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Abstract

We consider the problem of estimating the high-dimensional autocovariance matrix of
a stationary random process, with the purpose of out of sample prediction and feature ex-
traction. This problem has received several solutions. In the nonparametric framework,
the literature has concentrated on banding and tapering the sample autocovariance matrix.
This paper proposes and evaluates an alternative approach, based on regularizing the sample
partial autocorrelation function, via a modified Durbin-Levinson algorithm that receives as
input the banded and tapered partial autocorrelations and returns a sample autocovariance
sequence which is positive definite. We show that the regularized estimator of the auto-
covariance matrix is consistent and its convergence rates is established. We then focus on
constructing the optimal linear predictor and we assess its properties. The computational
complexity of the estimator is of the order of the square of the banding parameter, which
renders our method scalable for high-dimensional time series. The performance of the auto-
covariance estimator and the corresponding linear predictor is evaluated by simulation and
empirical applications.
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1 Introduction

Let {Yt, t = 1, . . .} be a real valued, discrete time stationary random process, with mean zero
and autocovariance function γ(j) = E(Yt · Yt−j), j = 0,±1, . . .. Several essential characteristics
of the process can be defined in terms of the autocovariance sequence, such as the spectral
density, f(ω) = 1

2π

∑∞
j=−∞ γ(j)e−ıωj , ω ∈ [−π, π], where ı2 = −1, and the long run variance

V =
∑∞

j=−∞ γ(j), V = 2πf(0)).
The n× n autocovariance matrix

Γn =


γ(0) γ(1) · · · γ(n− 1)

γ(1) γ(0)
. . . γ(n− 2)

...
. . .

. . .
...

γ(n− 1) γ(n− 2) · · · γ(0)

 , (1)

plays an important role for optimal linear prediction and interpolation from a finite sample. In
particular, the minimum mean squared error linear predictor of Yn+h at time n, based on the

information set {Y1, . . . , Yn}, is obtained as Ŷn+h|n =
∑n

j=1 φ
(h)
nj Yn−j−1, where the coefficients

φ
(h)
n = [φ

(h)
n1 , φ

(j)
n2 , . . . , φ

(j)
nn]′ are the solution of the Yule-Walker system

φ(h)
n = Γ−1

n γ(h)
n ,

with γ
(h)
n = [γ(h), γ(h+ 1), . . . , γ(h+ n− 1)]′.

The literature has investigated the problem of estimating Γn from a time series realization,
{yt, t = 1, . . . , n}. Denoting the sample autocovariance at lag j by

γ̂(j) =
1

n

n∑
t=j+1

ytyt−j , j = 0, 1, . . . , n− 1, (2)

we can construct the sample autocovariance matrix Γ̂n = {γ̂(|i − j|), i, j = 1, . . . , n}, which is
a positive definite Toeplitz matrix. However, as it was shown by Wu and Pourahmadi (2009),
Γ̂n is not consistent for Γn, as the operator norm (i.e. the largest eigenvalue) of the estimation
error matrix, ρ(Γ̂n − Γn), does not converge to zero as n tends to infinity.

Wu and Pourahmadi (2009) proposed the banded autocovariance matrix estimator

Γ̂n,` = {γ̂(|i− j|) · I(|i− j| ≤ `), i, j = 1, . . . , n}, (3)

where ` is the banding parameter and I(·) is the indicator function.
E. J. Hannan and Deistler (1988) showed that, for linear ARMA processes and for ` ≤

(log n)α, α < ∞, the infinity norm of Γ̂n,` − Γn is O
(
n−1/2

√
log log n

)
. Wu and Pourahmadi

(2009) proved the consistency of (3) for the class of non-linear short-range dependent processes
considered by Wu (2005), and obtained an explicit upper bound for the operator norm of Γ̂n,`−Γn
See Appendix A for a review of the different matrix norms. Bickel and Gel (2011) obtained the
consistency of (3) under the Frobenius norm. Bickel and Gel (2011), and proposed a cross-
validation method for selecting the optimal banding parameter.

McMurry and Politis (2010), MP henceforth, proposed the banded and tapered autocovari-
ance matrix estimator

Γ̂n,MP = {γ̂(|i− j|) · w(|i− j|), i, j = 1, . . . , n}, (4)
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with w(|i − j|) = κ((i − j)/`), where ` is the banding parameter and κ(u) is the trapezoidal
kernel

κ(u) =


1, |u| ≤ 1
2− |u|, 1 < |u| ≤ 2
0, |u| > 2

(5)

McMurry et al. (2015) further develop the theory of optimal linear prediction using the banded
and tapered sample autocovariance sequence.

Both estimators (3) and (4) preserve the Toeplitz structure, but they are not necessarily
positive definite. In general, the estimator {γ̂(|i− j|) ·w(|i− j|)} is positive definite if and only
if
∑

i

∑
j w(|i− j|)e−ıω|i−j| > 0, ∀ω ∈ [−π, π], which does not holds in either cases. McMurry et

al. (2015) present and compare several alternative positivity corrections.
This paper proposes an autocovariance matrix estimator based on the idea of banding and

tapering the sample partial autocorrelation sequence and deriving the implied autocovariance by
inverting the Durbin-Levinson (DL) algorithm. The advantages of modelling a covariance matrix
via the partial autocorrelations have been considered by Daniels and Pourahmadi (2009). The
DL algorithm (see Brockwell and Davis (1991) and Barndorff-Nielsen and Schou (1973)) maps
the autocovariance sequence into the partial autocorrelations. It can be inverted so that the reg-
ularized sample partial autocorrelations, resulting from the application of a weighting function,
such as the trapezoidal kernel with banding parameter `, are mapped into regularized sample
autocovariances, denoted by γ̃r(j), j = 0, . . . , n− 1, satisfying the condition

∑
j γ̃r(j)e

−ıωj > 0,
ω ∈ [−π, π]. We name our method the regularized Durbin-Levinson (RDL) estimator of Γn. As
a by-product, the RDL estimates the coefficients of the linear predictor of Yn+h based on the
sample realization {y1, . . . , yt, . . . , yn}. The estimator has the following comparative advantages:

• It is positive definite by construction and no positivity correction is needed.

• The optimal linear predictor based on a sample of size n requires a number of operations
which is O(`2). Hence, it can be computed for large n with a complexity increasing only
with the square of the banding parameter, which is o(n).

• It outperforms the banded and tapered autocovariance estimator for processes with high
dynamic range, such as a cyclical process.

The plan of the paper is the following. In section 2 we present the RDL algorithm and derive
its properties when it is applied to the true autocovariances of the process. Section 3 contains
the main results, showing the consistency of the RDL estimator of the autocovariance matrix.
Section 4 deals with optimal linear prediction using the RDL estimator. We consider the problem
of selecting the banding parameter (section 5). In section 6 we assess the performance of our
method by simulation experiments, dealing with the ability of estimating the autocovariance
function of known processes belonging to the ARMA class, and by out-of-sample rolling forecast
experiments dealing with the prediction of sea surface temperatures in the the Niño 3.4 region.
Section 7 concludes the paper.

2 Regularized Durbin-Levinson Algorithm

The Durbin-Levinson algorithm (see Levinson (1946) Durbin (1960), and Brockwell and Davis
(1991) and Brémaud (2014)) processes the autocovariances {γ(0), . . . , γ(k)}, recursively for k =
1, . . . , n−1, and computes the coefficients of the optimal one-step-ahead predictor at time t > k,
Ŷt|t−1 =

∑k
j=1 φkjYt−j , based on k past values, where φkk is the partial autocorrelation between
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Yt and Yt−k, as well as the prediction error variance ςk = Var(Yt|Yt−1, . . . , Yt−k). It provides the
solution of a Yule-Walker system of equations in O(k2) operation, by making an efficient use of
the Toeplitz structure of Γk+1.

The following regularised Durbin-Levinson (RDL) algorithm augments the usual DL recur-
sions by equations that i. regularize the partial autocorrelation at lag k by applying a weight
wk = κ(k/`), where κ(|u|) is the trapezoidal kernel given in (5) and ` is the banding parameter;
ii. compute the regularized autocovariance γr(k), corresponding to a process with partial auto-
correllation function |wkφkk| < 1; iii. obtain the coefficients πkj , j = 1, . . . , k, of the regularized
predictor.

The algorithm is initialised as follows: set γr(0) = γ(0) and

ς0 = γ(0), v0 = γr(0),
φ11 = γ(1)/γ(0), π11 = w1φ11,

γr(1) = v0π11,
ς1 = (1− φ2

11)ς0, v1 = (1− π2
11)v0.

(6)

Then, for k = 2, . . . , n− 1, the following recursions are run:

φkk =
γ(k)−

∑k−1
j=1 φk−1,jγ(k−j)
ςk−1

, πkk = wkφkk,

γr(k) =
∑k−1

j=1 πk−1,jγr(k − j) + vk−1πkk,

φkj = φk−1,j − φkkφk−1,k−j , πkj = πk−1,j − πkkπk−1,k−j , j = 1, 2, . . . , k − 1,
ςk = (1− φ2

kk)ςk−1, vk = (1− π2
kk)vk−1.

(7)

The recursions on the left of (7) are the traditional DL recursions, mapping the autoco-
variances γ(k) into the partial autocorrelations φkk. The recursions on the right perform the
reverse mapping, from the regularized partial autocorrelations, πkk = wkφkk, to the regularized
autocovariances, γr(k), k = 0, . . . , n− 1. If wk = 1, for all k, we recover the usual DL recursion
yielding the raw partial autocorrelations, and γr(k) = γ(k) for all k. If wk = 1 for k ≤ p, and
wk = 0 for k > p, the system (7) computes the usual Yule-Walker predictor based on p lagged
values, i.e. it amounts to fitting an autoregressive model of order p. In this case γr(k) = γ(k)
for k = 0, 1, . . . p and γr(k) =

∑p
j=1 φp,jγr(k − j) for |k| > p.

Remark 1. An alternative to tapering the sequence φkk is tapering the Fisher transform θk =
1
2 ln 1+φkk

1−φkk and obtaining πkk = exp(2wkθk)−1
exp(2wkθk)+1 . The solution does not differ relevantly, as ∂πkk

∂wk
=

4θk exp(2wkθk)/[1 + exp(2wkθk)]
2, and ∂πkk

∂wk
|wk=0 = θk.

The sequence {πkk, k = 1, . . . , n−1} is a proper partial autocorrelation function, as |πkk| < 1
by construction. It is associated with an auxiliary process, Y ∗t , which is AR(L), with L = b2`c.
This is evident from πkk = 0, k > L. An alternative equivalent expression for the regularized
partial autocorrelations is

πkk =
γr(k)−

∑k−1
j=1 πk−1,jγr(k−j)

γr(0)−
∑k−1

j=1 πk−1,jγr(j)

=
Cov(Y ∗

t ,Y
∗
t−k|Y

∗
t−1,...,Y

∗
t−k)

Var(Y ∗
t |Y ∗

t−1,...,Y
∗
t−k)

.

Notice also that the first ` autocovariances are identical to the original, i.e. γr(j) = γ(j) for
j ≤ `, as for the trapezoidal kernel wj = 1, j ≤ `.

The following two lemmata deal with the properties of the RDL algorithm.
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Lemma 1. Let γr(j) and πn−1,j , j = 1, . . . , n − 1, be defined as in (7). Let 0 ≤ wj ≤ 1, j =
1, . . . , n, be the trapezoidal weigthing functions with banding parameter `. Then the following
results hold.

(i) The regularized autocovariance function {γr(k), k = 0,±1, . . .} is a positive definite sequence.

(ii) The roots of the polynomial Πk(z) = 1 −
∑k

j=1 πk,jz
j lie strictly inside the unit circle, i.e.

Πk(1/z) is a Schur, or minimum phase, polynomial.

(iii)
n−1∑
j=1

|πn−1,j − φn−1,j | ≤ 2

n−1∑
j=`+1

|φjj |
j−1∏
i=1

(1 + |φii|). (8)

Proof. See Appendix B.

The following lemma characterises the nature of the tapered approximation of Yt.

Lemma 2. Let the autocovariance function of Yt be summable, with
∑∞

j=−∞ |j|r|γ(j)| <∞, r ∈
N, and

∑
j γ(j)e−ıωj > 0, ∀ω ∈ [−π, π], and denote Yt =

∑∞
j=1 φjYt−j + εt, εt ∼WN(0, σ2), the

AR(∞) representation. Then,

n−1∑
j=1

|πn−1,j − φj | ≤ C
∞∑

j=`+1

|φjj |, (9)

ln vn−1 − lnσ2 ≤
∞∑

j=`+1

φ2
jj

1− φ2
jj

. (10)

If further n, `→∞, so that ` = o(n)

∞∑
j=1

jr|γ(j)| <∞⇒ lim
n→∞

n−1∑
j=1

jr|γr(j)| <∞. (11)

Proof. See Appendix C.

Remark 2. The assumption
∑∞

j=−∞ |j|r|γ(j)| < ∞ is a smoothness condition implying that
the spectral density has r continuous derivatives. If Yt is a stationary ARMA process, its auto-
covariance function decreases to zero at a geometric rate and the above condition holds for any
positive integer r.

3 The Autocovariance Matrix Estimator

Given the time series {yt, t = 1, 2, . . . , n}, our estimator of the autocovariance matrix is obtained
by running the regularized Durbin-Levinson recursions (7) on the raw sample autocovariances,
{γ̂(k), k = 0,±1, . . . ,±(n − 1)}, where γ̂(k) is given in (2). The latter shrinks the sample
partial autocorrelations φ̂kk towards zero by setting π̃kk = wkφ̂kk, and yields the regularized
autocovariance sequence {γ̃r(k), k = 0, 1, . . . , n − 1}, along with the estimated AR coefficients
π̃k,j , j = 1, . . . , k − 1.

In the sequel, we will denote the Toeplitz RDL sample autocovariance matrix constructed
from the regularized sample autocovariances by

Γ̃n = {γ̃r(|i− j|), i, j = 1, . . . , n} . (12)
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The RDL algorithm delivers the elements of the UDU decomposition of the inverse autocovari-
ance function

Γ̃−1
n = C ′nDnCn,

where Dn = diag
(
ṽ−1

0 , ṽ−1
1 , . . . , ṽ−1

n−1

)
,

Cn =


1 0 0 · · · 0
−π̃11 1 0 · · · 0
−π̃22 −π̃21 1 · · · 0

...
... · · · . . .

...
−π̃n−1,n−1 −π̃n−1,n−2 −π̃n−1,n−3 · · · 1

 . (13)

The sampling properties of the estimator (12) will be investigated under a suitable set of
assumptions concerning the nature of the underlying random process (Assumption 1) and the
design of the estimator (Assumption 2).

Assumption 1. Let {Yt} be the stationary linear process Yt =
∑∞

j=0 ψjεt−j with ψ0 = 1, and
εt satisfying

i. E(εt|Ft−1) = 0,

ii. E(ε2t |Ft−1) = σ2 <∞, and E(ε4t ) <∞.

iii. f(ω) = 1
2π

∑∞
j=−∞ γ(j)e−ıωj 6= 0,∀ − π < ω ≤ π.

iv.
∑∞

j=−∞(1 + |j|)|γ(j)| <∞

Remark 3. The assumption 1. ii can be relaxed to allow for conditional heteroscedasticity as
in Goncalves and Kilian (2007), who replace it by the assumption that E(ε2t ) = σ2 and the that
the joint cumulants of εt up to the eight order are absolutely summable. The assumption that Yt
is a linear process can be relaxed as in Wu and Pourahmadi (2009) and McMurry and Politis
(2010), who assume that Yt is a non linear process of the form Yt = g(εt, εt−1, . . .), where g(·) is
a measurable function of the i.i.d. random variables εs, s = t, t− 1, . . . , possessing finite fourth
moment and finite physical dependence (see e.g. Wu (2005)).

Remark 4. Assumptions iii. and iv. imply that
∑

j(1 + |j|)|ψj | < ∞ and that the infinite
AR representation Yt =

∑∞
j=1 φjYt−j + εt has

∑
j(1 + |j|)|φj | < ∞. See Brillinger (1981),

Theorem 3.8.4, p. 78. Moreover, the spectral density is continuous and bounded and there exists
two real positive numbers m = infω f(ω) and M =

∑
ω f(ω), such that the eigenvalues of Γn,

λ1, λ2, . . . , λn, satisfy ((Brockwell and Davis, 1991), Proposition 4.5.3)

0 < m ≤ λ1 ≤ λ2 ≤ · · · ≤ λn < M <∞.

Assumption 2. The following assumptions are made concerning the banding parameter ` and
a rate pn, such that ` < pn < n:

i. pn = O(nα), 0 < α < 1.

ii. κ(·) is the trapezoidal kernel with banding parameter ` = o
(
n1/2

)
, and L = b2`c is such that

with pn/`→∞ as n→∞.
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iii. The quantity

rn =
`√
n

+
∞∑
j=`

|γ(j)|, (14)

converges to zero as n→∞.

iv. limn→∞
(pn
n

)1/2
` = 0.

v ` = O(nβ), 0 < β < 1/2, and α+ 2β < 1.

The following theorem establishes the consistency the RDL estimator and its rate of con-
vergence, and shows that inverse autocovariance matrix can be estimated consistently using
Γ̃−1
n .

Theorem 1. Under the assumptions 1 and 2 (i.)–(iv.), Γ̃n converges in operator norm to Γn,
and

ρ(Γ̃n − Γn) = Op

(
p

1
2
n rn

)
. (15)

Moreover,

ρ(Γ̃−1
n − Γ−1

n ) = Op

(
p

1
2
n rn

)
, (16)

Proof. See Appendix F

Remark 5. Wu and Pourahmadi (2009) and McMurry and Politis (2010) obtained the faster
convergence rate rn for the banded (and tapered) estimator. The introduction of pn > L is needed
for having

∑∞
pn+1 |γ̃r(j)| = op(1). McMurry et al. (2015) also need to introduce pn to establish

the convergence of the best linear predictor to the oracle predictor. Bickel and Gel (2011) defined
their `-banded estimator in terms of a submatrix of Γ̂n of dimension pn < n, where pn = o(n).

Remark 6. The optimal choice of the rate for ` depends on the rate of decay of γ(j). If
|γ(j)| = O(|j|−d), d > 1, the optimal rate for ` is as in Assumption 2 v. with β = −1/(2d). If
|γ(j)| = O(|ξ|j), |ξ| < 1, then ` = O (ln(n)) and pn = O(nα), α < 1/2.

Our second result deals with the consistency and the rate of convergence of the coefficients
of the finite predictor, π̃n−1,j , j = 1, . . . , n− 1.

Theorem 2. Under the assumptions 1 and 2 (i.)–(iv.),n−1∑
j=1

(π̃n−1,j − φn−1,j)
2

1/2

= Op (rn) , (17)

Proof. See Appendix F

4 Optimal linear prediction and interpolation

We turn now our attention to the problem of predicting Yn+1 from a sample realization of
length n. The optimal linear predictor, Ŷn+1|n =

∑n
j=1 φn,jYt−j+1 can be estimated by Ỹn+1|n =∑n

j=1 π̃n,jYt−j+1, where the coefficients π̃n,j are computed at time n by the RDL algorithm using
the sample autocovariances up to lag n − 1 and setting πkk = 0 for k = L + 1, . . . , n. Hence,
Ỹn+1|n =

∑L
j=1 π̃L,jYt−j+1, which means that the computational complexity of the one-step-

ahead predictor is O(`2) rather than O(n2).
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Theorem 3. Optimal linear prediction Under the assumptions 1 and 2 (i.)–(iv.), and

n1/2
∞∑
L+1

|φj | → 0, (18)

the RDL predictor Ỹn+1|n =
∑n

j=1 π̃n,jYn−j+1 converges in probability to the oracle predictor

Ŷn+1|n =
∑n

j=1 φn,jYt−j+1, and in particular |Ŷn+1|n − Ỹn+1|n| = Op
(
`1/2rn

)
.

Proof. See Appendix G

Notice that our results encompass Berk (1974), Bhansali (1978) and Gupta et al. (2013).
These references consider the prediction and the estimation of the spectral density of a stationary
process with infinite AR representation, by fitting an AR(`) model by least squares, under
different assumptions on the process εt. They also provide results for the consistency of Γ̂` and
Γ̂−1
` , where ` = O(nδ), δ < 1/3. Lewis and Reinsel (1985), Saikkonen and Lütkepohl (1996)

and Lütkepohl and Saikkonen (1997) extended the theory to multivariate time series, whereas
Goncalves and Kilian (2007) derive the asymptotic theory when Yt is a stationary linear process
with martingale difference errors εt that are possibly conditionally heteroscedastic. Goncalves
and Kilian (2007) also show the asymptotic validity of the sieve bootstrap under the same
assumptions. In our framework, given the factorization Γ̃−1

n = C ′nDnCn, we can envisage the
following bootstrap algorithm. Defining y = (y1, . . . , yn)′,

• Compute e = D
1/2
n Cny, where e is the vector with elements

et =

yt − t−1∑
j=1

π̃t−1,jyt−j

 /
√
ṽt−1, t = 2, . . . , n, e1 = y1/

√
ṽ0.

• Center and sample e with replacement; let e∗ denote the resulting bootstrap sample.

• Compute the bootstrap sample y∗ = C−1
n D

−1/2
n e∗, where the generic element is

y∗t =
t−1∑
j=1

π̃t−1,jy
∗
t−j +

√
ṽt−1e

∗
t , y∗1 =

√
ṽ0e
∗
1.

We leave to future research establishing the properties of the above bootstrap algorithm, along
with the modifications required in the presence of conditional heteroscedasticity.

5 Estimation of the Banding Parameter

MP propose a data-based selection criterion for the banding parameter `, which is chosen as
the smallest ˆ̀ such that |ρ̂(ˆ̀+ k)| < c

√
log n/n, k = 1, 2, . . . ,Kn, Kn = o(log n), where ρ̂(j) =

γ̂(j)/γ̂(0). For the sample sizes typically used in applied work, MP recommend c = 2 and
Kn = 5. The rule amounts to conducting an approximate 95% simultaneous test of ρ(l̂ + k) =
0, k = 1, . . . ,Kn. See also Politis (2003).

The empirical rule provides an effective and practical criterion which can be extended to our
RDL estimator, by picking the smallest value of ˆ̀ such that

|φ̂kk(ˆ̀+ k)| < c
√

log n/n, k = 1, 2, . . . ,Kn, Kn = o(log n). (19)
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where φ̂kk is the sample partial autocorrelation computed by the RDL algorithm (7) applied to
the sample autocovariances.

Other criteria could be devised. Denoting by ṽn−1(`), the RDL estimated one-step-ahead
prediction error variance, as a function of the banding parameter `, the Akaike Information
Criterion is AIC(`) = ln vn−1(`)+2

∑n−1
k=0 wk/n, where

∑n−1
k=0 wk measures the complexity of the

predictor based on `.
In principle, the selection of the optimal banding parameter depends on the objective of

the analysis and, for instance, what is optimal for short run forecasting may be suboptimal for
long range prediction, which may call for a larger `. Naturally, we can apply the MP rule (19)
with Kn varying with the forecast lead time. Bickel and Gel (2011) propose a cross-validation
method which divides the time series into two consecutive segments of length n0 (e.g. n/3) and
n1, respectively. Given the reduced computational burden of the RDL predictor, which is O(`2),
in the applications we will estimate the banding parameter by minimizing the mean square
forecast error (MSFE) of the h-step ahead predictor, where h is the desired forecast horizon.
The MSFE can be estimated by performing an out-of-sample rolling or recursive forecasting
exercise, by dividing the sample into a training set and test set.

6 Simulations and Empirical Illustrations

We explore and compare the performance of the RDL estimator of the autocovariance sequence
and the associated linear predictor by simulation and by an empirical case study dealing with
the prediction of the sea surface temperature index in the Niño 3.4 region.

6.1 Simulations

We conducted three Monte Carlo simulations to assess the properties of our the RDL estimator
of the true autocovariance matrix Γn in (1), when the data generating process is AR(1), MA(1),
or ARMA(5,5). The main objective is to compare the performance with the banded and tapered
estimator (4) by (McMurry and Politis, 2010), referred to as the MP estimator; the overall con-
clusions can be extended to the class of banded estimator (3) proposed by Wu and Pourahmadi
(2009) and Bickel and Gel (2011)

All the reported results are based on 1,000 replications. The selection of the banding param-
eter is based on the empirical rule proposed by Politis (2003) and used by McMurry and Politis
(2010), applied to the sample autocorrelations for the MP estimator and to the sample partial
autocorrelations for the RDL estimator; see section 5. We have set c = 2 and Kn = 5.

The estimation accuracy of Γ̃n and Γ̂n,MP is evaluated by computing the operator norms

ρ(Γ̃n − Γn) and ρ(Γ̂n,MP − Γn), i.e. the largest eigenvalue of the estimation error matrix, and

the infinity norms ||Γ̃n − Γn||∞, ||Γ̂n,MP − Γn||∞, i.e. the maximum row sum of the estimation
error matrix. See Appendix A.1 for a review of matrix norms.

6.1.1 AR(1)

In the first simulation the data were generated by the autoregressive process Xt = φXt−1 + εt,
with εt being an i.i.d. sequence of N(0, 1 − φ2) random variables, so that γ(k) = φk, k =
0, 1, . . . , n − 1. We consider three sample sizes, n = 250, 500, and 750, and three values of the
AR parameter, φ = 0.1, 0.5 and 0.9. Table 1 reports the mean values of the selected banding
parameter `, and operator and infinity norms, averaged across 1,000 independent replications,
along with their standard deviations. As far as the selection of ` is concerned, it is noticeable
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from the table that Politis’ empirical rule proves very effective in the RDL case in picking up
the oracle value ` = 1. For the MP estimator, we confirm the simulation results produced by
McMurry and Politis (2010); in particular, the selected ` increases with the sample size.

The mean values of the operator and infinity norms illustrate that for φ = 0.5 and φ = 0.9
the RDL estimator performs better, and that the results improve if the sample size increases.

Table 1: Banding parameter and losses in the matrix infinity norm and operator norm for the
autoregressive process Yt = φYt−1 + εt, εt ∼ N(0, 1− φ2).

Regularized Durbin-Levinson McMurry and Politis

` Op norm ∞-norm ` Op norm ∞-norm

n φ Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

250 0.1 1.01 0.14 0.26 0.14 0.30 0.16 1.01 0.22 0.18 0.10 0.20 0.11

250 0.5 1.01 0.11 0.67 0.48 0.71 0.47 1.98 0.98 0.84 0.51 0.95 0.48

250 0.9 1.02 0.23 7.79 5.77 8.03 5.93 14.22 8.30 8.97 4.90 10.23 5.50

500 0.1 1.00 0.06 0.19 0.10 0.22 0.11 1.00 0.06 0.13 0.07 0.15 0.07

500 0.5 1.03 0.32 0.48 0.34 0.51 0.33 2.44 1.02 0.61 0.34 0.70 0.32

500 0.9 1.00 0.00 5.76 4.59 5.84 4.59 17.46 8.43 7.18 5.30 8.11 5.60

750 0.1 1.01 0.14 0.15 0.08 0.18 0.09 1.01 0.13 0.11 0.06 0.12 0.07

750 0.5 1.02 0.32 0.37 0.25 0.39 0.24 2.58 0.88 0.49 0.26 0.57 0.25

750 0.9 1.01 0.19 5.02 3.86 5.07 3.84 20.92 10.79 6.64 4.90 7.63 5.41

6.1.2 MA(1)

When the data were generated by the moving average process Yt = εt + θεt−1, with εt being an
i.i.d. sequence of N(0, 1) random variables, the true Γn is a banded matrix with γ(k) = 0, k > 1
and partial autocorrelation function is φkk = −(−θ)k(1− θ2)/(1− θ2(k+1)). For each simulation
θ assumes the values 0.1, 0.5, 0.9 and we consider three sample sizes, n = 250, 500, 750. The
results are reported in Table 2. As it is evident from the table, the MP estimator has the best
performances: the empirical rule tends to select the oracle ` = 1 and the accuracy measures are
systematically better.

Table 2: Banding parameter and losses in the matrix infinity norm and operator norm for the
moving average process Yt = εt + θεt−1, with εt ∼ N(0, 1).

Regularized Durbin-Levinson McMurry and Politis

` Op norm ∞-norm ` Op norm ∞-norm

n θ Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

250 0.1 1.03 0.40 0.27 0.15 0.33 0.19 1.04 0.42 0.19 0.12 0.20 0.15

250 0.5 1.58 0.70 0.52 0.30 0.70 0.38 1.08 0.57 0.26 0.23 0.27 0.29

250 0.9 4.25 1.53 1.52 0.96 2.24 1.28 1.15 0.79 0.48 0.50 0.52 0.59

500 0.1 1.00 0.00 0.18 0.09 0.22 0.10 1.01 0.13 0.12 0.07 0.12 0.07

500 0.5 2.05 0.62 0.42 0.23 0.55 0.27 1.06 0.43 0.20 0.18 0.20 0.20

500 0.9 5.94 1.69 1.21 0.57 1.88 0.82 1.09 0.57 0.31 0.31 0.33 0.34

750 0.1 1.00 0.00 0.15 0.07 0.18 0.08 1.00 0.00 0.12 0.06 0.12 0.06

750 0.5 2.10 0.94 0.39 0.20 0.55 0.28 1.00 0.00 0.20 0.10 0.20 0.10

750 0.9 6.50 1.50 1.85 1.39 2.56 1.44 1.60 1.80 0.49 0.64 0.58 0.87
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6.1.3 ARMA(5,5)

In our third Monte Carlo experiment 1,000 series of length n = 250, 500, and 750 were generated
according to the ARMA(5,5) process,

Yt =
1− 0.8762B + 0.0184B2 + 0.0197B3 + 0.8591B4 − 0.7491B5

1− 0.6281B + 0.3597B2 + 0.2634B3 − 0.5322B4 + 0.7900B5
εt, εt ∼ i.i.d. N(0, 1)

This process is considered by Bickel and Gel (2011), section 5.1. Its spectral density is charac-
terized by a very high dynamic range, i.e. a large excursion between maxω f(ω) and minω f(ω),
and by the presence of two distinctive spectral peaks at π/2 and π. The first 8 autocorrelations
are ρ(1) = −0.15, ρ(2) = −0.60, ρ(3) = −0.18, ρ(4) = 0.89, ρ(5) = −0.16, ρ(6) = −0.57, ρ(7) =
−0.16, ρ(8) = 0.76; moreover, ρ(20) = 0.48, ρ(40) = 0.22, ρ(60) = 0.11.

Table 3 reports the mean and the standard deviation of the selected banding parameter and
the operator and infinity norm over the 1,000 independent replications. It shows that the RDL
estimator selects a smaller banding parameter and is characterized by a greater accuracy in
estimating the true Γn.

When coupled together with the evidence arising from the AR(1) experiment, we can con-
clude that banding and tapering the partial autocorrelation function is more effective than
banding and tapering the autocovariance function, when the true generating process has high
dynamic range, resulting from the presence of cyclical components and strong autoregressive
components.

Table 3: Banding parameter and losses in the matrix infinity norm and operator norm for the
ARMA(5,5) process considered by Bickel and Gel (2011).

RDL Empirical Rule McMurry and Politis

` Op norm ∞-norm ` Op norm ∞-norm

n Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

250 10.02 2.65 170.63 124.06 252.73 174.69 56.05 37.04 189.05 141.13 294.10 208.61

500 15.66 3.17 142.00 98.65 208.61 135.51 74.97 52.40 179.02 152.83 285.17 237.04

750 18.55 3.28 128.74 79.78 182.46 103.37 80.79 59.83 172.84 147.24 270.50 238.97

6.2 Forecasting Niño 3.4 sea surface temperature

Our illustrative example deals with the ability to forecast the sea surface temperatures (SST) in
the Niño 3.4 region. This time series has been analyzed by Bickel and Gel (2011) and provides an
interesting case study, since its cyclical behaviour is a manifestation of the El Niño phenomenon,
which determines an increase in SST in the eastern and central Pacific regions. The monthly
time series, available at https://www.esrl.noaa.gov/psd/data/climateindices/list) for the period
January 1950 - December 2016, is plotted in the top left panel of figure 1. The prediction of
SST are an important input of global circulation models and are relevant for the prediction
of El Niño Southern Oscillation (ENSO) events, which are the most dominant forcing factors
of inter-annual climate variability. SST is also the most important surface condition affecting
climate at longer run horizons.

The evaluation of the forecasting ability of the RDL estimator, in comparison with the MP
estimator and traditional ARMA predictors, is carried out by a rolling forecast experiment
such that, starting from January 1970, we compute the RDL and MP h-step-ahead predictors,
h = 1, 2, . . . , 48, for values of the banding parameters ` = 1, 2, . . . , 48, using a training sample of
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dimension n0 = 288 observations (20 years of monthly data); we proceed by adding one future
observation and removing the initial one, until the end of the sample is reached, so that each
forecast is based on a fixed number of observations, and re-estimating the coefficients of the
linear predictors for each rolling window. The experiment yields H = 564− h+ 1 h-step-ahead
prediction errors for each forecasting methodology. The predictive performances of the RDL
and MP estimator depends on the forecast horizon h and the banding parameter `; they are
compared to the h-step ahead predictions arising from fitting ARMA(p, q) models, with p ≤ 13
and q ≤ 2.

Denoting by ỹt|t−h a generic prediction of yt, for each forecast lead h and banding parameter

` we compute the mean square forecast error, MSFE(h, `) = 1
H

∑n
t=n0+h(yt − ỹt|t−h)2, and the

following measure of predictability:

P (h, `) = max

(
0, 1− MSFE(h, `)

γ̂(0)

)
, h, ` = 1, . . . 48.

Figure 2 is a contour plot of P (h, `) for the RDL predictor, whereas figure 1b compares its
maximum across `, P (h) = max`=1,...,48 P (h, `), h = 1, . . . 48, with that characterizing the MP
and ARMA predictor.

The value of ` that is optimal for different horizons, in the sense that it minimizes the MSFE,
grows rapidly from 10 to values in the range (28,33). The empirical rule of section 5 selects a
value around 10 with some variability across the rolling samples; as it can be seen from figure 2,
choosing a small ` is detrimental to predictability at forecast lead times greater than 6. For MP,
the optimal bandwidth goes from 42 to 48. For the ARMA models the P (h) measure is defined
as the maximum predictability across the AR and MA orders; the selected specifications in the
majority of cases are AR(12) and ARMA(12,1).

The main evidence is that the predictability of SST is high at inter-annual horizons (up
to lead time 6), and it decreases quite rapidly. However, there is some predictability at longer
horizons. Secondly, the RDL predictor outperforms the MP and ARMA predictors. With respect
to the latter, the performance is about the same for h = 1. Also, the MP outperforms the ARMA
predictors for horizons h > 6. The superior performance with respect to the MP predictor
is due to the fact that SST are characterized by the presence of strong cyclical components,
that are better captured by regularizing the partial autocorrelations rather than the sample
autocovariances.

Figure 1c displays the sample partial autocorrelation function and the regularized partial au-
tocorrelations for ` = 28; the estimated log-spectral density is plotted along the log-periodogram
of the series in figure 1d. The two sharp peaks at occur at the annual and semiannual frequen-
cies, π/6 and π/3, and are expression of the seasonal cycle in SST. The peak close to the origin
is expression of the alternation of El Niño and La Niña episodes, with a periodicity of 4 years.
Our RDL seems to capture the main stylized facts concerning the SST series quite well.

This illustration also shows that the selection of the banding parameter can be related to
the forecast horizon that is relevant to the investigator. It can be determined by evaluating the
forecasting performance of the predictor as a function of `.

7 Conclusions

We have proposed an estimator of the autocovariance function of a random process based on
a modification of the Durbin-Levinson algorithm, which regularizes the partial autocorrelation
function, shrinking it towards zero according to a weighting function. In particular, we have
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focused on the trapezoidal kernel, see Politis and Romano (1995) and McMurry and Politis
(2010). We have shown the consistency of the regularized Durbin-Levinson autocovariance
matrix estimator and the associated predictor and have derived its rate of convergence. The
simulations and the empirical illustration have shown that the RDL method is very effective and
more efficient than available tapered estimators for processes with high spectral dynamic range
(cyclical processes). Due to its reduced computational complexity, the optimal bandwidth of
the tapering function can be selected by crossvalidation.
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Figure 2: Niño 3.4 Sea Surface Temperature Series. RDL predictor: contour plot of pre-

dictability at forecast horizon h using banding parameter l, P (h, `) = max
(

0, 1− MSFE(h,`)
γ̂(0)

)
,

for h = 1, . . . , 48 and ` = 1, . . . , 48.
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Appendix

A Preliminaries

A.1 Vector and matrix norms

If x denotes an m × 1 vector, the vector p-norm is defined as ||x||p = (
∑m

i=1 x
p
i )

1/p
. For an

m × n matrix A, ‖ A ‖p= supx 6=0
||Ax||p
||x||p The 2-norm ||A||2 =

√
λmax(A′A), the square root of

the maximum eigenvalue of A′A, is also known as the operator norm and it will be denoted
by ρ(A) = ||A||2. If A is n × n and symmetric, then ||A||2 is the maximum eigenvalue of A.
In the proofs we will make use of the following result, implied by corollary 2.3.2 in Golub and
Van Loan (2012): if A = A′,

||A||2 ≤ max
1≤j≤n

n∑
i=1

|aij |,

i.e. the operator norm is bounded by the maximum column sum of A (this is also known as the 1-
norm, ||A||1). The operator norm has the following properties: let c be a scalar, B a conformable
matrix and b an n × 1 vector. Then ρ(cA) = |c|ρ(A), ρ(A + B) ≤ ρ(A) + ρ(B), ρ(AB) ≤
ρ(A)ρ(B), ρ(Ab) ≤ ρ(A)||b||2. The Frobenius 2-norm is defined as ||A||F =

√
trace(A′A) =∑

i

∑
j a

2
ij . In the illustrations we also refer to the infinity norm, ||A||∞ = max1≤i≤n

∑n
j=1 |aij |,

the maximum row sum of A. If A is symmetric, ||A||∞ = ||A||1.

A.2 Consistency of the sample autocovariances

Let ĉ(k) = 1
n−k

∑n
t=k+1 ytyt−k, ĉ(k) = nγ̂(k)/(n − k). A fundamental result that will be used

in the proofs is the following upper bound for the mean square estimation error of the lag k
autocovariance, based on a sample of size n > k:

E[(ĉ(k)− γ(k))2] ≤ C∗

n− k
.

The above result is due to E. J. Hannan (1960) (page 39, under the i.i.d. assumption for εt),
and E. Hannan et al. (1972), where the constant C∗ = 2

∑∞
r=−∞ γ

2(r) + κ4(
∑

j ψ
2
j )

2, where κ4

is the 4-th cumulant of εt (C <∞ is implied by the assumptions); an analogous result is implied
by Lemma 1 in Wu and Pourahmadi (2009) (taking α = 4), where the constant C∗ depends
on [E(Y 4

t )]1/4 and the physical dependence measure of the process; see Wu (2011) for details.
The same result is obtained by applying the Marcinkiewicz-Zygmund inequality, theorem 4.1 in
Dedecker et al. (2007); see also Bickel and Gel (2011).

Using γ̂(k) = n−k
n ĉ(k), or equivalently γ̂(k)− γ(k) = n−k

n (ĉ(k)− γ(k))− k
nγ(k), we have

|γ̂(k)− γ(k)| ≤ n− k
n
|ĉ(k)− γ(k)|+ k

n
|γ(k)|.

Hence, for a suitable constant C, we have the following bound for the mean absolute error:

E|γ̂(k)− γ(k)| ≤ C

n1/2
+
k

n
|γ(k)|. (20)
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B Proof of Lemma 1

The positive definiteness of the regularized autocovariances can be proved by first noticing that
the assumptions on {wk, k = 0, 1, . . .} imply that |πkk| < 1 and that vk−1 = v0

∏k−1
j=1(1 −

π2
jj) is equal to γr(0) −

∑k−1
j=1 πk−1,jγr(j). Let Γr,k denote the Toeplitz matrix formed with

{γr(0), . . . , γr(k)}. Then, by a suitable partitioning of Γr,k,

|Γr,k| =
[
γr(0)−

∑k−1
j=1 πk−1,jγr(j)

]
|Γr,k−1|

= vk−1|Γr,k−1|
=

∏k−1
j=0 vj

= vk0
∏k−1
j=1(1− π2

jj)
k−j .

Hence, |Γr,k| > 0, as |πjj | < 1 and v0 > 0.
The proof of statement (ii) is by induction. For k = 1, π11 = w1γ(1)/γ(0) is such that

|π11| < 1, and thus the root of Π1(z) = 1−π11z, z = π−1
11 , is greater than 1 in modulus. Assume

now that Πk−1(z) 6= 0 ⇐⇒ |z| ≤ 1, then Πk(z) has all its roots greater than 1 in modulus iff
|πkk| < 1: as a matter of fact, according to (7), we can write Πk(z) = Πk−1(z)−πkkzkΠk−1(1/z),
so that Πk(z) = 0 for all {z ∈ C : Πk−1(z) − πkkzkΠk−1(1/z) = 0}. Hence, Πk(z) = 0 ⇐⇒

z =
[

1
πkk

Πk−1(1/z)
Πk−1(z)

]1/k
and, since

Πk−1(1/z)
Πk−1(z) has unit modulus, |z| > 1 ⇐⇒ |πkk| < 1. Iterating

this result, we can conclude that Πk(z) has stationary roots iff |πjj | < 1, j = 1, 2, . . . , k. That
|πjj | < 1 follows directly from the assumptions on {wj} and from |φjj | < 1.

To prove statement (iii), let us consider a generic k. According to the RDL algorithm (7),
for j < k, πkj − φkj = πk−1,j − φk−1,j − πkkπk−1,k−j + φkkφk−1,k−j . If we take wk = 0 (and
thus πkk = 0), the following inequality holds: |πkj − φkj | ≤ |πk−1,j − φk−1,j | + |φkk||φk−1,k−j |.
Summing from j = 1 to j = k − 1 and adding |φkk| to both sides, we have that (for wk = 0):

k∑
j=1

|πkj − φkj | ≤
k−1∑
j=1

|πk−1,j − φk−1,j |+ |φkk|

1 +

k−1∑
j=1

|φk−1,j |

 . (21)

Consider now the AR(`) approximation to the process, which is the one having wk = 1 for 0 ≤
k ≤ ` and wk = 0, ` < k ≤ n−1, and let us denote by π∗kj the coefficients resulting from the RDL

recursions (7), applying the above uniform weights truncated at `. Since
∑k

j=1 |π∗kj − φkj | = 0
for k ≤ `, the recursion (21) yields

n−1∑
j=1

|π∗n−1,j − φn−1,j | ≤
n−1∑
j=`+1

|φjj |

(
1 +

j−1∑
i=1

|φj−1,i|

)
.

The same reasoning leads to the following inequality:

n−1∑
j=1

|π∗n−1,j − πn−1,j | ≤
L∑

j=`+1

|πjj |

(
1 +

j−1∑
i=1

|πj−1,i|

)
,

where πkj , k, j = 1, . . . , n− 1, results from applying a trapezoidal kernel (L = b2`c). Hence, by
the triangle inequality,∑n−1

j=1 |πn−1,j − φn−1,j | ≤
∑n−1

j=1 |πn−1,j − π∗n−1,j |+
∑n−1

j=1 |π∗n−1,j − φn−1,j |
≤

∑n−1
j=`+1 |φjj |

(
1 +

∑j−1
i=1 |φj−1,i|

)
+
∑L

j=`+1 |πjj |
(

1 +
∑j−1

i=1 |πj−1,i|
)
,

and by Lemma 3 in Appendix D both terms are bounded by
∑n−1

j=`+1 |φjj |
∏j−1
i=1 (1 + |φii|), giving

(8).
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C Proof of Lemma 2

The proof of statement (i) is based on Baxter’s Theorem (Baxter (1962), see also (Bingham,
2012), p. 302), extended by Inoue (2008), according to which the stated assumptions imply
the summability the partial autocorrelations φkk,

∑
j |φjj | < ∞, and therefore

∑
j |πjj | < ∞;

morever, the AR coefficients φj are also absolutely summable by Theorem 3.8.4 in Brillinger
(1981).

By Baxter inequality,
∑n−1

j=1 |φn−1,j − φj | ≤ C
∑∞

j=n |φj |, for some positive constant C. The
right hand side can be expressed in terms of the partial autocorrelations: in fact, applying the
same argument used in the proof of lemma 1, we have that for s > r, setting φrj = 0 for j > r,∑s

j=1 |φrj − φsj | ≤
∑s

j=r+1 |φjj |
∏j−1
i=1 (1 + |φii|) ≤

∏∞
i=1(1 + |φii|)

∑s
j=r |φjj |; letting r = n− 1,

and s→∞, we get
n−1∑
j=1

|φn−1,j − φj | ≤ C∗
∞∑
j=n

|φjj |, (22)

where C∗ =
∏∞
i=1(1 + |φii|) < ∞ as

∑
j |φjj | < ∞. Expression (22) is an alternative effective

way of expressing Baxter’s inequality in terms of the partial autocorrelations of the process.
By the triangle inequality∑n−1

j=1 |πn−1,j − φj | ≤
∑n−1

j=`+1 |φjj |
∏j−1
i=1 (1 + |φii|) + C

∑∞
j=n |φj |

≤
∑n−1

j=`+1 |φjj |
∏∞
i=1(1 + |φii|) + C∗

∑∞
j=n |φjj |

≤ C∗
∑∞

j=`+1 |φjj |.

The bound (10) follows from vn−1 = γ(0)
∏n−1
j=1 (1 − π2

jj), σ
2 = γ(0)

∏∞
j=1(1 − φ2

jj), πjj =
φjj , j ≤ ` and − ln(1− x) < x/(1− x), x < 1.

The proof of statement (11) is based on the fact that
∑∞

j=1 j
r|γ(j)| implies

∑∞
j=1 j

r|φjj | <∞,
by Theorem 2.3 in Baxter (1962). This in turn implies that limn→∞

∑∞
j=1 j

r|φn−1,j | < ∞
(and

∑∞
j=1 j

r|φj | < ∞), as we are going to prove. Starting from the inequality jr|φkj | ≤
jr|φk−1,j | + jr|φkk||φk−1,k−j | for j < k, as implied by (7), summing for j = 1, . . . , k − 1, and
adding kr|φkk| to both sides, yields the recursion∑k

j=1 j
r|φkj | ≤

∑k−1
j=1 j

r|φk−1,j |+ kr|φkk|+ |φkk|
∑k−1

j=1 j
r|φk−1,k−j |

≤
∑k−1

j=1 j
r|φk−1,j |+ kr|φkk|+ |φkk|

∑k−1
j=1(k − j − 1)r|φk−1,j |

≤
∑k−1

j=1 j
r|φk−1,j |+ kr|φkk|+ kr|φkk|

∑k−1
j=1 |φk−1,j |

≤
∑k−1

j=1 j
r|φk−1,j |+ kr|φkk|

(
1 +

∑k−1
j=1 |φk−1,j |

)
≤

∑k−1
j=1 j

r|φk−1,j |+ C∗kr|φkk|,

where C∗ =
∏∞
j=1(1 + |φjj |) is a finite constant (as implied by the summability of the partial

autocorrelation); the last line follows from Lemma 3 of Appendix D. The above recursion implies∑k
j=1 j

r|φkj | ≤ C∗
∑k

j=1 j
r|φjj |, and thus

lim
n→∞

n−1∑
j=1

jr|φn−1,j | =
∞∑
j=1

jr|φj | <∞.

Applying these results to the tapered DL process, the PACF is power summable as
∑

j j
r|πjj | <∑

j j
r|φjj |, which in turns implies that the AR coefficients πn−1,j are power summable. This in

turn implies, by Theorem 3.8.4 in Brillinger (1981) and Lemma 2.2. in Bühlmann (1995), that
the tapered autocovariances γr(j) are power summable.
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D Lemma 3

Lemma 3. Let φkj , j = 1, . . . , k, be generated according to the DL recursions (7). Then

1 +
k∑
j=1

|φkj | ≤
k∏
j=1

(1 + |φjj |), (23)

and

1−
k∑
j=1

φkj =
k∏
j=1

(1− φjj). (24)

Proof. By (7), |φkj | ≤ |φk−1,j | + |φkk||φk−1,k−j | for j < k. Adding for j = 1, . . . , k − 1∑k−1
j=1 |φkj | ≤ (1 + |φkk|)

∑k−1
j=1 |φk−1,j | and adding (1 + |φkk|) to both sides yields the recur-

sion

1 +
k∑
j=1

|φkj | ≤ (1 + |φkk|)

1 +
k−1∑
j=1

|φk−1,j |

 .

Also, summing both sides of φkj = φk−1,j − φkkφk−1,k−j with respect to j, adding φkk to both
sides and subtracting from 1, gives the recursion:

1−
k∑
j=1

φkj = (1− φkk)

1−
k−1∑
j=1

φk−1,j

 ,

which can be solved to give (24).

E Proof of Theorem 1

From Corollary 2.3.2 in (Golub and Van Loan, 2012) (see also Appendix A) and the Toeplitz
nature of the estimation error matrix, it follows that

ρ(Γ̃n − Γn) ≤ max1≤j≤n
∑n

i=1 |γ̃r(|i− j|)− γ(|i− j|)|
≤

∑n−1
j=−(n−1) |γ̃r(j)− γ(j)|

≤ 2
∑n−1

j=0 |γ̃r(j)− γ(j)|
≤ 2

∑n−1
j=0 |γ̃r(j)− γr(j)|+ 2

∑n−1
j=0 |γr(j)− γ(j)|

≤ T1 + T2

T1 = 2
∑n−1

j=0 |γ̃r(j)− γr(j)|
T2 = 2

∑n−1
j=0 |γr(j)− γ(j)|

Exploiting the notion that γ̃r(j) is the sample autocovariance function of the process with
theoretical autocovariance function γr(j), we can apply the distributional results of appendix
A.2 to the regularized sample autocovariances (γ̃r(j) = γ̂(j) for |j| ≤ `), to characterize it as an
estimator of γr(j): recalling that L = b2`c.

T1 = 2
∑L

j=0 |γ̃r(j)− γr(j)|+ 2
∑pn

j=L+1 |γ̃r(j)− γr(j)|+ 2
∑n−1

j=pn+1 |γ̃r(j)− γr(j)|
= T11 + T12 + T13

Using Appendix A.2 and the fact that γr(j) = γ(j) for j ≤ `, we have

E|T11| ≤ [E(T 2
1 )]1/2 ≤ CL+ 1√

n
+

2

n

L+1∑
j=1

j|γ(j)|+ 2

n

L+1∑
j=`+1

j|γr(j)|.

19



and thus, T11 = Op(rn).
For j > L the RDL sample and theoretical autocovariance functions are generated according

to the following homogeneous difference equations of order L:

γ̃r(j) =

L∑
k=1

π̃Lkγ̃r(j − k), γr(j) =

L∑
k=1

πLkγ̃r(j − k).

Hence, for j > L,

|γ̃r(j)− γr(j)| ≤
∑L

k=1 |π̃Lk||γ̃r(j − k)− γr(j − l)|+
∑L

k=1 |γr(j − k)||π̃Lk − πLk|
≤

∑L
k=1 |π̃Lk|

∑L
k=1 |γ̃r(j − k)− γr(j − l)|+

∑L
k=1 |γr(j − k)|

∑L
k=1 |π̃Lk − πLk|

= Op(rn),

since
∑L

k=1 |π̃Lk| and
∑L

k=1 |γr(j − k)| are bounded for L→∞. As a result, T12 = Op(p
1/2
n rn).

As far as the component T13 is concerned, the rate pn > L is chosen according to Assumption
2 such that

∑n−1
pn+1 |γ̃r(j)| = o(1) and

∑n−1
pn+1 |γr(j)| = o(1), so that we can write

T13 =

pn∑
j=L+1

|γ̃r(j)− γr(j)|+ o(1).

As a matter of fact, notice that by Brockwell and Davis (1991), page 94, γr(j) follows a ho-
mogeneous linear difference equation with general solution γr(j) =

∑k
i=1

∑mi−1
h=0 βihρ

j
i j
h, where

ρi, i = 1, . . . , k, are the reciprocals of the roots of the polynomial πL(z), which by Lemma 1 (ii)
satisfy |ρi| < 1, mi is the multiplicity of the i-th root,

∑
imi = L, and the coefficients βih are

determined from the initial L autocovariances. Hence, denoting by % = max1≤i≤k |ρi|, 0 < % < 1,
mL = max1≤i≤kmi,mL ≤ L, |γr(j)| ≤ CL%

jjmL , so that the autocovariances tend to zero at a
geometric rate and

∑n−1
pn+1 |γr(j)| = o(1). An analogous results holds for γ̃r(j).

In conclusion, T1 = Op(p
1/2
n rn). For the component T2,

T2 = 2
∑n−1

j=0 |γr(j)− γ(j)|
= 2

∑n−1
j=`+1 |γr(j)− γ(j)|

≤ 2
∑n−1

j=`+1 |γr(j)|+ 2
∑L

j=`+1 |γ(j)|
≤ C2

∑n−1
j=`+1 |γr(j)|,

where C2 > 0 is a suitable constant. Lemma 1 implies that T2 = o(1) under assumptions 1 and
2.

Hence, Γ̃n converges to Γn in operator norm under the stated assumptions and its rate of

convergence is p
1/2
n rn.

Finally, to prove (16) we write Γ̃−1
n − Γ−1

n = Γ̃−1
n

(
Γn − Γ̃n

)
Γ−1
n . By the properties of the

operator norm (see Appendix A.1), ρ(Γ̃−1
n − Γ−1

n ) ≤ ρ(Γ̃−1
n )ρ

(
Γn − Γ̃n

)
ρ(Γ−1

n ). The result

follows from (15), and the fact that both ρ(Γ−1
n ) and ρ(Γ̃−1

n ) are bounded. See Remark 4 for
the former; the latter results from the positive definiteness of the sample RDL autocovariance
sequence (Lemma 1), which guarantees that the smallest eigenvalue of Γ̃n is strictly positive.

F Proof of Theorem 2

Let π̃(n−1) = (π̃n−1,1, . . . , π̃n−1,n−1)′ denote the vector containing the coefficients of the finite
predictor of length n− 1. Then, π̃kk = 0, k > L, implies π̃(n−1) = [π̃′(L), 0, . . . , 0]′, where π̃(L) =
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(π̃L,1, . . . , π̃L,L)′ is obtained as the solution of the Yule-Walker linear system Γ̃Lπ̃(L) = γ̃(L), with

γ̃(L) = (γ̃r(1), . . . , γ̃r(L))′.
Hence, denoting φ(n−1) = (φn−1,1, . . . , φn−1,n−1)′, π(n−1) = (πn−1,1, . . . , πn−1,n−1)′, γ(L) =

(γr(1), . . . , γr(L))′, and by Γr,L the L× L Toeplitz matrix formed from γr(j), j = 0, . . . , L− 1,

π̃(n−1) − φ(n−1) = π̃(n−1) − π(n−1) + π(n−1) − φ(n−1)

= π̃(L) − π(L) + π(n−1) − φ(n−1),

so that, by Lemma 2 and Jensen’s inequality,

||π̃(n−1) − φ(n−1)‖2 ≤ ||π̃(L) − π(L)‖2 +
∑n−1

j=`+1 |φjj |.

The first term on the right hand side can be written:

π̃(L) − π(L) = Γ̃−1
L γ̃(L) − Γ−1

r,Lγ(L)

= Γ̃−1
L

(
γ̃(L) − γ(L)

)
+ Γ̃−1

L

(
Γr,L − Γ̃L

)
Γ−1
r,Lγ(L)

so that, applying the properties of the operator norm (see also Appendix A.1),

||π̃(L) − π(L)||2 ≤ ρ
(

Γ̃−1
L

)
||γ̃(L) − γ(L)||2 + ρ

(
Γ̃−1
L

)
ρ
(

Γr,L − Γ̃L

)
ρ(Γ−1

r,L)||γ(L)||2

which shows that ||π̃(L) − π(L)||2 = Op(rn), as ρ
(

Γ̃−1
L

)
and ||γ(L)||2 are both bounded, and

||γ̃(L) − γ(L)||2 = Op(rn).

G Proof of Theorem 3

Writing
Ŷn+1|n − Ỹn+1|n =

∑n
j=1(φn,j − π̃n,j)Yn+1−j

=
∑L

j=1(φn,j − π̃n,j)Yn+1−j +
∑n

j=L+1 φn,jYn+1−j
= A+B,

it follows from the Cauchy-Schwarz inequality and Theorem 2

|A| =
∣∣∣∑L

j=1(φn,j − π̃n,j)Yn+1−j

∣∣∣
≤ ||φ(n) − π̃(n)||2

(∑L
j=1 Y

2
n+1−j

)1/2

= Op(L
1/2rn)

|B| =
∣∣∣∑n

j=L+1 φn,jYn+1−j

∣∣∣
≤

[∑n−1
j=L+1 φ

2
n,j

]1/2 (∑L
j=1 Y

2
n+1−j

)1/2

≤
∑n−1

j=L+1 |φn,j |
(∑L

j=1 Y
2
n+1−j

)1/2

≤ C2n
1/2
∑∞

j=L+1 |φj |,

where the last inequality follows from writing
∑n

j=L+1 |φn,j | =
∑n

j=L+1 |φn,j − φj + φj | and ap-
plying Baxter’s inequality (see Pourahmadi (2001), Theorem 7.22). Hence, given two constants
C1, C2 > 0,

|Ŷn+1|n − Ỹn+1|n| ≤ C1L
1/2rn + C2

√
n
∑∞

j=L+1 |φj |.
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