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Abstract

In this paper we develop a test for time-varying factor loadings in factor mod-

els. The test is simple to compute and is constructed from estimated factors and

residuals using the principal components estimator. The hypothesis is tested by

regressing the squared residuals on the squared factors. The squared correlation co-

efficient times the sample size has a limiting χ2 distribution. The test can be made

robust to serial correlation in the idiosyncratic errors. We find evidence for factor

loadings variance in over half of the variables in a dataset for the US economy, while

there is evidence of time-varying loadings on the risk factors underlying portfolio

returns for around 80% of the portfolios.

Keywords: Factor models, principal components, LM test.

JEL classification: C12, C33.

∗The author acknowledges support from The Danish Council for Independent Research (DFF 4003-00022) and
CREATES - Center for Research in Econometric Analysis of Time Series (DNRF78), funded by the Danish National
Research Foundation.
†CREATES, Department of Economics and Business Economics, Aarhus University, Fuglesangs Allé 4, DK-8210
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1 Introduction

Large factor models have become an important tool for analysing and forecasting large economic

datasets spanning several hundred of variables. Factors extracted from large panels of disaggregated

macroeconomic variables explain a large part of the comovement in the series. Estimated factors

are successful in summarizing the predictive content in large datasets when used in predictive

regression, see e.g. Stock and Watson (2002). Examples of structural analysis using factor models

are Bernanke et al. (2005) and Giannone et al. (2006). In financial applications, an underlying

factor structure is often assumed, and factors can be extracted from portfolios of asset returns to

form risk factors that separate the returns into to systematic and non-systematic risk. When the

data spans over long periods, often several decades, the factor loadings are likely to be exhibit some

instability. We propose a simple test for time-varying loadings in factor models.

The test is constructed using principal components estimates of the common factors and resid-

uals. From a regression of the squared residuals on the squared factors we obtain the test statistics

as the squared correlation coefficient R2 times the sample size T . Under the null hypothesis of

constant factor loadings, the test statistic has a limiting χ2 distribution with degrees of freedom

equal to the number of factors. The result is based on the observation that a factor model with

time-varying factor loadings can be written as xit = λ′itFt + eit = λ′iFt + ξ′itFt + eit. The observed

data for variable i at time t is xit, Ft is the vector of common factors, λit is the time-varying factor

loadings, and eit is the idiosyncratic errors. The variable ξit = λit − λi is the stationary variations

in the factor loadings around the constant λi. The principal components estimator estimates the

factors Ft and the constant λi, and the residuals are thus an estimate of ξ′itFt + eit, which we

denote uit. In the single factor case, the second moment of uit is E(u2
it) = E(ξ2

it)E(F 2
t ) +E(e2

it). A

regression of the squared residuals on the squared factors will thus give an estimate of the variance

of the factor loadings E(ξ2
it). When the loadings are constant, the R2 from this regression is close

to zero, and a large R2 is evidence of variation in the factor loadings.

Under the condition that the number of variables N satisfies T/N2 → 0, the estimation error in

the factors does not affect the limiting distribution of the test statistics. In the analysis of the test

statistic, the idiosyncratic errors are assumed to be white noise. Serial correlation in the errors can

be controlled for by basing the test statistic on GLS estimation of the factor model suggested by

Breitung and Tenhofen (2011), and we show that the GLS version of the test has the correct size

in our simulations.

A related test is the Chow test of Breitung and Eickmeier (2011) for structural breaks in the

factor loadings. They consider a factor model in which the factor loadings are λ1 for t = 1, ...t∗,

and λ2 for t > t∗. They find evidence of structural breaks in a large number of variables for both

US and European datasets. Eickmeier et al. (2015) and Del Negro and Otrok (2008) suggest factor

models in which the factor loadings are time-varying.

We consider two empirical applications of our testing procedure. We use the dataset of Mc-

Cracken and Ng (2015) for the US economy, and we apply our testing procedure for different choices

for the number of factors. We find evidence of time-varying factor loadings in over half of series,
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irrespective of the number of included factors. In the second application, we consider excess returns

on 100 portfolios sorted on size and book-to-market. We find that around 80% of the portfolios

are associated with time-varying factor loadings, indicating that the portfolios have time-varying

exposures to the risk factors. Furthermore, the estimated factors are closely related to the three

risk factors of Fama and French (1993). The squared canonical correlations between the estimated

factors and the Fama French factors are all larger than 0.90.

The rest of the paper is organized as follows. In Section 2 we introduce the factor model and

the test statistic. Section 3 states the assumption for the data-generating process and the main

result on the limiting distribution of the test statistic. In Section 4, a Monte Carlo study shows

the finite samples properties of the test statistic. In Section 5 we report results for the empirical

applications. Section 6 concludes.

2 Testing for time-varying loadings

Let Xit denote the observed data at time t = 1, ..., T for observation i = 1, ..., N . We consider a

factor model with r common factors and time-varying factor loadings:

Xit = λ′itFt + eit,

where Ft = (F1t, ..., Frt)
′ is the r-dimensional vector of common factors, and eit is the idiosyncratic

error. We assume the factor loadings to be stationary and define the variable:

ξit = λit − λi,

where λi = E(λit) is the mean value of the loadings, and ξit is a mean-zero stationary random

process. The variable ξit separates the time-varying loadings into a constant part and a time-

varying part. The factor model can be written as:

Xit = λ′iFt + ξ′itFt + eit. (1)

If the factor loadings are constant over time, the variable ξit will be zero for all t with zero variance,

whereas in the time-varying case, ξit will have a non-zero variance, E(ξ2
it) 6= 0. Under the null

hypothesis we therefore assume:

H0 : E(ξ2
it) = 0,

and we construct a test that can detect non-zero variances of ξit, which corresponds to time-varying

factor loadings. To test the null hypothesis, we form a test statistic using estimated factors and

residuals. A regression of the squared residuals on the squared factors gives the test statistic TR2
i ,

where R2
i is the squared correlation coefficient from the regression. The test statistic has a χ2

limiting distribution with r degrees of freedom under the null of constant loadings.

To develop some intuition for the test, consider the case of a single observed factor, r = 1. Define
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the vectors F = (F1, ..., FT )′ and Xi = (Xi1, ..., XiT )′. As we assume in the next section, the sample

average of the squared factors converges to a positive definite matrix, T−1
∑

t F
2
t

p→ ΣF > 0. Since

we can observe the factors, we can consider the OLS estimator for the loadings λ̂i = (F ′F )−1F ′Xi.

From (1), we have:

λ̂i ≈ λi + Σ−1
F T−1

T∑
t=1

F 2
t ξit + Σ−1

F T−1
T∑
t=1

Fteit.

When ξit and eit both have limited serial dependence, the last two terms will converge to zero in

probability, as both E(ξit) = 0 and E(eit) = 0. The residuals from this regression are therefore an

estimate of ξitFt + eit. Define uit := ξitFt + eit, and consider the second moment of uit:

E(u2
it) = E(ξitFt + eit)

2 = E(ξ2
it)E(F 2

t ) + E(e2
it).

With time-varying factor loadings, the loadings variance is non-zero, E(ξ2
it) 6= 0, and u2

it and F 2
t

will therefore be correlated. This observation shows that a regression of u2
it on F 2

t and a constant

can be used to test for time-varying loadings, because the coefficient on F 2
t will be an estimate of

the variance of the loadings. Under the null, E(ξ2
it) = 0, and the residuals uit will be equal to eit.

A large value of the test statistic is therefore evidence of time-varying factor loadings.

In practice, the test statistic is constructed using estimates of the unobservable quantities Ft,

λi, and eit. The principal components estimator gives estimates of the factors and the constant

part of the loadings (F̃t, λ̃i), as well as estimates of the idiosyncratic components, ẽit = Xit− λ̃′iF̃t.
The definition of the estimator is stated in the Appendix. The test statistic is obtained as TR2

i

from the regression of ẽ2
it on the squared principal components and a constant, and we denote this

statistic as LMi. The test statistic can be written as:

LMi = TD̃′iB̃
−1
i D̃i,

with

D̃i = T−1
T∑
t=1

(ẽ2
it − σ̃2

i )g(F̃tF̃
′
t − F̃ ′F̃ /T ),

B̃i = T−1
T∑
t=1

[ẽ2
it − σ̃2

i ]
2T−1

T∑
t=1

g(F̃tF̃
′
t − F̃ ′F̃ /T )g(F̃tF̃

′
t − F̃ ′F̃ /T )′.

where g(A) denotes the column vector of diagonal elements of a square matrix A, and σ̃2
i =

T−1
∑T

t=1 ẽ
2
it is the estimator for the variance of eit. Theorem 1 in the next section states that the

LMi statistic has a χ2 limiting distribution with r degrees of freedom under the null hypothesis of

constant factor loadings. The LMi test has power against covariance-stationary forms of variation

in the factor loadings, with stationary autoregressions being a leading example. We assume that

the number of factor r is known. In practice, the number of factors can be estimated consistently
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under the null of constant loadings, e.g. by the information criteria of Bai and Ng (2002).

3 Assumptions

To establish the limiting distribution of the test statistic, we make a similar set of assumptions as

in Bai (2003). Let ‖A‖ = [tr(A′A)]1/2 denote the norm of matrix A. The constant M ∈ (0,∞) is

common to all assumptions below.

Assumption A. E‖Ft‖4 ≤ M < ∞, and T−1
∑T

t=1 FtF
′
t

p→ ΣF for some r × r positive definite

matrix ΣF .

Assumption B. ‖λi‖ ≤ λ̄ <∞, and ‖Λ′Λ/N − ΣΛ‖ → 0 for some positive definite matrix ΣΛ.

Assumption C. There exists a positive constant M <∞ such that for all N and T :

1. E(eit) = 0, E|eit|8 ≤M.

2. E(e′set/N) = E(N−1
∑N

i=1 eiseit) = γN (s, t), |γN (s, s)| ≤ M for all s, and
∑T

s=1 |γN (s, t)| ≤
M for all t.

3. E(eitejt) = τij,t with |τij,t| ≤ |τij | for some τij and for all t. In addition
∑N

j=1 |τji| ≤ M for

all i.

4. E(eitejs) = τij,ts, and (NT )−1
∑N

i,j=1

∑T
t,s=1 |τij,ts| ≤M .

5. For every (s, t), E|N−1/2
∑N

i=1[eiseit − E(eiseit)]|4 ≤M .

Assumption D. Ft is independent of eis for all (i, t, s).

Assumption E. There exists a positive constant M <∞ such that for all N and T :

1. For each t,

E‖(NT )−1/2
T∑
s=1

N∑
k=1

Fs[eksekt − E(eksekt)]‖2 ≤M,

2. For each t,

E

∥∥∥∥ 1√
N

N∑
i=1

λieit

∥∥∥∥4

≤M,

3. For each i,

E

∥∥∥∥ 1√
T

T∑
t=1

Fteit

∥∥∥∥2

≤M,
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4. For each i,

E

∥∥∥∥ 1√
T

T∑
t=1

eit(FtF
′
t ⊗ F ′t)

∥∥∥∥2

≤M.

Assumption F. The eigenvalues of the r × r matrix (ΣΛ · ΣF ) are distinct.

Assumptions A and B imply the existence of r common factors. Assumption C allows the idiosyn-

cratic errors to exhibit limited serial correlation and cross-sectional dependence. If eit are i.i.d.,

Assumption C is satisfied. Assumption D requires the factors and idiosyncratic errors to be in-

dependent, but dependence within groups is allowed. In particular, Ft can be serially correlated.

Assumptions A-D permit consistent estimation of the factor space H ′Ft by the principal compo-

nents estimator F̃t, where H is an invertible matrix. The moment conditions in Assumption E are

similar to Assumption F in Bai (2003). Assumption F ensures that the rotation matrix H has a

unique limit. To study the limit distribution of the test statistic, we impose additional assumptions

on the idiosyncratic errors, as well as a central limit theorem.

Assumption G.

1. For all t, E(eit) = σ2
i , E(e4

it) = µ4,i, and eit and eis are independent for t 6= s.

2. For each i, as T →∞,

B
−1/2
i

√
TDi

d→ N(0, Ir),

where

Di = T−1
T∑
t=1

(e2
it − σ2

i )g[H ′(FtF
′
t − F ′F/T )H],

and the asymptotic covariance matrix of
√
TDi is:

Bi = plimT→∞T
−1

T∑
t=1

E

[
(e2
it − σ2

i )
2g[H ′(FtF

′
t − F ′F/T )H]g[H ′(FtF

′
t − F ′F/T )H]′

]
> 0.

Assumption G implies that the limiting distribution of the infeasible test statistic TDiB
−1
i D′i is

χ2 with r degrees of freedom. Since the principal components estimator F̃t is consistent for a

rotation of the factors H ′Ft, the rotation matrix H appears in the limiting distribution. Under

Assumptions A-D and F, Bai (2003) show that H
p→ Q−1, where Q−1 is an invertible matrix, so H

can be replaced by Q−1 in Assumption G. However, since the test statistic is based on the R2 from

the regression of the squared residuals on the factors, the test statistic is invariant to the scaling

of the factors, and the limiting distribution is therefore not affected by rotations of the factors.

The null distribution of the LMi test statistic is presented in the following theorem.

Theorem 1. Under Assumptions A-G and if N,T →∞ and
√
T/N → 0, the statistic LMi has a

limiting χ2 distribution with r degrees of freedom for each i.
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The proof is presented in the Appendix. Theorem 1 states that the LMi statistic based on the

principal components estimates F̃t and ẽit has the same limiting distribution as the statistic based

on the population quantities Ft and eit. The result follows since D̃i − Di = Op(δ
−2
NT ), where

δNT = min{
√
N,
√
T}. The rate condition

√
T/N → 0 ensures that the estimation error in F̃t does

not affect the limiting distribution of the test statistic, and
√
TD̃i therefore has the same limiting

distribution as
√
TDi. Under Assumption G.1, the asymptotic variance Bi can be consistently

estimated by B̃i, and the LMi statistics therefore has the same limiting distribution as the statistic

obtained from the infeasible regression that uses Ft and eit instead of ẽit and F̃t.

3.1 Serially correlated errors

The limiting distribution of the LMi test statistic is derived under the assumption that eit is i.i.d.

(Assumption G.1), while Ft is allowed to exhibit serial correlation. In practice, the idiosyncratic

errors can be serially correlated if the factors do not adequately capture the serial correlation in

the data. When both the idiosyncratic errors eit and the factors Ft are serially correlated, the

asymptotic covariance matrix Bi is not valid. If eit exhibits serial correlation, e2
it will also be

serially correlated, and we have:

E

[
g[H ′(FsF

′
s − F ′F/T )H](e2

it − σ2
i )(e

2
is − σ2

i )g[H ′(FsF
′
s − F ′F/T )H]′

]
6= 0 for t 6= s.

Instead the covariance matrix of
√
TBi takes the form:

B∗i = plimT→∞T
−1

T∑
t=1

T∑
s=1

E[g[H ′(FtF
′
t − F ′F/T )H](e2

it − σ2
i )(e

2
is − σ2

i )g[H ′(FsF
′
s − F ′F/T )H]′].

The consequence is that the size of the test will be affected. Assumptions A-E are sufficient to

ensure that D̃i converges to Di, and Di converges to zero even with serially correlated errors. The

asymptotic power of the test is unaffected as serial correlation in eit only affects the asymptotic

covariance matrix of
√
TDi.

To improve the size properties of the LMi test when Assumption G.1 is violated, the test can

be based on GLS estimation of the factor model. By fitting an auxiliary model to the residuals, we

can capture the idiosyncratic dynamics in the errors. The estimated dynamics can then be used to

perform a GLS transformation of the factor model. The GLS residuals will resemble white noise if

the auxiliary model for the errors captures the idiosyncratic dynamics, and the LMi test based on

the GLS transformed model will therefore have better size properties.

We follow Breitung and Tenhofen (2011) and specify individual-specific AR(pi) models for the

idiosyncratic components. After obtaining the initial principal components estimates ẽit of the

idiosyncratic errors, we estimate an AR(pi) model for the residuals by least squares:

ẽit = ρi,1ẽi,t−1 + ...+ ρi,pi ẽi,t−pi
+ vit.
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The individual-specific lag lengths pi can be determined by information criteria. Denote the result-

ing lag polynomial by ρ̃i(L). The GLS transformed model is:

ρ̃i(L)xit = λ′i[ρ̃i(L)F̃t] + e∗it,

where F̃t is the principal components estimator of the common factors. A new estimate ẽ∗it of the

residuals is obtained from least squares regression of the GLS transformed model. These residuals

are serially uncorrelated if the AR(pi) model sufficiently approximates the correlation structure

in eit. To test the null hypothesis of constant loadings, the LMi statistic is constructed from the

GLS residuals ẽ∗it and the GLS transformed factors ρ̃i(L)F̃t. Using the GLS transformed model to

construct the LMi statistic therefore gives a test statistic that is robust to serial correlation in the

errors. The Monte Carlo simulations in the next section show that the GLS based statistic has an

actual size very close to the nominal in the presence of serially correlated errors.

4 Small sample properties

We perform a Monte Carlo study to investigate the small sample properties of the test statistic.

The simulation design is as follows:

Xit = λ′itFt + eit,

(1− bipL)(λitp − λip) = ηitp,

(1− αL)eit = vit,

Ftp = ρFt−1,p + utp,

λi ∼ i.i.d. U(0, 1),

ηit ∼ i.i.d. N (0, σ2
ip(1− b2ip)),

vt ∼ i.i.d. N (0, (1− α2)IN ),

utp ∼ i.i.d. N (0, 1− ρ2),

where i = 1, ..., N , t = 1, ..., T , and p = 1, ..., r are factor and loadings indices. We omit the subscript

p when there is no ambiguity. The processes {utp}, {ηit}, and {vt} are mutually independent. We

generate time-variation in the loadings by simulating them as AR(1)’s independent over i. The

constant part of the loadings is λi ∼ i.i.d. U(0, 1), and the degree of variation is determined by the

variance parameter σ2
ip, which is the unconditional variance of the factor loadings, σ2

ip = E(ξ2
ipt).

The parameters α and ρ determine the degree of serial correlation in the idiosyncratic errors and

factors, respectively. In our baseline simulations we set α = 0 and ρ = 0. We also consider the

effect of having α 6= 0 and ρ 6= 0, in which case Assumption G.1 is not fulfilled and the asymptotic

covariance matrix Bi is invalid. When computing results, we discard the first 200 observations to

avoid any dependence on initial values.

Table 1 shows the empirical sizes of the LMi statistic. The results in (a) and (b) are for a model

with one and two factors, respectively. The data is generated with α = 0, ρ = 0, and σ2
i,p = 0, such

that the loadings are constant, and the model satisfies Assumptions A-G. The rejection frequencies

are similar for all N and T . The empirical sizes are close to the nominal size, but slightly undersized

for the majority of the sample sizes. The number of factors does not seem to affect the empirical

size of the test. The rejection frequencies are similar in (a) and (b).
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Table 2 shows results for a factor model with serial correlation in factors and the idiosyncratic

errors, such that Assumption G.1 is violated. We set the parameters to α = 0.5 and ρ = 0.9. Table

2 (a) reports the empirical sizes of the LMi test. The test is seen to reject the null hypothesis too

frequently when the factors and errors are serially correlated. The empirical size is larger than the

nominal for all N and T , and the size distortion generally increases with T . The results in (b)

are for the GLS transformed model. We choose the order of the autoregression for the residuals

by AIC. The rejection frequencies are now much closer to the nominal size and the empirical sizes

are similar to those in Table 1. The GLS transformation thus works well for correcting for serial

correlation in the idiosyncratic errors.

To study the empirical power properties of the LMi test, we simulate the model with time-

varying factor loadings and different degrees of loading variance, E(ξ2
it) = σ2

i . The AR-parameter

of the loadings is set to bi = 0.9, and the variance parameter is σ2
i = (0.1, 0.5, 1, 1.5). The other

parameters are the same as in Table 1. Figure 1 plots the empirical power of the test for the model

with one factor and time-varying factor loadings. Table 3 reports the corresponding rejection

frequencies. The rejection frequencies increase monotonically with σ2
i for all combinations of N

and T , so the larger the difference between the null, E(ξ2
it) = 0, and the alternative, the higher is

the empirical power. The sample size T is also seen to increase power. The rejection frequencies

increase with T for any fixed σ2
i and N . The rejection rates approach 1 as T increases for all

choices of loadings variance except for σ2 = 0.1. In the case with σ2 = 0.1, the rejection rates are

around 0.35 for T = 400. This is, however, a very limited amount of variation in the loadings, and

the difference between the null hypothesis and the alternative is small. The cross-section size has

a smaller impact on the empirical power, but does tend to increase the rejection frequencies for a

given σ2 and T .

Finally, we repeat the simulations in Figure 1, but with serial correlation in errors and factors,

α = 0.5 and ρ = 0.9. Figure 2 shows the empirical power of the LMi test, and Figure 3 shows the

results for the GLS transformed model. The corresponding tables of rejection frequencies are in

Tables 4 and 5, respectively. Serial correlation generally leads to lower rejection frequencies. For

T = 50, .., 200, the empirical power is lower for the LMi test compared to the results in Figure 1.

For the largest sample size, serial correlation has only a minor impact. The rejection frequencies

are close to one when N and T are large. When the LMi test is based on the GLS transformed

model, we see a further reduction in the rejection frequencies. The empirical power in Figure 3 is

lower for all sample sizes. Otherwise, the same patterns as in Figure 1 are evident: Power increases

with σ2 and T , whereas N has a smaller effect on the rejection frequencies.

5 Empirical application

We apply our test procedure to two settings. The first is a large dataset of macroeconomic variables

for the US, and the second is a dataset of portfolio returns.

The macroeconomic dataset is the FRED-MD database of McCracken and Ng (2015). The
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dataset contains 135 monthly variables and includes measures of real activity, prices, money and

credit aggregates, interest rates, stock prices, and exchange rates. We perform the same pre-

treatment of the data as in McCracken and Ng (2015). Specifically, we difference the non-stationary

series to stationarity, and standardize the series to have zero mean and unit variance before ex-

tracting principal components. The reader is referred to their paper for a closer variable description

and details of the pre-treatment of the series.

We apply our test procedure for the period 1984:2014. Breitung and Eickmeier (2011) test

for structural breaks in the factor loadings associated with the Great Moderation using a similar

dataset. They find evidence of structural breaks in over half the series in 1984, and argue that it

leads to an inflation in the number of factors. Our testing procedure requires the number of factors

to be constant over the sample period, and we therefore restrict the sample to 1984:2014, resulting

in T = 372 observations for each variable. To determine the number of factors, we use the Bai and

Ng (2002) ICp1 criterion. The number of factors is estimated to be 10, but the criterion is very flat

for r = 7, ..., 12.1 We therefore consider r = 7, ..., 12 when testing for time-varying loadings.

Table 6 shows the rejection rates, i.e. the share of the 135 variables for which we reject the

null hypothesis. For r = 10 factors, the rejection rate is 50%, so for half of the variables we reject

the null of constant factor loadings. If we increase or decrease the number of factors, the rejection

rates are similar. When we redo the tests based on the GLS transformed model, the rejection rates

increase slightly. For r = 10 the rejection rate increases to 59%, with a similar increase for the

other number of included factors. In Table 7 we report the rejection frequencies for the individual

t-statistics for the GLS transformed model with 10 factors. The rejection rates are highest for the

first three factors with a rejection rate around 40%. For the remaining factors, the test also rejects

for a non-trivial share of the variables. If we include more or fewer factors, the rejection rates

for the individual t-statistics are similar. There is thus substantial evidence of time-varying factor

loadings in the macroeconomic series.

For the second application we consider returns on portfolios. The dataset is from Kenneth

French’s website and consists of excess returns on 100 portfolios sorted on size and book-to-market.

Data descriptions and details on the sorting of portfolios can be found in Fama and French (1993).

The data includes T = 636 observations and covers 1963:1 to 2015:12. The ICp1 criterion results in

6 factors. We also consider r = 1, ..., 5 as these are common choices in the asset pricing literature.2

The results of the tests are shown in Table 8. The rejection rates using the LMi test are larger

than 0.80 for r = 2, ..., 6 factors, and 0.46 when only a single factor is included. The results based

on GLS estimation are similar. The rejection rates are slightly lower, but we still reject for the

majority of the variables. The results for the individual t-statistics in Table 9 also show high

rejection rates. We get similar results for the t-statistics with fewer factors included. We thus

identify time-varying factor loadings for a large share of the asset portfolios.

This implies that some portfolios have time-varying exposure to the underlying risk factors.

1We have also tried the method of Alessi et al. (2010) to determine the number of factors. The results are very
sensitive to the choice of tuning parameters and do not give any clear indication of the number of factors.

2The method of Alessi et al. (2010) tends to pick 2-4 factors, depending on the choice of tuning parameters.
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The estimated factors bear a strong resemblance to the three risk factors of Fama and French

(1993): the market excess return, small minus big factor (SMB), and high minus low factor (HML).

The squared canonical correlations between the three Fama French factors and the 6 factors in

our analysis are 0.993, 0.951, and 0.917, respectively. Bai and Ng (2006) also find that the Fama

French factors are strong proxies for systematic risk. They find canonical correlations of 0.992,

0.917, 0.832 for the period 1960-1996.

6 Conclusions

In this paper we propose a simple procedure to test for stationary variations in factor loadings.

The test is based on principal components estimation of the factors and is constructed as TR2 from

a regression of the squared residuals on the squared factors. We show that under the assumption

of an approximate factor model, the limiting distribution of the test statistic is unaffected by the

estimation error of the common factors. The test statistic converges to a χ2 random variable with

degrees of freedom equal to the number of factors. The limiting distribution is therefore the same

as if the factors could be observed. Furthermore, the test can be based on GLS estimation of the

factor model such that serial correlation in the idiosyncratic errors is removed.

When testing for time-varying factor loadings in a large macroeconomic dataset, we find evidence

for time-varying factor loadings in around half of the series. When applying the test to returns

on portfolios, we find that the factor loadings are time-varying for 80% of the portfolios. These

portfolios therefore have a time-varying exposure to the risk embedded in the underlying factors.

Furthermore, the factors have a strong relation with the three Fama French factors with squared

canonical correlations all larger than 0.90.
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Figure 1: Empirical power (average rejection frequencies).
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(d) N = 150
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(e) N = 200
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(f) N = 400
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Note: Figures (a)-(f) plot the average rejections frequencies of rejection of the LMi test for the model with factor loadings
variances σ2 = (0.1, 0.5, 1, 1.5). Actual observations are marked with an ”x”. The lines are piecewise linear interpolations.
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Figure 2: Empirical power (average rejection frequencies).
Serially correlated errors – LMi.
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(b) N = 50
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(c) N = 100
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(d) N = 150
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(e) N = 200
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(f) N = 400
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Note: Figures (a)-(f) plot the average frequencies of rejection of the LMi test for the model with factor loadings variances
σ2 = (0.1, 0.5, 1, 1.5). The errors and factors are serially correlated with AR-parameters, α = 0.5 and ρ = 0.9, respectively.
Actual observations are marked with an ”x”. The lines are piecewise linear interpolations.
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Figure 3: Empirical power (average rejection frequencies).
Serially correlated errors – LMi–GLS.
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(b) N = 50

50 100 150 200 250 300 350 400

T

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
2
=0.1

σ
2
=0.5

σ
2
=1

σ
2
=1.5

(c) N = 100
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(d) N = 150

50 100 150 200 250 300 350 400

T

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
2
=0.1

σ
2
=0.5

σ
2
=1

σ
2
=1.5

(e) N = 200
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(f) N = 400
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Note: Figures (a)-(f) plot the average frequencies of rejection of the LMi test based on GLS estimation for the model with
factor loadings variances σ2 = (0.1, 0.5, 1, 1.5). The errors and factors are serially correlated with AR-parameters, α = 0.5 and
ρ = 0.9, respectively. Actual observations are marked with an ”x”. The lines are piecewise linear interpolations.
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Table 1: Empirical sizes (average rejection frequencies).

(a) 1 factor

N T = 50 T = 100 T = 150 T = 200 T = 400

20 0.037 0.040 0.041 0.057 0.043

50 0.039 0.037 0.048 0.041 0.050

100 0.036 0.044 0.047 0.044 0.039

150 0.035 0.043 0.042 0.043 0.044

200 0.042 0.047 0.039 0.036 0.043

400 0.035 0.038 0.045 0.040 0.055

(b) 2 factors

N T = 50 T = 100 T = 150 T = 200 T = 400

20 0.049 0.044 0.051 0.048 0.058

50 0.043 0.048 0.045 0.039 0.051

100 0.044 0.039 0.049 0.044 0.053

150 0.035 0.047 0.044 0.056 0.050

200 0.048 0.036 0.047 0.044 0.050

400 0.039 0.040 0.051 0.057 0.055

Note: The table reports the average rejection frequencies of the LMi

test for the factor model with 1 factor (a) and 2 factors (b), and constant

factor loadings, E(ξ2it) = 0. The nominal size is 0.05 and the results are

based on 2000 replications.
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Table 2: Empirical sizes (average rejection frequencies).
Serially correlated errors.

(a) LMi

N T = 50 T = 100 T = 150 T = 200 T = 400

20 0.051 0.073 0.076 0.076 0.095

50 0.065 0.076 0.077 0.092 0.098

100 0.068 0.072 0.079 0.076 0.094

150 0.067 0.075 0.086 0.076 0.092

200 0.065 0.070 0.100 0.091 0.089

400 0.070 0.077 0.079 0.082 0.105

(b) LMi – GLS

N T = 50 T = 100 T = 150 T = 200 T = 400

20 0.042 0.043 0.033 0.049 0.044

50 0.035 0.037 0.045 0.045 0.049

100 0.035 0.040 0.043 0.040 0.052

150 0.032 0.052 0.042 0.050 0.049

200 0.033 0.046 0.042 0.046 0.045

400 0.038 0.036 0.037 0.048 0.050

Note: The table reports the average rejection frequencies of the LMi test

for the factor model with 1 factor and constant factor loadings, E(ξ2it) = 0.

The errors and factors are serially correlated with AR-parameter α = 0.5

and ρ = 0.9, respectively. Results in (a) for the LMi test, and results in

(b) are for the GLS transformed model. The nominal size is 0.05 and the

results are based on 2000 replications.
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Table 3: Empirical power (average rejection frequencies).

(a) N = 20

T 50 100 150 200 400

σ2

0.1 0.071 0.117 0.141 0.155 0.301

0.5 0.183 0.358 0.508 0.628 0.883

1.0 0.252 0.455 0.637 0.731 0.951

1.5 0.282 0.491 0.635 0.754 0.955

(b) N = 50

T 50 100 150 200 400

σ2

0.1 0.080 0.130 0.163 0.201 0.349

0.5 0.227 0.443 0.607 0.728 0.955

1.0 0.312 0.594 0.761 0.877 0.995

1.5 0.368 0.614 0.777 0.878 0.994

(c) N = 100

T 50 100 150 200 400

σ2

0.1 0.089 0.130 0.180 0.215 0.372

0.5 0.246 0.471 0.656 0.790 0.974

1.0 0.335 0.648 0.833 0.907 0.998

1.5 0.384 0.693 0.862 0.948 1.000

(d) N = 150

T 50 100 150 200 400

σ2

0.1 0.070 0.123 0.174 0.200 0.367

0.5 0.239 0.501 0.668 0.787 0.976

1.0 0.345 0.660 0.842 0.937 0.999

1.5 0.420 0.715 0.877 0.964 1.000

(e) N = 200

T 50 100 150 200 400

σ2

0.1 0.068 0.135 0.170 0.195 0.359

0.5 0.247 0.498 0.681 0.812 0.976

1.0 0.358 0.688 0.873 0.940 0.999

1.5 0.423 0.757 0.902 0.975 1.000

(f) N = 400

T 50 100 150 200 400

σ2

0.1 0.067 0.120 0.171 0.210 0.358

0.5 0.246 0.497 0.689 0.817 0.978

1.0 0.391 0.701 0.881 0.949 1.000

1.5 0.417 0.761 0.921 0.973 1.000

Note: The table reports the average frequencies of rejection of the LMi test for the model with factor loadings

variance E(ξ2it) = σ2. The results are based on 2000 replications.
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Table 4: Empirical power (average rejection frequencies)
Serially correlated errors – LMi.

(a) N = 20

T 50 100 150 200 400

σ2

0.1 0.067 0.092 0.129 0.142 0.252

0.5 0.109 0.202 0.326 0.406 0.704

1.0 0.124 0.273 0.378 0.524 0.784

1.5 0.174 0.309 0.426 0.528 0.809

(b) N = 50

T 50 100 150 200 400

σ2

0.1 0.073 0.110 0.149 0.169 0.272

0.5 0.125 0.237 0.366 0.460 0.797

1.0 0.171 0.313 0.469 0.615 0.902

1.5 0.171 0.359 0.506 0.625 0.905

(c) N = 100

T 50 100 150 200 400

σ2

0.1 0.076 0.108 0.144 0.168 0.277

0.5 0.128 0.307 0.415 0.531 0.836

1.0 0.180 0.372 0.537 0.689 0.929

1.5 0.208 0.401 0.579 0.691 0.949

(d) N = 150

T 50 100 150 200 400

σ2

0.1 0.080 0.113 0.149 0.180 0.316

0.5 0.127 0.261 0.410 0.554 0.843

1.0 0.186 0.352 0.540 0.686 0.940

1.5 0.211 0.377 0.578 0.696 0.952

(e) N = 200

T 50 100 150 200 400

σ2

0.1 0.092 0.126 0.146 0.167 0.318

0.5 0.125 0.265 0.412 0.513 0.839

1.0 0.175 0.364 0.540 0.668 0.954

1.5 0.207 0.396 0.577 0.713 0.953

(f) N = 400

T 50 100 150 200 400

σ2

0.1 0.079 0.117 0.151 0.168 0.281

0.5 0.132 0.270 0.410 0.533 0.831

1.0 0.176 0.356 0.553 0.692 0.946

1.5 0.204 0.405 0.570 0.697 0.961

Note: The table reports the average frequencies of rejection of the LMi test for the model with factor loadings

variance E(ξ2it) = σ2. The errors and factors are serially correlated with AR-parameters, α = 0.5 and ρ = 0.9,

respectively. The results are based on 2000 replications.
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Table 5: Empirical power (average rejection frequencies)
Serially correlated errors – LMi–GLS.

(a) N = 20

T 50 100 150 200 400

σ2

0.1 0.032 0.059 0.053 0.074 0.102

0.5 0.057 0.118 0.172 0.221 0.408

1.0 0.088 0.181 0.262 0.344 0.574

1.5 0.100 0.223 0.321 0.389 0.652

(b) N = 50

T 50 100 150 200 400

σ2

0.1 0.048 0.062 0.079 0.075 0.123

0.5 0.074 0.139 0.211 0.285 0.545

1.0 0.110 0.236 0.358 0.453 0.759

1.5 0.124 0.278 0.405 0.507 0.815

(c) N = 100

T 50 100 150 200 400

σ2

0.1 0.056 0.059 0.075 0.090 0.142

0.5 0.083 0.178 0.258 0.346 0.634

1.0 0.117 0.268 0.399 0.528 0.852

1.5 0.151 0.308 0.488 0.590 0.902

(d) N = 150

T 50 100 150 200 400

σ2

0.1 0.041 0.065 0.073 0.097 0.144

0.5 0.084 0.162 0.251 0.343 0.634

1.0 0.121 0.269 0.414 0.543 0.848

1.5 0.151 0.321 0.479 0.621 0.914

(e) N = 200

T 50 100 150 200 400

σ2

0.1 0.050 0.061 0.072 0.090 0.140

0.5 0.079 0.171 0.264 0.347 0.641

1.0 0.120 0.277 0.425 0.553 0.887

1.5 0.147 0.318 0.501 0.641 0.923

(f) N = 400

T 50 100 150 200 400

σ2

0.1 0.045 0.063 0.071 0.090 0.151

0.5 0.086 0.199 0.273 0.361 0.678

1.0 0.105 0.281 0.436 0.588 0.892

1.5 0.155 0.334 0.510 0.638 0.938

Note: The table reports the average frequencies of rejection of the LMi test based on GLS estimation for the

model with factor loadings variance E(ξ2it) = σ2. The errors and factors are serially correlated with AR-parameters,

α = 0.5 and ρ = 0.9, respectively. The results are based on 2000 replications.
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Table 6: Rejection rates for LMi-statistics – macro data.

Number of factors: r = 7 r = 8 r = 9 r = 10 r = 11 r = 12

rej % LM 0.50 0.50 0.49 0.50 0.58 0.54

rej % LM–GLS 0.55 0.54 0.56 0.59 0.64 0.64

Note: ’rej % LM ’ is the rejection rate of the N individual LM statistics, and ’rej %

LM–GLS’ is the rejection rates for the GLS transformed model. The significance level is

5%.

Table 7: Rejection rates for t-statistics – macro data.

F1 F2 F3 F4 F5

rej % t–GLS 0.43 0.39 0.38 0.13 0.25

F6 F7 F8 F9 F10

rej % t–GLS 0.28 0.12 0.33 0.26 0.24

Note: ’rej % t–GLS’ is the rejection rate of the N individual

t– statistics on the 10 factors for the GLS transformed model.

The significance level is 5%.

Table 8: Rejection rates for LMi-statistics – portfolio data.

Number of factors: r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

rej % LM 0.46 0.82 0.86 0.86 0.83 0.87

rej % LM–GLS 0.46 0.81 0.81 0.80 0.79 0.78

Note: ’rej % LM ’ is the rejection rate of the N individual LM statistics, and ’rej

% LM–GLS’ is the rejection rates for the GLS transformed model. The significance

level is 5%.

Table 9: Rejection rates for t-statistics – portfolio data.

F1 F2 F3 F4 F5 F6

rej % t–GLS 0.42 0.56 0.40 0.19 0.32 0.29

Note: ’rej % t–GLS’ is the rejection rate of the N individual t- statis-

tics on the 6 factors for the GLS transformed model. The significance

level is 5%.
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Appendix

Let X = (X1, ..., XT )′ be the T × N matrix of observations, and let VNT be the r × r diagonal

matrix of the r largest eigenvalues of (NT )−1XX ′ in decreasing order. The principal components

estimator F̃ is obtained as
√
T times the eigenvectors corresponding to the largest r eigenvalues of

the matrix XX ′. By the definition of eigenvalues and eigenvectors, we have (NT )−1XX ′F̃ = F̃ VNT

or (NT )−1XX ′F̃ V −1
NT = F̃ , where F̃ ′F̃ /T = Ir, and H = (Λ0′Λ0/N)(F ′F̃ /T )V −1

NT is the r × r

rotation matrix. The following results are based on the identity (see Bai (2003)):

F̃t −H ′Ft = V −1
NT

(
T−1

∑
s

F̃sγN (s, t) + T−1
∑
s

F̃sζst + T−1
∑
s

F̃sηst + T−1
∑
s

F̃sξst

)
, (A.1)

where

- ζst = e′set
N − γN (s, t),

- ηst = F 0′
s Λ0′et/N ,

- ξst = F 0′
t Λ0′es/N .

Lemma A.3 in Bai (2003) implies that ‖V −1
NT ‖ = Op(1) and ‖H‖ = Op(1). We also have T−1

∑
t ‖F̃t−

H ′Ft‖2 = Op(δ
−2
NT ) from Lemma A.1 in Bai (2003) where δNT = min{

√
N,
√
T}. As stated in Bai

and Ng (2002), p 198, ‖F̃t − H ′Ft‖2 = Op(δ
−2
NT ) if

∑
s γN (s, t)2 ≤ M for all t, which we show in

Lemma 1 below. These results will be used extensively in the following. It should be noted that

our Assumptions D and E differ slightly from the corresponding assumtions in Bai (2003), but are

still sufficient to arrive at the same results. The proof of Theorem 1 requires the following lemmas.

Lemma 1. Under Assumption C, we have for all t and some M ≤ ∞:∑
s

γN (s, t)2 ≤M.

Proof : As in Bai and Ng (2002), let ρ(s, t) = γN (s, t)/[γN (s, s)γN (t, t)]1/2. Then |ρ(s, t)| ≤ 1. We

can write: ∑
s

γN (s, t)2 =
∑
s

ρ(s, t)2γN (s, s)γN (t, t)

≤
∑
s

|ρ(s, t)||γN (s, s)γN (t, t)|1/2|γN (s, s)|1/2|γN (t, t)|1/2

≤M
∑
s

|ρ(s, t)||γN (s, s)γN (t, t)|1/2 = M
∑
s

|γN (s, t)| ≤M2,

for all t by Assumption C.2.
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Lemma 2. Under Assumptions A-D, the r × r matrix satisfies

E

∥∥∥∥ 1√
NT

T∑
t=1

N∑
k=1

Ftλ
′
kekt

∥∥∥∥2

≤M.

Proof : We can write:

E

∥∥∥∥ 1√
NT

T∑
t=1

N∑
k=1

Ftλ
′
kekt

∥∥∥∥2

= (NT )−1
∑
t,s

∑
k,l

trE(elsλlF
′
sFtλ

′
kekt)

≤ (NT )−1
∑
t,s

∑
k,l

E(elsekt)E(F ′sFt)λ
′
kλl

≤ λ̄2(NT )−1
∑
t,s

∑
k,l

|E(elsekt)|(E‖Fs‖2)1/2(‖Ft‖2)1/2

≤ λ̄2M(NT )−1
∑
t,s

∑
k,l

τkl,ts ≤M,

which follows from Assumptions C.4 and D.

Lemma 3. Under Assumptions A-E, we have:

T−1
∑
t

‖(F̃s −H ′Ft)eit‖2 = Op(δ
−2
NT ).

Proof : From the identity (A.1) we have:

(F̃t −H ′Ft)eit = V −1
NT

(
T−1

∑
s

F̃sγN (s, t)eit + T−1
∑
s

F̃sζsteit

+ T−1
∑
s

F̃sηsteit + T−1
∑
s

F̃sξsteit

)
.

Using Loève’s inequality gives:

T−1
∑
t

‖(F̃t −H ′Ft)eit‖2 ≤ 4‖V −1
NT ‖

2

(
T−1

∑
t

‖T−1
∑
s

F̃sγN (s, t)eit‖2

+ T−1
∑
t

‖T−1
∑
s

F̃sζsteit‖2 + T−1
∑
t

‖T−1
∑
s

F̃sηsteit‖2

+ T−1
∑
t

‖T−1
∑
s

F̃sξsteit‖2
)

= 4‖V −1
NT ‖

2(I + II + III + IV ).
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Consider I:

I = T−1
∑
t

‖T−1
∑
s

F̃sγN (s, t)eit‖2 ≤ T−3
∑
t

(∑
s

‖F̃s‖|γN (s, t)||eit|
)2

≤ T−2
∑
t

e2
it

(
T−1

∑
s

‖F̃s‖2
)(∑

s

γN (s, t)2

)
= rT−2

∑
t

e2
it

(∑
s

γN (s, t)2

)
≤ rMT−2

∑
t

e2
it = Op(T

−1),

by Lemma 1, and the fact that T−1
∑

s ‖F̃s‖2 = r.

For II we have:

II = T−1
∑
t

‖T−1
∑
s

F̃sζsteit‖2 ≤ T−3
∑
t

(∑
s

‖F̃s‖|ζst||eit|
)2

≤ T−2
∑
t

(
T−1

∑
s

‖F̃s‖2
)(∑

s

ζ2
s,te

2
it

)
= rT−2

∑
t

∑
s

ζ2
s,te

2
it

= rN−1T−2
∑
t

∑
s

|N−1/2
∑
i

[eiteis − E(eiseit)]|2e2
it.

The last term can be bounded in expectation:

E

(
|N−1/2

∑
i

[eiteis − E(eiseit)]|2e2
it

)
≤ E|N−1/2

∑
i

[eiteis − E(eiseit)]|4E(e4
it) ≤M2,

for all s, t by Assumptions C.1 and C.5. Thus II = Op(N
−1).

For III we have:

III = T−1
∑
t

‖T−1
∑
s

F̃sηsteit‖2 = N−1T−1
∑
t

∥∥∥∥T−1
∑
s

F̃sF
′
s

(
Λ′et√
N

)
eit

∥∥∥∥2

≤ N−1T−1
∑
t

∥∥∥∥Λ′et√
N
eit

∥∥∥∥2

‖T−1
∑
s

F̃sF
′
s‖2

≤ N−1T−1
∑
t

∥∥∥∥Λ′et√
N
eit

∥∥∥∥2(
T−1

∑
s

‖F̃s‖2
)(

T−1
∑
s

‖Fs‖2
)

≤ rOp(1)N−1

(
T−1

∑
t

∥∥∥∥Λ′et√
N

∥∥∥∥4)1/2(
T−1

∑
t

e4
it

)1/2

= Op(N
−1),

by Assumption E.2.
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For IV we have:

IV = T−1
∑
t

‖T−1
∑
s

F̃sξsteit‖2 = N−1T−1
∑
t

∥∥∥∥T−1
∑
s

F̃sF
′
t

(
Λ′es√
N

)
eit

∥∥∥∥2

≤ N−1T−1
∑
t

(
T−1

∑
s

‖F̃s‖‖Ft‖
∥∥∥∥Λ′es√

N

∥∥∥∥|eit|)2

= N−1T−1
∑
t

‖Ft‖2e2
it

(
T−1

∑
s

‖F̃s‖
∥∥∥∥Λ′es√

N

∥∥∥∥)2

N−1

(
T−1

∑
t

‖Ft‖2e2
it

)(
T−1

∑
s

‖F̃s‖2
)(

T−1
∑
s

∥∥∥∥Λ′es√
N

∥∥∥∥2)
= rN−1Op(1) = Op(N

−1),

as T−1
∑

t ‖Ft‖2e2
it is bounded in expectation. Thus I + II + III + IV = Op(T

−1) + Op(N
−1) =

Op(δ
−2
NT ).

Lemma 4. Under Assumptions A-E, we have:

T−1
∑
t

‖(F̃s −H ′Ft)F ′t‖2 = Op(δ
−2
NT ).

Proof : From the identity (A.1) we have:

(F̃t −H ′Ft)F ′t = V −1
NT

(
T−1

∑
s

F̃sγN (s, t)F ′t + T−1
∑
s

F̃sζstF
′
t

+ T−1
∑
s

F̃sηstF
′
t + T−1

∑
s

F̃sξstF
′
t

)
.

Using Loève’s inequality gives:

T−1
∑
t

‖(F̃t −H ′Ft)F ′t‖2 ≤ 4‖V −1
NT ‖

2

(
T−1

∑
t

‖T−1
∑
s

F̃sγN (s, t)F ′t‖2

+ T−1
∑
t

‖T−1
∑
s

F̃sζstF
′
t‖2 + T−1

∑
t

‖T−1
∑
s

F̃sηstF
′
t‖2

+ T−1
∑
t

‖T−1
∑
s

F̃sξstF
′
t‖2
)

= 4‖V −1
NT ‖

2(I + II + III + IV ).

Consider I:

I = T−1
∑
t

‖T−1
∑
s

F̃sγN (s, t)F ′t‖2 ≤ T−3
∑
t

(∑
s

‖F̃s‖|γN (s, t)|‖Ft‖
)2

≤ T−2
∑
t

‖Ft‖2
(
T−1

∑
s

‖F̃s‖2
)(∑

s

γN (s, t)2

)
≤ rMT−2

∑
t

‖Ft‖2 = Op(T
−1),

by Lemma 1 and Assumption A.
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For II we have:

II = T−1
∑
t

‖T−1
∑
s

F̃sζstF
′
t‖2 ≤ T−3

∑
t

(∑
s

‖F̃s‖|ζst|‖Ft‖
)2

≤ T−1
∑
t

‖Ft‖2
(
T−1

∑
s

‖F̃s‖2
)(

T−1
∑
s

ζ2
s,t

)
= rN−1T−1

∑
t

‖Ft‖2
(
T−1

∑
s

|N−1/2
∑
i

[eiteis − E(eiteis)|2
)

= Op(N
−1),

by Assumptions A and C.5.

For III we have:

III = T−1
∑
t

‖T−1
∑
s

F̃sηstF
′
t‖2 = N−1T−1

∑
t

∥∥∥∥T−1
∑
s

F̃sF
′
s

(
N−1/2Λ′etF

′
t

)∥∥∥∥2

≤ N−1T−1
∑
t

∥∥∥∥N−1/2Λ′etF
′
t

∥∥∥∥2

‖T−1
∑
s

F̃sF
′
s‖2

≤ N−1T−1
∑
t

∥∥∥∥N−1/2Λ′etF
′
t

∥∥∥∥2(
T−1

∑
s

‖F̃s‖2
)(

T−1
∑
s

‖Fs‖2
)

= rOp(1)N−1T−1
∑
t

∥∥∥∥N−1/2Λ′etF
′
t

∥∥∥∥2

.

The last term can be bounded in expectation:

T−1
∑
t

E

∥∥∥∥N−1/2Λ′etF
′
t

∥∥∥∥2

= T−1N−1
∑
t

∑
i

∑
k

E(eitekt)λ
′
iλkE(F ′tFt)

≤ λ̄2T−1
∑
t

E‖Ft‖2N−1
∑
i

∑
k

|E(eitekt)| ≤ λ̄2T−1
∑
t

E‖Ft‖2N−1
∑
i

∑
k

|τik|

≤ λ̄2MT−1
∑
t

E‖Ft‖2 = Op(1),

by Assumptions A, B, and C.3. Thus, III = Op(N
−1).

For IV we have:

IV = T−1
∑
t

‖T−1
∑
s

F̃sξstF
′
t‖2 = N−1T−1

∑
t

∥∥∥∥T−1
∑
s

F̃sF
′
t

(
Λ′es√
N

)
F ′t

∥∥∥∥2

≤ N−1T−1
∑
t

(
T−1

∑
s

‖F̃s‖‖Ft‖
∥∥∥∥Λ′es√

N

∥∥∥∥‖Ft‖)2

= N−1T−1
∑
t

‖Ft‖4
(
T−1

∑
s

‖F̃s‖
∥∥∥∥Λ′es√

N

∥∥∥∥)2

≤ N−1

(
T−1

∑
t

‖Ft‖4
)(

T−1
∑
s

‖F̃s‖2
)(

T−1
∑
s

∥∥∥∥Λ′es√
N

∥∥∥∥2)
= rN−1Op(1) = Op(N

−1),
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by Assumptions A and E.2. Thus I + II + III + IV = Op(T
−1) +Op(N

−1) = Op(δ
−2
NT ).

Lemma 5. Under Assumptions A-E, we have:

T−1
∑
t

‖(F̃s −H ′Ft)F̃ ′t‖2 = Op(δ
−2
NT ).

Proof : From the identity (A.1) we have:

(F̃t −H ′Ft)F̃ ′t = V −1
NT

(
T−1

∑
s

F̃sγN (s, t)F̃ ′t + T−1
∑
s

F̃sζstF̃
′
t

+ T−1
∑
s

F̃sηstF̃
′
t + T−1

∑
s

F̃sξstF̃
′
t

)
.

Using Loève’s inequality gives:

T−1
∑
t

‖(F̃t −H ′Ft)F̃ ′t‖2 ≤ 4‖V −1
NT ‖

2

(
T−1

∑
t

‖T−1
∑
s

F̃sγN (s, t)F̃ ′t‖2

+ T−1
∑
t

‖T−1
∑
s

F̃sζstF̃
′
t‖2 + T−1

∑
t

‖T−1
∑
s

F̃sηstF̃
′
t‖2

+ T−1
∑
t

‖T−1
∑
s

F̃sξstF̃
′
t‖2
)

= 4‖V −1
NT ‖

2(I + II + III + IV ).

Consider I:

I = T−1
∑
t

‖T−1
∑
s

F̃sγN (s, t)F̃ ′t‖2 ≤ T−3
∑
t

(∑
s

‖F̃s‖|γN (s, t)|‖F̃t‖
)2

≤ T−2
∑
t

‖F̃t‖2
(
T−1

∑
s

‖F̃s‖2
)(∑

s

γN (s, t)2

)
≤ r2MT−1 = Op(T

−1),

by Lemma 1.

For II we have:

II = T−1
∑
t

‖T−1
∑
s

F̃sζstF̃
′
t‖2 ≤ T−3

∑
t

(∑
s

‖F̃s‖|ζst|‖F̃t‖
)2

≤ T−1
∑
t

‖F̃t‖2
(
T−1

∑
s

‖F̃s‖2
)(

T−1
∑
s

ζ2
s,t

)
= r2N−1

(
T−1

∑
s

|N−1/2
∑
i

[eiteis − E(eiteis)|2
)

= Op(N
−1),

by Assumption C.5.
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For III we have:

III = T−1
∑
t

‖T−1
∑
s

F̃sηstF̃
′
t‖2 ≤ T−1

∑
t

‖F̃t‖2
(
T−1

∑
s

‖F̃s‖|ηst|
)2

≤
(
T−1

∑
t

‖F̃t‖2
)(

T−1
∑
s

‖F̃s‖2
)(

T−1
∑
s

η2
st

)
= r2T−1

∑
s

η2
st.

The last term is bounded in expectation:

T−1
∑
s

E(N−1F ′sΛ
′et)

2 ≤ N−1E‖N−1/2Λ′et‖2T−1
∑
s

E‖Fs‖2 = N−1Op(1),

by Assumption E.2, so III is Op(N
−1).

For IV we have:

IV = T−1
∑
t

‖T−1
∑
s

F̃sξstF̃
′
t‖2 = N−1T−1

∑
t

∥∥∥∥T−1
∑
s

F̃s

(
N−1/2F ′tΛ

′es

)
F̃ ′t

∥∥∥∥2

= N−1T−1
∑
t

∥∥∥∥T−1
∑
s

F̃s

(
N−1/2e′sΛFt

)
F̃ ′t

∥∥∥∥2

≤ N−1

(
T−1

∑
t

‖FtF̃t‖2
)∥∥∥∥T−1

∑
s

F̃s

(
N−1/2e′sΛ

)∥∥∥∥2

≤ N−1

(
T−1

∑
t

‖FtF̃ ′t‖2
)(

T−1
∑
s

‖F̃s‖2
)(

T−1
∑
s

‖N−1/2e′sΛ‖2
)

≤ 2rOp(1)N−1

(
T−1

∑
t

‖Ft(F̃t −H ′Ft)′‖2
)

+ 2rOp(1)N−1

(
T−1

∑
t

‖FtF ′tH‖2
)

= Op(N
−1δ−2

NT ) +Op(N
−1) = Op(N

−1),

from Lemma 4 above. Thus I + II + III + IV = Op(T
−1) +Op(N

−1) = Op(δ
−2
NT ).

Lemma 6. Under Assumptions A-E we have:

T−1
∑
t

(F̃t −H ′Ft)eitFtF ′t = Op(δ
−2
NT ).
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Proof: From the identity (A.1) we have:

T−1
∑
t

(F̃t −H ′Ft)eitFtF ′t = V −1
NT

(
T−2

∑
t

∑
s

F̃sγN (s, t)eitFtF
′
t + T−2

∑
t

∑
s

F̃sζsteitFtF
′
t

+ T−2
∑
t

∑
s

F̃sηsteitFtF
′
t + T−2

∑
t

∑
s

F̃sξsteitFtF
′
t

)
= V −1

NT (I + II + III + IV ).

For I we can write:

I = T−2
∑
t

∑
s

(F̃s −H ′Fs)γN (s, t)eitFtF
′
t + T−2

∑
t

∑
s

H ′FsγN (s, t)eitFtF
′
t .

The first term is bounded by:

T−2
∑
s

‖F̃s −H ′Fs‖
(∑

t

γN (s, t)2

)1/2(∑
t

e2
it‖Ft‖4

)1/2

≤ T−1/2

(
T−1

∑
s

‖F̃s −H ′Fs‖2
)1/2(

T−1
∑
s

∑
t

γN (s, t)2T−1
∑
t

e2
it‖Ft‖4

)1/2

= T−1/2Op(δ
−1
NT )Op(1),

where Op(1) follows as E(e2
it)E‖Ft‖4 = Op(1) by Assumptions A and C.1, and from

∑
s γN (s, t)2 ≤

M for all t by Lemma 1.

The second term can be bounded in expectation (ignore H):

T−2
∑
t

∑
s

|γN (s, t)|E|eit|(E‖Fs‖2)1/2(E‖Ft‖4)1/2 ≤MT−2
∑
t

∑
s

|γN (s, t)| = Op(T
−1),

from Assumption C.2. Thus I is Op(T
−1/2δ−1

NT ).

For II we write:

T−2
∑
t

∑
s

(F̃s −H ′Fs)ζsteitFtF ′t + T−2
∑
t

∑
s

H ′FsζsteitFtF
′
t .

The first term is bounded by:

T−2
∑
s

‖F̃s −H ′Fs‖‖
∑
t

ζsteitFtF
′
t‖ ≤

(
T−1

∑
s

‖F̃s −H ′Ft‖2
)1/2(

T−3
∑
s

‖
∑
t

ζsteitFtF
′
t‖2
)1/2

≤ N−1/2Op(δ
−1
NT )

(
T−2

∑
s

∑
t

|N−1/2
∑
k

[eksekt − E(eksekt)]|2T−1
∑
t

e2
it‖F ′t‖4

)1/2

= N−1/2Op(δ
−1
NT )Op(1),
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by Assumption C.5.

For the second term we have:

1√
NT

T−1
∑
t

(
1√
NT

∑
s

∑
k

Fs[eksekt − E(eksekt)]

)
eitFtF

′
t

≤ 1√
NT

(
T−1

∑
t

∥∥∥∥ 1√
NT

∑
s

∑
k

Fs[eksekt − E(eksekt)]

∥∥∥∥2)1/2(
T−1

∑
t

e2
it‖Ft‖4

)1/2

= Op

(
1√
NT

)
Op(1),

from Assumption E.1. Thus II is Op(N
−1/2δ−1

NT ).

We rewrite III as:

T−2
∑
t

∑
s

(F̃s −H ′Fs)ηsteitFtF ′t +H ′T−2
∑
t

∑
s

FsηsteitFtF
′
t .

For the first term, we write:

N−1/2T−2
∑
s

(F̃s −H ′Fs)F ′s
∑
t

(
Λ′et√
N

)
eitFtF

′
t

≤ N−1/2

(
T−1

∑
s

‖(F̃s −H ′Fs)F ′s‖2
)1/2(

T−3
∑
s

‖
∑
t

(
Λ′et√
N

)
eitFtF

′
t‖2
)1/2

.

The first parenthesis is Op(δ
−1
NT ) by Lemma 4. The term inside the second parenthesis is bounded

by:

T−1
∑
s

(
T−1

∑
t

∥∥∥∥Λ′et√
N

∥∥∥∥2)(
T−1

∑
t

e2
it‖Ft‖4

)
= Op(1),

by Assumption E.2. The first term is thus N−1/2Op(δ
−1
NT ).

The second term can be written as:(
T−1

∑
s

FsF
′
s

)(
N−1T−1

∑
t

∑
k

λkekteitFtF
′
t

)
.

The first parenthesis is Op(1), and the second is bounded in expectation by:

N−1T−1
∑
t

∑
k

λkE(ekteit)E‖Ft‖2 ≤ λ̄N−1T−1
∑
t

∑
k

|τik| = Op(N
−1),

by Assumption C.3, and III is thus Op(N
−1/2δ−1

NT ).
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We rewrite IV as:

T−2
∑
t

∑
s

F̃sξsteitFtF
′
t = T−2

∑
t

∑
s

F̃s(F
′
tΛ
′es/N)eitFtF

′
t = T−2

∑
t

∑
s

F̃s(e
′
sΛ/N)FteitFtF

′
t

= T−2
∑
t

∑
s

(F̃s −H ′Fs)(e′sΛ/N)FteitFtF
′
t +H ′T−2

∑
t

∑
s

Fs(e
′
sΛ/N)FteitFtF

′
t .

The first term is bounded by:

N−1/2T−2
∑
s

‖F̃s −H ′Fs‖
∥∥∥∥N−1/2e′sΛ

∥∥∥∥∑
t

|eit|‖Ft‖3

≤ N−1/2

(
T−1

∑
s

‖F̃s −H ′Fs‖2
)1/2(

T−1
∑
s

∥∥∥∥N−1/2e′sΛ

∥∥∥∥2)1/2

T−1
∑
t

|eit|‖Ft‖3,

which is N−1/2Op(δ
−1
NT ).

For the second term we write:

1√
NT

(
1√
NT

∑
s

∑
k

Fseksλ
′
k

)(
T−1

∑
t

FteitFtF
′
t

)
= Op

(
1√
NT

)
,

by Lemma 2. Thus IV is Op(N
−1/2δ−1

NT ). We therefore have that I+II+III+IV = Op(N
−1/2δ−1

NT )

+Op(T
−1/2δ−1

NT ) = Op(δ
−2
NT ).

Lemma 7. Under Assumptions A-E we have:

T−1
∑
t

(F̃t −H ′Ft)e2
itF
′
t = Op(δ

−2
NT ).

Proof: From the identity (A.1) we have:

T−1
∑
t

(F̃t −H ′Ft)e2
itF
′
t = V −1

NT

(
T−2

∑
t

∑
s

F̃sγN (s, t)e2
itF
′
t + T−2

∑
t

∑
s

F̃sζste
2
itF
′
t

+ T−2
∑
t

∑
s

F̃sηste
2
itF
′
t + T−2

∑
t

∑
s

F̃sξste
2
itF
′
t

)
= V −1

NT (I + II + III + IV ).

We rewrite I as:

T−2
∑
t

∑
s

F̃sγN (s, t)e2
itF
′
t = T−2

∑
t

∑
s

(F̃s −H ′Fs)γN (s, t)e2
itF
′
t +H ′T−2

∑
t

∑
s

FsγN (s, t)e2
itF
′
t .
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The first term is bounded by:

T−2
∑
s

‖F̃s −H ′Fs‖
∑
t

|γN (s, t)|e2
it‖Ft‖

≤ T−2
∑
s

‖F̃s −H ′Fs‖
(∑

t

|γN (s, t)|2
)1/2(∑

t

e4
it‖Ft‖2

)1/2

≤ T−1/2

(
T−1

∑
s

‖F̃s −H ′Fs‖2
)1/2(

T−1
∑
s

∑
t

|γN (s, t)|2T−1
∑
t

e4
it‖Ft‖2

)1/2

= T−1/2Op(δ
−1
NT ),

by Assumptions A and C.1 and Lemma 1.

The second term is bounded in expectation by:

T−2
∑
t

∑
s

|γN (s, t)|E(e2
it)

(
E‖Ft‖2

)1/2(
E‖Fs‖2

)1/2

≤MT−1

(
T−1

∑
t

∑
s

|γN (s, t)|
)

= Op(T
−1),

by Assumption C.2. Thus I is T−1/2Op(δ
−1
NT ).

For II we have:

T−2
∑
t

∑
s

F̃sζste
2
itF
′
t = T−2

∑
t

∑
s

(F̃s −H ′Fs)ζste2
itF
′
t +H ′T−2

∑
t

∑
s

Fsζste
2
itF
′
t .

The first term is bounded by:

T−2
∑
s

‖F̃s −H ′Fs‖‖
∑
t

ζste
2
itF
′
t‖ ≤

(
T−1

∑
s

‖F̃s −H ′Ft‖2
)1/2(

T−3
∑
s

‖
∑
t

ζste
2
itF
′
t‖2
)1/2

≤ N−1/2Op(δ
−1
NT )

(
T−2

∑
s

∑
t

|N−1/2
∑
k

[eksekt − E(eksekt)]|2T−1
∑
t

e4
it‖F ′t‖2

)1/2

= N−1/2Op(δ
−1
NT ),

by Assumption C.5.
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The second term is:

1√
NT

T−1
∑
t

(
1√
NT

∑
s

∑
k

Fs[eksekt − E(eksekt)]

)
e2
itF
′
t

≤ 1√
NT

(
T−1

∑
t

∥∥∥∥ 1√
NT

∑
s

∑
k

Fs[eksekt − E(eksekt)]

∥∥∥∥2)1/2(
T−1

∑
t

e4
it‖Ft‖2

)1/2

= Op

(
1√
NT

)
Op(1),

by Assumption E.1, so II is Op(N
−1/2δ−1

NT ).

For III we have:

T−2
∑
t

∑
s

F̃sηste
2
itF
′
t = T−2

∑
t

∑
s

(F̃s −H ′Fs)ηste2
itF
′
t +H ′T−2

∑
t

∑
s

Fsηste
2
itF
′
t .

We write the first term as:

N−1/2

(
T−1

∑
s

(F̃s −H ′Fs)F ′s
)(

T−1
∑
t

(
Λ′et√
N

)
e2
itF
′
t

)
.

By Lemma B.2 in Bai (2003), the first parenthesis is Op(δ
−2
NT ). The second parenthesis is bounded

by: (
T−1

∑
t

∥∥∥∥Λ′et√
N

∥∥∥∥2)1/2(
T−1

∑
t

e4
it‖Ft‖2

)1/2

= Op(1),

by Assumption E.2. The first term of III is thus N−1/2Op(δ
−2
NT ).

The second term can be written as:(
T−1

∑
s

FsF
′
s

)(
T−1N−1

∑
t

∑
k

λkektF
′
te

2
it

)
.

The first parenthesis is Op(1). We can bound the second parenthesis in expectation:

1√
NT

E

(
1√
NT

∑
t

∑
k

λkektF
′
t

)
e2
it

≤ 1√
NT

(
E

∥∥∥∥ 1√
NT

∑
t

∑
k

λkektF
′
t

∥∥∥∥2

E(e4
it)

)1/2

= Op

(
1√
NT

)
,

by Lemma 2. Thus III is Op(N
−1/2δ−1

NT ).
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For the IV we can write:

T−2
∑
t

∑
s

F̃sξste
2
itF
′
t = T−2

∑
t

∑
s

F̃s(F
′
tΛ
′es/N)e2

itF
′
t = T−2

∑
t

∑
s

F̃s(e
′
sΛ/N)Fte

2
itF
′
t

= T−2
∑
t

∑
s

(F̃s −H ′Fs)(e′sΛ/N)Fte
2
itF
′
t +H ′T−2

∑
t

∑
s

Fs(e
′
sΛ/N)Fte

2
itF
′
t .

The first term is bounded by:

N−1/2T−2
∑
s

‖F̃s −H ′Fs‖
∥∥∥∥N−1/2e′sΛ

∥∥∥∥∑
t

e2
it‖Ft‖2

≤ N−1/2

(
T−1

∑
s

‖F̃s −H ′Fs‖2
)1/2(

T−1
∑
s

∥∥∥∥N−1/2e′sΛ

∥∥∥∥2)1/2

T−1
∑
t

e2
it‖Ft‖2,

which is N−1/2Op(δ
−1
NT ).

For the second term we write:

1√
NT

(
1√
NT

∑
s

∑
k

Fseksλ
′
k

)(
T−1

∑
t

Fte
2
itF
′
t

)
= Op

(
1√
NT

)
,

by Lemma 2, and IV is therefore Op(N
−1/2δ−1

NT ). Collecting results thus gives that I + II + III +

IV = Op(N
−1/2δ−1

NT ) +Op(T
−1/2δ−1

NT ) = Op(δ
−2
NT ).

Lemma 8. Under Assumptions A-D, we have:

a. ‖T−1(F̃ − FH)′ei‖2 = Op(δ
−2
NT ),

b. ‖T−1(F̃ − FH)′F‖2 = Op(δ
−2
NT ),

c. ‖T−1(F̃ − FH)′F̃‖2 = Op(δ
−2
NT ).

Proof : For a we have:

‖T−1(F̃ − FH)′ei‖2 = ‖T−1
∑
t

(F̃t −H ′Ft)eit‖2

≤
(
T−1

∑
t

‖F̃t −H ′Ft‖2
)(

T−1
∑
t

e2
it

)
= Op(δ

−2
NT )Op(1),

as T−1
∑

t e
2
it = Op(1) by Assumption C.1. The proof of b and c follows in the same way by using

T−1
∑

t ‖Ft‖2 = Op(1) and T−1
∑

t ‖F̃t‖2 = r.

Lemma 9. Under Assumptions A-E, we have:
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‖λ̃i −H−1λi‖2 = Op(δ
−2
NT ).

Proof : Following in Bai (2003), p 165, we can write λ̃i −H−1λi as:

λ̃i −H−1λi = T−1F̃ ′(FH − F̃ )H−1λi + T−1(F̃ − FH)′ei + T−1H ′F ′ei.

The norm is thus bounded by:

‖λ̃i −H−1λi‖2 ≤ 3‖T−1F̃ ′(FH − F̃ )H−1λi‖2 + 3‖T−1(F̃ − FH)′ei‖2 + 3‖T−1H ′F ′ei‖2

≤ 3‖T−1F̃ ′(FH − F̃ )‖2‖H−1‖2‖λi‖2 + 3‖T−1(F̃ − FH)′ei‖2 + 3‖H‖2‖T−1F ′ei‖2

= Op(δ
−2
NT ),

which follows from Lemmas 8.a and 8.c, and since ‖T−1F ′ei‖2 = T−1‖T−1/2F ′ei‖2 = T−1Op(1) by

Assumption E.3.

Lemma 10. Under Assumptions A-E we have for all t:

a. ẽit = eit +Op(δ
−1
NT ),

b. C̃it = Cit +Op(δ
−1
NT ).

Proof : We start with a. We can write the principal components residual as:

ẽit = xit − (λ̃i −H−1λi)
′F̃t − λ′i(H−1)′F̃t

= xit − (λ̃i −H−1λi)
′(F̃t −H ′Ft)− (λ̃i −H−1λi)

′H ′Ft − λ′i(H−1)′(F̃t −H ′Ft)− λ′i(H−1)′H ′Ft

= xit − λ′iFt − (λ̃i −H−1λi)
′(F̃t −H ′Ft)− (λ̃i −H−1λi)

′H ′Ft − λ′i(H−1)′(F̃t −H ′Ft)

= eit − (λ̃i −H−1λi)
′(F̃t −H ′Ft)− (λ̃i −H−1λi)

′H ′Ft − λ′i(H−1)′(F̃t −H ′Ft).
(A.2)

For the second term we have:

|(λ̃i −H−1λi)
′(F̃t −H ′Ft)| ≤ ‖λ̃i −H−1λi‖‖F̃t −H ′Ft‖ = Op(δ

−1
NT )Op(δ

−1
NT ),

by Lemma 9. The third term is bounded by:

|(λ̃i −H−1λi)
′H ′Ft| ≤ ‖λ̃i −H−1λi‖‖H‖‖Ft‖ = Op(δ

−1
NT )Op(1)Op(1),

by Lemma 9 and Assumption A. The last term is bounded by:

|λ′i(H−1)′(F̃t −H ′Ft)| ≤ ‖λi‖‖H−1‖‖F̃t −H ′Ft‖ = Op(1)Op(1)Op(δ
−1
NT ),

34



by Assumption B. We thus have that:

ẽit = eit +Op(δ
−1
NT ).

The proof of b follows immediately by noting:

C̃it − Cit = λ̃′iF̃t − λ′iFt = (xit − λ′iFt)− (xit − λ̃′iF̃t) = eit − ẽit = Op(δ
−1
NT ).

Lemma 11. Under Assumtions A-E we have

T−1
∑
t

ẽ2
it = T−1

∑
t

e2
it +Op(δ

−2
NT ).

Proof : We can write T−1
∑

t ẽ
2
it as:

T−1
∑
t

ẽ2
it = T−1

∑
t

(xit − C̃it)2 = T−1
∑
t

(xit − Cit + Cit − C̃it)2

= T−1
∑
t

(xit − Cit)2 + T−1
∑
t

(Cit − C̃it)2 + 2T−1
∑
t

eit(Cit − C̃it)2

= T−1
∑
t

e2
it + T−1

∑
t

(Cit − C̃it)2 + 2T−1
∑
t

(Cit − C̃it)eit.

We start with T−1
∑

t(Cit − C̃it)eit. Using (A.2) we can write:

T−1
∑
t

(Cit − C̃it)eit = −T−1
∑
t

(λ̃i +H−1λi)
′(F̃t −H ′Ft)eit − T−1

∑
t

(λ̃i −H−1λi)
′H ′Fteit

− T−1
∑
t

λ′i(H
−1)′(F̃t −H ′Ft)eit.

For the first term we write:

−T−1
∑
t

(λ̃i +H−1λi)
′(F̃t −H ′Ft)eit = −(λ̃i +H−1λi)

′T−1
∑
t

(F̃t −H ′Ft)eit.

Bai (2003), p 165, shows that (λ̃i+H
−1λi) = Op(T

−1/2), and Lemma B.1, also in Bai (2003), states

that T−1
∑

t(F̃t −H ′Ft)eit = Op(δ
−2
NT ). The first term is thus Op(T

−1/2)Op(δ
−2
NT ).

The second term is

−T−1
∑
t

(λ̃i −H−1λi)
′H ′Fteit = −(λ̃i −H−1λi)

′H ′T−1
∑
t

Fteit = Op(T
−1/2)Op(T

−1/2),

again from Bai (2003), p 165 and Assumption E.3.
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The last term is:

−T−1
∑
t

λ′i(H
−1)′(F̃t −H ′Ft)eit = −λ′i(H−1)′T−1

∑
t

(F̃t −H ′Ft)eit = Op(δ
−2
NT ),

by Assumption B and Lemma B.1 in Bai (2003). Thus T−1
∑

t(Cit−C̃it)eit = Op(T
−1/2)Op(δ

−2
NT )+

Op(T
−1/2)Op(T

−1/2) +Op(δ
−2
NT ) = Op(δ

−2
NT ).

For T−1
∑

t(Cit − C̃it)2 we again use (A.2). By Loève’s inequality we get:

T−1
∑
t

(Cit − C̃it)2 = T−1
∑
t

((λ̃i −H−1λi)
′(F̃t −H ′Ft)

+ (λ̃i −H−1λi)
′H ′Ft + λ′i(H

−1)′(F̃t −H ′Ft))2

≤ 3T−1
∑
t

‖(λ̃i −H−1λi)
′(F̃t −H ′Ft)‖2 + 3T−1

∑
t

‖(λ̃i −H−1λi)
′H ′Ft‖2

+ 3T−1
∑
t

‖λ′i(H−1)′(F̃t −H ′Ft)‖2.

The first term is:

T−1
∑
t

‖(λ̃i −H−1λi)
′(F̃t −H ′Ft)‖2 ≤ ‖λ̃i −H−1λi‖2T−1

∑
t

‖F̃t −H ′Ft‖2 = Op(δ
−2
NT )Op(δ

−2
NT ),

by Lemma 9.

The second term is:

T−1
∑
t

‖(λ̃i −H−1λi)
′H ′Ft‖2 ≤ ‖λ̃i −H−1λi‖2‖H‖2T−1

∑
t

‖Ft‖2 = Op(δ
−2
NT ),

by Lemma 9 and Assumption A.

The last term is:

T−1
∑
t

‖λ′i(H−1)′(F̃t −H ′Ft)‖2 ≤ ‖λi‖2‖H−1‖2T−1
∑
t

‖F̃t −H ′Ft‖2 = Op(δ
−2
NT ),

by Assumption B. We thus have T−1
∑

t(Cit − C̃it)2 = Op(δ
−2
NT ).

Lemma 12. Under Assumtions A-E and if T/N2 → 0, we have:

T−1
∑
t

ẽ4
it = T−1

∑
t

e4
it +Op(T/N

2) +Op(δ
−1
NT ).
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Proof : We can write T−1
∑

t ẽ
4
it as:

T−1
∑
t

ẽ4
it = T−1

∑
t

(xit − C̃it)4 = T−1
∑
t

(xit − Cit + Cit − C̃it)4

= T−1
∑
t

(eit + Cit − C̃it)4 = T−1
∑
t

e4
it + T−1

∑
t

(Cit − C̃it)4

+ 6T−1
∑
t

e2
it(Cit − C̃it)2 + 4T−1

∑
t

e3
it(Cit − C̃it) + 4T−1

∑
t

eit(Cit − C̃it)3

= T−1
∑
t

e4
it + I + II + III + IV.

Using Loève’s inequality, I can be written as:

T−1
∑
t

(Cit − C̃it)4 = T−1
∑
t

[
(λ̃i −H−1λi)

′(F̃t −H ′Ft)

+ (λ̃i −H−1λi)
′H ′Ft + λ′i(H

−1)′(F̃t −H ′Ft)
]4

≤ 27T−1
∑
t

[(λ̃i −H−1λi)
′(F̃t −H ′Ft)]4 + 27T−1

∑
t

[(λ̃i −H−1λi)
′H ′Ft]

4

+ 27T−1
∑
t

[λ′i(H
−1)′(F̃t −H ′Ft)]4.

The first term is bounded by:

T−1
∑
t

[(λ̃i −H−1λi)
′(F̃t −H ′Ft)]4 ≤ ‖λ̃i −H−1λi‖4max

t
‖F̃t −H ′Ft‖2T−1

∑
t

‖F̃t −H ′Ft‖2

= Op(δ
−4
NT )Op(δ

−2
NT )max

t
‖F̃t −H ′Ft‖2.

By Proposition 2 in Bai (2003), max
t
‖F̃t −H ′Ft‖2 = Op(T

−1) +Op(T/N), so the term is

Op(δ
−6
NT )(Op(T

−1) +Op(T/N)).

The second term is:

T−1
∑
t

[(λ̃i −H−1λi)
′H ′Ft]

4 ≤ ‖λ̃i −H−1λi‖4‖H‖4T−1
∑
t

‖Ft‖4 = Op(δ
−4
NT ),

by Lemma 9 and Assumption A.

The third term is:

T−1
∑
t

[λ′i(H
−1)′(F̃t −H ′Ft)]4 ≤ ‖λi‖4‖H−1‖4T−1

∑
t

‖F̃t −H ′Ft‖4

≤ Op(1)max
t
‖F̃t −H ′Ft‖2T−1

∑
t

‖F̃t −H ′Ft‖2

= [Op(T
−1) +Op(T/N)]Op(δ

−2
NT ).
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Now [Op(T
−1) +Op(T/N)]Op(δ

−2
NT ) = Op(T

−1) +Op(T/N
2), so I = Op(T

−1) +Op(T/N
2).

For II we have:

T−1
∑
t

e2
it(Cit − C̃it)2 = T−1

∑
t

e2
it

[
(λ̃i −H−1λi)

′(F̃t −H ′Ft) + (λ̃i −H−1λi)
′H ′Ft

+ λ′i(H
−1)′(F̃t −H ′Ft)

]2

= T−1
∑
t

[
(λ̃i −H−1λi)

′(F̃t −H ′Ft)eit

+ (λ̃i −H−1λi)
′H ′Fteit + λ′i(H

−1)′(F̃t −H ′Ft)eit
]2

≤ 3T−1
∑
t

‖(λ̃i −H−1λi)
′(F̃t −H ′Ft)eit‖2

+ 3T−1
∑
t

‖(λ̃i −H−1λi)
′H ′Fteit‖2 + 3T−1

∑
t

‖λ′i(H−1)′(F̃t −H ′Ft)eit‖2.

The first term is bounded by:

T−1
∑
t

‖(λ̃i −H−1λi)
′(F̃t −H ′Ft)eit‖2 ≤ ‖λ̃i −H−1λi‖2T−1

∑
t

‖(F̃t −H ′Ft)eit‖2

= Op(δ
−2
NT )Op(δ

−2
NT ),

by Lemmas 3 and 9.

The second term is:

T−1
∑
t

‖(λ̃i −H−1λi)
′H ′Fteit‖2 ≤ ‖λ̃i −H−1λi‖2‖H‖2T−1

∑
t

‖Fteit‖2 = Op(δ
−2
NT )Op(1),

as the last term is bounded in expectation T−1
∑

tE‖Fteit‖2 ≤ T−1
∑

tE‖Ft‖2E(e2
it)

≤ T−1
∑

tM = Op(1).

The third term is:

T−1
∑
t

‖λ′i(H−1)′(F̃t −H ′Ft)eit‖2 ≤ ‖λi‖2‖H−1‖2T−1
∑
t

‖(F̃t −H ′Ft)eit‖2 = Op(1)Op(δ
−2
NT ),

by Assumption B and Lemma 3. So II = Op(δ
−2
NT ).

The term III can be written as:

T−1
∑
t

e3
it(Cit − C̃it) ≤

(
T−1

∑
t

e6
it

)1/2(
T−1

∑
t

(Cit − C̃it)2

)1/2

= Op(δ
−1
NT ),

since E(e8
it) ≤M , and the second term was show to be Op(δ

−2
NT ) in the proof of Lemma 11.
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For IV we have:

T−1
∑
t

eit(Cit − C̃it)3 ≤
(
T−1

∑
t

e2
it(Cit − C̃it)2

)1/2(
T−1

∑
t

(Cit − C̃it)4

)1/2

=

(
Op(δ

−2
NT )

)1/2(
Op(T

−1) +Op(T/N
2)

)1/2

= Op(δ
−2
NT ),

which follows from I and II. We now have that I + II + III + IV = Op(T
−1) + Op(T/N

2) +

Op(δ
−2
NT ) +Op(δ

−1
NT ) +Op(δ

−2
NT ) = Op(T/N

2) +Op(δ
−1
NT ).

Lemma 13. Under Assumptions A-E:

a. T−1
∑

t F̃tF̃
′
t ẽ

2
it − T−1

∑
t F̃tF̃

′
te

2
it = Op(δ

−2
NT ),

b. T−1
∑

t F̃tF̃
′
te

2
it − T−1

∑
tH
′FtF

′
tHe

2
it = Op(δ

−2
NT ).

Proof: As in the proof of 11, we use that ẽ2
it = e2

it+ (Cit− C̃it)2 + 2(Cit− C̃it)eit. We can therefore

write a as:

T−1
∑
t

F̃t(ẽ
2
it − e2

it)F̃
′
t = T−1

∑
t

F̃t(Cit − C̃it)2F̃ ′t + 2T−1
∑
t

F̃t(Cit − C̃it)eitF̃ ′t .

For the first term we have:

T−1
∑
t

F̃t(Cit − C̃it)2F̃ ′t ≤ T−1
∑
t

‖(Cit − C̃it)F̃ ′t‖2 =

T−1
∑
t

‖(λ̃i −H−1λi)
′(F̃t −H ′Ft)F̃ ′t + (λ̃i −H−1λi)

′H ′FtF̃
′
t + λ′i(H

−1)′(F̃t −H ′Ft)F̃ ′t‖2

≤ 3T−1
∑
t

‖(λ̃i −H−1λi)
′(F̃t −H ′Ft)F̃ ′t‖2 + 3T−1

∑
t

‖(λ̃i −H−1λi)
′H ′FtF̃

′
t‖2

+ 3T−1
∑
t

‖λ′i(H−1)′(F̃t −H ′Ft)F̃ ′t‖2 = I + II + III.

We can bound I by:

‖λ̃i −H−1λ′i‖2T−1
∑
t

‖(F̃t −H ′Ft)F̃ ′t‖2 = Op(δ
−2
NT )Op(δ

−2
NT ),

by Lemmas 5 and 9 .
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For II we can write:

T−1
∑
t

‖(λ̃i −H−1λi)
′H ′FtF̃

′
t‖2 ≤ ‖λ̃i −H−1λi‖2‖H‖2T−1

∑
t

‖FtF̃ ′t‖2

≤ ‖λ̃i −H−1λi‖2‖H‖2T−1
∑
t

‖Ft(F̃t −H ′Ft)′ + FtF
′
tH‖2

≤ 2‖λ̃i −H−1λi‖2‖H‖2T−1
∑
t

‖Ft(F̃t −H ′Ft)′‖2

+ 2‖λ̃i −H−1λi‖2‖H‖4T−1
∑
t

‖Ft‖4 = Op(δ
−2
NT )Op(δ

−2
NT ) +Op(δ

−2
NT )Op(1) = Op(δ

−2
NT ),

from Lemmas 4 and 9, and Assumption A.

For III we have:

T−1
∑
t

‖λ′i(H−1)′(F̃t −H ′Ft)F̃ ′t‖2 ≤ ‖λi‖2‖H−1‖2T−1
∑
t

‖(F̃t −H ′Ft)F̃ ′t‖2 = Op(δ
−2
NT ),

by Lemma 5, so we have T−1
∑

t F̃t(Cit − C̃it)2F̃ ′t = Op(δ
−4
NT ) +Op(δ

−2
NT ) = Op(δ

−2
NT ).

For the second term we write:

T−1
∑
t

F̃t(Cit − C̃it)eitF̃ ′t = T−1
∑
t

(F̃t −H ′Ft)(Cit − C̃it)eitF̃ ′t

+ T−1
∑
t

H ′Ft(Cit − C̃it)eit(F̃t −H ′Ft)′ + T−1
∑
t

H ′Ft(Cit − C̃it)eitF ′tH.

We can bound T−1
∑

t(F̃t −H ′Ft)(Cit − C̃it)eitF̃ ′t by:

(
T−1

∑
t

(Cit − C̃it)2e2
it

)1/2(
T−1

∑
t

‖(F̃t −H ′Ft)F̃ ′t‖2
)1/2

= Op(δ
−1
NT )Op(δ

−1
NT ),

which follows as the term in the first parenthesis was shown to be Op(δ
−2
NT ) in the proof of Lemma

12, and the term in the second parenthesis is also Op(δ
−2
NT ) by Lemma 5. By similar calculations

we also get T−1
∑

tH
′Ft(Cit − C̃it)eit(F̃t −H ′Ft)′ = Op(δ

−2
NT ).

For T−1
∑

tH
′Ft(Cit − C̃it)eitF ′tH we can write (ignore H as it is Op(1)):

T−1
∑
t

Ft(Cit − C̃it)eitF ′t = T−1
∑
t

Ft

[
(λ̃i +H−1λi)

′(F̃t −H ′Ft) + (λ̃i −H−1λi)
′H ′Ft

+ λ′i(H
−1)′(F̃t −H ′Ft)

]
eitF

′
t = T−1

∑
t

Ft(λ̃i +H−1λi)
′(F̃t −H ′Ft)eitF ′t

+ T−1
∑
t

Ft(λ̃i −H−1λi)
′H ′FteitF

′
t + T−1

∑
t

Ftλ
′
i(H

−1)′(F̃t −H ′Ft)eitF ′t .
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The first term is bounded by:

‖λ̃i +H−1λi‖
(
T−1

∑
t

‖(F̃t −H ′Ft)eit‖2
)1/2(

T−1
∑
t

‖Ft‖4
)1/2

= Op(T
−1/2)(δ−1

NT )Op(1) = Op(δ
−2
NT ),

by Lemmas 3 and 9.

For the second term we apply the vec operator:

T−1
∑
t

(
vec[Ft(λ̃i −H−1λi)

′H ′FteitF
′
t ]

)′
= T−1

∑
t

(
eit(FtF

′
t ⊗ Ft)vec[(λ̃i −H−1λi)

′H ′]

)′
= T−1

∑
t

(λ̃i −H−1λi)
′H ′(FtF

′
t ⊗ F ′t)eit = T−1/2(λ̃i −H−1λi)

′H ′
(
T−1/2

∑
t

(FtF
′
t ⊗ F ′t)eit

)
= Op(T

−1/2)Op(T
−1/2) = Op(T

−1),

by Assumption E.4.

For the third term we can write:

T−1
∑
t

λ′i(H
−1)′(F̃t −H ′Ft)eitFtF ′t = λ′i(H

−1)′T−1
∑
t

(F̃t −H ′Ft)eitFtF ′t = Op(1)Op(δ
−2
NT ),

by Assumption B and Lemma 6. We therefore have that a is Op(δ
−4
NT ) + Op(T

−1) + Op(δ
−2
NT ) =

Op(δ
−2
NT ).

For b we can write:

T−1
∑
t

F̃tF̃
′
te

2
it − T−1

∑
t

H ′FtF
′
tHe

2
it = T−1

∑
t

(F̃tF̃
′
t −H ′FtF ′tH)e2

it

= T−1
∑
t

(
(F̃t −H ′Ft)F̃ ′t +H ′Ft(F̃t −H ′Ft)

)
e2
it

= T−1
∑
t

(F̃t −H ′Ft)F̃ ′te2
it + T−1

∑
t

H ′Ft(F̃t −H ′Ft)e2
it

= T−1
∑
t

(F̃t −H ′Ft)(F̃t −H ′Ft)′e2
it + T−1

∑
t

(F̃t −H ′Ft)F ′tHe2
it + T−1

∑
t

H ′Ft(F̃t − F ′tH)′e2
it.

From Lemma 7, the last two terms are Op(δ
−2
NT ). The first term is bounded by:

‖T−1
∑
t

(F̃t −H ′Ft)eiteit(F̃t −H ′Ft)‖ ≤ T−1
∑
t

‖(F̃t −H ′Ft)eit‖2 = Op(δ
−2
NT ),

from Lemma 3. Thus b is Op(δ
−2
NT ).
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Proof of Theorem 1: The proof consists of two steps. First we show that D̃i = Di + Op(δ
−2
NT ).

This implies that
√
TD̃i has the same limiting distribution as

√
TDi if

√
T/N → 0. The second

step shows that B̃i is a consistent estimator for Bi, and this implies that TD̃iB̃
−1
i D̃′i has a χ2

distribution with r degrees of freedom from Assumption G.

First consider D̃i = T−1
∑T

t=1(ẽ2
it − σ̃2

i )g(F̃tF̃
′
t − F̃ ′F̃ /T ). We can ignore σ̃2

i as T−1
∑T

t=1 g(F̃tF̃
′
t −

F̃ ′F̃ /T ) = 0. We will show that the r× r matrix T−1
∑T

t=1 ẽ
2
it(F̃tF̃

′
t − F̃ ′F̃ /T ) matrix converges to

T−1
∑T

t=1 ẽ
2
it(H

′FtF
′
tH−H ′F ′FH/T ), and this will imply that D̃i converges to Di as the g(F̃tF̃

′
t −

F̃ ′F̃ /T ) is the vector of diagonal elements of F̃tF̃
′
t − F̃ ′F̃ /T . We can write:

T−1
T∑
t=1

ẽ2
it(F̃tF̃

′
t − F̃ ′F̃ /T ) = T−1

T∑
t=1

ẽ2
itF̃tF̃

′
t − T−1

T∑
t=1

ẽ2
itF̃
′F̃ /T.

From Lemma 13 we have:

T−1
T∑
t=1

ẽ2
itF̃tF̃

′
t = T−1

T∑
t=1

e2
itH
′FtF

′
tH +Op(δ

−2
NT ).

From Lemma 11 we have that T−1
∑T

t=1 ẽ
2
it = T−1

∑T
t=1 e

2
it +Op(δ

−2
NT ), and for F̃ ′F̃ /T we have:

F̃ ′F̃ /T = F̃ ′(F̃ − FH)/T + (F̃ − FH)′FH/T +H ′F ′FH/T

= H ′F ′FH/T +Op(δ
−2
NT ),

from Lemmas B.2 and B.3 in Bai (2003), so T−1
∑T

t=1 ẽ
2
itF̃
′F̃ /T = T−1

∑T
t=1 e

2
itH
′F ′FH/T +

Op(δ
−2
NT ), and we therefore have that D̃i = Di +Op(δ

−2
NT ).

Next we need to show that B̃i is a consistent estimator for Bi. Under Assumption G.1 and as Ft

and eit are assumed to be independent, we have that:

Bi = plimT→∞T
−1

T∑
t=1

E

[
(e2
it − σ2

i )
2g[H ′(FtF

′
t − F ′F/T )H]g[H ′(FtF

′
t − F ′F/T )H]′

]

= plimT→∞T
−1

T∑
t=1

E(e2
it − σ2

i )
2E

[
g[H ′(FtF

′
t − F ′F/T )H]g[H ′(FtF

′
t − F ′F/T )H]′

]

= (µ4,i − σ4
i )plimT→∞T

−1
T∑
t=1

E

[
g[H ′(FtF

′
t − F ′F/T )H]g[H ′(FtF

′
t − F ′F/T )H]′

]
.

From Lemma 11 we have that σ̃2
i = T−1

∑T
t=1 ẽ

2
it = T−1

∑T
t=1 e

2
it + Op(δ

−2
NT ), so σ4

i can be consis-

tently estimated by σ̃4
i . Lemma 12 states that T−1

∑
t ẽ

4
it = T−1

∑
t e

4
it +Op(T/N

2) +Op(δ
−1
NT ), so
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T−1
∑

t ẽ
4
it is consistent for µ4,i. As the final step we show that

T−1
∑
t

g(F̃tF̃
′
t − F̃ ′F̃ /T )g(F̃tF̃

′
t − F̃ ′F̃ /T )′

= T−1
T∑
t=1

g[H ′(FtF
′
t − F ′F/T )H]g[H ′(FtF

′
t − F ′F/T )H]′ +Op(δ

−1
NT )

which will imply that B̃i is consistent for Bi.

We can write g(F̃tF̃
′
t − F̃ ′F̃ /T ) as:

g(F̃tF̃
′
t − F̃ ′F̃ /T ) =g[(F̃t −H ′Ft)F̃ ′t +H ′Ft(F̃t −H ′Ft)′ +H ′FtF

′
tH − F̃ ′F̃ /T ]

=g[(F̃t −H ′Ft)F̃ ′t +H ′Ft(F̃t −H ′Ft)′] + g[H ′FtF
′
tH − F̃ ′F̃ /T ]

=g[(F̃t −H ′Ft)F̃ ′t +H ′Ft(F̃t −H ′Ft)′]

+g[H ′FtF
′
tH −H ′F ′FH/T ]

+g[H ′F ′FH/T − F̃ ′F̃ /T ].

We therefore get:

T−1
∑
t

g(F̃tF̃
′
t − F̃ ′F̃ /T )g(F̃tF̃

′
t − F̃ ′F̃ /T )′

= T−1
∑
t

g[H ′FtF
′
tH −H ′F ′FH/T ]g[H ′FtF

′
tH −H ′F ′FH/T ]′

+ T−1
∑
t

g[(F̃t −H ′Ft)F̃ ′t +H ′Ft(F̃t −H ′Ft)′]g[(F̃t −H ′Ft)F̃ ′t +H ′Ft(F̃t −H ′Ft)′]′

+ T−1
∑
t

g[H ′F ′FH/T − F̃ ′F̃ /T ]g[H ′F ′FH/T − F̃ ′F̃ /T ]′

+ 2T−1
∑
t

g[(F̃t −H ′Ft)F̃ ′t +H ′Ft(F̃t −H ′Ft)′]g[H ′FtF
′
tH −H ′F ′FH/T ]′

+ 2T−1
∑
t

g[(F̃t −H ′Ft)F̃ ′t +H ′Ft(F̃t −H ′Ft)′]g[H ′F ′FH/T − F̃ ′F̃ /T ]

+ 2T−1
∑
t

g[H ′FtF
′
tH −H ′F ′FH/T ]g[H ′F ′FH/T − F̃ ′F̃ /T ]

= T−1
∑
t

g[H ′FtF
′
tH −H ′F ′FH/T ]g[H ′FtF

′
tH −H ′F ′FH/T ]′ + I + II + III + IV + IV.

We start with I. Recalling that g(A) is the vector of diagonal elements of A, we have for any square

matrix A:

‖g(A)‖2 = g(A)′g(A) ≤ vec(A)′vec(A) = tr(A′A) = ‖A‖2.
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We can therefore write:

T−1
∑
t

g[(F̃t −H ′Ft)F̃ ′t +H ′Ft(F̃t −H ′Ft)′]g[(F̃t −H ′Ft)F̃ ′t +H ′Ft(F̃t −H ′Ft)′]′

≤ T−1
∑
t

∥∥∥∥g[(F̃t −H ′Ft)F̃ ′t +H ′Ft(F̃t −H ′Ft)′]
∥∥∥∥2

≤ 2T−1
∑
t

‖(F̃t −H ′Ft)F̃ ′t‖2 + 2T−1
∑
t

‖H ′Ft(F̃t −H ′Ft)′‖2 = Op(δ
−2
NT ),

by Lemmas 4 and 5.

For II we have:

T−1
∑
t

g[H ′F ′FH/T − F̃ ′F̃ /T ]g[H ′F ′FH − F̃ ′F̃ /T ]′

≤ ‖H ′F ′FH/T − F̃ ′F̃ /T‖2 = ‖T−1F̃ ′(F̃ − FH) + T−1(F̃ − FH)′FH‖2 = Op(δ
−2
NT ),

by Lemmas 8.b and 8.c.

For III we have:

T−1
∑
t

g[(F̃t −H ′Ft)F̃ ′t +H ′Ft(F̃t −H ′Ft)′]g[H ′FtF
′
tH −H ′F ′FH/T ]′

≤
(
T−1

∑
t

‖(F̃t −H ′Ft)F̃ ′t +H ′Ft(F̃t −H ′Ft)′‖2
)1/2(

T−1
∑
t

‖H ′FtF ′tH −H ′F ′FH/T‖2
)1/2

≤ Op(δ−1
NT )

(
2‖H ′F ′FH/T‖2T−1

∑
t

‖H ′FtF ′tH‖2
)1/2

= Op(δ
−1
NT )Op(1),

from I above and Assumption A.

For IV we have:

T−1
∑
t

g[(F̃t −H ′Ft)F̃ ′t +H ′Ft(F̃t −H ′Ft)′]g[H ′F ′FH/T − F̃ ′F̃ /T ]

= g[H ′F ′FH/T − F̃ ′F̃ /T ]T−1
∑
t

g[(F̃t −H ′Ft)F̃ ′t +H ′Ft(F̃t −H ′Ft)′].

We can write H ′F ′FH/T − F̃ ′F̃ /T = T−1F̃ ′(F̃ − FH) + T−1(F̃ − FH)′FH. From Lemmas B.2

and B.3 in Bai (2003), these terms are Op(δ
−2
NT ), so IV = Op(δ

−2
NT )Op(δ

−2
NT ).
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Finally, for V we have:

T−1
∑
t

g[H ′FtF
′
tH −H ′F ′FH/T ]g[H ′F ′FH/T − F̃ ′F̃ /T ]

= g[H ′F ′FH/T − F̃ ′F̃ /T ]T−1
∑
t

g[H ′FtF
′
tH −H ′F ′FH/T ] = Op(δ

−2
NT ),

again from Lemmas B.2 and B.3 in Bai (2003). Thus I+II+III+IV +V = Op(δ
−2
NT )+Op(δ

−4
NT )+

Op(δ
−1
NT ) = Op(δ

−1
NT ), and the Theorem 1 follows.
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