L0(tx)
L0(x) = 1 for all t > 0.11 Furthermore, the

derivative L′0 of L0 satisfies

|L′0(x)| ≤ C(1 + x−1), x ∈ (0, 1],

for some constant C > 0.

(A2) The function g is continuously differentiable with derivative g′ that is ultimately monotonic

and satisfies
∫∞

1 g′(x)2dx <∞.

(A3) For some λ ≥ 0 and γ ∈ R, such that γ > 1/2 when λ = 0,

g(x) = e−λxx−γL1(x), x ∈ (1,∞), (4.6)

where L1 is slowly varying at infinity and bounded away from zero and ∞ on any finite

interval.

Assumptions (A1) and (A3) refine the earlier standing assumption that g is square-integrable.

Indeed, in the case λ = 0, a simple application of the so-called Potter bounds (Bingham et al., 1989,

Theorem 1.5.6(ii)) shows that α > −1/2 and γ > 1/2 are sufficient conditions for g to be square

11We refer to Bingham et al. (1989) for an extensive treatment of slowly varying (and regularly varying) functions.
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integrable under the specifications (4.5) and (4.6). Similarly, in the case λ > 0, the conditions

α > −1/2 and γ ∈ R, under (4.5) and (4.6), suffice for square integrability. The assumptions (A1),

(A2), and (A3) are similar to those used in Bennedsen et al. (2017), the only difference being that

(A3) is slightly more specific compared to the corresponding assumption in that paper.

The following proposition shows that under assumptions (A1) and (A2), the BSS process X,

defined by (4.4), has α as its roughness index in the sense of Equation (2.4). The result is a

straightforward adaptation of Proposition 2.1 in Bennedsen et al. (2017) and we refer to that

paper for a proof. Below, and in what follows, we denote by ρX the autocorrelation function of X.

Proposition 4.1. If the kernel function g satisfies (A1) and (A2), then

1− ρX(h) ∼

(
1

2α+1 +
∫∞

0

(
(x+ 1)α − xα

)2
dx∫∞

0 g(x)2dx

)
L0(|h|)2|h|2α+1, |h| ↓ 0.

The tail behavior of the kernel function g at infinity, as specified by (A3), controls the long-term

memory properties of X. We consider first the case λ = 0, where the exponential damping factor

in (4.6) disappears. In this case, the parameter γ controls the asymptotic memory properties of

the BSS process X.

Proposition 4.2. Suppose that the kernel function g satisfies (A3), with λ = 0, and
∫ 1

0 g(x)dx <

∞.

(i) If γ ∈ (1,∞), then

ρX(h) ∼
( ∫∞

0 g(x)dx∫∞
0 g(x)2dx

)
L1(|h|)|h|−γ , |h| → ∞.

(ii) If γ ∈ (1/2, 1), then

ρX(h) ∼
(∫∞

0 x−γ(1 + x)−γdx∫∞
0 g(x)2dx

)
L1(|h|)2|h|1−2γ , |h| → ∞.

Remark 4.1. In the critical case γ = 1, the asymptotic behavior of ρX is indeterminate under (A3),

and would require additional assumptions on the slowly varying function L1.

Remark 4.2. It follows from Proposition 4.2 that if the kernel function g satisfies (A3) with λ = 0,

the resulting BSS process will — up to a slowly varying factor — have an autocorrelation function

which decays polynomially as h→∞. Indeed, letting the rate of polynomial decay be denoted by

β as in (2.10), we see that γ = β when γ > 1, while β = 2γ − 1 when γ ∈ (1/2, 1). From this it

also follows that if γ ∈ (1/2, 1), then∫ ∞
0

ρX(h)dh =∞,

i.e., X has the long memory property.
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In contrast to the case λ = 0, the assumption (A3) with λ > 0 allows for models where

autocorrelations decay to zero exponentially fast, leading to short memory, as shown in the following

result.

Proposition 4.3. Suppose that the kernel function g satisfies (A3) with λ > 0 and γ ∈ R, such

that
∫ 1

0 g(x)dx <∞. Then

ρX(h) ∼

(∫∞
0 g(x)e−λxdx∫∞

0 g(x)2dx

)
e−λ|h||h|−γL1(|h|), |h| → ∞.

Remark 4.3. Assumption (A1) is a sufficient condition for the requirement that
∫ 1

0 g(x)dx <∞ in

Propositions 4.2 and 4.3.

An example of a kernel function that satisfies (A1), (A2), and (A3), which will be important

for us later on, is the power law kernel.

Example 4.1 (Power law kernel). Let g be the power law kernel

g(x) = xα(1 + x)−γ−α, x > 0, α ∈
(
−1

2
,
1

2

)
, γ ∈

(
1

2
,∞
)
. (4.7)

Bennedsen et al. (2017, Example 2.2) show that this kernel function indeed satisfies (A1), (A2),

and (A3). In particular, with this kernel function, the BSS process X has roughness index α and

memory properties controlled by γ, as expounded in Proposition 4.2. In the following, we will refer

to the BSS process with the power law kernel as the Power-BSS process.

Later we will need the correlation structure of the Power-BSS process. By covariance-station-

arity of v, the autocovariance function of the general BSS process (4.4) is

cX(h) := Cov(Xt, Xt+h) = E[v2
0]

∫ ∞
0

g(x)g(x+ |h|)dx, h ∈ R. (4.8)

From this we deduce that when g is given as in (4.7) we have

cX(0) := V ar(Xt) = E[v2
0]

∫ ∞
0

x2α(1 + x)−2γ−2αdx

= E[v2
0]B(2α+ 1, 2γ − 1),

where B(x, y) =
∫ 1

0 t
x−1(1− t)y−1dt =

∫∞
0 tx−1(1 + t)−x−ydt is the beta function (e.g., Gradshteyn

and Ryzhik, 2007, formula 8.380.3). To calculate the correlation function ρX(h) = cX(h)/cX(0)

we resort to numerical integration of (4.8). Note that ρX does not depend on E[v2
0].

Another example of a kernel function that satisfies equations (A1), (A2), and (A3), which will

also be important in the sequel, is the gamma kernel.

Example 4.2 (Gamma kernel). Let g be the gamma kernel

g(x) = xαe−λx, x > 0, α ∈
(
−1

2
,
1

2

)
, λ ∈ (0,∞) , (4.9)
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which satisfies (A1), (A2), and (A3), as shown in Bennedsen et al. (2017, Example 2.1). With this

kernel function, the process X has roughness index α and memory properties controlled by λ, as

per Proposition 4.3. In the following, we will call the BSS process with the gamma kernel the

Gamma-BSS process.

We will also need the correlation structure of the Gamma-BSS process. We easily find

cX(0) := V ar(Xt) = E[v2
0]

∫ ∞
0

x2αe−2λdx

= E[v2
0](2λ)−2α−1Γ(2α+ 1),

where Γ(a) =
∫∞

0 xa−1e−xdx is the gamma function. For general h ∈ R, we have the autocovariance

function, using Gradshteyn and Ryzhik (2007, formula 3.383.8),

cX(h) := Cov(Xt+h, Xt) = E[v2
0]

Γ(α+ 1)√
π

(
|h|
2λ

)α+1/2

Kα+1/2(λ|h|),

where Kν(x) is the modified Bessel function of the third kind with index ν, evaluated at x (see

e.g., Gradshteyn and Ryzhik, 2007, section 8.4), and the autocorrelation function can be computed

using the identity ρX(h) = cX(h)/cX(0). We note that cX is the Matérn covariance function

(Matérn, 1960; Handcock and Stein, 1993), which is widely used in many areas of statistics, e.g.,

spatial statistics, geostatistics, and machine learning.

Remark 4.4. These two examples of kernel functions exemplify the theoretical distinction between

long and short memory. In particular, by Proposition 4.3, the Gamma-BSS process adheres to

ρX(h) ∼ c · e−λhhα, h→∞,

i.e., it has short memory, while the Power-BSS process will have polynomially decaying ACF and,

in particular, the long memory property when γ < 1, cf. Remark 4.2. Although, theoretically, the

Gamma-BSS process has short memory, by selecting very small values of λ, it is possible to specify

processes with a very high degree of persistence, mimicking long memory on finite time intervals.

Empirically, these two BSS models allow us to assess if there is any gain from using a model with

bona fide long memory, as opposed to a highly persistent model with (technically) short memory,

in particular in terms of forecasting accuracy.

4.2 Implications for raw volatility

The following results show that when log volatility is a BSS process, the roughness and memory

properties will carry over to the volatility process itself. A result related to Theorem 4.1(i) below

was given in Comte and Renault (1998) in the case where X is an fBm. Our results here are stated

for a Gaussian BSS process, i.e., when vt = v > 0 is constant for all t, but we conjecture that the

results hold also for more general BSS processes, under suitable assumptions.

25



Let σ = (σt)t≥0 be as in (4.1) and

ρ(h) = Corr(σt+h, σt), h ∈ R.

The first part of the following theorem shows that σ inherits the roughness properties of the BSS
process X. The second part shows that the same is true of the long-term memory properties.

Theorem 4.1. Let σ be given by (4.1) where X is a BSS process satisfying (A1), (A2), and (A3),

with vt = v > 0 for all t. Then,

(i) as |h| → 0,

1− ρ(h) ∼ c|h|2α+1L0(|h|).

(ii) as |h| → ∞,

ρ(h) ∼ c · ρX(h).

4.3 Simulation of the stochastic volatility model

Fast and efficient simulation of a stochastic volatility model is advantageous for a number of reasons.

For instance, one might wish to conduct simulation experiments to assess the properties of the

model, or one might wish to price derivatives by Monte Carlo simulation. We discuss here briefly

how our model can be simulated rather easily and efficiently. Effective and efficient simulation

methods for rough volatility models, such as the ones considered in this paper, should not be taken

for granted, however. Rough volatility models are typically non-Markovian, depending on the

entire history of the process, which makes conventional recursive simulation methods inapplicable.

What is more, the possibility of non-Gaussianity of the BSS process poses further problems, as this

rules out simulation methods based on Gaussianity, such as Cholesky factorization and circulant

embedding methods (e.g., Asmussen and Glynn, 2007, Chapter XI).

According to our underlying assumptions, cf. equations (2.1) and (4.1), the model to be simu-

lated is

St = S0 exp

(∫ t

0
σsdBs −

1

2

∫ t

0
σ2
sds

)
,

σt = ξ exp (Xt) ,

where ξ > 0 and X is one of our candidate models for log volatility, presented in Section 4. We can

simulate S on a grid using Riemann-sum approximations of the integrals. To this end, we need to

first simulate B and σ on the same grid, which boils down to simulating B and X. As we typically

want to make these processes correlated, to capture the leverage effect, it is necessary to simulate

B and X jointly.

When X is Gaussian, for instance a Cauchy process or a BSS process with constant volatility,

it can be simulated exactly using, e.g., a Cholesky factorization of the covariance matrix of the
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observations (Asmussen and Glynn, 2007, pp. 311–314). One can additionally compute the covari-

ance structure of the Gaussian bivariate process (B,X) and simulate B and X jointly, and in this

way account for correlation between the two processes. This was the approach taken in Bayer et al.

(2016). However, as the authors also note, the Cholesky factorization is computationally expen-

sive and can become even infeasible if the number of observations to be simulated is very large.

Instead, we recommend using the circulant embedding method (Asmussen and Glynn, 2007, pp.

314–316) in the Gaussian case or the hybrid scheme of Bennedsen et al. (2017) in the general case.

The hybrid scheme is tailor-made for BSS processes and its advantages are that (i) simulation is

fast and in most cases accurate12 (although approximate), (ii) it allows for non-Gaussianity of X

through volatility (of volatility) modulation, and (iii) inclusion of leverage, i.e., correlation between

X and B, is straightforward.

We refer to Bennedsen et al. (2017) for an exposition of the hybrid scheme for the BSS process

X, defined by (4.4), under assumptions (A1), (A2), and (A3). The authors explain in the paper

(Bennedsen et al., 2017, Section 3.1) how to incorporate correlation between v and W , while the

same procedure can be used to introduce correlation between W and B or, indeed, between W , B,

and v.

5 Estimating the models

Estimating the new models presented in Section 4 involves no complications. In particular, α can be

estimated semiparametrically by the OLS regression (2.6) and β, similarly, by (2.11). The memory

parameters γ and λ of the Power- and Gamma-BSS process, respectively, can be estimated by a

method-of-moments procedure, described next.

As mentioned earlier, semiparametric estimation of the memory parameter β using (2.10) can be

somewhat unreliable in finite samples, unfortunately. Therefore, we also estimate β parametrically,

using a method-of-moments approach, by fitting the theoretical autocorrelation function (ACF) of

the model to the empirical ACF. More specifically, we use here the parametric ACFs of the Cauchy

(4.2) and Power-BSS (4.8) processes, respectively.13 One could simultaneously estimate α following

the method-of-moments approach, but simulation results (available upon request) indicate that the

OLS estimator of α is very precise, suggesting that the best performance overall is achieved when α

is first estimated by OLS and then β is estimated by the method of moments. That is, to estimate

the memory parameter, we plug α̂OLS into the theoretical ACF so that it becomes a function of

β (or γ or λ) only, and we then minimize the sum of squared distances between this function and

the empirical ACF ρ̂. We used L = dn1/3e lags in the ACF for this estimation procedure. While

12The hybrid scheme requires truncating the integral representation (4.4) “near” infinity. If the kernel function

has extremely slow decay, this truncation may lead to some loss of accuracy, with regards to the memory properties

of the process.
13In the case of the Power-BSS process, we actually estimate the parameter γ using the method-of-moments

procedure and express the estimate in terms of β using the relationship described in Remark 4.2.
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Table 2: Estimating the models on log and raw volatility
Panel A: Log volatility

∆ α̂OLS 95% CI λ̂BSS 95% CI β̂OLS β̂BSS 95% CI β̂Cauchy 95% CI

10 minutes −0.38 (−0.39,−0.37) 0.12 (0.12, 0.12) 0.19 0.53 (0.52, 0.54) 0.25 (0.24, 0.26)

15 minutes −0.34 (−0.35,−0.33) 0.19 (0.19, 0.20) 0.24 0.70 (0.68, 0.72) 0.33 (0.32, 0.34)

30 minutes −0.30 (−0.32,−0.27) 0.22 (0.20, 0.24) 0.21 0.78 (0.72, 0.83) 0.40 (0.39, 0.41)

65 minutes −0.29 (−0.33,−0.26) 0.16 (0.14, 0.18) 0.23 0.65 (0.60, 0.70) 0.38 (0.36, 0.40)

130 minutes −0.33 (−0.37,−0.28) 0.10 (0.09, 0.10) 0.54 0.52 (0.46, 0.57) 0.33 (0.30, 0.36)

1 day −0.30 (−0.36,−0.24) 0.10 (0.09, 0.11) 1.14 0.61 (0.35, 0.87) 0.41 (0.32, 0.51)

Panel B: Raw volatility

∆ α̂OLS 95% CI λ̂BSS 95% CI β̂OLS β̂BSS 95% CI β̂Cauchy 95% CI

10 minutes −0.40 (−0.51,−0.29) 0.47 (0.43, 0.50) 0.20 1.18 (1.13, 1.24) 0.37 (0.36, 0.39)

15 minutes −0.43 (−0.59,−0.26) 0.24 (0.22, 0.27) 0.18 0.89 (0.81, 0.98) 0.28 (0.27, 0.29)

30 minutes −0.37 (−0.49,−0.24) 0.31 (0.27, 0.36) 0.25 1.03 (0.95, 1.11) 0.43 (0.41, 0.44)

65 minutes −0.40 (−0.54,−0.26) 0.13 (0.12, 0.14) 0.37 0.64 (0.58, 0.70) 0.32 (0.29, 0.34)

130 minutes −0.37 (−0.48,−0.25) 0.11 (0.11, 0.12) 0.74 0.60 (0.50, 0.70) 0.35 (0.31, 0.39)

1 day −0.26 (−0.46,−0.07) 0.17 (0.15, 0.19) 1.57 0.88 (0.43, 1.33) 0.55 (0.40, 0.70)

Estimates of α using the OLS regression (2.6) and of β using the OLS regression (2.11), as well as method-of-

moments estimates obtained by matching the empirical ACF with the theoretical ACF in our three parametric models,

the Cauchy, the Power- and Gamma-BSS models. We used L = dn1/3e lags to estimate the memory parameters

λBSS, βBSS, and βCauchy. The estimate of βBSS is calculated from the estimate of method-of-moments estimate of

γ of the Power-BSS process; that is, when γ̂ > 1, set β̂BSS = γ̂, otherwise set β̂BSS = 2γ̂ − 1.

this choice is somewhat arbitrary, the results were rather robust to alternative choices. See Figure

12 for the fitted ACFs and Section 5.1 below for a discussion of the results.

In Table 2, Panel A, we report the estimates of α, λ, and β for the different models using the data

on log volatility of the E-mini S&P 500 futures contracts, extracted as explained in Section 2.1. In

Sections 2.3 and 2.4, we have already seen the OLS estimates of α and β, indicating roughness and

strong persistence of log volatility, which are corroborated here. Indeed, the parametric estimates

β̂Cauchy using the Cauchy model agree rather well with the semiparametric estimates β̂OLS (apart

from daily frequency). The β̂BSS estimates from the Power-BSS model are a somewhat larger than

β̂OLS and β̂Cauchy, at least for the higher frequencies, but the estimates are still rather small and

less than one in all cases. These results strengthen our confidence in the semiparametric estimates

of β, and underscore the strong persistence of volatility.

Similarly, when we estimate the Gamma-BSS model, which does not have the long memory

property (cf. Remark 4.4), we get estimates of λBSS ranging from 0.0027 to 0.13, which indicates

very slow decay of the ACF.

Lastly, in Table 2, Panel B, we report results from a similar analysis, but now using raw (i.e.,

non-logarithmic) volatility as the data. As suggested by Theorem 4.1, raw volatility largely inherits

the roughness and memory properties of log volatility, cf. Panel A.
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Figure 12: Empirical autocorrelation functions of log volatility (light blue bars and circles) and

fitted ACFs of the Power-BSS (solid red line) and Gamma-BSS (dashed green line) models. We

used L = dn1/3e lags when fitting the ACFs; this corresponds to the rightmost point of each plot.

5.1 The autocorrelation of (log) volatility

We plot the ACFs of the estimated BSS models together with the empirical ACFs of log volatility

data in Figure 12. We observe that the models fit to the empirical ACFs very well indeed. Although

this might not be surprising considering the estimation procedure, it is nonetheless a desirable

feature of the BSS models that they have such tractable and flexible autocorrelation functions.

We also observe that there is no discernible difference between the goodness of fit of the Power-

BSS model and that of the Gamma-BSS model. If anything, the latter fits the data slightly better.

This indicates that we are not able to confirm that log volatility has the long memory property,

as has been sometimes suggested in the literature, by inspecting the fit of the ACF. Indeed, the

explanation by Gatheral et al. (2014) that this might simply be “spurious” long memory remains

plausible. The model with exponentially decaying (and therefore summable) ACF fits the data at

least as well as the model with proper long memory, a property that in fact extends beyond the

lags displayed in Figure 12.

5.2 Estimating the models on volatility data on 26 major equities

To further assess the different models introduced above and their estimates, we also apply the

models to a number of individual equities. More precisely, we analyze a subset of 26 assets extracted
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from the pool of 1 944 US equities studied in Section 3. We select 26 blue-chip equities identified by

their ticker symbols in Table 3. The data cover the period from January 2, 2003 to December 31,

2013, excluding weekends and public holidays. For some equities, some days have been discarded

due to limited trading during the day. All in all, we have slightly more than 3 000 observations per

asset.

Table 3 presents also the estimates of the parameters, in a similar fashion as in Section 5, and

the results parallel the earlier findings. Indeed, we find that volatility is rough with an average

roughness parameter estimate of −0.35. Interestingly, the estimates of α do not seem to vary much

from asset to asset, indicating that α ≈ −0.35 is a reasonable estimate for the roughness index

of daily volatility for most equities in our sample. This is also consistent with what was found in

Gatheral et al. (2014). Also, like with E-mini S&P 500 data, we see a high degree of persistence

in volatility. The average estimate of the parameter λ in the Gamma-BSS model is just 0.0038,

while the average estimates of the memory parameters βOLS , βBSS , and βCauchy are 0.13, 0.15,

and 0.11, respectively.

6 Application to volatility forecasting

In this section we apply the BSS and Cauchy models to forecast intraday volatility of the E-

mini S&P 500 futures contract, comparing the results with a number of benchmark models. The

benchmark models can roughly be divided into three categories:

(i) standard models,

(ii) highly persistent models (possibly with long memory),

(iii) rough volatility models.

The category (i) consists of the random walk (RW), autoregressive models (AR) and an

ARMA(1, 1) model; (ii) of the (log) heterogeneous autoregressive (log-HAR) model of Corsi (2009)

as well as two ARFIMA models; (iii) contains only the rough fractional stochastic volatility (RFSV)

model of Gatheral et al. (2014). As for the models suggested in this paper, we consider the Cauchy

process and the Power-BSS and Gamma-BSS models. As discussed above, these three processes

all decouple long- and short-term behavioral characteristics, so with suitable parameter values,

they can be seen as members of both (ii) and (iii).14

The ARMA and ARFIMA models were estimated by maximum likelihood.15 The AR models,

as well as the log-HAR model, were estimated by OLS. We apply an intraday adaptation of the

14While the BSS models are initially defined in continuous time for the log volatility process Xt = log(σt/ξ),

t ≥ 0, cf. equation (4.1), we can apply them, or rather their correlation structure, here in discrete time to forecast

IV via its estimate BV ∆∗, as motivated by the approximation of σt by σ̂2
t = ∆−1ÎV

∆

t , cf. equation (2.2).
15The ARMA model was estimated and forecasted using the MFE toolbox of Kevin Sheppard, see: https:

//www.kevinsheppard.com. The ARFIMA models were estimated and forecasted using the MATLAB package

“ARFIMA(p,d,q) estimator” available from MATLAB Central.
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Table 3: Estimating the models on daily log BV ∗ measures of individual US stocks

Asset n α̂OLS 95% CI λ̂BSS 95% CI β̂OLS β̂BSS 95% CI β̂Cau 95% CI

×102 ×102

AA 3273 −0.35 (−0.37,−0.33) 0.29 (0.27, 0.30) 0.11 0.15 (−0.94, 1.24) 0.11 (0.10, 0.11)

AIG 3273 −0.31 (−0.34,−0.28) 0.23 (0.21, 0.24) 0.09 0.16 (−1.18, 1.51) 0.08 (0.07, 0.08)

AXP 3273 −0.34 (−0.36,−0.31) 0.09 (0.09, 0.09) 0.07 0.15 (−1.44, 1.75) 0.07 (0.06, 0.07)

BA 3273 −0.37 (−0.39,−0.35) 0.35 (0.33, 0.37) 0.14 0.14 (−0.75, 1.04) 0.12 (0.12, 0.13)

BAC 3273 −0.30 (−0.32,−0.27) 0.21 (0.19, 0.23) 0.06 0.16 (−1.22, 1.55) 0.07 (0.07, 0.07)

C 3273 −0.29 (−0.31,−0.26) 0.32 (0.30, 0.35) 0.06 0.17 (−1.08, 1.41) 0.08 (0.08, 0.08)

CAT 3273 −0.36 (−0.38,−0.34) 0.18 (0.18, 0.19) 0.13 0.15 (−1.10, 1.39) 0.10 (0.09, 0.10)

CVX 3273 −0.33 (−0.35,−0.31) 0.46 (0.45, 0.48) 0.16 0.16 (−0.80, 1.11) 0.12 (0.11, 0.12)

DD 3273 −0.35 (−0.37,−0.33) 0.38 (0.37, 0.39) 0.17 0.15 (−0.81, 1.12) 0.12 (0.11, 0.13)

DIS 3273 −0.34 (−0.37,−0.31) 0.50 (0.47, 0.54) 0.12 0.15 (−0.69, 1.00) 0.13 (0.12, 0.13)

GE 3273 −0.34 (−0.36,−0.32) 0.19 (0.18, 0.19) 0.11 0.15 (−1.17, 1.47) 0.09 (0.08, 0.09)

HD 3273 −0.36 (−0.38,−0.33) 0.21 (0.20, 0.22) 0.10 0.15 (−1.05, 1.35) 0.10 (0.10, 0.10)

IBM 3273 −0.35 (−0.37,−0.33) 0.45 (0.44, 0.47) 0.19 0.15 (−0.72, 1.02) 0.13 (0.12, 0.13)

INTC 3273 −0.33 (−0.35,−0.31) 0.77 (0.71, 0.82) 0.17 0.16 (−0.48, 0.80) 0.14 (0.14, 0.15)

JNJ 3273 −0.36 (−0.39,−0.34) 0.45 (0.43, 0.47) 0.19 0.15 (−0.66, 0.95) 0.13 (0.12, 0.14)

JPM 3273 −0.31 (−0.34,−0.27) 0.28 (0.27, 0.30) 0.09 0.16 (−1.09, 1.42) 0.08 (0.08, 0.09)

KO 3273 −0.36 (−0.38,−0.33) 0.56 (0.52, 0.60) 0.14 0.15 (−0.55, 0.85) 0.14 (0.13, 0.15)

MCD 3273 −0.39 (−0.41,−0.37) 0.09 (0.09, 0.10) 0.08 0.13 (−1.26, 1.53) 0.09 (0.09, 0.10)

MMM 3273 −0.34 (−0.37,−0.32) 0.57 (0.54, 0.60) 0.18 0.15 (−0.60, 0.91) 0.13 (0.13, 0.14)

MRK 3273 −0.36 (−0.39,−0.33) 0.52 (0.50, 0.55) 0.17 0.15 (−0.57, 0.86) 0.14 (0.13, 0.15)

MSFT 3274 −0.35 (−0.37,−0.33) 0.56 (0.54, 0.58) 0.19 0.15 (−0.58, 0.88) 0.14 (0.13, 0.15)

PG 3273 −0.36 (−0.40,−0.33) 0.62 (0.60, 0.64) 0.20 0.15 (−0.46, 0.76) 0.15 (0.14, 0.16)

UTX 3273 −0.35 (−0.38,−0.33) 0.54 (0.51, 0.56) 0.15 0.15 (−0.59, 0.89) 0.14 (0.13, 0.14)

VZ 3273 −0.36 (−0.38,−0.33) 0.38 (0.36, 0.41) 0.12 0.15 (−0.78, 1.07) 0.12 (0.12, 0.13)

WMT 3273 −0.38 (−0.40,−0.35) 0.25 (0.24, 0.26) 0.14 0.14 (−0.89, 1.18) 0.11 (0.11, 0.12)

XOM 3273 −0.33 (−0.35,−0.31) 0.61 (0.59, 0.63) 0.20 0.16 (−0.65, 0.97) 0.13 (0.12, 0.14)

Avg −0.35 0.38 0.13 0.15 0.11

Estimates of α using the OLS regression (2.6) and of β using the OLS regression (2.11) as well as method-of-

moments estimates obtained by matching the empirical ACF with the theoretical ACF in our three parametric models,

the Cauchy, Power- and Gamma-BSS models. The estimates of λ have been multiplied by 100. The data consist

of estimated daily log volatility measures on 26 major equities traded on the US market, as indicated by their ticker

symbols. The last row, ”Avg”, provides the average parameter estimate across all assets.
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standard log-HAR model. The time periods used in constructing the HAR regressors are still one

day, one week, and one month, respectively, but the regressors need to be adapted to the step size

∆, which may now be less than a day. More precisely, our log-HAR regression is

log
(
BV ∆∗

t+∆h

)
= a0 + a1 log

(
BV ∆∗

t

)
+ a2 log

(
BV ∆∗,day

t

)
+ a3 log

(
BV ∆∗,week

t

)
(6.1)

+ a4 log
(
BV ∆∗,month

t

)
+ εt+∆h,

where

BV ∆∗,x
t :=

1

q

q−1∑
k=0

BV ∆∗
t−k∆, x = day,week,month,

and q is an integer such that q∆ = x. For instance, when ∆ = 65 minutes then q = 6 for x = day

(6 periods of 65 minutes during a trading day) whereas q = 30 for x = week (5 trading days, each

consisting of 6 periods, in a week).16

The estimate of the Hurst index H in the RFSV model is derived via Ĥ = α̂OLS + 0.5, and for

the Cauchy and BSS processes we use the parametric estimates of β, γ, and λ along with α̂OLS .

Forecasting the AR and log-HAR models is standard. To forecast the RFSV model, we use the

the following approximation (cf. Gatheral et al., 2014, equation (5.1))

E
[

log σ2
t+h∆

∣∣Ft]
≈ cos(Hπ)

π
(h∆)H+1/2

∫ t

−∞

log σ2
s

(t− s+ h∆)(t− s)H+1/2
ds

=
cos(Hπ)

π
(h∆)H+1/2

∞∑
j=1

∫ t−(j−1)∆

t−j∆

log σ2
s

(t− s+ h∆)(t− s)H+1/2
ds

≈ cos(Hπ)

π
(h∆)H+1/2

∞∑
j=1

log σ2
t−(j−1)∆

∫ t−(j−1)∆

t−j∆

1

(t− s+ h∆)(t− s)H+1/2
ds,

where Ft is the information set (σ-algebra) generated by the fBm driving the model up to time t.

The integrals are approximated by Riemann sums.

To forecast the Cauchy and BSS processes we rely on the elementary result that for a zero-

mean Gaussian random vector (xt+h, xt, xt−1, . . . , xt−m)T the distribution of xt+h conditionally on

(xt, xt−1, . . . , xt−m)T = a ∈ Rm+1 is

xt+h|
{

(xt, xt−1, . . . , xt−m)T = a
}
∼ N(µ, ξ2),

where

µ = Γ12Γ−1
22 a,

16Although not indicated here, in the variables entering the log-HAR model, all pre-averaged estimates of integrated

variance are de-seasonalized when we estimate and forecast the model for ∆ < 1 day. The seasonal factor is re-

introduced after estimation and forecasting.
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with Γ22 being the correlation matrix of the vector (xt, xt−1, . . . , xt−m)T , and

Γ12 := (Corr(xt+h, xt), Corr(xt+h, xt−1), . . . , Corr(xt+h, xt−m)) .

Since the processes we consider here are stationary, the variance ξ2 of the conditional distribu-

tion is

ξ2 = V ar(xt)
(
1− Γ12Γ−1

22 Γ21

)
,

where Γ21 = ΓT12.

To implement this procedure for the Cauchy and BSS models, we assume Gaussianity of the

process and use these results, where the correlation matrices and vectors above are calculated

from the theoretical correlation structure of the process in question, implied by the estimated

parameters. When forecasting log volatility, only the conditional mean µ needs to be calculated.

However, as we will argue in the next section, the conditional variance term ξ2 will be important

in forecasting raw volatility. These results rely on X having mean zero, so in our forecasting

experiment we de-mean the data before conducting the experiment.17

6.1 Forecasting intraday integrated variance

The previous section lays out methods of forecasting log volatility or, equivalently, the process

X, cf. equation (4.1). However, it is in practice more relevant to forecast raw volatility. Before

presenting the forecasting results for this quantity, we briefly explain our approach.

As we are now interested in E[exp(Xt+∆)|Ft], instead of exp(E[Xt+∆|Ft]), it is worth reminding

that it is a flawed strategy to simply forecast log volatility as above and then exponentiate the

forecast. Indeed, by Jensen’s inequality we know this approach to be biased. However, we can

often correct the exponentiated forecasts following a simple approach. For the BSS and Cauchy

models we follow the strategy of the preceding section. That is, if we again assume Gaussianity,

we have

E[exp(Xt+∆)|Ft] = exp

(
E[Xt+∆|Ft] +

1

2
V ar[Xt+∆|Ft]

)
. (6.2)

We will then approximate the former term in the exponential function by µ and the latter by 1
2ξ

2.

Note that ξ2 depends on the (stationary) variance of the process, V ar(xt); this factor we simply

estimate from the (unconditional) variance of the time series being forecasted.

As for the other models, Gatheral et al. (2014) proposed a similar correction to their RFSV

model (see Gatheral et al., 2014, Section 5.2), which we use in the following. As the log-HAR model

is estimated by OLS using the log BV ∆∗ data, cf. equation (6.1), we exponentiate these estimates

and make a correction similar to (6.2), where the variance factor is estimated as the variance of

the error term in the OLS regression (6.1). The remaining models are estimated using directly the

raw (de-seasonalized) BV ∆∗ data, so no correction is needed.

17In our model for volatility, this de-meaning essentially means removing the term log ξ, cf. equation (4.1). We

reintroduce this term after forecasting X.
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6.1.1 Forecast setup

We use the methodology described above to forecast integrated variance, as this is most often the

object of interest in applications. Since integrated variance is not actually observable, as a feasible

forecast object (FO) we use

FOt(∆, h) :=
h∑
k=1

BV ∆∗
t+k∆ ≈

∫ t+h∆

t
σ2
sds, h = 1, 2, 5, 10, 20, (6.3)

where BV ∆∗
t is the estimated value of integrated variance using the pre-averaged bipower variation

estimator, cf. Section 2.1.

To forecast the FO in (6.3), we compute the h individual components, σ̂2
t+k∆|t, k = 1, . . . , h,

multiply by ∆ and the seasonal component, and sum them up:

F̂Ot(∆, h) =
h∑
k=1

σ̂2
t+k∆|t

(
σst+k∆

)2
∆,

where σst is the (deterministic) seasonal component of volatility we extracted in the preliminary

step of our analysis, as explained in Section 2.1, and σ̂2
t+k∆|t is the forecast of volatility, as detailed

above.18

In the forecasting experiments we consider various step sizes ∆, ranging from 15 minutes to

1 day, and various forecast horizons h ∈ {1, 2, 5, 10, 20}. We start the estimation after an initial

period of m ∈ N time steps and compare the performance of the forecasts using two different loss

functions:

• Mean Squared Error (MSE):

MSE(∆, h) = 1
n−h−m+1

∑n−h
t=m

∣∣∣F̂Ot(∆, h)− FOt(∆, h)
∣∣∣2,

• “Quasi-likelihood” (QLIKE):

QLIKE(∆, h) = 1
n−h−m+1

∑n−h
t=m

(
log F̂Ot(∆, h) + FOt(∆,h)

F̂Ot(∆,h)

)
.

As discussed in Section 2.1, the the pre-averaged estimate BV ∆∗, our FO, is a noisy estimate

of integrated variance, but Patton (2011) shows that the MSE and QLIKE loss functions still yield

consistent rankings of the forecasting models even for integrated variance, in spite of the noisy

estimates used to evaluate the loss functions. We calculate MSE, QLIKE, and also the model

confidence set (MCS) of Hansen et al. (2011), which is a procedure to construct a “set of best

models” with a certain probability, as measured by the specific loss function in question, that

avoids the problems that arise from doing multiple comparisons by pairwise tests. For instance,

18To keep the procedure realistic, in the out-of-sample experiment discussed below, the seasonal component is

estimated in a non-anticipative fashion, using only the observations that would be available at the time when the

forecast is produced.
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the best model is contained in the 90% MCS — when understood as a random set — with 90%

probability. In the tables below, the models included in the MCS are denoted by grey background;

the dark grey color corresponds to models in the 75% MCS, while the light grey color corresponds

to models in the 90% MCS. The model that minimizes the loss is given in bold.

We set up our forecasting experiment so that it is realistic and mirrors the situation a prac-

titioner would face if they were to forecast intraday volatility. At time t, we use only the data

observed so far to estimate the models and forecast h steps ahead, for h = 1, 2, 5, 10, 20. We then

move one step forward in time, to t+ ∆, re-estimate the models, to allow for time variation in the

parameters, and compute new forecasts h steps ahead. In re-estimation, we used a rolling window

of 200 observations. While this window length is somewhat arbitrary, brief experimentation with

other window lengths suggested that our results are not particularly dependent on this choice.

We assess the forecasting performance of the different models over two time periods using the

E-mini S&P 500 data set. First we forecast over a long out-of-sample period from from January

3, 2005 to December 31, 2014, using the the entire data set at our disposal (cf. Section 2.3.2,

where we presented evidence of the roughness parameter varying in time). This period contains

a couple of abrupt market crashes (e.g., the Lehman Brothers bankruptcy and Flash Crash),

precipitated by circumstances that would have been hard to predict by virtually any model based

on historical data. We observed that failing to forecast the volatility bursts during such episodes

leads to disproportionately large losses with both MSE and QLIKE, and especially with MSE,

these individual losses can represent a significant proportion of the total loss. This phenomenon

also affects the MCS procedure, which would not be very selective over this long out-of-sample

period. For this reason, we also experiment with another, shorter out-of-sample period from from

January 2, 2013 to December 31, 2014. Volatility over this period is less pronounced, exemplifying

“non-stressed” market conditions. (Recall that we initially studied this period in Section 2.)

6.1.2 Results of out-of-sample forecasting experiment

Figure 13 plots the cumulative QLIKE losses for select models in the case of forecasting intraday

(∆ = 15 minutes) integrated variance over the long out-of-sample period from 2005 to 2014. We

employ the QLIKE loss function since it is less prone to exaggerating the impact of large forecast

errors than MSE (Patton, 2011). We present our results on the cumulative losses relative to those

arising when the Gamma-BSS model is used. More precisely, the graphs present, as a function of

time t,

Cumulative QLIKE (vs. Gamma-BSS)xt :=

bt/∆c∑
k=1

(QLIKE(x)k −QLIKE(Gamma-BSS)k) ,

where x ∈ {HAR,RFSV,Cauchy,Power-BSS} denotes the model being compared to the Gamma-

BSS model, and QLIKE(x)k stands for the k-th loss using model x. With this definition, positive

numbers indicate that the model performs worse than the Gamma-BSS model and vice versa for
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Figure 13: Cumulative QLIKE forecast errors through time. Here, h is the forecast horizon (i.e.,

volatility is forecasted over a time interval of length h∆) and ∆ = 15 minutes.

negative numbers.

We observe that both the Gamma-BSS and especially the Power-BSS models perform well

over the entire period. Interestingly, as the forecasting horizon h is increased, the Cauchy model

performs better relative to the Gamma-BSS model, suggesting that the long memory property of

the Cauchy model, which is absent from the Gamma-BSS model, becomes relevant.

Turning now to the shorter out-of-sample period from January 2, 2013 to December 31, 2014

that represents calm market conditions, we present more detailed forecasting results for ∆ =

15, 30, 65 minutes and ∆ = 1 day in Tables 4 and 5. There, a boldface number identifies the model

with the smallest loss, while light grey background highlights the models in the 90% MCS and dark

grey background those in the 75% MCS. The models proposed in this paper generally outperform

the benchmarks over this period. Indeed, in most cases either the Cauchy or the Power-BSS
model has the lowest MSE and QLIKE losses. Further, these two models are very often in the
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75% MCS. These findings are most convincing for the intraday values of ∆, while, interestingly,

RFSV turns out to be the best performing model when ∆ = 1 day. (Unfortunately, the MCS is

not very selective in this case, at least when using MSE as the loss function.) This result agrees

with Gatheral et al. (2014), where the authors demonstrated that the RFSV model can outperform

a range of benchmark models when forecasting daily integrated variance one step ahead. All in

all, these results suggest that it is in general advantageous to exploit the roughness of volatility in

forecasting, and at intraday time scales, careful modeling of persistence can further improve the

quality of forecasts.

7 Conclusions and further research

In this paper, we have presented a thorough investigation of the empirical characteristics of volatil-

ity, focusing especially on intraday time scales. Having examined intraday volatility measurements

on the E-mini S&P 500 futures contract, we can conclude that volatility is rough, highly persistent ,

and often has slightly heavier tails than the lognormal distribution.

Moreover, by also looking at volatility measurements on almost two thousand individual US

equities, we corroborated these findings, suggesting that both roughness and strong persistence are

universal features of financial market volatility.

We have also presented stochastic models that are able to capture the key empirical features

we find in the data. In particular, we advocate using a stochastic process that decouples short- and

long-term behavior to model log volatility. Our results indicate that the Brownian semistationary

process is an ideal model for this purpose. We illustrated one of the practical advantages of such a

model in a forecasting experiment and found that the model, with just two parameters controlling

the short- and long-term behavior, respectively, outperforms the benchmark models in almost all

scenarios, particularly at intraday time scales.

We believe that the models we have presented here can be utilized in a wide range of appli-

cations, beyond the ones seen in this paper. For instance, we think that they should be useful

in some areas of pricing and hedging of financial derivatives, as well as in forecasting (intraday)

value-at-risk and optimal execution. We leave such extensions for future work, but remark that

related work has already begun in Bayer et al. (2016), where the authors study option pricing and

smile modeling under rough volatility models, i.e., models closely related to the ones considered in

the present work.
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Table 4: Out-of-sample forecasting of intraday integrated variance
Panel A: ∆ = 15 minutes

h = 1 h = 2 h = 5 h = 10 h = 20

MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE

×1011 ×1011 ×1010 ×109 ×108

RW 0.229 −12.883 0.733 −12.153 0.471 −11.147 0.245 −10.355 0.102 −9.553

AR5 0.178 −12.928 0.472 −12.214 0.220 −11.252 0.079 −10.509 0.027 −9.754

AR10 0.187 −12.931 0.494 −12.217 0.226 −11.257 0.077 −10.514 0.027 −9.760

ARMA(1,1) 0.159 −12.932 0.433 −12.217 0.203 −11.255 0.074 −10.509 0.027 −9.748

log-HAR3 0.149 −12.941 0.408 −12.225 0.198 −11.260 0.079 −10.512 0.038 −9.745

ARFIMA(0, d, 0) 0.145 −12.937 0.393 −12.222 0.176 −11.262 0.059 −10.522 0.021 −9.772

RFSV 0.145 −12.947 0.384 −12.232 0.170 −11.268 0.057 −10.525 0.020 −9.774

Cauchy 0.143 −12.948 0.382 −12.234 0.164 −11.274 0.053 −10.533 0.019 −9.783
Power-BSS 0.142 −12.950 0.377 −12.235 0.163 −11.274 0.053 −10.533 0.019 −9.783

Gamma-BSS 0.142 −12.949 0.377 −12.234 0.164 −11.273 0.054 −10.531 0.019 −9.780

Panel B: ∆ = 30 minutes

h = 1 h = 2 h = 5 h = 10 h = 20

MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE

×1011 ×1010 ×109 ×109 ×108

RW 0.596 −12.181 0.220 −11.435 0.170 −10.404 0.612 −9.617 0.264 −8.874

AR5 0.500 −12.213 0.154 −11.490 0.074 −10.512 0.259 −9.758 0.113 −9.037

AR10 0.501 −12.214 0.151 −11.491 0.073 −10.513 0.262 −9.761 0.117 −9.043

ARMA(1,1) 0.459 −12.215 0.142 −11.492 0.073 −10.511 0.261 −9.753 0.119 −9.023

log-HAR3 0.433 −12.227 0.131 −11.501 0.070 −10.517 0.300 −9.762 0.160 −9.032

ARFIMA(0, d, 0) 0.432 −12.222 0.129 −11.498 0.062 −10.522 0.218 −9.772 0.088 −9.055

RFSV 0.438 −12.230 0.128 −11.504 0.060 −10.523 0.206 −9.772 0.089 −9.059

Cauchy 0.418 −12.229 0.122 −11.506 0.057 −10.530 0.199 −9.781 0.080 −9.067
Power-BSS 0.416 −12.231 0.122 −11.506 0.057 −10.529 0.199 −9.780 0.081 −9.065

Gamma-BSS 0.418 −12.230 0.124 −11.504 0.059 −10.526 0.205 −9.776 0.085 −9.059

Out-of-sample Mean Squared Forecast Error (MSE) and QLIKE for all models considered in the paper. Forecasting period: January 2, 2013, to December 31,

2014. Bold numbers indicate the model with the smallest forecast error (column-wise). The forecast object is the sum of realized kernels (6.3), approximating

integrated variance, as explained in the text. We vary the step size ∆ and the forecast horizon h. Grey cells indicate models which are in the Model Confidence

Set (column-wise); the dark grey denotes the 75% MCS, while the light grey denotes the 90% MCS. The MCS uses a block bootstrap method with 25 000 bootstrap

replications and a block length of 6 time steps.
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Table 5: Out-of-sample forecasting of intraday integrated variance
Panel A: ∆ = 65 minutes

h = 1 h = 2 h = 5 h = 10 h = 20

MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE

×1010 ×109 ×109 ×108 ×107

RW 0.314 −11.355 0.147 −10.579 0.675 −9.557 0.297 −8.822 0.127 −8.079

AR5 0.237 −11.389 0.074 −10.648 0.367 −9.659 0.158 −8.947 0.078 −8.226

AR10 0.247 −11.337 0.076 −10.615 0.378 −9.661 0.178 −8.949 0.093 −8.226

ARMA(1,1) 0.221 −11.390 0.071 −10.649 0.347 −9.656 0.154 −8.935 0.078 −8.206

log-HAR3 0.207 −11.404 0.067 −10.657 0.370 −9.662 0.178 −8.938 0.104 −8.189

ARFIMA(0, d, 0) 0.205 −11.397 0.063 −10.658 0.302 −9.673 0.116 −8.960 0.047 −8.240

RFSV 0.201 −11.409 0.062 −10.664 0.281 −9.676 0.109 −8.966 0.047 −8.250
Cauchy 0.199 −11.406 0.059 −10.668 0.285 −9.683 0.108 −8.970 0.043 −8.248

Power-BSS 0.195 −11.409 0.058 −10.668 0.279 −9.682 0.107 −8.970 0.044 −8.247

Gamma-BSS 0.197 −11.407 0.059 −10.665 0.282 −9.679 0.109 −8.967 0.046 −8.242

Panel B: ∆ = 1 day

h = 1 h = 2 h = 5 h = 10 h = 20

MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE

×109 ×108 ×107 ×106 ×105

RW 0.614 −9.491 0.253 −8.783 0.170 −7.818 0.076 −7.045 0.035 −6.218

AR5 0.717 −9.531 0.326 −8.826 0.179 −7.882 0.053 −7.146 0.013 −6.405

AR10 0.729 −8.717 0.338 −7.976 0.185 −7.876 0.055 −7.142 0.014 −6.403

ARMA(1,1) 0.621 −9.537 0.266 −8.831 0.232 −7.883 0.189 −7.146 0.496 −6.400

log-HAR3 0.506 −9.543 0.179 −8.838 0.096 −7.890 0.034 −7.154 0.011 −6.403

ARFIMA(0, d, 0) 0.542 −9.537 0.191 −8.830 0.104 −7.881 0.038 −7.144 0.013 −6.395

RFSV 0.493 −9.546 0.171 −8.843 0.091 −7.898 0.034 −7.160 0.014 −6.402

Cauchy 0.579 −9.537 0.195 −8.831 0.098 −7.884 0.034 −7.151 0.011 −6.401

Power-BSS 0.545 −9.543 0.186 −8.837 0.095 −7.889 0.033 −7.154 0.011 −6.405

Gamma-BSS 0.513 −9.547 0.176 −8.842 0.091 −7.895 0.032 −7.159 0.010 −6.412

Out-of-sample Mean Squared Forecast Error (MSE) and QLIKE for all models considered in the paper. Forecasting period: January 2, 2013, to December 31,

2014. Bold numbers indicate the model with the smallest forecast error (column-wise). The forecast object is the sum of realized kernels (6.3), approximating

integrated variance, as explained in the text. We vary the step size ∆ and the forecast horizon h. Grey cells indicate models which are in the Model Confidence

Set (column-wise); the dark grey denotes the 75% MCS, while the light grey denotes the 90% MCS. The MCS uses a block bootstrap method with 25 000 bootstrap

replications and a block length of 6 time steps.
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A Proofs

Proof of Theorem 2.1. Let

Qn(θ) = Qn(a, b, α) :=

m∑
k=1

(
γ̂∗2(k∆)− a− b(k∆)2α+1

)2
,
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and

Q(θ) = Q(a, b, α) :=

m∑
k=1

(
a0 + b0(k∆)2α0+1 − a− b(k∆)2α+1

)2
,

where a0 := 2σ2
u. Since, by the assumptions on X and Z, γ̂∗2(k∆) is a consistent estimator of

a0 + b0(k∆)2α0+1, it is not hard to show that

sup
θ∈Θ
|Qn(θ)−Q(θ)| → 0, n→∞. (A.1)

Because m ≥ 3, θ0 := (a0, b0, α0) is the unique minimizer of Q(θ) (in fact Q(θ0) = 0), the rest of

the proof therefore follows standard arguments, which we give here for completeness.

Let ε > 0. For n sufficiently large, we have, because of the uniform convergence (A.1), that

|Q(θ̂)−Qn(θ̂)| < ε.

Using first that Q(θ0) = 0, then that θ̂ minimizes Qn(θ), and finally the uniform convergence (A.1)

again, it holds that

|Qn(θ̂)−Q(θ0)| = Qn(θ̂) ≤ Qn(θ0) < ε,

for n sufficiently large. Let B be an open neighborhood of θ0. Now,

P(θ̂ ∈ Bc ∩Θ) ≤ P(|Q(θ̂)−Q(θ0)| > 0)

≤ P(|Q(θ̂)−Qn(θ̂)|+ |Qn(θ̂)−Q(θ0)| > 0)

→ 0, n→∞,

by the results above, since ε > 0 was arbitrary.

A.1 Proofs of Propositions 4.2 and 4.3

Recall first that we can write

ρX(h) =

∫∞
0 g(x)g(x+ |h|)dx∫∞

0 g(x)2dx
, h ∈ R. (A.2)

Proof of Proposition 4.2. (i) We may assume that h > 1, since we let h→∞. By the assumption

(A3), we may write∫ ∞
0

g(x)g(x+ h)dx =

∫ ∞
0

g(x)(x+ h)−γL1(x+ h)dx

= h−γL1(h)

∫ ∞
0

g(x)(x/h+ 1)−γ
L1(x+ h)

L(h)
dx

= h−γL1(h)

∫ ∞
0

g(x)(x/h+ 1)−γ
L1(h(x/h+ 1))

L(h)
dx
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∼ h−γL1(h)

∫ ∞
0

g(x)dx, h→∞,

using the properties of slowly varying functions and where we applied the dominated convergence

theorem, which is valid since for all ε > 0 and large enough h,

g(x)
L1 ((x/h+ 1)h)

L1(h)
< g(x)(1 + ε), x ∈ (0,∞),

which is integrable over (0, 1) by assumption and over [1,∞) since γ > 1.

(ii) Let first∫ ∞
0

g(x)g(x+ h)dx =

∫ 1

0
g(x)(x+ h)−γL1(x+ h)dx

+

∫ ∞
1

x−γ(x+ h)−γL1(x)L1(x+ h)dx

=:I1,h + I2,h,

where

I1,h =

∫ 1

0
g(x)(x+ h)−γL1(x+ h)dx,

I2,h =

∫ ∞
1

x−γ(x+ h)−γL1(x)L1(x+ h)dx.

We may write

I2,h = h−γ
∫ ∞

1
x−γ

(
1 +

x

h

)−γ
L1(x)L1(x+ h)dx

= h−2γ+1L1(h)2

∫ ∞
1/h

y−γ(1 + y)−γ
L1(hy)

L1(h)

L1(h(1 + y))

L1(h)︸ ︷︷ ︸
=:kh(y)

dy,

where the second equality follows by substituting y = x/h. Fix now δ ∈ (0, 1 − γ) ⊂ (0, 1/2). By

the Potter bounds (Bingham et al., 1989, Theorem 1.5.6(ii)), under (A3) there exists a constant

Cδ > 0 such that

L1(hy)

L1(h)
≤ Cδ max{y−δ, yδ}, y > 1/h, h > 1.

Accordingly, we find a dominant for kh, given by

kh(y) ≤ k(y) :=

Cδy−γ−δ(1 + y)−γ+δ, y ∈ (0, 1],

Cδy
−2(γ−δ), y ∈ (1,∞),

for any h > 1. Note that the dominant k is integrable on (0, 1], since −γ− δ > −γ− (1− γ) = −1,

as well as on (1,∞), since −2(γ − δ) < −1. Applying the dominated convergence theorem, we get

I2,h ∼ h−2γ+1L1(h)2

∫ ∞
0

y−γ(1 + y)−γdy, h→∞.
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Moreover, the asymptotic estimate I1,h ∼ ch−γL1(h), as h → ∞, can be deduced using the same

strategy as in (i). Observing that−γ < −2γ+1 when γ < 1, we deduce that I1,h = o
(
h−2γ+1L1(h)2

)
as h→∞, so the assertion follows.

Proof of Proposition 4.3. As in the proof of Proposition 4.2, we take h > 1 and write∫ ∞
0

g(x)g(x+ h)dx =

∫ ∞
0

g(x)(x+ h)−γe−λ(x+h)L1(x+ h)dx

= e−λhh−γL1(h)

∫ ∞
0

g(x)(x/h+ 1)−γe−λx
L1(x+ h)

L(h)
dx

∼ e−λhh−γL1(h)

∫ ∞
0

g(x)e−λxdx,

where we used the dominated convergence theorem, which can be justified in the same manner as

in the proof of Proposition 4.2.

A.2 Proof of Theorem 4.1

We first recall an elementary result that we will need below. Namely, as x ↓ 0,

∞∑
k=2

xk

k!
= o(x). (A.3)

This result is easy to prove by examining the Taylor expansion of the exponential function and

applying l’Hôpital’s rule.

Proof of Theorem 4.1. (i) Suppose w.l.o.g. that ξ = 1. Since σ is covariance-stationary, it suffices

to study

ρ(h) = Corr(σt, σt+h) =
Cov(σt, σt+h)

V ar(σ0)
, h ≥ 0.

We get using the definition (4.1) of σ

Cov(σt, σt+h) = E[σtσt+h]− E[σ0]2

= E[exp(Xt +Xt+h)]− E[exp(X0)]2.

Now, by the fact that X is a zero-mean Gaussian process we get, using the moment generating

function of the Gaussian distribution,

E[exp(Xt +Xt+h)] = exp

(
1

2
V ar(Xt +Xt+h)

)
= exp (V ar(X0) + cov(X0, Xt+h))

= exp (γX(0) + γX(h)) ,

and

E[exp(X0)] = exp

(
1

2
γX(0)

)
,
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where we write γX(h) for Cov(Xh, X0) = E[XhX0]. Putting this together, we arrive at

ρ(h) =
exp(γX(h))− 1

exp(γ(0))− 1
.

Now, using generic positive constants C,C1, C2 that may vary from line to line,

1− ρ(h) =
exp(γX(0))− 1− (exp(γX(h))− 1)

exp(γ(0))− 1

=
exp(γX(0))− exp(γX(h))

exp(γ(0))− 1

= C [1− exp(γX(h)− γX(0))]

= C [1− exp(−γX(0)(1− ρX(h)))]

= C1(1− ρX(h)) + C2

∞∑
k=2

(−γX(0)(1− ρX(h)))k

k!

∼ C|h|2α+1L0(h),

by the assumption on 1 − ρX(h) and the asymptotic result (A.3). (On the penultimate line, we

Taylor expanded the exponential.) This concludes the proof of (i).

(ii) Suppose w.l.o.g. that ξ = 1. Using the same approach as in part (i), we get by Taylor

expansion:

ρ(h) =
exp(γX(h))− 1

exp(γ(0))− 1

= C1γX(h) + C2

∞∑
k=2

γX(h)k

k!

= C1γX(0)ρX(h) + C2

∞∑
k=2

γX(h)k

k!

∼ CρX(h), h→∞,

where we have finally applied (A.3).
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