
Department of Economics and Business Economics 

Aarhus University 

Fuglesangs Allé 4 

DK-8210 Aarhus V 

Denmark 

Email: oekonomi@au.dk  

Tel: +45 8716 5515 

 

 

 
 
 
 
 
 
 

 
 

 
 

 
 
 

 

The Qualitative Expectations Hypothesis: Model Ambiguity, 

Consistent Representations of Market Forecasts, and 

Sentiment 

 

Roman Frydman, Søren Johansen, Anders Rahbek 

and Morten Nyboe Tabor 

 

CREATES Research Paper 2017-23 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:oekonomi@au.dk


THE QUALITATIVE EXPECTATIONS HYPOTHESIS:
MODEL AMBIGUITY, CONSISTENT REPRESENTATIONS

OF MARKET FORECASTS, AND SENTIMENT

Roman Frydman∗, Søren Johansen†, Anders Rahbek† and Morten Nyboe

Tabor†

June 21, 2017

Abstract

We introduce the Qualitative Expectations Hypothesis (QEH) as a new approach

to modeling macroeconomic and financial outcomes. Building on John Muth’s seminal

insight underpinning the Rational Expectations Hypothesis (REH), QEH represents

the market’s forecasts to be consistent with the predictions of an economist’s model.

However, by assuming that outcomes lie within stochastic intervals, QEH, unlike REH,

recognizes the ambiguity faced by an economist and market participants alike. More-

over, QEH leaves the model open to ambiguity by not specifying a mechanism deter-

mining specific values that outcomes take within these intervals. In order to examine

a QEH model’s empirical relevance, we formulate and estimate its statistical analog

based on simulated data. We show that the proposed statistical model adequately rep-

resents an illustrative sample from the QEH model. We also illustrate how estimates of

the statistical model’s parameters can be used to assess the QEH model’s qualitative

implications.
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1 Introduction

We introduce the Qualitative Expectations Hypothesis (QEH) as a new approach to modeling

macroeconomic and financial outcomes. QEH recognizes that economists and market par-

ticipants alike face ambiguity about which is the correct quantitative model of the process

driving outcomes. Building on Frank Knight’s distinction between risk and “true uncer-

tainty,”QEH formalizes ambiguity by opening an economic model to unforeseeable change

in its coeffi cients. The defining feature of such change is that it cannot "by any method

be [represented ex ante] with an objective, quantitatively determined probability" (Knight,

1921, p. 321). Hence, we do not impose a probabilistic structure on the change in the model’s

coeffi cients over time —and thus we do not specify a complete dynamic stochastic process

driving outcomes. Instead, we assume that the unforeseeable change in the coeffi cients is

moderate.1 We formalize this change by restricting it to stochastic intervals driven by the

evolution of the fundamental variables in the model. As a result, the model assumes that

outcomes lie within stochastic intervals. But we leave the model open to ambiguity by not

specifying a mechanism determining specific values that the outcomes can take within these

intervals.

By definition, when an economist formulates his model, he hypothesizes how outcomes

unfold over time. John Muth’s (1961, p. 315) seminal insight was that representations of the

market’s forecast that deviate systematically from the predictions of the model contradict

the economist’s hypothesis. Consequently, Muth proposed that it would be “sensible”for the

economist to represent the market’s forecast as being consistent with the process assumed

by his model to be driving outcomes.

Building on Muth’s seminal insight, a QEH model represents the market’s forecasts to be

consistent with the assumption that an economist and market participants face ambiguity.

To this end, we introduce a conditional qualitative expectation (QE) of future outcomes,

which we define as the conditional expectation of the upper and lower bounds of these

outcomes’assumed stochastic intervals. The QE measures the intervals within which future

outcomes, according to the model, are expected to lie.

Representing the market’s forecasts to lie within these intervals, but stopping short of

specifying a mechanism determining the particular values that these forecasts take, is the

key feature that distinguishes QEH from the Rational Expectations Hypothesis (REH).

While both approaches rely on model consistency, REH, unlike QEH, represents the market’s

forecast on the basis of a model that rules out unforeseeable change and thus ambiguity about

which representation of outcomes is correct. An REH model does so by specifying all changes

1This assumption underpins the Imperfect Knowledge Economics (IKE) approach to macroeconomics
and finance theory (Frydman and Goldberg, 2007, 2011).
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in variables and coeffi cients with a probabilistic structure, thereby assuming that outcomes

follow a dynamic stochastic process. The model represents the market’s forecast with the

conditional expectation of this process. Given the realizations of the fundamental variables,

this REH representation determines a particular value for the market’s forecast.

Applying REH models to the study of movements in asset prices and risk has revealed

many empirical puzzles.2 Frydman and Goldberg (2011, 2013) trace these anomalies to REH

models’premise that unforeseeable change is unimportant for understanding asset prices and

risk. Lars Hansen (2013, p. 399) conjectures that these puzzles arise from REH’s narrow

representation of uncertainty as “risk conditioned on a model.” He points out that REH

representations “miss something essential: uncertainty [arising from] ambiguity about which

is the correct model.”

REH models’empirical diffi culties gave rise to behavioral finance, which has sought to

remedy these diffi culties by relating the market’s forecast to psychological factors, such as

market sentiment —its optimism or pessimism about the future course of prices.3 However,

because behavioral-finance models assume away unforeseeable change, they represent the

market’s forecast in ways that are inconsistent with the stochastic process assumed by an

economist to be driving outcomes.

By recognizing ambiguity, a QEH model can account for the role of both the fundamental

factors on which REH models focus and the psychological factors underpinning behavioral-

finance models. And it can do so without abandoning model consistency.

Because a QEH model assumes that market forecasts lie within the stochastic intervals

that are consistent with the process an economist assumes is driving outcomes, there are

myriad possible model-consistent quantitative forecasts. In making decisions —for example,

about how many stocks to buy or sell —market participants thus face inherent ambiguity.

They select particular quantitative forecasts by relying on a combination of considerations,

including formal (econometric) models, market sentiment, and other non-fundamental fac-

tors. A QEH model can formalize the qualitative effect of such factors on participants’

model-consistent forecasts, by imposing additional restrictions on how the market, in form-

ing these forecasts, revises the weights it attaches to fundamentals.

We use a simple stock-price model to illustrate how QEH represents how the market re-

lates outcomes to fundamentals, and how psychological factors might affect model-consistent

forecasts. The model rests on a no-arbitrage condition, which assumes that at any point in

time, market participants bid the price to the level equal to the market’s forecast of the

2Hansen (2013) provides an extensive discussion of econometric studies that have uncovered these anom-
alies.

3For surveys of the behavioral-finance approach see Barberis and Thaler (2003), Shleifer (2000), and
references therein.
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next-period discounted sum of the dividends and price.

QEH represents this forecast as being consistent with the model’s qualitative expectations

of dividends and prices. To this end, we assume that corporate earnings drive dividends,

and we formalize ambiguity by opening the model to moderate unforeseeable change in

the coeffi cient determining the impact of earnings on dividends. According to the model,

future dividends and prices are expected to lie within the QE intervals of these outcomes.

Conditional on current earnings, QEH’s model-consistent representations of the market’s

forecasts of future dividends and prices lie within these intervals.

With these representations, we derive implications of the no-arbitrage condition. Under

REH, such a condition implies that, given the value of earnings at a point in time, the model

determines the precise value of the price set by the market. Recognizing ambiguity changes

the implications of a standard no-arbitrage condition substantially. Because a QEH model

does not determine the precise values of the market’s forecasts of dividends and prices, it

does not determine the precise value of the price the market sets.

We show that our QEHmodel represents an asset price to lie within an interval. However,

despite implying such ambiguity regarding the precise price, the model relates the stock

price, pt, to corporate earnings, xt, in a way that is consistent with the representations of

the dividend process as well as with the no-arbitrage condition. That is, pt = θtxt, where the

coeffi cient θt > 0 lies within a time-varying interval determined by the discounted expected

intervals for future dividends. Moreover, we relate θt to the coeffi cients in the model’s

representation of the market’s forecasts of next-period dividends and prices.

We show that, in general, the model-consistent representation of the market’s forecasts

does not imply a positive co-movement between the price and earnings, defined as

∆pt/∆xt ≥ 0, (1)

where ∆pt = pt− pt−1. The reason is that changes in the impact of earnings on the forecasts

of future dividends and prices, which determine the change in the coeffi cient θt, can outweigh

the effect of the change in earnings on the price. As a result, the price can decrease when

earnings increase. However, under the additional condition that θt changes moderately with

xt, the price pt = θtxt co-moves positively with earnings.

We illustrate how one can formalize the qualitative effect of psychological factors by

introducing a market sentiment index, it, which can be positive or negative.4 Specifically,

4A large literature has emerged from the construction of proxies for investor sentiment based on narrative
reporting in the Wall Street Journal, Bloomberg News, and elsewhere. Using such proxies, a number of
empirical studies have shown that market sentiment has a significant effect on stock-price movements. For
such studies of the U.S. stock market, see, for example, Baker and Wugler (2006, 2007), Tetlock (2007),
Garcia (2013), and Mangee (2017a,b). Recently, Shiller (2017) strongly emphasized the importance of
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we restrict the interval for the model-consistent representation of the market’s forecasts of

future dividends and prices —and thereby θt —to depend on it. We show that under the

stated condition, stock-price movements are driven primarily by company earnings, with

market sentiment playing an amplifying role.

Because the QEH model does not specify a complete stochastic process for outcomes, it

cannot be directly estimated on the basis of time-series data. Thus, the model’s implications

concerning co-movements in these data cannot be directly tested. In order to assess the

empirical adequacy of the QEH model’s assumptions and its qualitative implications, we

propose a statistical model for dividends and earnings. This statistical analog represents the

QEH model’s moderately changing coeffi cient of earnings on dividends with a time-varying

random coeffi cient.

A class of general autoregressive score (GAS) models seems particularly suitable to serve

as the basis for formulating statistical representations of QEH-based models.5 Building on

the GAS approach, we formulate a statistical model that captures the QEHmodel’s dynamics

of earnings and dividends. We also propose a way to simulate earnings, dividends and prices

in a way that is consistent with the QEH model.

We leave the development of econometric methodology for QEH models for future re-

search. However, we use simulated data to illustrate how estimates of the GAS analog can

be used to assess a QEH model’s empirical adequacy. To this end, we estimate the GAS

model with maximum likelihood, and rely on standard misspecification tests to assess the

model’s adequacy in representing the data. We show that the misspecification tests are not

rejected for the residuals of the GAS model. Thus, in the context of our illustration, the

GAS model’s simple, parsimonious structure provides an adequate representation of the data

simulated from the highly non-linear QEH model.6

We use the GAS model’s estimates to construct simple summary measures designed to

assess the adequacy of a QEH model’s assumptions and implications — for example, that

the structure of the dividend process changes moderately, or that the price lies within a

model-consistent interval. We show that these assumptions and implications seem to hold

in the sample considered in our illustration.

The structure of the paper is as follows: In Section 2, we formulate the components of

the model and formalize ambiguity by opening the model to unforeseeable change. Section

3 defines the concept of the model’s qualitative expectation (QE), which serves as the basis

of the Qualitative Expectations Hypothesis (QEH) formulated in Section 4. Section 4 also

narrative accounts for informing econometric modeling of asset markets.
5For the development of GAS models, see Blasques et al (2014b), Harvey and Luati (2014), Koopman et

al (2016), and references therein.
6The importance of achieving a well-specified model for reliable inference is emphasized by Hendry (1995).
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shows how QEH represents the model-consistent market forecasts of dividends and prices

under ambiguity. These representations are used in Section 5 to define the no-arbitrage

interval condition, which is the QEH counterpart to the standard REH-based no-arbitrage

condition. In Section 6, we show that the QEH-based no-arbitrage condition implies that

the market price lies within an interval and that it is related to earnings in a way that

varies over time. In Section 7, we establish conditions under which prices and earnings

co-move positively. In Section 8, we formalize a qualitative effect of market sentiment on co-

movements between prices and earnings, by imposing additional restrictions on the intervals

for the market forecasts. In Section 9, we sketch our proposed approach to the econometric

analysis of QEH models. We formulate a GAS analog to the QEH model in Section 2, and

estimate it on the basis of simulated data. Using the GAS analog’s estimates, we illustrate

how the adequacy of QEH model’s assumptions and qualitative implications can be assessed

empirically. Section 10 concludes the paper with remarks about the recasting suggested by

QEH of the role of psychological considerations in rational forecasting, and about the QEH

model’s potential to shed new light on one of the long-standing puzzles in financial economics

—the role of fundamental and psychological considerations in driving long swings in asset

prices.

2 Opening an Asset-Pricing Model to Unforeseeable

Change and Ambiguity

We illustrate QEH in the context of a simple stock-pricing model in which we introduce

ambiguity by allowing for unforeseeable change in its coeffi cients. The model rests on an

assumption that summarizes how the market sets the stock price at each point in time.

Participants bid the price to the level that satisfies the following no-arbitrage condition:

pt = γ [Ft (dt+1) + Ft (pt+1)] for t = 1, 2, 3, ... (2)

where pt is the market price, dt denotes dividends, Ft (·) stands for the time-t values of the
market’s (an aggregate of its participants’) forecasts of dividends and prices at time t + 1,

and γ is a discount factor, which, for simplicity, we set equal to a constant.

In order to derive the testable implications of the no-arbitrage condition in (2) we must

represent the values of the market’s forecasts formally. As we discuss in Section 4, QEH

does so by recognizing the ambiguity faced by an economist and market participants. It

represents the market’s forecasts of dividends and prices as being consistent with the model’s

assumptions about the processes underpinning these outcomes. To this end, we consider a
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simple model for the dividend process, which relates dividends to one fundamental factor,

corporate earnings, which we denote by xt:

dt = btxt + εdt, (3)

where εdt are i.i.d.(0, σ2
d) innovations and bt is the time-varying impact of earnings on divi-

dends. We assume log-earnings follow a random walk with drift,

∆ log xt = µ+ εxt, (4)

where εxt are i.i.d.(0, σ2
x) . Finally, we condition on the initial value log x0, and we choose the

drift µ, so that xt is a martingale, E(xt|xt−1) = xt−1. See Appendix A for the choice of µ

for Gaussian errors.

Next, we formalize ambiguity by opening the model to unforeseeable change in the impact

coeffi cient, bt, of earnings on dividends in (3). In general, we could do so in any part of the

model. Here, we specify a stochastic process for earnings, but formalize ambiguity about the

dividend process by stopping short of imposing a probabilistic structure on the sequence of

coeffi cients bt.

However, in order for the model in (3) to serve as the basis for representing the market’s

forecast, we must constrain ex ante how bt unfolds over time. We hypothesize that bt is

positive at every point in time,

bt > 0. (5)

We also specify a rule limiting changes in bt by formalizing the distinction between moderate

and non-moderate change in the dividend process. Building on Frydman and Goldberg

(2007), we define the change in this process to be moderate if it can be represented by

limiting the change ∆bt+1 = bt+1 − bt as follows,

|∆bt+1|
bt

≤ |∆xt+1|
xt+1

. (6)

This moderate change (MC) condition constrains the change in bt between the adjacent

points in time to be contingent on the realized change in xt. Because earnings and bt are

both positive, (6) may be stated equivalently as the interval for bt+1 given bt, xt, and xt+1,

bt+1 ∈
[
bt

(
1− |∆xt+1|

xt+1

)+

, bt

(
1 +
|∆xt+1|
xt+1

)]
, (7)

where a+ = max(0, a). Thus, at time t + 1, the value of bt+1 is assumed to lie in a random
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interval as defined by the previous value bt and by xt and xt+1. Importantly, there is no rule

or mechanism that determines the value of bt within this interval.

Multiplying in (7) by xt+1, it follows that

bt+1xt+1 ∈ btIt+1, where It+1 = [(xt+1 − |∆xt+1|)+, (xt+1 + |∆xt+1|)], (8)

or equivalently, bt+1 ∈ btIt+1/xt+1, such that for dividends we find that

dt+1 ∈ Idt+1 = [bt(xt+1 − |∆xt+1|)+ + εdt+1, bt (xt+1 + |∆xt+1|) + εdt+1] = btIt+1 + εdt+1. (9)

This illustrates a key consequence of recognizing ambiguity about the dividend process: the

model states that dividends lie within random intervals that vary over time, but it does not

specify a mechanism determining the values of dividends within each interval. We refer to

such outcomes as qualitative implications of the QEH model.

Beyond yielding qualitative implications about the values of outcomes at a point in time,

a QEH model also generates qualitative predictions about the co-movements in time-series

data. The following Lemma states that the MC condition implies positive co-movement

between expected dividends and earnings.7

Lemma 1 If the change in bt satisfies the MC condition in (6), expected dividends, E(dt|xt) =

btxt, co-move positively with earnings, xt,

∆E(dt|xt)∆xt ≥ 0. (10)

Proof of the lemma is given in Appendix A.

To complete the QEH model, we need to represent the market’s forecasts in the no-

arbitrage condition in (2). To this end, we next define the concept of qualitative expectations.

We represent the market’s forecast in a way that is consistent with the model’s qualitative

expectations. We then show that under QEH, the stock price lies within the model-consistent

interval.

3 The Model’s Qualitative Expectations

We first consider the expectation of dividends one period ahead. Conditional on the time-t

information on earnings, xt, our representation for the dividend process in (3) implies that

E (dt+1|xt) = E (bt+1xt+1 + εdt+1|xt) = E (bt+1xt+1|xt) .
7See (1), and the further discussion in Section 7.
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Recall that the QEH model assumes a probabilistic structure on xt+1, while there is no rule

for determining bt other the condition than it belongs to the interval (7). Consequently,

we cannot evaluate E (bt+1xt+1|xt), which implies that we cannot compute the conditional
expectation of future dividends. However, conditional on xt, we can compute the expected

interval for dt+1 as the conditional expectation of the upper and lower limits in (9). We

formalize this by defining the conditional qualitative expectations (QE) as follows:

Definition 1 (Conditional Qualitative Expectation)
For any random interval defined by [XL, XU ], where XL ≤ XU are random variables with

finite expectation, the conditional Qualitative Expectation, QEt (·), given available informa-
tion xt = (x1, ..., xt), is defined as follows:

QEt ([XL, XU ]) = [E (XL|xt) , E (XU |xt)] .

We collect some properties of the conditional qualitative expectations in the next lemma.

Lemma 2 For random intervals X and Y , λ ∈ R and a stochastic process xt,

(i) Additivity QEt (X + Y ) = QEt (X) +QEt (Y ) ,

(ii) Homogeneity QEt (λX) = λQEt (X) ,

(iii) Conditional Expectation Consistency QEt (xt+1) = E (xt+1|xt) .
(iv) Iterated QE QEt ([XL, XU ]) = QEt (QEt+1 ([XL, XU ]))

We now use the QEt (·) to derive the expected intervals for future dividends. From (9),

dt+1 ∈ Idt+1 = btIt+1 + εdt+1, implies that QEt (dt+1) ∈ QEt
(
Idt+1

)
, and therefore

QEt
(
Idt+1

)
= QEt (btIt+1 + εdt+1)

=
[
E
(
bt (xt+1 − |∆xt+1|)+ + εdt+1|xt

)
, E (bt (xt+1 + |∆xt+1|) + εdt+1|xt)

]
=
[
btE

(
(xt+1 − |∆xt+1|)+ |xt

)
, btE (xt+1 + |∆xt+1||xt)

]
= btxt [L,U ] , (11)

where the conditional expectations L and U depend on the distribution of εxt. In Appendix

B, values for L and U are derived for the case of Gaussian innovations εxt in (4).

With the k-period iterated qualitative expectations given by,

QE
(k)
t (·) = QEt (QEt+1 (· · ·QEt+k (·) · · · )) , k = 0, 1, . . .
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we find that,

QE
(1)
t (dt+2) = QEt(QEt+1 (dt+2)) ∈ QEt

(
QEt+1

(
Idt+2

))
= QEt (bt+1xt+1 [L,U ]) = QEt (bt+1xt+1) [L,U ]

⊆ btxt
[
L2, U2

]
.

Furthermore, Lemma 2 (iv) and (9) for dt+2 imply that,

QEt (dt+2) = QE
(1)
t (dt+2) ∈ btxt

[
L2, U2

]
In general, iterating k times,

QEt (dt+k) = QE
(k−1)
t (dt+k) ∈ btxt

[
Lk, Uk

]
. (12)

4 The Qualitative Expectations Hypothesis

The no-arbitrage condition in (2) is a purely descriptive summary of how the market sets the

price at each point in time, in the sense that it has no testable implications for how prices

are determined at the point in time or for how they unfold over time. For example, in order

to derive the implication of (2) for the relationship between prices and corporate earnings,

an economist must formally relate Ft (dt+1) and Ft (pt+1) to these earnings. Importantly, as

we show in Section 6.1, the assumed properties of such representations play a key role in

deriving the model’s predictions for time-series data.

We build on John Muth’s fundamental insight to represent Ft (dt+1) and Ft (pt+1) . Ac-

cording to Muth (1961, 315), given that an economist’s model formalizes his hypothesis

about how market outcomes will actually unfold over time, it would be “sensible”for him to

represent the market’s forecasts as being consistent with the predictions of his own model.

Recognizing ambiguity, however, requires jettisoning the assumption that change can be

represented with a probabilistic rule and that a single conditional distribution represents

how future outcomes actually unfold over time. Consequently, representing forecasts by

participants who face ambiguity as consistent with the predictions of an economist’s model

requires that the model does not generate unique, precise predictions of market outcomes.

The following summarizes the key features of a QEH model and its model-consistent

representation of the market’s forecast.
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The Qualitative Expectations Hypothesis (QEH)

(QEH.i) By remaining open to unforeseeable change, a QEH model recognizes ambiguity about

which is the correct quantitative model of the process driving outcomes. The defining

feature of such change is that it cannot “by any method be [represented ex ante] with

an objective, quantitatively determined probability”(Knight, 1921, p. 321).

(QEH.ii) Building on Muth’s insight, a QEH model represents the market’s forecasts of out-

comes by assuming that they lie within the intervals within which future outcomes are

expected to lie, according to the qualitative expectation implied by the model.

4.1 The Market’s Forecast of Dividends

The forecasts of future dividends and prices, Ft (dt+1) and Ft (pt+1) in (2) stand for the

aggregate values of market participants’forecasts. In order to make these forecasts, partici-

pants rely on formal (statistical) methods as well as more informal considerations —namely,

their assessments of market sentiment and their own intuitive guesses about the future course

of outcomes.

We illustrate how QEH can be used to represent the market’s forecast in the context of a

model for the dividend process in Section 2. This model formalizes ambiguity by assuming

that, although dividends do not unfold according to a stochastic process, they do lie within

intervals that vary over time. Moreover, we have used the conditional qualitative expectation

to derive the expected intervals for future dividends. QEH represents the market’s forecasts

of dividends by assuming that they lie within these intervals:

Assumption 1 Let Ft (dt+1) denote the time-t value of the market’s forecast of dividends

at t + 1. QEH represents this forecast as being consistent with the model by assuming that

there exists a sequence of coeffi cients, b̃t such that

Ft (dt+1) = b̃txt ∈ QEt
(
Idt+1

)
(13)

where b̃t ∈ bt [L,U ].

Our model in Section 2 recognizes that an economist faces ambiguity about the value of

the impact of future earnings on dividends, bt+1, by stopping short of specifying a mechanism

determining specific values that bt+1 take within the intervals btIt+1/xt+1. Based on this

model, QEH formalizes ambiguity market participants face by not specifying how the values

of b̃t are determined within the interval bt [L,U ]. However, because our model for the dividend
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process in Section 2 hypothesizes that the impact of earnings on dividends is positive —that

is, bt and L are both positive —model consistency of the market’s forecasts implies that

b̃t > 0.

Note that if the model completely assumed away unforeseeable change in the dividend

process —either by constraining bt to be constant, or by specifying a probabilistic structure

for its change over time —Ft (dt+1) would equal the conditional expectation of dt+1, i.e.

Ft (dt+1) = E (dt+1|xt) = E (bt+1xt+1|xt). Given the realization of xt, an REH counterpart
of the model in Section 2 would determine the precise value of the time-t market’s forecasts

of dt+1 .

Thus, REH and QEH can be seen to represent the market’s forecast according to very

different assumptions concerning how economists and market participants understand change

and the uncertainty that it engenders. REH assumes that, in forming their forecasts, market

participants ignore the possibility that the process underpinning outcomes might change

at times and in ways that no one can fully foresee. Consequently, REH supposes that

an economist and market participants face only what Hansen (2013) referred to as “risk

conditioned on the model.”In contrast, QEH models assume that, in forming their forecasts,

an economist and market participants recognize that outcomes might change in unforeseeable

ways. Thus, they face both risk and Knightian uncertainty, which arises from ambiguity

about which is the correct model of future outcomes.

4.2 The Market’s Forecast of Prices

We formalize ambiguity about which is the correct quantitative model of the process driving

prices with the following assumption:

Assumption 2 The price pt that the market sets according to the no-arbitrage in (2) lies
within an interval denoted by Ipt , that is,

pt ∈ Ipt for t = 1, 2, 3, ...

Next, recall that QEt
(
Ipt+1

)
defines the expected interval for pt+1 according to the model.

Consequently, QEH (QEH.ii) represents the market’s time-t forecast of pt+1 to lie within this

interval, that is:

Ft (pt+1) ∈ QEt
(
Ipt+1

)
(14)
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5 The No-Arbitrage Condition Under Model Ambigu-

ity

Testable implications of the no-arbitrage condition in (2) are typically derived in the con-

text of REH models. These models represent Ft (dt+1) and Ft (pt+1) , with a conditional

expectation of the single probability distribution that, according to the model, represents

how dividends and prices unfold over time. Thus, given the information at time t, xt,

the model determines the precise values of the market’s forecasts, Ft (dt+1) = E (dt+1|xt)
and Ft (pt+1) = E (pt+1|xt). With these representations of the market’s forecasts, the no-
arbitrage condition in (2) determines the precise value of the price at each point in time:

pt = γ [E (dt+1|xt) + E (pt+1|xt)] for t = 1, 2, 3, ... (15)

Recognizing ambiguity in a macroeconomic or finance model involving a standard no-

arbitrage condition changes the model’s implications substantially. Because the model does

not determine the precise values of the market’s forecasts, Ft (dt+1) and Ft (pt+1), it does not

determine the precise value of the price the market sets. Instead, QEH represents the price

pt set according to the no-arbitrage condition in (2) as lying within the following interval,

pt = γ [Ft (dt+1) + Ft (pt+1)] ∈ γ
[
QEt

(
Idt+1

)
+QEt

(
Ipt+1

)]
where we used the QEH representations in (13) and (14): Ft (dt+1) ∈ QEt

(
Idt+1

)
and

Ft (pt+1) ∈ QEt
(
Ipt+1

)
.

Under REH, conditional on xt, the representation of the no-arbitrage condition in (15)

determines the precise relationship between the price and earnings at each point in time.

This is because an REH model, by representing the dividend and price processes with a

single probability distribution, assumes away ambiguity.

In contrast, under ambiguity, the model no longer represents how dividends and prices

unfold over time with a single probability distribution. However, as we show next, a QEH

model can relate the market price to earnings in a way that is consistent with QEH’s formal-

ization of ambiguity. This representation rests on the following QEH-based interval condition

—the counterpart to the no-arbitrage condition in (2):

Assumption 3 An interval Ipt is said to satisfy a no-arbitrage interval condition if

pt ∈ Ipt and Ipt ⊆ γ
[
QEt

(
Idt+1

)
+QEt

(
Ipt+1

)]
(16)

We refer to Ipt as a no-arbitrage interval.
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6 The Stock Price and Earnings at a Point in Time

We now use the no-arbitrage interval condition in (16) to derive the relationship between

prices and corporate earnings under ambiguity. Applying (16) at t+ 1 we have

Ipt+1 ⊆ γQEt+1

(
Idt+2) + γQEt+1(Ipt+2

)
Thus,

Ipt ⊆ γQEt
(
Idt+1

)
+ γQEt

(
Ipt+1

)
⊆ γQEt

(
Idt+1

)
+ γ2QEtQEt+1(Idt+2) + γ2QEtQEt+1

(
Ipt+2

)
⊆ γQEt

(
Idt+1

)
+ γ2QE

(1)
t

(
Idt+2

)
+ γ2QE

(1)
t

(
Ipt+2

)
.

Iterating n times we find that

Ipt ⊆
n∑
k=1

γkQE
(k−1)
t

(
Idt+k

)
+ γnQE

(n−1)
t (Ipt+n) . (17)

Finally, in order to derive the representation for the market price, we need a transversality

assumption on γnQE(n−1)
t (Ipt+n) and γ:

Assumption 4 Interval Transversality condition: Assume that

γU < 1, (18)

where U is defined in (11) and that

γnQE
(n−1)
t (Ipt+n)→ 0 as n→∞. (19)

Remark 1 Obviously the condition γU < 1 depends on the distribution of the process xt.

For xt given by (4) with Gaussian innovations εxt, the quantities L and U are calculated in

Lemma 6 in Appendix B, where it can be seen that U ' 1 + 0.8σx for small values of σ2
x.

We summarize the above considerations in the following theorem:

Theorem 1 Under Assumption 4 and QEH, the no-arbitrage interval Ipt in (16), satisfies
the following interval relationship,

Ipt ⊆
∞∑
k=1

γkQE
(k−1)
t

(
Idt+k

)
=

∞∑
k=1

γkQEt
(
Idt+k

)
= btxt[Lγ, Uγ], t = 1, 2, 3... (20)
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where Lγ = γL/(1− γL) and Uγ = γU/(1− γU) and we used QE(k−1)
t

(
Idt+k

)
= QEt

(
Idt+k

)
.

The proof is given in the Appendix.

An immediate corollary to Theorem 1 represents the price pt as follows:

Corollary 1 Under the assumptions of Theorem 1, there exists a coeffi cient θt ∈ bt[Lγ, Uγ]
such that for pt ∈ Ipt it holds that

pt = θtxt ∈ Ipt , t = 1, 2, 3... (21)

Theorem 1 and Corollary 1 show that, despite allowing for ambiguity in the dividend and

price processes, the model relates the stock price pt to corporate earnings xt in a way that is

consistent with the representation of the dividend process and the no-arbitrage condition in

(2). Moreover, because the coeffi cient θt is positive and xt is positive, the model characterizes

the stock price, pt, as always positive.

6.1 Representing the Price in Terms of the Market’s Forecasts

In an REHmodel, model-consistency implies a specific value for the coeffi cient θt, and thereby

a specific value for pt. In contrast, consistency in a QEH model implies that θt lies within

the interval bt[Lγ, Uγ], but it does not determine the specific value θt takes. Importantly,

this allows a QEH model to impose additional restrictions on changes in θt over time, while

maintaining a model-consistent representation of the market’s forecasts. But, in order to do

so, the model must relate θt to the market’s forecasts of dividends and prices.

From (21), the price pt+1 set by the market according to the no arbitrage condition in

(2) at t+ 1 can be represented as

pt+1 = θt+1xt+1 ∈ Ipt+1 (22)

for some coeffi cient θt+1 ∈ bt+1[Lγ, Uγ].

The model-consistent forecast of pt+1 lies within an interval QEt
(
Ipt+1

)
, given by:

QEt
(
Ipt+1

)
⊆ QEt (bt+1xt+1 [Lγ, Uγ])

= QEt (bt+1xt+1) [Lγ, Uγ]

⊆ bt [L · Lγ, U · Uγ]xt

Under QEH, we represent Ft (pt+1) to lie within the QEt
(
Ipt+1

)
interval, which we for-

malize by the following assumption:
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Assumption 5 QEH represents the market’s forecast of pt+1 as being consistent with the

model by assuming that there exists a sequence of coeffi cients, θ̃t, such that

Ft (pt+1) = θ̃txt ∈ QEt
(
Ipt+1

)
, (23)

where θ̃t ∈ bt [L · Lγ, U · Uγ].

Substituting the representations in Assumption 1 and Assumption 5 into the no-arbitrage

condition in (2) implies the following representation of pt in terms of the time-t representa-

tions of the market’s forecasts of dividends and prices at t+ 1:

pt = γ(̃bt + θ̃t)xt

We can summarize the foregoing argument in the Corollary to Theorem 1:

Corollary 2 Under the assumptions of Theorem 1, Assumption 1, and 5, the QEH implied

price pt that satisfies the no-arbitrage condition in (2) at all t is given by

pt = γ [Ft (dt+1) + Ft (pt+1)] = γ(̃bt + θ̃t)xt = θtxt, t = 1, 2, 3... (24)

where θ̃t and b̃t are defined in (23) and (13).

Note that (24) implies that θt can be represented in terms of θ̃t and b̃t:

θt = γ(̃bt + θ̃t). (25)

As we show in Section 8, this representation enables us to formalize the qualitative effect

of non-fundamental factors, such as market sentiment, on the market’s forecasts of dividends

and prices. Because it recognizes ambiguity, the QEH model can account for the role of both

fundamental factors and psychological considerations in model-consistent representations of

forecasting, and thereby their role in price movements.

7 Co-movement of Earnings, Dividends, and Prices

Over time, the market revises its forecasts of dividends and prices by taking into account

new information on corporate earnings as well as by altering the weights b̃t and θ̃t that it

attaches to these earnings. These forecast revisions drive movements in the stock price, pt.

while the model-consistent interval for the stock price, Ipt , is driven by changes in earnings
and the impact coeffi cients bt. However, as we show with an example, model-consistency does
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not guarantee positive co-movement between pt and xt. This is in contrast to the positive

co-movement between Et(dt|xt) and xt implied by the moderate-change condition imposed
on changes in bt.

To examine the co-movement of prices and earnings, we first give a few results for positive

co-movement of general sequences. We then derive in Theorem 3 two conditions for the

coeffi cients θt, which imply a positive co-movement between pt and xt.

7.1 Positive Co-movement

Positive co-movement between sequences is defined as follows:

Definition 2 For sequences xt ≥ 0 and yt ≥ 0, we say that they co-move positively from

time t to t+ 1, if

∆xt+1∆yt+1 ≥ 0. (26)

An immediate consequence of the definition is that if xt increases then yt increases, and if

xt decreases then yt decreases. Moreover, provided that∆xt+1 6= 0, we have∆yt+1/∆xt+1 ≥ 0

as in (1).

We collect some results on positive co-movement in the next lemma. The proof is given

in Appendix A.

Lemma 3 If the sequences zt ≥ 0 and yt ≥ 0 co-move positively with xt ≥ 0, then:

(i) Positive homogeneity For λ ≥ 0, λzt co-moves positively with xt,

(ii) Additivity zt + yt co-moves positively with xt,

(iii) Multiplicativity ztyt co-moves positively with xt.

Now we can state the result that model consistency in the QEH model is insuffi cient to

imply positive co-movement between prices and earnings at all points in time. We recall from

by Lemma 1 that the MC condition on bt with respect to xt implies positive co-movement

between expected dividends and earnings. However, as the following theorem shows, the MC

condition in (8) is not suffi cient to ensure positive co-movement between prices and earnings.

The MC condition in (8) is not suffi cient to ensure positive co-movement between prices

pt and earnings xt in the model-consistent representation pt = θtxt in (21).

Theorem 2 If the change ∆xt+1 satisfies

0 < ∆xt+1
xt

< U−L
2L

,
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then there exists a pt ∈ btxt[Lγ, Uγ] and pt+1 ∈ bt+1xt+1[Lγ, Uγ] such that ∆pt+1 < 0. That

is, pt and xt do not co-move positively from time t to t+ 1.

The proof of Theorem 2 is given in Appendix A.

Although model-consistency does not imply positive co-movement, prices and earnings

will co-move positively during periods in which the change in θt is such that the effect of ∆θt

on ∆pt does not outweigh the effect of ∆xt. To see this, note that the change of the stock

price pt can be written in terms of changes in θt and xt, ∆pt+1 = ∆θt+1xt+1 + θt∆xt+1. In

the theorem below, we state two conditions for θt which, together, are suffi cient for positive

co-movement between pt and xt.

Theorem 3 Under the QEH assumptions, and with the price given by (21)

pt = θtxt, θt ∈ bt[Lγ, Uγ]

we find

(i) if ∆xt+1 ≥ 0 and ∆(θt+1/bt+1) ≥ 0, then ∆pt+1 ≥ 0,

(ii) if ∆xt+1 ≤ 0 and ∆(θt+1/bt+1) ≤ 0, then ∆pt+1 ≤ 0.

The proof of Theorem 3 is given in the Appendix A, but note here that Theorem 1 implies

that Lγ ≤ θt/bt ≤ Uγ, and similarly at time t+ 1, that is, such that

θt+1/bt+1 ∈ [Lγ, θt/bt] ∪ [θt/bt, Uγ] .

Thus, if θt+1/bt+1 lies within the interval [Lγ, θt/bt], then ∆(θt+1/bt+1) ≤ 0. Similarly, if

θt+1/bt+1 lies within the interval [θt/bt, Uγ], then ∆(θt+1/bt+1) ≥ 0, which motivates the

conditions (i) and (ii) in Theorem 3.

The theorem states that during periods of time when the changes in earnings xt are

positive (negative) and the changes in the ratio θt/bt are positive (negative), the changes in

prices pt are positive (negative). Stated differently, if ∆xt+1∆(θt+1/bt+1) ≥ 0, then we find

from (i) that ∆xt+1 ≥ 0 implies ∆pt+1 ≥ 0, and from (ii) that ∆xt+1 ≤ 0 implies ∆pt+1 ≤ 0,

so that ∆xt+1∆pt+1 ≥ 0. We formulate this as a corollary:

Corollary 3 In the QEH model, during periods in which θt/bt and xt co-move positively

from time t to t+ 1, it follows that pt and xt co-move positively.

Positive co-movement between prices and earnings follows from the assumption that θt/bt
and xt co-move positively. Analogous to the moderate change condition for bt in (6) and
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(8), the following assumption states the stronger condition that θt changes moderately with

respect to xt:

Assumption 6 In addition to lying within the model-consistent interval, θt ∈ bt[Lγ, Uγ], we
assume that θt changes moderately with respect to xt,

|∆θt+1|
θt

≤ |∆xt+1|
xt+1

(27)

such that

θt+1 ∈ bt+1 [Lγ, Uγ] ∩ θtIt+1/xt+1. (28)

It follows from Assumption 6 that,

pt+1 = θt+1xt+1 ∈ θtIt+1, where It+1 =
[
(xt+1 − |∆xt+1|)+ , (xt+1 + |∆xt+1|)

]
. (29)

The Assumption 6 restricts θt+1 to an interval around θt, so it constrains the interval for

pt+1, given its past observation pt, to a sub-interval of the model-consistent interval. Thus,

6 restricts the change in the stock price in a way that implies positive co-movement with

earnings.

Corollary 4 Under Assumption 6, pt = θtxt and xt co-move positively.

8 Fundamentals and Market Sentiment in Stock-Price

Movements

Relying on model consistency, we have related stock prices to fundamental factors, specif-

ically earnings, and we have represented these prices in terms of the market’s forecast of

dividends and prices next period in Corollary 2. However, as we have shown, model consis-

tency alone does not ensure positive co-movement between prices and earnings. This opens

the possibility that the model can accord a role to both fundamental and non-fundamental

factors in driving prices, while representing the market’s forecasts as being consistent with

the model’s representations of the processes underpinning outcomes.

We illustrate this possibility by modifying Assumption 6, such that the change in θt

satisfies the moderate-change condition with respect to xt, but the direction of the change

in θt depends on market sentiment, denoted by some index it, and the changes in earnings.

Specifically, we assume that when the market is optimistic, which we formalize with it > 0,

and ∆xt > 0, the market maintains or revises upward its expectation of the future impact
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of earnings on prices, θ̃t and/or dividends b̃t. As a result θt either remains unchanged or

increases. Similarly, when the market is pessimistic and earnings decrease, it maintains or

revises downward its expectation of the future impact of earnings on prices, θ̃t and/or on

dividends, b̃t. As a result θt either remains unchanged or decreases. We formalize this with

the following assumption:

Assumption 7 Let it denote a sentiment index, such that it > 0 indicates market optimism,

and it < 0 pessimism. Let θt in (21) satisfy the MC Assumption 6, but modified by the market

sentiment in the following way:

(i) if it+1 > 0 and ∆xt+1 > 0, then θt+1 ∈ bt+1 [Lγ, Uγ] ∩ θtI+
t+1/xt+1,

(ii) if it+1 < 0 and ∆xt+1 < 0, then θt+1 ∈ bt+1 [Lγ, Uγ] ∩ θtI−t+1/xt+1,

(iii) otherwise, θt+1 ∈ bt+1 [Lγ, Uγ] ∩ θtIt+1/xt+1,

where I+
t+1 = [xt+1, xt+1 + |∆xt+1|] and I−t+1 =

[
(xt+1 − |∆xt+1|)+ , xt+1

]
.

If follows from Assumption 7 that if it+1 > 0 and ∆xt+1 ≥ 0, then

pt+1 = θt+1xt+1 ∈ θtI+
t+1, (30)

and if it+1 < 0 and ∆xt+1 ≤ 0, then

pt+1 = θt+1xt+1 ∈ θtI−t+1. (31)

Under (i), (ii) or (iii) in Assumption 7, the stock price co-moves positively with earnings,

as θt always satisfies the moderate-change condition in (27). But during periods when the

market is optimistic and earnings increase, θt is assumed to increase. Thus, the market’s

optimism is assumed to lead it to reinforce the positive effect of earnings on the stock price,

which is formalized with an increase in θt+1. Similarly, when the market is pessimistic and

earnings decrease, the assumed fall in θt+1 reinforces the negative effect of earnings on the

stock price. We state this as a Corollary:

Corollary 5 Under Assumption 7 the stock price pt co-moves positively with earnings xt.
Moreover, during the periods in which either (i) or (ii) in Assumption 7 hold, the sentiment

it amplifies the effect of change in earnings on the stock price.
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9 An Econometric Investigation of the QEH Model

The QEH model assumes that the parameters bt, b̃, and θ̃t (and thus also θt) lie within

stochastic intervals, such that dividends and stock prices lie within stochastic intervals as

well. Consequently, the QEH model does not specify a complete stochastic process for dt
and xt (and thus for pt), which can be directly estimated and tested empirically.

In order to assess the empirical adequacy of the QEH model’s assumptions or its qual-

itative implications, we propose a statistical model for dt and xt. The model captures the

dynamics of xt and dt, and represents bt with a time-varying random coeffi cient βt. Specifi-

cally, building on the Generalized Autoregressive Score (GAS) approach, we consider

dt = βtxt + ut (32)

∆ log xt = −σ2
x/2 + εxt, (33)

where

βt = ϕ (βt−1, xt−1; τ) , (34)

where ut is an i.i.d.(0, σ2
u) sequence with density p (·), εxt is an i.i.d.(0, σ2

x) sequence, ϕ (·) is
a link function, and τ is a vector of parameters. Blasques et al (2014a) and Blasques et al

(2015) show that an optimal choice of the link function ϕ (·) is given by

βt = ω + φβt−1 + αst−1, (35)

where st is the (possibly scaled) score of the model,

st = δ (βt)
−1 ∂ log ` (dt|xt, βt; θ) /∂βt,

and δ (βt) is the scaling factor. Assuming that ut is Gaussian, or that it is tv (0, 1) distributed,

implies that

st = δ (βt)
−1 (dt − βtxt)xt/σ2 and st = δ (βt)

−1 (dt − βtxt)xt
v + (dt − βtxt)2 , (36)

respectively, for some scaling factor δ (βt). With the scaling factor δ (βt) chosen as the con-

ditional expectation of the Hessian, that is,

Et
(
∂2 log ` (dt|xt, βt; θ) /∂βt∂βt

)
= x2

t/σ
2,

the Gaussian case implies that st−1 = dt−1
xt−1
− βt−1. For this choice of the scaling factor, the
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specification for βt in (35) can be rewritten as

βt = ω + ϕβt−1 + α
dt−1

xt−1

. (37)

The model can be estimated by maximum likelihood, and standard misspecification tests

can be used to assess its adequacy in representing the data. If the misspecification tests

are not rejected, we consider the estimated model a valid representation of the data for the

sample period considered. The estimated statistical model can then be used to assess the

adequacy of the QEH model’s assumptions and implications.

In the reminder of this Section, we illustrate the steps of the statistical analysis outlined

above using simulated data that satisfy the assumptions of the QEH model. We leave

a detailed development of the econometric methodology for the QEH models for future

research.

9.1 QEH-Consistent Simulations

Because a QEH model formalizes ambiguity, there are myriad sequences of bt, b̃t and θ̃t (and

thus also θt) that are consistent with its representations of the dividend and price processes.

Although the model restricts these parameters to lie within their respective intervals, it

does not specify a rule or a mechanism determining the values of the parameters within the

intervals. Thus, we cannot directly simulate data from the QEH model.

However, given a specific sequence of bt and θt and a chosen set of values for the fixed

parameters of the model, we can simulate time series for dividends, earnings, and stock

prices. We could, for example, manually choose sequences for bt and θt within their respective

intervals at every point in time, or we could draw a sequence for bt and θt from a stochastic

process bounded to lie within those intervals. We emphasize that there are myriad such

sequences, as well as myriad methods that could be used to simulate data consistent with

the QEH model. As our objective here is to sketch our approach, for ease of illustration,

as detailed below, we draw sequences bt and θt from the QEH-implied intervals uniformly,

conditionally on the past values of these parameters and simulated xt.

We denote the simulated sequences by bst and θ
s
t . These, together with the QEH model’s

representations for earnings, dividends, and prices, define a data-generating process (DGP)

that can be used to simulate a time series for (xt, dt, pt) that is consistent with the assump-

tions of the QEH model. In line with the QEH model, we simulate dt and xt in (3) and (4)

as follows

dt = bstxt + εdt, and ∆ log xt = −σ2
x/2 + εxt, (38)
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with εdt i.i.d. N(0, σ2
d), εxt i.i.d. N(0, σ2

x), and the values for σ
2
x and σ

2
d specified below.

Next, to simulate a sequence bst satisfying the MC condition in (6), we consider the

stochastic specification given by,

bst = bst−1εbt, with εbt i.i.d. uniform on It/xt. (39)

Hence, we draw the sequence of bst uniformly within the interval for bt defined in (7). This

yields one potential QEH-consistent sequence of bst . Given this sequence, we simulate QEH-

consistent series for dividends.

As detailed below, we next draw three different sequences of θst , denoted θ
s
it for i = 1, 2, 3,

which lie within the intervals for θt specified in Theorem 1, Assumption 6, and Assumption

7, respectively. Given the sequences of θsit, we simulate three different stock prices consistent

with the QEH model under the three different assumptions about the interval for θt. The

simulations allow us to illustrate the effect of adding the MC condition on θt in Assumption

6, as well as to illustrate how sentiment can drive the price based on Assumption 7.

Specifically, given the simulated xt and θsit, we simulate the stock prices as

pit = θsitxt, with θ
s
it i.i.d. uniform on Iθit,

for i = 1, 2, 3. In the first case, we set

Iθ1t = bst [Lγ, Uγ] , (40)

so that θs1t lies within the model-consistent interval defined in Theorem 1. In the second

case, we set

Iθ2t = bst [Lγ, Uγ] ∩ θs2t−1It/xt, (41)

such that θs2t additionally satisfies the moderate change condition with respect to xt in

Assumption 6. For the final case we introduce a sentiment index, it, and define

Iθ3t =


bst [Lγ, Uγ] ∩ θs3t−1I+

t /xt if it > 0 and ∆xt > 0,

bst [Lγ, Uγ] ∩ θs3t−1I−t /xt if it < 0 and ∆xt < 0,

bst [Lγ, Uγ] ∩ θs3t−1It/xt otherwise,

(42)

such that the interval Iθ3t depends on market sentiment it and the change in earnings as
specified in Assumption 7. For simplicity, the sentiment index it is here defined as

it = 1(1 ≤ t ≤ T1)− 1(T1 < t ≤ T2) + 1(T2 < t ≤ T ), (43)
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Figure 1: The figure shows the simulated dividends and earnings series from the data-
generating process in Definition 3. Panel (a) shows the simulated series xt and dt. Panel (b)
shows the dividends-earnings ratio, dt/xt. Panel (c) shows the simulated series log xt. Panel
(d) shows the simulated series bst (red line), while the vertical grey lines indicate the interval
within which bst is uniformly drawn, b

s
t−1It/xt, see (8).

where T = 100, T1 = T/4, T2 = 3T/4 and 1 (·) is the indicator function.
We formally define the DGP as follows:

Definition 3 The DGP of
(
dt, xt, it, (pit)i=1,2,3

)
is defined by equations (38)—(43).

We simulate an effective sample size of T = 100 observations from the DGP in Definition

3. We choose parameter values to mimic the Standard & Poor’s Composite Stock Price index

for the 100 quarterly observations from 1980(1) to 2004(4).8 Specifically, we set σd = 0.2

and σx = 0.05 corresponding to the estimated standard errors from autoregressive models

for the time-series data for dividends and log-earnings, respectively. Moreover, we set the

initial values log x0 = 3.6, b0 = 0.38, and θi0 = 6.85 for i = 1, 2, 3 corresponding to the values

8The data is available from Robert Shiller’s website at http://www.econ.yale.edu/~shiller/data.htm. Real
measures of the stock price index, earnings, and dividends are computed using the consumer price index
(CPI). Monthly data is available, but as the earnings and dividends series are interpolated from quarterly
observations we consider only the quarterly observations corresponding to March, June, September, and
December.
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Figure 2: The figure shows the simulated model-consistent interval for θsit and the simulated
series θsit for i = 1, 2, 3. Panel (a) shows the model-consistent interval for θsit given by
bstxt[Lγ, Uγ]. Panels (b)-(d) shows the simulated series θ

s
it for i = 1, 2, 3, while the vertical

grey lines indicate the intervals Iθit, defined in (40)-(42), within which θsit is uniformly drawn.
The simulated θs1t in Panel (b) lies in the model-consistent interval defined in Theorem 1.
The simulated θs2t in Panel (c) also satisfies the moderate change condition with respect to
xt as defined in Assumption 6. Finally, the simulated θs3t in Panel (d) depends on sentiment
as defined in Assumption 7. The light green shading indicates periods where st > 0 and
∆xt > 0, while the light red shading indicates periods where st < 0 and ∆xt < 0. Note that
the scales differ between the upper and lower panels.

of log-earnings, the dividend-earnings ratio, and the price-earnings ratio in 1980(1). Finally,

we set γ = 0.95. The chosen parameter values imply that L = 0.960, U = 1.040, Lγ = 10.37,

and Uγ = 81.61. For comparability between θsit and pit, we use the same sequence of random

shocks to simulate θit for i = 1, 2, 3.

Figure 1 shows the simulated dividends and earnings series, as well as the simulated

coeffi cients bst . Panel (a) in Figure 2 shows the model-consistent intervals for θ
s
it given by

bst [Lγ, Uγ], while Panel (a) in Figure 3 shows the model-consistent interval for pit given by

bstxt[Lγ, Uγ]. Over time, changes in these intervals are driven by changes in xt and b
s
t . We

note that the upper limit for θsit and pit is very large, which is a consequence of the QEH

model not imposing an upper limit on bt.
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Figure 3: The figure shows the simulated model-consistent interval for the stock price and
the simulated stock prices pit = θsitxt for i = 1, 2, 3 based on the data-generating process
in Definition 3. Panel (a) shows the simulated model-consistent interval for the stock price,
bstxt[Lγ, Uγ], as defined in Assumption 1. Panels (b)-(d) shows the simulated series pit for
i = 1, 2, 3, while the vertical grey lines indicate the intervals within which pit is uniformly
distributed. The simulated price p1t in Panel (b) lies in the model-consistent interval defined
in Theorem 1. The simulated price p2t in Panel (c) also satisfies the moderate change
condition with respect to xt as defined in Assumption 6. Finally, the simulated price p3t

in Panel (d) depends on sentiment as defined in Assumption 7. The light green shading
indicates periods where st > 0 and ∆xt > 0, while the light red shading indicates periods
where st < 0 and ∆xt < 0. Note that the scales differ between the upper and lower panels.

Panels (b)-(d) in Figure 2 show the simulated coeffi cients θsit for i = 1, 2, 3, while Panels

(b)-(d) in Figure 3 show the corresponding simulated prices pit. In the first case, θs1t is

drawn uniformly from the the model-consistent interval, so pt is uniformly distributed over

the interval Ipt . In the second case, θs2t also satisfies the MC condition with respect to xt
defined in Assumption 6. That implies that changes in θ2t and p2t are much smaller compared

to the first case.

The final case, Panel (d) in Figure 3, illustrates an important implication of the model:

prices tend to undergo wider swings during the periods in which market optimism (pes-

simism) coincides with increases (decreases) in earnings. The effect of sentiment is added,

so that the realizations of θs3t satisfy the restrictions in Assumption 7. During the first T1
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observations, the market is pessimistic (it < 0), and the coeffi cient θs3t tends to decrease. The

coeffi cient tends to increase for the majority of the period (T1, T2] during which the market

is optimistic (it > 0), again tending downward during the last part of the simulated sample

during which θs3t tends to decrease as it < 0. Given the choice of it, the simulated θs3t and

p3t exhibit swings that are not present in θs2t and p2t. As we discuss in the Introduction,

this illustrates the model’s potential to explain price swings as being driven primarily by

fundamental factors, with psychological considerations playing an amplifying role.

9.2 An Estimation and Testing of the GAS Model for the Simu-

lated Data

For the simulated data, we estimate the GAS model in (32) with the specification of βt in

(37). The model is estimated by maximum likelihood for the sample t = 1, 2, ..., T conditional

on the initial values (d0, x0, β0 = d0/x0). Table 1 shows the estimated coeffi cients, numerical

standard errors, and the standard misspecification tests for no autocorrelation for order four,

no autoregressive conditional heteroskedasticity of order four, and normality of the estimated

residuals.

Estimate Std. errors
ω 0.014 0.010
ϕ 0.170 0.116
α 0.806 0.113
β0 0.381
σu 0.581

Statistics p-value
AR(4) 1.99 0.74
ARCH(4) 2.11 0.72
Normality 2.84 0.24

Table 1: Maximum likelihood estimates of the GAS model in (32) and (37) for the simulated
dt based on the simulation data-generating process in Definition 3. The AR(4) test refers to
the test for no autocorrelation of order four by Godfrey (1978). The ARCH(4) test refers to
the test for no autoregressive conditional heteroskedasticity of order four by Engle (1982).
Normality refers to the Jarque-Bera test. The p-values for the misspecification tests are
calculated assuming an asymptotic χ2 distribution with degrees of freedom 4, 4, and 2,
respectively.

The hypotheses of no autocorrelation, no ARCH, and normality are not rejected. This

is also evident from Figure 4, which shows misspecification plots for the estimated residuals,
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Figure 4: The figure shows the misspecification plots for the estimated residuals, ût, from
the model in equations (32) and (37). Panel (a) shows the simulated dt and the predicted
dt. Panel (b) shows the standardized estimated residuals. Panel (c) shows a histogram of
the standardized residuals along with the estimated kernel density function (red line) and
the density function from a standard normal distribution for reference. Finally, Panel (d)
shows the autocorrelation function (ACF) and partial autocorrelation function (PACF) for
the estimated residuals.

ût = dt− β̂txt. The estimated residuals appear independent over time and normally distrib-
uted. Based on the standard misspecification tests and the plots of the estimated residuals,

we conclude that the estimated model is a valid representation of the (simulated) data that

is consistent with the QEH model. Crucially, this shows that the random process for βt in

(37) adequately represent the simulated sequence bst , despite the fact that the formulation

for βt is much simpler —involving only three parameters, (ω, φ, α) and the initial value β0 —

than the highly non-linear DGP in (39) used to simulate bst .

The estimated sequence β̂t is shown in Figure 5 (upper panel) along with the simulated

sequence bst . We note that β̂t follows b
s
t closely, though β̂t leads b

s
t by one period.
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Figure 5: Panel (a) shows the estimated βt from the model in equations (32) and (37) (black
line) and the simulated bst (red line). Panel (b) shows the estimated βt, while the vertical
lines indicate the moderate change intervals for βt given by βt−1It/xt, see (8). The green
vertical lines indicate that βt lies within the interval, while red vertical lines indicate that βt
lies outside the interval.

9.2.1 Assessing the Adequacy of the QEH Model

We now sketch how the estimates of the GAS analog can be used to assess the adequacy of

the QEH model’s assumptions and implications.

In Table 2, we list some assumptions and implications of the QEH model and how they

can be formulated in terms of the coeffi cients, βt, and observations, xt and pt.

QEH Model Statistical Model
bt > 0 βt > 0
MC of bt with respect to xt βt ∈ βt−1It/xt, It defined in (8)
Positive co-movement between btxt and xt ∆(βtxt)∆xt ≥ 0
Positive co-movement between pt and xt ∆pt∆xt ≥ 0
pt ∈ btxt[Lγ, Uγ] pt ∈ βtxt[Lγ, Uγ]

Table 2: The table shows the qualitative assumptions and implications of the QEH model
allowing for ambiguity, and their formulations in the statistical model.

The basic assumption of the QEH model is that bt > 0 can be imposed on βt in the
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statistical model, or it can left unrestricted. In the latter case, we find β̂t > 0 for all

observations in the sample. We can check how often the MC condition in (7) is satisfied for

β̂t by calculating

T−1

T∑
t=1

1(β̂t ∈ β̂t−1It/xt) = 0.71,

see also (8). A large value indicates that the development of the unobserved coeffi cients bt
tends to be moderately changing. On that basis, we conclude that the MC condition tends

to hold for β̂t.

Panel (b) in Figure 5 provides further support for this conclusion. The black line in the

panel shows the estimated βt and the vertical lines display the MC intervals for β̂, given by

β̂t−1It/xt. Green vertical lines in the figure indicate that β̂ lies within the interval, while red
vertical lines indicate that for β̂ lies outside the interval. The figure shows that whenever β̂t
lies outside the MC interval, it is typically not far outside the interval.

It is also possible to incorporate the MC condition for bt in the statistical model as an

MC condition for βt. This would yield a highly non-linear statistical model. Inference in

such a model needs to be developed in detail, for example by extending the bootstrap theory

in Cavaliere et al (2012, 2015).

We find that β̂txt co-moves positively with xt in 83% of the observations, so we conclude

that β̂txt and xt tend to co-move positively.

We simulated three different price series, pit = θsitxt, with θ
s
it corresponding to the intervals

(40), (41), and (42) respectively. Calculating T−1
∑T

t=1 1(pit ∈ β̂txt[L̂γ, Ûγ]) yields 99%, 96%,

and 100% for the three price series. In all cases, we conclude that the prices pit lie in the

estimated model-consistent interval given by β̂txt[L̂γ, Ûγ].

We can assess the moderate change of θt with respect to xt in Assumption 6 directly

from the observations for pt and xt. To do so, we replace θt by pt/xt in (29), and compute

T−1
∑T

t=1 1 (pit ∈ (pit−1/xt−1)It). For the three prices, we find 6%, 100%, and 100% respec-

tively. The two latter results reflect that both p2t and p3t have been simulated to satisfy

the MC condition. However, the result for p1t indicates that simulating the price from the

interval bstxt[Lγ, Uγ] without the MC condition yields positive co-movement in only 6% of the

observations. So despite the simplicity of the measure, it would correctly lead us to conclude

that θt is not moderately changing with respect to xt.

We can assess the amplifying effect of sentiment in Assumption 7 (i) and (ii) by replacing

θt with pt/xt in (30) and (31). For those observations where it > 0 and ∆xt ≥ 0, we find

that pit ∈ (pit−1/xt−1) I+
t in 0%, 43%, and 100% of the observations for the three prices,

respectively. Similarly, we find that pit ∈ (pit−1/xt−1) I−t in 0%, 48%, and 100% of the

observations where it < 0 and ∆xt ≤ 0. The results for p3t reflect that this price has been
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simulated to satisfy Assumption 7. However, for the first two prices, we would correctly

reject the amplifying effect of sentiment.

These examples illustrate how the estimates yielded by the GAS model and the observed

time series can be used to assess the QEH model’s assumptions and implications.

10 Concluding Remarks

REH models assume that neither an economist nor market participants face ambiguity about

which is the correct model of outcomes. As a result, they represent the market’s forecasts

with a conditional expectation of the single probability distribution implied by an economist’s

model. Hansen (2013, p. 399) argues REH representations thus “miss something essential:

uncertainty [arising from] ambiguity about which is the correct model”of the process under-

pinning outcomes. However, recognizing ambiguity requires jettisoning the assumption that

change can be represented with a probabilistic rule and that a single conditional distribution

represents how future outcomes actually unfold over time.

This paper has developed a novel mathematical framework that formalizes the ambiguity

an economist faces, by opening the model to unforeseeable change. The defining feature of

such change is that it cannot “by any method be [represented ex ante] with an objective,

quantitatively determined probability”(Knight, 1921, p. 321).

Leaving an economist’s model open to unforeseeable change is the key to representing

forecasts by market participants in a way that is consistent with the economist’s hypothesis

that the process driving outcomes can change at times and in ways that cannot be foreseen

by anyone with a probabilistic rule. We call our approach to representing forecasts by market

participants who face ambiguity about which is the correct quantitative model of this process

the Qualitative Expectations Hypothesis (QEH).

By recognizing ambiguity, a QEH model can account for the role of both the fundamental

factors, on which REH models focus, and the psychological factors underpinning behavioral-

finance models. And, it can do so without abandoning model consistency.

This feature of QEH models contrasts with behavioral-finance models’ jettisoning of

model consistency. Indeed, once we recognize that an economist and market participants

face ambiguity, the common belief that participants who rely on psychological considerations

forego profit opportunities appears to be an artifact of behavioral-finance models’probabilis-

tic representations of change. We leave for future research the QEH-based analysis of the

role of psychological considerations in rational forecasting.

QEH’s ability to represent the role of psychological factors in model-consistent forecasting

illustrates how leaving the asset-price models open to ambiguity may shed new light on long-

31



standing puzzles in financial economics. The plot of the simulated data in Panel (d) in Figure

3 provides an example of one of the QEH model’s novel implications: stock prices tend to

undergo wider swings during periods in which market optimism (pessimism) coincides with

increases (decreases) in earnings.

This illustration suggests the QEH model’s potential to explain why stock prices “fluctu-

ate too much to be justifie”by REH-based market forecasts of dividends (Shiller, 1981). This

puzzle has provided the raison d’être for the behavioral-finance approach, which represents

price swings as being driven primarily by psychological factors that are largely unrelated

to fundamental factors. By according both earnings and market sentiment a role in model-

consistent representations of forecasting, QEH points toward a way to explain price swings

as being driven primarily by fundamental factors, with psychological considerations playing

an amplifying role.

However, in order to assess the QEH model’s ability to explain asset-price swings and

other puzzles, we need to develop an econometric methodology for models that are open

to unforeseeable change and apply it to actual, rather than simulated, time-series data.

Although the sketch of this methodology presented here, together with its application to

the simulated data, appears promising, full development of this methodology remains an

important topic for future research.
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A Proofs of Theorems and Lemmas

Proof of Lemma 1. The changes in expected dividends in (10) can be expanded as follows,

∆E(dt|xt) = xt+1∆bt+1 + bt∆xt+1,

where xt+1∆bt+1 measures the effect of the change in bt given the value of xt+1, while bt∆xt+1

measures the effect of the change in xt, given bt. Thus, the MC condition |xt+1∆bt+1| ≤
|bt∆xt+1| in (6) implies that the first term xt+1∆bt+1 cannot change the sign of ∆E(dt|xt).
Therefore, as bt > 0, ∆(bt+1xt+1) has the same sign as ∆xt+1, such that ∆E(dt|xt)∆xt+1 ≥ 0.

Proof of Lemma 3. Positive homogeneity follows from

∆(λzt+1)∆xt+1 = λ∆zt+1∆xt+1 ≥ 0.

Next, additivity holds by

∆(zt+1 + yt+1)∆xt+1 = ∆zt+1∆xt+1 + ∆yt+1∆xt+1 ≥ 0,

and finally multiplicativity follows from

∆(yt+1zt+1)∆xt+1 = zt+1∆yt+1∆xt+1 + yt∆zt+1∆xt+1 ≥ 0.

Proof of Theorem 1. From Assumption 4 applied to (17), it is seen that for n→∞,

btxt(

n∑
k=1

γk[L,U ]k) + γnQE
(n−1)
t (Ipt+n)→ btxt

∞∑
k=1

γk[Lγ, Uγ].

Proof of Theorem 2. To prove the result we consider the case where θt/bt = Uγ is as large

as possible, and θt+1/bt+1 = Lγ as small as possible, given the constraints that θt/bt and

θt+1/bt+1 ∈ [Lγ, Uγ]. We find from the moderate condition (8) that because ∆xt+1 ≥ 0

bt+1xt+1 ≤ bt(xt+1 + |xt+1 − xt|) = bt(xt + 2∆xt+1).
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We then evaluate the difference

∆pt+1 = θt+1xt+1 − θtxt = bt+1xt+1Lγ − btxtUγ ≤ bt(xt + 2∆xt+1)Lγ − btxtUγ

= Lγbtxt[1 + 2
∆xt+1

xt
− Uγ
Lγ

]

< Lγbtxt[1 +
U − L
L
− Uγ
Lγ

] = Lγbtxt[
U

L
− Uγ
Lγ

] < 0.

Proof of Theorem 3. If ∆xt+1 ≥ 0 and ∆(θt+1/bt+1) ≥ 0, then θt+1 ≥ θtbt+1/bt and

therefore

∆pt+1 = θt+1xt+1 − θtxt ≥ θtbt+1xt+1/bt − θtxt = θt∆(bt+1xt+1)/bt,

which is positive because btxt co-moves positively with xt, such that ∆(bt+1xt+1) ≥ 0.

If ∆xt+1 ≤ 0 and ∆(θt+1/bt+1) ≤ 0, then θt+1 ≤ θtbt+1/bt and therefore

∆pt+1 = θt+1xt+1 − θtxt ≤ θtbt+1xt+1/bt − θtxt = θt∆(bt+1xt+1)/bt,

which is negative because btxt co-moves positively with xt, such that ∆(bt+1xt+1) ≤ 0.

Proof of Corollary 4. The proof is the same as for Lemma 1.

B The Lower and Upper Bounds

We derive expressions for the coeffi cients L and U , see (11)

Assumption 1 Assume that

xt = exp(

t∑
i=1

εxi − tσ2/2) =

t∏
i=1

exp(εxi − σ2/2), (44)

where εxt i.i.d.N (0, σ2).

We first prove a general result about the Gaussian distribution and then formulate the

results in a Corollary for the coeffi cients we have defined.

Lemma 4 Let ϕ (·) and Φ (·) be the density and distribution function of the standard Gaussian
distribution. Then for any a, b ∈ R∫ b

a

exp(x− 1

2
σ2)ϕ(x/σ)dx/σ = Φ(b/σ − σ)− Φ(a/σ − σ).
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Proof of Lemma 4. By definition of ϕ (·), standard manipulations imply that∫ b

a

exp(x− 1

2
σ2)ϕ(

x

σ
)
dx

σ
=

1√
2π

∫ b

a

exp(− 1

2σ2
(x− σ2)2)

dx

σ
.

Substituting u = (x− σ2)/σ, we find that∫ b/σ−σ

a/σ−σ
ϕ(u)du = Φ(b/σ − σ)− Φ(a/σ − σ).

The coeffi cients U and L are defined in (11). We find from

xt+1 = xt exp(εxt+1 + µ),

that

Et(xt+1 ± |∆xt+1|)+ = xtE{exp(εxt+1 + µ)± | exp(εxt+1 + µ)− 1|}+.

and therefore calculate

L = E{exp(εxt+1 + µ)− | exp(εxt+1 + µ)− 1|}+,

U = E {exp(εxt+1 + µ) + |exp(εxt+1 + µ)− 1|} .

Lemma 5 If Assumption 1 holds for xt, then it follows from Lemma 4 that the following

relations hold

xt exp(εx,t+1 − σ2/2) = xt+1, (45)

E exp
(
εxt − σ2/2

)
= 1, (46)

L = 1− Φ(
σ

2
− log 2

σ
) + 2{Φ(−σ

2
)− Φ(− log 2

σ
− σ

2
)}, (47)

U = 1 + 2{Φ(
σ

2
)− Φ(−σ

2
)}. (48)

Proof of Lemma 5. We find (45) from (44), and using Lemma 4, for b =∞ and a = −∞,
we find (46).

E exp(εt − σ2/2) = {Φ(∞/σ − σ)− Φ(−∞/σ − σ)} = 1.
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To prove (47) note that by definition, for µ = −σ2/2,

{exp(εxt + µ)− | exp(εxt + µ)− 1|}+ =

{
1

2 exp(εxt + µ)− 1

εxt + µ > 0

− log 2 < εxt + µ < 0

We define the sets A = {− log 2 < εxt + µ < 0} and B = {εxt + µ > 0} and find that the
probabilities P (A) = Φ(σ/2)− Φ(σ/2− log 2/σ) and P (B) = 1− Φ(σ/2), such that

L = P (B)− P (A) + 2E (exp(εxt + µ)1A)

= 1− Φ(σ/2) + Φ(σ/2)− Φ(σ/2− log 2/σ) + 2

∫ −µ
− log 2−µ

exp(x+ µ)ϕ(x/σ)dx/σ.

Setting µ = −σ2/2, we find

∫ σ2/2

− log 2+σ2/2

exp(x− σ2/2)ϕ(x/σ)dx/σ = {Φ (σ/2− σ)− Φ (− log 2/σ − σ/2)} ,

and by collecting terms we find

L = 1− Φ(σ/2− log 2/σ) + 2 {Φ (σ/2− σ)− Φ (− log 2/σ − σ/2)} .

Finally, we want to prove (48). We find

exp(εxt + µ) + |exp(εxt + µ)− 1| =
{

2 exp(εxt + µ)− 1

1

εxt + µ > 0

εxt + µ < 0,

such that for µ = −σ2/2

U = 2

∫ ∞
σ2/2

exp(x− σ2/2)ϕ(x/σ)dx/σ − (1− Φ(σ/2)) + Φ(σ/2).

By Lemma 4 for b =∞ and a = σ2/2 this can be reduced to

U = 2(1− Φ(−σ/2))− (1− 2Φ(σ/2)) = 1 + 2(Φ(σ/2)− Φ(−σ/2))

Lemma 6 Under Assumption 1 for µ = −σ2/2,

1 + 2(Φ(σ/2)− Φ(−σ/2) = 1 + σ

√
2

π
+O

(
σ2
)
.
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Proof of Lemma 6. The proof follows by a Taylor’s expansion around σ = 0.
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