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I. Introduction

In many empirical applications two or more competing forecasting methods for

predicting the same object of interest are available, and we may ask the question,

whether they result in equal losses, potentially conditional on being in certain

states. For instance, one may be interested in comparing forecasts generated

from model-based methods (e.g. GARCH or component-based methods) with

those generated from reduced-form methods (e.g. HAR or ARFIMA) to determine

whether such families of forecasting methods possess equal predictive ability.

Additionally, many empirical applications are concerned with the comparison of a

set of models’ forecasts to that of a baseline model. In macroeconomic applications

researchers typically compare a first-order autoregressive model with models

that include various predictors (see e.g. Stock and Watson (1999, 2003)), or in

financial applications where efficient markets imply that excess returns form a

martingale difference, leading to a null hypothesis where all predictive models

nest the baseline model of zero expected excess returns (see e.g. Goyal and Welch

(2003); Welch and Goyal (2008), and Phillips and Jin (2014)).

In this paper, we facilitate such analyses by developing statistical tests for equal

conditional and unconditional predictive ability among two or more forecasting

methods. The paper extends the tests in Giacomini and White (2006) (henceforth

referenced as GW) to a multivariate setting where one may be interested in

comparing the conditional predictive ability of multiple forecasting methods, and

at the same time extends the (unconditional) multivariate Diebold-Mariano test

statistic (Diebold and Mariano, 1995) in Mariano and Preve (2012) by allowing

for non-stationarity in data (arising from e.g. model misspecification), a mixture

of nested and non-nested models, and by explicitly accounting for estimation

uncertainty in model parameters used in generating the forecasts. Whereas un-

conditional tests allow one to answer the question of whether a set of forecasting

methods performed equally well on average in the past, the conditional tests allow

one to investigate whether the set of forecasting methods performed equally well

conditional on some information set containing e.g. macroeconomic or financial

indicators. The latter reveals potential differences in predictive ability otherwise

hidden in the unconditional test - what seems to be zero on average, may not be
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so when conditioning on additional information.

By developing multivariate versions of the GW tests, we enable testing of equal

(un)conditional predictive ability among many forecast methods without having

to employ multiple testing adjustments, which would otherwise be appropriate

if one were to test the similar hypothesis via multiple pairwise tests using the

GW tests. Such adjustments can be quite suboptimal in terms of power (see

e.g. Romano, Shaikh, and Wolf (2010)), and Hubrich and West (2010) document

that one may draw wrong conclusions on the basis of pairwise comparisons of

the forecasting models. Since the proposed tests are natural extensions of GW,

they inherit the main properties of the GW tests regardless of whether we take a

conditional or unconditional perspective. First, they are applicable to multistep

point, interval, probability, or density forecast evaluation for a general loss func-

tion. Secondly, they enable comparison of both nested and non-nested models and,

thirdly, they incorporate non-vanishing estimation uncertainty of the parameters

used in formulating the forecasts. That is, the tests incorporate differences in

model complexities and estimation procedures, without explicitly requiring this

to be done through the loss function. By formulating the tests in this manner, not

only the model, but an additional number of choices made by the forecaster such

as estimation method and window are included in the evaluation, making them

tests for comparing forecast methods and not only forecasting models. Finally, the

tests allow for non-stationarity in the data, arising from e.g. misspecification of

the forecasting model and/or structural breaks in the data-generating process.

Our paper contributes to the large and active literature on forecast evaluation in

several ways. First, we provide the first multivariate test for equal conditional

predictive ability. Secondly, we facilitate easy testing of equal predictive ability

(both conditional and unconditional), since all tests proposed in this paper are

Wald statistics, hence have chi-squared limiting distributions in contrast to non-

standard, context-specific distributions often found in the literature on forecast

comparison tests (see e.g. Clark and McCracken (2001); McCracken (2007); Clark

and McCracken (2012), and Gonçalves, McCracken, and Perron (2017)) for which

the asymptotically valid critical values have to be obtained through burdensome
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simulation-based methods.1 Moreover, we show that the tests are generally in-

variant to any reordering of the forecasting methods under comparison, ensuring

that conclusions drawn from a single test is unaltered by any permutation of the

ordering of the forecasting methods such that no multiple testing adjustments

are required. Thirdly and in contrast to Hubrich and West (2010); Mariano and

Preve (2012); Clark and McCracken (2012), the proposed tests are applicable

to a mixture of nested and non-nested models, hold for a general loss function

and allow for non-stationarity in data. Finally, we allow for comparison of a

wider class of forecasting methods including linear, non-linear, Bayesian, and

non-parameteric methods as opposed to the methods proposed in e.g. Clark and

McCracken (2012); Granziera, Hubrich, and Moon (2014) and Gonçalves et al.

(2017), which only apply in the case of linear models.

To improve upon the finite sample properties of the tests, we propose two adjust-

ments. First, we introduce a threshold Wald statistic that employs a threshold

estimator of the covariance matrix. Secondly, we introduce a power-enhancement

component along the lines of Fan, Liao, and Yao (2015), potentially improving

upon power, but with negligible size distortion under the null hypothesis. We

examine the statistical properties of the tests in an elaborate Monte Carlo study,

which indicates that they are well-sized and have good power. Moreover, the

finite-sample adjustments succeed in improving both size and power noticeably.

Since rejection of the null hypothesis of equal conditional predictive ability sug-

gests that one or more of the forecasting methods possess superior predictive

ability, we develop a Model Confidence Set (Hansen, Lunde, and Nason, 2011)

inspired rule for ranking of the forecasting methods into “method confidence sets”,

each containing sets of forecasting methods with indistinguishable conditional

predictive ability. Via this rule, we can utilize that rejection of the null hypothesis

implies that we can predict relative performances of the forecasting methods,

leading to a decision rule for dynamic forecast selection.

In our empirical application, we consider forecasting the conditional variance

1Note, however, the recent paper by Hansen and Timmermann (2015), in which they show
asymptotic equivalence of some of these tests with one based on simple Wald statistics.
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of the S&P 500 Index’ returns. Using the proposed theory, we investigate what

drives (in)differences in forecasting performance over the 2009-2013 period be-

tween a large set of forecasting methods, including (G)ARCH, Realized GARCH

(Hansen, Huang, and Shek, 2012), and Heterogeneous Autoregressive (HAR)

specifications (Corsi, 2009). Examining the best set of forecasting methods, we

document a number of interesting findings. First, we find that HAR specifications

are preferred over the traditional (G)ARCH specifications, corroborating empiri-

cal findings in Andersen, Bollerslev, Diebold, and Labys (2003) and theoretical

findings in Andersen, Bollerslev, and Meddahi (2004) and Sizova (2011). The

inclusion of a realized measure of volatility in the GARCH dynamics as in the

Realized GARCH model of Hansen et al. (2012) improves substantially on the

performance of the GARCH framework, and makes it comparable to the best HAR

type models. Secondly, we identify structural breaks in the composition of the

best method confidence set. One of these events lines up with the Flash Crash

of May 6, 2010. Specifically, the HAR of Corsi (2009) is consistently included

during normal states of the markets in the period leading up to the Flash Crash,

but drops out completely after this day. Thirdly, even though the forecasting

methods of Patton and Sheppard (2015) are statistically indistinguishable based

on their average past performances (using the unconditional test), our analysis

indicates that the predictive gain relative to simpler models like HAR and HAR-J

stems from very different states. For instance, the HAR-RS-I, HAR-RS-II, and

HAR-SJ-I derive their gain almost exclusively during what we term as “leverage”

and “jump” states, whereas HAR-SJ-II somewhat surprisingly is mostly excluded

in leverage states, but performs especially well in normal market states. Finally,

we show that exploiting the ranking rule based on these state-dependencies of the

forecasting methods’ predictive ability in a novel conditional forecast combination

procedure leads to significant gains in predictive ability relative to individual

forecasting methods and competing forecast combination methods.

The remainder of the paper is organized as follows: Section II introduces multi-

variate statistical tests for equal conditional and unconditional predictive ability

for one-step and multistep forecast horizons including their asymptotic properties.

Section III provides finite-sample corrections for the statistical tests, whereas

Section IV reports size and power properties of the proposed tests in two Monte
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Carlo studies. In Section V, we introduce a Model Confidence Set-type decision

rule suitable for dynamic forecast selection, and provide an empirical analysis of

forecasting the conditional variance of the S&P 500 Index’ returns in Section VI.

Finally, Section VII concludes. All proofs are in the Appendix.

II. Multivariate tests for equal predictive ability

This section builds upon the work of Giacomini and White (2006), hence our usage

of notation will be similar. We consider an observed vector W t ≡ (Yt, X t)′ defined

on the probability space (Ω,F ,P), where Yt is the object of interest and X t is

a vector of predictors.2 The filtration Ft is defined as the σ-field generated by

past and current values of W t, Ft =σ(W1, . . . ,W t). We consider a setting where

k+1, k ≥ 1, methods are available for forecasting τ periods into the future. We

denote the time t forecast of Yt+τ by f̂ i
t,τ,mi = f i(W t,W t−1, . . . ,W t−mi+1; θ̂i

t,mi ) for

i = 1, . . . ,k+1, where f i is a measurable function. Subscript mi on f̂ indicates

that the forecast is generated using mi observations prior to time t. Moreover,

θ̂
i
t,mi denotes the parameter estimates (parametric, semi-parametric, or non-

parametric) used in constructing the forecast for the i’th forecasting method. Let

m = max {m1, . . . ,mk+1}. For ease of exposition and along the lines of Giacomini

and White (2006), we require that m <∞, thus ruling out an expanding window,

but allowing for e.g. a rolling window estimator, where the window is allowed

to change size over time as well. Consequently, let mt =max {m1
t , . . . ,mk+1

t }, such

that the first forecasts are formulated at time m1 and m =max {m1,m2, . . .}. The

requirement of finiteness of m also allows for a fixed estimation sample scheme,

where the model parameters are estimated once using the first m1 observations

and then used to generate all T forecasts. In any case, the number of out-of-

sample forecasts is T = N − (m1 +τ−1) with a total sample size of N (time series)

observations.

In order to assess the forecasting ability of each forecasting method, we introduce

the real-valued loss function L t+τ
(
Yt+τ, f̂ i

t,τ,mi

)
. Important examples of L include

economic measures such as utility or profits, or statistical measures such as the

2To keep the notation simple, we will focus on the case where Yt is a scalar. The theory
presented below applies in the general case as well.
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square or absolute value of the forecast errors, where forecast errors are given

by ei
t+τ = f̂ i

t,τ,mi −Yt+τ. For additional examples of loss functions, see e.g. Granger

and Machina (2006) for economic measures and West (2006) or Patton (2011)

for statistical measures. To ease on notation, we suppress in the following the

arguments of L t+τ
(
Yt+τ, f̂ i

t,τ,mi

)
and write the i’th loss function as Li

m,t+τ.

A. The hypothesis of equal conditional predictive ability

For a given loss function, we are interested in determining whether a set of k+1

forecasting methods perform equally well conditional on some σ-field, Gt. That is,

we want to test the hypothesis that

H0 : E[Li
m,t+τ|Gt]= E[Li+1

m,t+τ|Gt], i = 1, . . . ,k, (1)

or equivalently that

H0 : E[∆Lm,t+τ|Gt]= 0, (2)

where ∆Lm,t+τ = (∆L1
m,t+τ, . . . ,∆Lk

m,t+τ)
′ and ∆L j

m,t+τ = L j
m,t+τ − L j+1

m,t+τ for j =
1, . . . ,k. The null hypothesis implies that one cannot predict, conditional on

the information contained in Gt, whether one or more forecasting methods will be

more accurate for forecasting the object of interest τ periods into the future.

We make two remarks on the formulation of the null hypothesis. First, the

null hypothesis is expressed in terms of a conditional expectation, where the

choice of conditioning information is made by the researcher. If Gt is set to the

trivial σ-field, Gt = {;,Ω}, the null hypothesis is comparable to the one considered

in Mariano and Preve (2012). In this case, the hypothesis test provides infor-

mation about the average predictive ability of the forecasting methods in the

past - the idea of Diebold and Mariano (1995) and West (1996) among others. In

contrast, conditioning information enables the researcher to investigate whether

additional information can assist in predicting performance differences between

the forecasting methods. A leading example of conditioning information is Gt =Ft,

which enables the test to capture any persistence in forecasting ability arising

from e.g. misspecification of the forecasting models. Moreover, it is plausible
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that some forecasting methods’ predictive ability varies according to the state of

the economic environment, such that conditioning on macroeconomic or financial

indicators would be appropriate.

Secondly, the loss functions depend explicitly on the parameter estimates and

not on their probability limits, leading to a test statistic that takes into account

estimation uncertainty. Importantly, by allowing for asymptotically non-vanishing

estimation uncertainty, the test can accommodate the inclusion of nested models

in the set of forecasting methods - a feature that the (unconditional) multivariate

test in Mariano and Preve (2012) cannot handle.3

A.1. One-step multivariate conditional predictive ability test

In this section, we present the test statistic and its asymptotic properties. The

null hypothesis in (2) is equivalent to stating that

H0 : E[h̃t∆Lm,t+τ]= 0 (3)

for all Gt-measurable functions h̃t. We restrict attention to a subset of these func-

tions, which we gather in the q-dimensional vector ht = (h̃(1)
t , . . . , h̃(q)

t )′, referred to

as the test function. For some choice of test function, we construct a multivariate

test for equal conditional predictive ability by

H0,h : E[ht ⊗∆Lm,t+τ]= 0, (4)

where subscript h indicates the dependence on the test function. The specification

in (4) is a natural multivariate extension of the test in Giacomini and White

(2006), whose test is a special case obtained when k = 1.

We now consider the leading case with one-step ahead forecasting, τ = 1 and

Ft ⊆Gt. For that purpose, we let dm,t+τ = ht ⊗∆Lm,t+τ and impose three assump-

tions similar to those of Giacomini and White (2006).

3Technically, with Gt = {;,Ω} and asymptotically vanishing estimation uncertainty the stan-
dard errors of differences in forecast performance between a set of nested models will equal zero,
leading to non-standard limiting distributions of the test statistics.
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Assumption 1. {ht} and {W t} are φ−mixing with φ(t)=O
(
t−r/(2r−1)−ι) , r ≥ 1, or

α−mixing with α(t)=O
(
t−

r
r−1−ι

)
, r > 1, for some ι> 0.

Assumption 1 imposes relatively mild restrictions on the dependence structure

and heterogeneity of data. We do not impose the common (covariance) stationarity

assumption as used in for instance Diebold and Mariano (1995) and Mariano and

Preve (2012). Specifically, data may exhibit arbitrary structural changes, which is

a common feature found in many empirical studies within e.g. macroeconomic

prediction (see e.g. Stock and Watson (2003) and Schrimpf and Wang (2010)), stock

return prediction (see e.g. Fama and French (1997) and Paye and Timmermann

(2006)), and exchange rate prediction (see e.g. Giacomini and Rossi (2010)) to

name a few. We also document such a case in the empirical section below.

Assumption 2. E[|dm,t+1,i|2(r+δ)] <∞ for some δ > 0, i = 1, . . . , qk, and for all t,
where subscript i indicate the i’th element of dm,t+1.

Assumption 3. ΣT ≡ T−1 ∑T
t=1E[dm,t+1d′

m,t+1] is uniformly positive definite.

Assumptions 2-3 are mainly technical assumptions ensuring (uniformly) bounded

moments of data and positive definiteness of the asymptotic variance. Both of

these assumptions are common in the forecast evaluation literature. We then

consider the following Wald statistic

Sm,h = T d̄′
mΣ̂

−1
T d̄m, (5)

where d̄m ≡ T−1 ∑T
t=1 dm,t+1, and Σ̂T ≡ T−1 ∑T

t=1 dm,t+1d′
m,t+1 is a (qk×qk) sample

covariance matrix that consistently estimates the variance of dm,t+1. We note

that for large values of q and/or k, the dimension of ΣT and d̄m may become

large, potentially leading to issues with statistical inferences in finite samples.

We propose remedies in Section III, but for now we restrict our attention to

the properties of Sm,h in (5). The asymptotic properties of the test statistic is

summarized in Theorem 1.

Theorem 1 (One-step multivariate conditional predictive ability test). Suppose
Assumptions 1-3 hold. For forecast horizon τ = 1, test function sequence {ht},
m <∞ and under H0 in (2),

Sm,h
d−→ χ2(qk), as T →∞. (6)
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Therefore, by Theorem 1 a multivariate test for equal conditional predictive ability

can be conducted by rejecting the null hypothesis whenever Sm,h > z1−α,qk, where

z1−α,qk is the (1−α) quantile of the chi-squared distribution with qk degrees of

freedom.

Since any reordering of the forecasting methods alters the dynamics of dm,t+1, it

motivates the following result, which shows that for each permutation (reorder-

ing) of the forecasting methods, regardless of whether the null is true or not, we

get the same value of the test statistic and the same limiting distribution under

the null hypothesis.

Proposition 2 (Permutation invariance). Let L∗
t+1 be an arbitrary permutation

of the forecast losses, and define ∆L∗
m,t+1 = DL∗

t+1, where

D =


1 −1 0 . . . 0

0 1 −1 . . . ...
... . . . . . . . . . 0

0 . . . 0 1 −1

 (7)

is a k× (k+1) matrix. Let d̄∗
m = T−1 ∑T

t=1 d∗
m,t+1 with d∗

m,t+1 = ht ⊗∆L∗
m,t+1 and

Σ̂
∗
T ≡ 1

T
∑T

t=1 d∗
m,t+1d∗′

m,t+1. Then,

S∗
m,h ≡ T d̄∗′

m(Σ̂∗
T)−1d̄∗

m = Sm,h (8)

for all T.

Proposition 2 ensures that conclusions drawn from the hypothesis testing are

unaltered for any permutation of the ordering of the forecasting methods. This

allows the researcher to perform just a single test.

A.2. Alternative hypothesis

When formulating an alternative hypothesis, one must take into account the

fact that data may exhibit non-stationarity. For some c > 0, we formulate the

alternative in line with Giacomini and White (2006) as

HA,h : E[d̄′
m]E[d̄m]≥ c, (9)
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for all T sufficiently large. Under stationarity the null and alternative hypothesis

are exhaustive. Under non-stationarity this may not necessarily be the case. If an

important Gt-measurable variable is omitted in the test function, it may happen

that E[d̄′
m]E[d̄m] = 0 for a particular sample size due to for instance shifting

means without the null hypothesis being true - for example a situation where one

method outperforms (some of) the other methods in certain periods/states, while it

performs worse than the same methods in other periods/states. We consider this

situation in the simulation study of Section IV and document its relevance in the

empirical section below. Therefore, the test has little power against alternatives

where the loss differentials are correlated with Gt-measurable random variables

not included in the test function. While this concern is important, it also highlights

the flexibility of the test statistic. As mentioned above, the choice of test function

is made by the researcher to include relevant variables supposed to assist in

disentangling the forecasting abilities of the set of forecast methods. As a result,

the test changes depending on the choice of test function. The result in Theorem

3 summarizes the power properties of the test statistic under the alternative

hypothesis in (9).

Theorem 3. Suppose Assumptions 1-3 hold. For any c ∈ R+ and under HA,h in
(9),

P[Sm,h > c]→ 1, as T →∞. (10)

In particular, regardless of the critical value chosen for the test, the probability

of rejecting the null hypothesis when the alternative hypothesis is true tends to

unity for T →∞.

A.3. Multistep multivariate conditional predictive ability test

For a multistep forecast horizon, τ > 1, and Ft ⊆ Gt we note that the sequence

{ht ⊗∆Lm,t+τ} may be serially autocorrelated up to the order of τ−1, since the

null hypothesis in (4) implies that Cov[ht ⊗∆Lm,t+τ,ht− j ⊗∆Lm,t+τ− j]= 0 for all

j ≥ τ. That is, {ht ⊗∆Lm,t+τ} may be serially correlated in the forecasting window.

Consequently, we can no longer rely on the sample variance under the null for

estimating the covariance matrix as was the case in the one-step formulation.

Instead, we consider a HAC-type estimator (see e.g. Newey and West (1987) and
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Andrews (1991)) with a bandwidth choice guided by the implications of the null

hypothesis. The estimator is given by

Σ̃T = 1
T

[
T∑

t=1
dm,t+τd′

m,t+τ+
τ−1∑
j=1

κ( j,τ)
T∑

t=1+ j

(
dm,t+τd′

m,t+τ− j +dm,t+τ− jd′
m,t+τ

)]
,

(11)

where κ(·, ·) is a real-valued kernel weight function such that κ( j,τ)→ 1 as T →∞
for each j = 1, . . . ,τ−1 (see Andrews (1991)), and where we put weight only on

the relevant τ−1 lags of the sequence. The estimator in (11) is known as the

truncated HAC estimator. In the parsimonious choice of equal weighting, one

obtains the HAC estimator in Hansen (1982) with a rectangular kernel. For a

discussion and investigation of the choice of kernel, we refer the reader to West

(2008) and Clark and McCracken (2013).

For the conditional multistep hypothesis testing, we impose three assumptions

similar to Assumptions 1-3.

Assumption 1∗. {ht} and {W t} are φ−mixing with φ(t)=O
(
t−r/(2r−2)−ι) , r ≥ 2, or

α−mixing with α(t)=O
(
t−

r
r−2−ι

)
, r > 2, for some ι> 0.

Assumption 2∗. E[|dm,t+τ,i|r+δ] < ∞ for some δ > 0, i = 1, . . . , qk, and for all t,
where subscript i indicate the i’th element of dm,t+1.

Assumption 3∗. ΣT ≡ T−1 ∑T
t=1E[dm,t+τd′

m,t+τ]+T−1 ∑τ−1
j=1

∑T
t=1+ j

(
E[dm,t+τ

×d′
m,t+τ− j]+E[dm,t+τ− jd′

m,t+τ]
)

is uniformly positive definite.

Along the lines of the former section, we construct a Wald statistic for multistep

multivariate conditional equal predictive ability. The test statistic is given by

Sm,h,τ = T d̄′
mΣ̃

−1
T d̄m, (12)

where d̄m = T−1 ∑T
t=1 dm,t+τ. Analogue to Theorems 1-3 and Proposition 2, Sm,h,τ

is asymptotically chi-squared distributed with qk degrees of freedom under the

null hypothesis, has power under the alternative hypothesis in (9), and is permu-

tation invariant. We summarize these results in Theorem 4 below.

Theorem 4 (Multistep multivariate conditional predictive ability test). Suppose
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Assumptions 1*-3* hold.

(i) For forecast horizon τ> 1, test function sequence {ht}, m <∞ and under H0

in (2),

Sm,h,τ
d−→ χ2(qk), as T →∞. (13)

(ii) For any c ∈R+ and under HA,h in (9),

P[Sm,h,τ > c]→ 1, as T →∞. (14)

(iii) Let L∗
t+τ be an arbitrary permutation of the forecast losses, and define

∆L∗
m,t+τ = DL∗

t+τ, d̄∗
m = T−1 ∑T

t=1 d∗
m,t+τ with d∗

m,t+τ = ht ⊗∆L∗
m,t+τ and Σ̃∗

T

be the associated covariance estimator defined in equation (11). Then,

S∗
m,h,τ ≡ T d̄∗′

m(Σ̃∗
T)−1d̄∗

m = Sm,h,τ (15)

for all T.

Consequently, a multivariate test for equal conditional multistep ahead fore-

casting ability can be conducted by rejecting the null hypothesis whenever

Sm,h,τ > z1−α,qk.

A.4. Multivariate unconditional predictive ability test

In the unconditional test with Gt = {;,Ω} (hence, ht = 1 for all t) and τ≥ 1, the

sequence {∆Lm,t+τ} is not ’finitely correlated’. That is, the null does no longer

restrict the serial correlation to only the forecasting window, but {∆Lm,t+τ} may

exhibit serial correlation of any order - including infinite. Hence, we impose a

modified version of Assumption 3.

Assumption 3∗∗. ΣT ≡ T−1 ∑T
t=1E[dm,t+τd′

m,t+τ]+T−1 ∑T−1
j=1

∑T
t=1+ j

(
E[dm,t+τ

×d′
m,t+τ− j]+E[dm,t+τ− jd′

m,t+τ]
)

is uniformly positive definite.
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To accommodate this, we adopt a covariance estimator of the form

Σ̆T = 1
T

[ T∑
t=1
∆Lm,t+τ∆L′

m,t+τ

+
bT∑
j=1

κ( j,bT)
T∑

t=1+ j

(
∆Lm,t+τ∆L′

m,t+τ− j +∆Lm,t+τ− j∆L′
m,t+τ

)]
, (16)

where {bT } is an integer-valued truncation point sequence satisfying bT →∞ as

T →∞ and bT = o(T) (see e.g. Newey and West (1987)). Note that we require

bT →∞ for consistency in the the unconditional case as opposed to bT = τ−1 in

the conditional case described in the former section. For a review of data driven

bandwidth selection methods see Clark and McCracken (2013). Along the lines of

former sections, we construct the following Wald statistic which can be used in

testing for multistep unconditional equal predictive ability

Sunc
m,h,τ = T∆L

′
mΣ̆

−1
T ∆Lm, (17)

where ∆L
′
m = T−1 ∑T

t=1∆Lm,t+τ. This test statistic is related to the one of Mariano

and Preve (2012). However, as mentioned above, our test generalizes theirs

along several dimensions. In particular, we enable comparison of nested models,

allow for non-stationary data, and take explicitly into account the estimation

method involved in generating the forecast series for all models. Analogously to

Theorem 4, Sunc
m,h,τ is asymptotically chi-squared distributed with qk degrees of

freedom under the null, has power under the alternative hypothesis in (9), and is

permutation invariant. Theorem 5 summarizes these results.

Theorem 5 (Unconditional predictive ability test). Suppose Assumptions 1*-2*
and Assumption 3** hold.

(i) For forecast horizon τ≥ 1, Gt = {;,Ω}, m <∞ and under H0 in (2),

Sunc
m,h,τ

d−→ χ2(k), as T →∞. (18)

(ii) For any c ∈R+ and under HA,h in (9),

P[Sunc
m,h,τ > c]→ 1, as T →∞. (19)
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(iii) Let L∗
t+τ be an arbitrary permutation of the forecast losses, and define

∆L∗
m,t+τ = DL∗

t+τ, ∆L
∗
m = T−1 ∑T

t=1∆L∗
m,t+τ, and Σ̆∗

T be the associated co-
variance estimator via (16). Then,

Sunc∗
m,h,τ ≡ T∆L

∗′
m(Σ̆∗

T)−1∆L
∗
m = Sunc

m,h,τ (20)

for all T.

Consequently, a multivariate test for equal unconditional forecasting ability can

be conducted by rejecting the null hypothesis whenever Sunc
m,h,τ > z1−α,k. The

permutation invariance result in Theorem 5iii) is similar to Proposition 2 in

Mariano and Preve (2012), but holds under the milder Assumptions 1*-2* and

Assumption 3**, and hence also applies in a setting with non-stationary data,

inclusion of nested models and explicit account of estimation uncertainty.

III. Finite-sample corrections

The number of elements to be estimated in the covariance matrix is qk(qk+1)/2.

Consequently, the dimension of the covariance matrix may become large if the

objective is to test equal (un)conditional predictive ability of many methods, say,

in the lower two-digits, and/or if many elements are included in the test function.

Estimating a high-dimensional covariance matrix using the sample covariance

matrix, when the sample size is small relative to the number of elements to

be estimated, may negatively affect the size and power of the proposed tests.

In this section, we provide remedies that correct the original test statistic to

accommodate studies, where qk is large relative to the sample size. To fix ideas,

we consider the conditional case with τ= 1, but results are directly generalizable

to a multistep forecast horizon as well as the unconditional case.

A. A threshold Wald statistic

To improve upon the finite-sample properties of the test statistic in (5), we utilize

that we can consistently estimate ΣT via the thresholding approach of Bickel

and Levina (2008). Essentially, the thresholding estimator shrinks small off-

diagonal elements towards zero, thus reducing the impact of the noise intro-

duced by estimating elements that are (close to) zero. In particular, let pi j(·)
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be a generalized thresholding function (Rothman, Levina, and Zhu, 2009) with

threshold value λi j = C(σiiσ j j log(qk)/T)1/2, for some constant C > 0, and where

σi j = T−1 ∑T
t=1 dm,t+1,idm,t+1, j for i, j = 1, . . . , qk. By choosing C sufficient large

one can ensure that the estimated covariance matrix will be positive definite (see

e.g. Fan, Liao, and Mincheva (2013)). The threshold covariance estimator Σ̂thr is

then defined by

Σ̂
thr
i j =

σii, if i = j,

pi j(σi j), if i 6= j.
(21)

The thresholding function must satisfy for all x ∈R the following three conditions

(i) pi j(x)= 0 for |x| ≤λi j (thresholding),

(ii) |pi j(x)| ≤ |x| (shrinkage), and

(iii) |pi j(x)− x| ≤λi j (limited shrinkage).

Examples of such functions are soft thresholding, pi j(x)= sgn(x)max {0, |x|−λi j},

hard thresholding, pi j(x)= x1{|x| ≥λi j}, (Donoho and Johnstone, 1994), the adap-

tive Lasso, and the smoothly clipped absolute deviation (SCAD), which is a

compromise between soft and hard thresholding (Fan and Li, 2001) defined by

pi j(x)=


sgn(x)max {0, |x|−λi j}, if |x| ≤ 2λi j,

((b−1)x−sgn(x)bλi j)/(b−2), if 2λi j < |x| ≤ bλi j,

x, if |x| > bλi j,

(22)

for some b > 2. See Rothman et al. (2009) for a review of the thresholding func-

tions’ finite-sample properties. The threshold value depends on the choice of C,

which is to be made by the researcher. One way to do so is to follow the recom-

mendations put forward in Rothman et al. (2009). Alternatively, the parameter

can be chosen in a data-driven manner via cross-validation as in Fan et al. (2013).

Since the number of forecasting methods and the dimension of the test func-

tion are fixed, we obtain that the asymptotic properties of the test statistic with

the sample covariance matrix replaced by the threshold estimator are identical to

those of Sm,h under the null and alternative hypothesis. We henceforth refer to
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this as the threshold Wald (TW) statistic and summarize its asymptotic properties

in the following result.

Proposition 6 (Threshold Wald statistic). Suppose Assumptions 1-3 hold.

(i) For forecast horizon τ= 1, test function sequence {ht}, m <∞ and under H0

in (2),

S(1)
m,h ≡ T d̄′

m(Σ̂thr
T )−1d̄m

d−→ χ2(qk), as T →∞, (23)

where Σ̂thr
T is a threshold estimator of the type in (21).

(ii) For any c ∈R+ and under HA,h in (9),

P[S(1)
m,h > c]→ 1, as T →∞. (24)

Consequently, a multivariate test for equal conditional predictive ability across

many methods can be conducted by simply replacing the empirical sample covari-

ance with the threshold estimator, and by rejecting the null hypothesis whenever

S(1)
m,h > z1−α,qk. The following result shows that permutation of the forecasting

methods will not alter the test statistic nor limiting distribution asymptotically.

Corollary 7 (Asymptotic permutation invariance). Let d̄∗
m be given as in Propo-

sition 2, Σ̂thr* be the associated threshold covariance matrix estimator, and

S(1)∗
m,h ≡ T d̄∗′

m(Σ̂thr*)−1d̄∗
m. (25)

Then, S(1)∗
m,h −S(1)

m,h
P−→ 0, as T →∞.

We thus conclude that the TW statistic can be used in the same manner as the

standard test statistic in (5), ensuring that a single test will suffice for testing

multivariate equal (un)conditional predictive ability across a set of forecasting

methods. However, we stress that the finite-sample appropriateness of Corollary

7 depends on the finite-sample behavior of the chosen covariance estimator. The

thresholding estimator proposed above is just one of many possible choices, and

that other choices might be preferable under certain structural assumptions on

the covariance matrix.
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B. Power enhancement of the threshold Wald statistic

Tests based on the (threshold) Wald statistic may suffer from low power when the

number of methods and/or elements of the test function are large relative to the

sample size. This is especially true under sparse alternatives, where the number

of elements that violates the null hypothesis is small relative to the dimension

of d̄m. To alleviate this potential issue, we introduce a power enhancement

component, S(0)
m,h, along the lines of Fan et al. (2015). This component boosts

power in specific regions of the alternative hypothesis (e.g. in sparse alternatives),

where power may be low. Consequently, we construct a power-enhanced test

statistic as

S(2)
m,h = S(1)

m,h +S(0)
m,h. (26)

We assume that the power enhancement component satisfies the following proper-

ties

Assumption 4 (Power enhancement properties). Invisible text

(i) S(0)
m,h ≥ 0 almost surely,

(ii) P[S(0)
m,h = 0|H0]→ 1, and

(iii) S(0)
m,h diverges in probability for specific regions of the alternative hypothesis.

Assumption 4i requires non-negativity of the power enhancement component,

thus insuring that power never is adversely affected by the introduction of this

component. 4iii ensures that power is enhanced in certain regions of the alterna-

tive hypothesis. Assumption 4ii ensures that size is not affected (asymptotically)

by inclusion of the power enhancement component. Note that S(0)
m,h is not a test

statistic on its own due to Assumption 4ii, which ensures that the asymptotic

distribution of S(2)
m,h under the null hypothesis is determined by that of S(1)

m,h
- it simply provides additional power (with little size distortion) by adding a

non-negative component to the original test statistic in specific regions of the

alternative hypothesis. We set the power enhancement component to a screening

statistic (see e.g. Fan et al. (2015)), which satisfies Assumption 4,

S(0)
m,h =

√
qk

qk∑
i=1

d̄2
m,i

σii/T
1{|d̄m,i| >

√
σii/TΛqk,T }, (27)
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where d̄m,i denotes the i’th element, i = 1, . . . , qk, of d̄m, and Λqk,T is a threshold

that plays an important role in determining the size of the screening set, which

is set to Λqk,T = log {log(T)}
√

log(qk). Consequently, the power enhancement

component strengthens the signal of d̄m by enhancing the (sufficiently) large

non-zero elements. By Assumption 4ii and Proposition 6 it follows that S(0)
m,h

inherits the asymptotic properties of the TW statistic in (23). The results are

summarized in Proposition 8.

Proposition 8 (Power enhanced threshold Wald statistic). Suppose Assumptions
1-3 hold.

(i) For forecast horizon τ= 1, test function sequence {ht}, m <∞ and under H0

in (2),

S(2)
m,h

d−→ χ2(qk), as T →∞. (28)

(ii) For any c ∈R+ and under HA,h in (9),

P[S(2)
m,h > c]→ 1, as T →∞. (29)

Consequently, a multivariate test for equal conditional predictive ability with

potentially improved finite-sample properties can be conducted in the usual way

by rejecting the null hypothesis whenever S(2)
m,h > z1−α,qk.

IV. Simulation study

To examine the finite sample properties of the test statistics, we perform a Monte

Carlo study. The study covers both the conditional and unconditional case. We

also study the impact of the finite-sample corrections put forward in Section III. In

general, we document two important findings. First, the proposed test statistics

have good size and power properties. Secondly, one is allowed to use a relatively

large number of conditioning variables, for instance macroeconomic and financial

indicators, while maintaining good finite-sample properties of the tests.
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A. Simulation design

We consider the case where the data-generating process of the vector loss differ-

ential series {∆Lt+1} is given by

∆Lt+1 =µ+εt+1, (30)

with εt+1 being random vectors drawn from a multivariate, k-dimensional, normal

distribution, εt+1 ∼ Nk(0,Γk). Here, Γk denotes the k×k contemporaneous covari-

ance matrix with equi-off-diagonal entry generated from U(0,1/2) along the lines

of Fan et al. (2015). Moreover, we introduce a regime-shift in the data-generating

process by setting the diagonal in Γk equal to 1.25 in the first half of the sample

and equal to 0.75 in the second half of the sample, thereby introducing a struc-

tural break in the loss series, which divides the data into a high-variance and

low-variance regime typically observed in empirical studies (see e.g. So, Lam, and

Li (1998)). Consequently, the loss differential series has on average approximately

unit variances comparable to the simulation study in Mariano and Preve (2012),

and we allow for contemporaneous correlation in the loss differential series. In

the size and power experiments we set µ = 0 and µ 6= 0, respectively. When

implementing the threshold estimator of ΣT we employ the soft thresholding

function with a value of C = 2/3 consistent with the recommendations in Fan et al.

(2013) to minimize the number of non-positive definite covariance matrices. To

facilitate comparison, we set the truncation lag of the HAC estimator to zero as

in Giacomini and White (2006). In all experiments, we examine three sample

sizes, T = {250,500,1000}. Given a reasonable initialization period (estimation

window), the sample size T = 250 is, for instance, comparable to a case with a long

time series of quarterly macroeconomic data, whereas T = 500 and T = 1000 are

comparable to, for instance, a case with a shorter time series of monthly, weekly

or daily data of stock returns. We do 10,000 Monte Carlo replications and set the

nominal size to 10%.

B. Size properties

We first examine the size properties of the original test statistic and the TW

statistic. For the former case, we let k ∈ {1,2,3,4}. This is comparable to the

setting considered in Mariano and Preve (2012). In the latter case, we extend the
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maximum number of methods to 10. For the conditional tests, we set ht = (1,∆Lt)′

corresponding to the case of testing whether past predictive performance can

inform about future performance. In the many-methods case, we report results

using the TW statistic without inclusion of the power enhancement component.4

This simulation design thus resembles situations often encountered in empiri-

cal exercises, and simultaneously constitutes a challenging setup by including

contemporaneous correlation, regime-switching variance and many instruments.

Table 1 reports the results for the uncorrected test statistic.

¿ Insert Table 1 about here À

We observe that the unconditional and conditional tests are generally well-sized,

though the conditional test become moderately oversized, when, not surprisingly,

the number of dimension (qk) increases. For large qk, the modified test statistic

thus become relevant. Table 2 reports results obtained using the TW statistic for

the conditional test.

¿ Insert Table 2 about here À

We observe that the proposed thresholding approach improves noticeable upon

the size distortion that occurs when the total number of methods and dimension

of the test function increase. For the conditional test statistic, empirical sizes are

good for all sample sizes and for all number of methods, occasionally showing only

a slight undersizing. Hence, by employing the TW statistic the test can be applied

even with a rather large number of forecasting methods (and/or instruments)

under examination while maintaining good size.

C. Power properties

Next, we turn to studying the power properties of the test statistic with or without

the finite-sample corrections with the same range of methods, respectively. We let

µ j =
0.25, if j = 1,

0, otherwise,
(31)

4When including the power enhancement component, results in Table 3 reveal a moderate
size distortion mainly for k = 2, which decreases in sample size and dimension (qk). Since the
power-enhancement component will typically only be included in cases where k is not small, we
consider this potential issue a minor concern.
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which resembles a situation where the alternative hypothesis is true due to

lower predictive ability of the first method relative to the remaining methods. In

particular, the first method is 25% worse than the remaining methods in line with

the simulation study in Mariano and Preve (2012). Table 4 reports the results for

the uncorrected test statistic.

¿ Insert Table 4 about here À
The unconditional test statistic has good power properties for all sample sizes and

number of forecasting methods. The conditional test have good power properties

for T = 500,1000, and reasonable power in the low sample size case with moderate

values of qk. As expected, power decreases with the number of methods in the

T = 250 case, motivating the use of the finite-sample corrections for larger qk.

Using the same structure of µ as in (31), we report results of the TW statistic

without the power enhancement component in Table 5 and including the power

enhancement component in Table 6.

¿ Insert Table 5 and 6 about here À
The power enhancement provides a noticeable increase in power in the conditional

case, leading to good power properties of the conditional test statistic. In general,

power increases in sample size and decreases in the number of methods and

elements of the test function.

C.1. Different predictive ability driven by state variables

To put the multivariate conditional test statistic into an economic perspective, we

consider a situation where one method is more accurate in a given state of the

economy, and less accurate in another state relative to the remaining methods in

the method set, but unconditionally the methods are equally accurate. Following

Giacomini and White (2006), we define a state variable Vt with P[Vt = 1] = ρ

and P[Vt = 0] = 1−ρ. For T = 500 we generate 10,000 loss difference sequences

according to

∆Lt+1 =µ Vt −ρ
ρ(1−ρ)

+εt+1, (32)

where the first element of µ is set equal to r and zero otherwise, and the error

terms are generated according to the procedure explained in the former section,
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incorporating contemporaneous correlation and regime-switching variance. It

is clear that E[∆Lt+1] = 0 and E[∆L1
t+1|Vt = 1] = r/ρ in contrast to E[∆L1

t+1|Vt =
0]=−r/(1−ρ). We consider a range of r ∈ [0,0.3] with ρ = 0.5. In the conditional

test, we set ht = (1,Vt)′. We report results for the TW statistic, but for ease of

exposition restrict ourselves to considering the case of k = 4 and k = 9 and plot

the power curves in two figures. The curves are depicted in Figure 1.

¿ Insert Figure 1 about here À

It is clear that the conditional test quickly achieves power to detect different

performance in different states and that the unconditional test is, as expected,

close to the nominal size of 10%.

V. A rule for ranking and selection of forecasting methods

Rejection of the null hypothesis suggests that one or more of the forecasting meth-

ods possess better predictive ability, however, it provides no guidance towards

which method(s) that causes the rejection. The identification of these method(s)

might be of practical interest. In this section, we provide an algorithm that

ranks forecasting methods into sets with equal conditional predictive ability. This

procedure can be utilized dynamically to select forecast methods that is expected

(conditional on Gt) to yield the lowest loss at time T +τ and conditional combina-

tion techniques within, for instance, the best set may be of practical relevance.5

In formulating the algorithm, we utilise a MCS-type procedure (Hansen et al.,

2011) to eliminate methods according to some elimination rule and rank forecast-

ing methods into K ≤ k+1 sets, henceforth referenced as “method confidence

sets”, whose elements have equal conditional predictive ability. Let M0 be the

set of the k+1 forecasting methods under consideration and M∗ a preliminary

set of best forecasting methods (in terms of some loss function). We propose the

following three-step procedure:

• Step 0: Set M = M0. Regress ∆L j
m,t+1 on ht over some rolling window for

j = 1, . . . ,k. The conditional expectation, E[∆L j
m,t+τ|GT], is approximated by

5See e.g. Aiolfi and Timmermann (2006), who exploit forecasting combination within “clusters”
of models to improve forecasting ability.
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the predicted value from the j’th regression. Based on β̂ j′hT rank all k+1

methods, where β̂ j is the vector of regression coefficients. The forecasting

method with lowest predicted loss is ranked first, and similarly the method

with highest fitted value is ranked at last.

• Step 1: Run the multivariate test for equal conditional predictive ability.

• Step 2: If the test is not rejected, set M∗ = M. Otherwise, eliminate the

lowest ranked forecasting method from M and iterate Steps 1-2 until the

null is not rejected.

Repeating the steps once leads to a set M1 containing the best forecasting methods

statistically indistinguishable in terms of conditional predictive ability. Repeating

the procedure until no additional method confidence set can be found finalizes

the algorithm. Consequently, the method confidence sets are ordered from those

yielding least expected loss to those yielding the highest expected loss, M1, . . . , MK .

Effectively, this is a multivariate extension of the decision rule proposed in

Giacomini and White (2006). Besides leading to the same ranking across different

forecasting methods, it is also clear that (asymptotic) permutation invariance is

important for conducting the algorithm, because in each iteration with rejection

of the test we eliminate a method, leading to a reordering of the methods. Due to

the permutation invariance, this reordering has no impact on whether we reject

or not in the following iteration.

VI. Forecasting conditional variance of stock returns

To illustrate the workings of the multivariate test and the ranking rule proposed

in former sections, we focus our empirical investigation on forecasting (one day

ahead) the daily open-to-close conditional variance of the S&P 500 Index’ re-

turns. To this end, we suppose that the efficient (log) price process is an Itô

semimartingale of the form

pt = p0 +
∫ t

0
bsds+

∫ t

0
σsdWs + Jt, (33)

where {bt}t≥0 is a locally bounded and predictable drift process, {σt}t≥0 is a cádlág

process, {Wt}t≥0 is a Brownian motion, and {Jt}t≥0 is a jump process. The quadratic
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variation of this process over one day is

QVt =
∫ t

t−1
σ2

s ds+ ∑
t<s≤t

(∆ps)2 . (34)

Due to its latent nature, we turn to the realized variance, which is a natural

estimator of quadratic variation (Andersen, Bollerslev, Diebold, and Labys, 2001),

and hence a good proxy for the conditional variance (Patton, 2011). For a specific

business day t, the realized variance is given by the sum of squared intraday

returns, r t, j = pt, j − pt, j−1,

RVt =
n∑

j=1
r2

t, j, t = 1, . . . , N, (35)

where 1/n is the sampling frequency. As n increases, this estimator converges (in

probability) to the quadratic variation of the price process. In practice, however,

we only observe a noisy version of the efficient price due to the presence of market

microstructure effects such as bid-ask bounce and rounding. In order to avoid

problems introduced by the presence of this noise, we sample the price every

5 minutes (Hansen and Lunde, 2006; Liu, Patton, and Sheppard, 2015), thus

leaving us with 78 returns for each full trading day.

A. Data

The data set consists of 5-minute observations of the liquid SPY exchange traded

fund that tracks the S&P 500 Index, which is used in several other studies on

variance measurement, modeling, and forecasting. We collect data for the period

February 2001 to December 2013 and restrict attention to the official trading

hours 9:30:00 and 16:00:00 local New York time. We remove days with shortened

trading sessions. In total, we obtain data for 3,232 business days. Figure 2 depicts

the evolution of daily returns and relevant realized measures used in constructing

the models considered in this section, but restricts attention to the ranking sample

defined below (approximately last five years of the original sample).6 They all

show the expected patterns with noticeable moves during periods of market stress

in 2010 and 2011.
6For a complete overview of the high-frequency based measures used in this section please see

Appendix C.
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¿ Insert Figure 2 about here À

B. Set of forecasting methods and unconditional results

We consider a set of forecasting methods summarized in Table 7. The set consists

of two families of models used in the variance forecasting literature, namely

the (G)ARCH framework and the more recent Heterogeneous Autoregressive

(HAR) framework initiated by Corsi (2009), as well as a hybrid specification in

the form of the Realized GARCH (RGACRH) by Hansen et al. (2012). Details

and specifications of the models and their estimation can be found in Appendix

C.7 Consequently, we examine a mixture of old and recent, simple and complex,

nested and non-nested models, with or without estimation uncertainty arising

from different estimation methods. Up until now, a general joint examination

of the (state dependent) differences in the performance of such methods that

accounts for parameter uncertainty and non-stationarity in data has not been

possible without resorting to multiple testing procedures. We estimate the models

using a rolling window of m = 1000 business days consistent with most empirical

studies, hence use the first 1,022 observations for estimation, leading to 2,210

forecasts.

¿ Insert Table 7 about here À

We note that the distributional and permutation invariance results proposed in

the former sections hold for a general loss function, however since the conditional

variance is unobserved, the losses have to be calculated using a proxy. As shown

in Patton (2011), this limits the set of loss functions that can be used to compare

the models’ forecasting ability to the class of so-called robust loss functions. One

such robust loss function is the Quasi Likelihood (QLIKE) loss function, which is

the one we will adopt in this paper. The QLIKE loss function is given by

Li(RVt+1, R̂V
i
t+1)= RVt+1

R̂V
i
t+1

− log

(
RVt+1

R̂V
i
t+1

)
−1, i = 1, . . . ,k+1, (36)

7The set of models considered in the present paper has been chosen based on the fact that
they require different estimation methods and represent different levels of complexity - a feature
which our theory is able to accommodate. Thus, the focus has not necessarily been on finding the
best possible specification of each of the given models, but rather to illustrate the flexibility of our
approach. Moreover, to facilitate comparison between the (G)ARCH and HAR frameworks, daily
returns are computed via open-to-close prices.
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where RVt+1 is the realized volatility, which is our proxy for the conditional vari-

ance, and R̂V t+1 is the forecast generated by the i’th forecasting method. We

make this choice of loss function as opposed to the Squared Prediction Error,

which is also contained in the class of robust loss functions of Patton (2011), since

the former leads to more power when comparing losses across different regimes,

which arguably is relevant in our data set. We apply an “insanity filter” like

e.g. Bollerslev, Patton, and Quaedvlieg (2016) and Patton and Sheppard (2015)

and replace negative forecasts with the forecasts generated by the Random Walk,

which only happens six times in the entire sample, hence playing no role on

results besides enabling evaluation of the QLIKE loss function.

The rightmost column in Table 7 reports the average QLIKE loss for each forecast-

ing method over the ranking sample. On average, the HAR forecasting methods

appear to perform better than the traditional (G)ARCH specifications, confirming

the findings in e.g. Andersen et al. (2003).8 The inclusion of a realized measure

of volatility as in the realized GARCH model of Hansen et al. (2012) appears to

improve substantially on the performance of the GARCH framework, making it

comparable to the best HAR type models. Due to the large differences in forecast-

ing performance it is not surprising that an unconditional test on the entire set

leads to a strong rejection of the null hypothesis of equal predictive ability. This

also applies if we take out the AR(1) and ARCH(1) that perform particularly bad

on this sample, indicating the relevance of capturing the long-memory feature

of the variance process. Furthermore, it appears that the models proposed by

Patton and Sheppard (2015) perform almost equally well, which is supported by

no rejection (p-value of 0.3893) of an unconditional test of equal predictive ability

among these four forecasting methods. Likewise, an unconditional test of equal

predictive ability between the RGARCH and HARQ do not reject with a p-value of

0.9880. In the following we investigate what drives some of these (in)differences

in performances among the forecasting methods by means of the ranking rule in

Section V and multivariate conditional tests of predictive ability.

8Andersen et al. (2004) and Sizova (2011) provide theoretical justifications for this result
by showing that model misspecification and estimation errors of the realized measure used as
proxy for conditional variance may cause model-based forecasts (such as the ones from G(ARCH)
specifications) to be inferior relative to reduced-form forecasts (such as the ones from HAR
specifications).
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C. Conditional results

To investigate the conditional predictive ability of the individual forecasting

methods we perform Step 0 of the ranking rule on a rolling basis with 1,000

observations and use a significance level of 10% in the implementation of Step 1.

This leaves a total of 1,210 days for examination below, henceforth referenced as

the “ranking sample”.

We introduce two classes of state variables. First, we construct a bivariate

state variable indicating whether daily returns were negative at time t, i.e.

R t =1{r t < 0} for t = 1, . . . , N, where r t denotes daily returns computed via open-

close prices to avoid any overnight and weekend effects. We will refer to this as

the “leverage state variable” for obvious reasons. Secondly, we construct a set

of state variables indicating whether a negative jump, no jump or positive jump

occurred at day t. Let Ĵt denote the jump test statistic in Barndorff-Nielsen and

Shephard (2006)9, which enables testing for jumps in intraday returns at time

t and obeys Ĵt
d−→ N(0,1) under the null hypothesis of no jumps. We refer to the

paper for additional details. Then, we define

J (1)
t = 1{SJt>0}1{Ĵt > z1−α}, (37)

J (2)
t = 1{SJt<0}1{Ĵt > z1−α}, (38)

where SJt = RS+−RS− is the signed jump variation, measuring the variation

in intraday returns attributable to jumps of either positive or negative sign and

RS+ = ∑n
t, j r2

t, j1{r t, j > 0} and RS− = ∑n
t, j r2

t, j1{r t, j < 0} are the positive and neg-

ative realized semi-variances (Barndorff-Nielsen, Kinnebrouk, and Shephard,

2010). The (1−α) quantile of the standard normal distribution is denoted by z1−α.

We will refer to these variables as the “jump state variables” and use a significance

level of 1% for determination of the presence of a jump as in Barndorff-Nielsen

and Shephard (2006). By construction, the jump state variables are equal to zero

if there is no jump at day t. If there is one or more jumps during day t, then J (1)
t

(J (2)
t ) will equal unity if the positive (negative) jumps contribute the most to the

9The test statistic is given by Ĵt =
p

n RVt−BPVtp
(π2/4+π−5)TQt

, where BPVt = π
2

∑n
j=2 |r t, j||r t, j−1| and

TQt = n
(

Γ(1/2)
22/3Γ(7/6)

)3 ∑n
j=3 |r t, j|4/3|r t, j−1|4/3|r t, j−2|4/3.
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daily price movements. The leverage state variable is just moderately correlated

with the jump state variables (-23% with J (1)
t and 19% with J (2)

t ), suggesting

they represent distinct market states.

We examine three cases separately. First, we set ht = (1,R t)′ to investigate

in isolation the impact of a negative return on the previous day. Secondly, we set

ht = (1,Jt)′, with Jt = (J (1)
t ,J (2)

t ) to isolate the impact of a jump on the previous

day and, finally, we set ht = (1,R t,Jt)′ to examine the impact of jumps and the

leverage effect in conjunction. Figure 3 depicts M1 (the best method confidence

set) over calendar time decomposed into leverage states and non-leverage states.10

¿ Insert Figure 3 about here À

A few things stand out. Firstly, there is a remarkable persistence in which models

are included in the set M1 during both states. Secondly, the figure confirms that

HAR specifications outperform the traditional (G)ARCH specifications both in

normal and leverage states. Even though the GJR specification is build to capture

leverage effects, it is not included in the best set during leverage states. Instead,

the first three leverage models of Patton and Sheppard (2015) are preferred until

early 2012, at which point the HARQ and RGARCH models take over during the

leverage state. Interestingly, RGARCH is included only in the no-leverage state

during the time until the beginning of 2012. By the third quarter of 2012 the

HARQ specification appears to take over the role as the most commonly included

model in M1 during no-leverage states.

The vertical lines in the figure mark two events in the U.S. stock market that

appear to have a large influence on the forecasting performance of the models

under consideration. On May 6, 2010, the Flash Crash occurred with the S&P

500 Index collapsing and rebounding rapidly resulting in turmoil in the following

months. January 3, 2012, was the first trading day of 2012 and marked the

beginning of a period of lower volatility. The periods following these events are

thus characterized by very different volatility regimes as documented in Figure 2

10We use here and for the remainder of the empirical section (unless otherwise stated) the
power-enhanced TW statistic with soft thresholding and C = 2/3. We have also experimented with
different orderings of the forecasting methods, but results are unaltered, which is in line with the
(asymptotic) permutation invariance property.
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above. Interestingly, during normal states, HAR and occasionally HAR-RS-II are

included in the best set up until the Flash Crash, but drop out after this event.

After the markets have calmed again, the HARQ, HAR-RS-I, HAR-RS-II, and

HAR-SJ-I specifications appear to make a comeback for the first few months of

2012. Such structural breaks in (relative) conditional predictive ability of the

forecast methods highlight the importance of having a test that is valid even if

the data is non-stationary.11 These findings are robust to different estimation

windows, m, and inclusion of a HAR model estimated using a short window of

250 days, suggesting that the identified structural breaks are not attributable to

rigidity in parameters of the HAR model, but rather a regime shift in volatility.

Interestingly, we observe that the RGARCH model mainly is preferred in the

normal states, whereas the leverage models HAR-RS-I, HAR-RS-II, HAR-SJ-I as

well as the HARQ model for the second half of the sample are preferred in the

leverage states. This indicates that the superior performance on average in Table

7 of the RGARCH and HARQ models originates from distinctively different states.

Lastly, despite the fact that the four models of Patton and Sheppard (2015)

perform equally well on average, our analysis reveals that the (relative) perfor-

mance of these models differ in important ways. In particular, inclusion of the

HAR-SJ-II specification mainly occurs during normal states, whereas the remain-

ing three models primarily are included during the leverage state. Interestingly,

this suggests that average unconditional superiority (relative to simpler models)

of HAR-SJ-II in Table 7 is driven by performance in normal states, whereas the

gains in the remaining three models of Patton and Sheppard (2015) are derived

from leverage states. In Table 8, we report a summary of M1 conditional of

the relevant states and whether M1 for each time period contains only a single

forecasting method.

¿ Insert Table 8 about here À

The table confirms the overall ranking of the forecasting methods from Table 7

in the first column, and confirms that the forecasting gain of HARQ, HAR-RS-

11The presence of the regime shifts is robust to a different choice of rolling window used in
Step 0 equal to 500 observations, indicating that it is not caused by observations from the 2008
market turmoil dropping out of the rolling window.
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I, HAR-RS-II, and HAR-SJ-I relative to the simpler methods is derived from

leverage states, whereas the HAR-SJ-II and RGARCH perform particularly well

during normal states. In fact, whenever M1 is a singleton (29% of the sample), it

is most often either HARQ or RGARCH.

Figure 4 depicts a corresponding plot when we condition only on the jump vari-

ables, and Table 9 provides a summary of the resulting M1.

¿ Insert Figure 4 about here À

¿ Insert Table 9 about here À

Interestingly, and in contrast to the clear differences across states in the lever-

age case, it appears that the same models to a large degree are chosen almost

independently of the jump states and sign. That is, jumps appear to have little

effect in general on the relative forecasting ability among the forecasting methods.

They do, however, play a noticeable role in the 2010-2011 period, which has been

characterized by a large degree of market turmoil and, according to Figure 2,

several large jumps. From the Flash Crash in May 2010 and until the end of 2011,

the HAR-RS-I and HAR-RS-II are generally excluded from the best set in jump

states. Instead, this period is dominated by specifications explicitly accounting for

jumps, i.e. the HAR-J, HAR-SJ-I and HAR-SJ-II, as well as the RGARCH model.

Furthermore, as it was the case in the leverage scenario considered previously,

the baseline HAR model is only included during the initial part of the sample.

Despite the fact that the RGARCH model is included in M1 74% of the time, it

is never chosen when M1 is a singleton. Instead, we find that in the case where

M1 is a singleton (10% of the sample), it consists of either HARQ or HAR-SJ-II.

The fact that the HARQ model is the most likely one to be chosen in this case is

interesting because the model not directly accounts for the jumps, although as

argued in Bollerslev et al. (2016) the jumps are indirectly accounted for through

the inclusion of realized quarticity.

Table 10 reports results from the joint case with the test function containing

both the leverage and jump state variables.

¿ Insert Table 10 about here À
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The table generally confirms the findings from the separate cases above, however,

we derive an additional conclusion. In the negative jump days the Random Walk

is included in the best set around 38-39% of the times independently of being

in a leverage or no leverage state. That is, forecasting the conditional variance

following days with negative jumps and beating a Random Walk in predictive

ability appears to be particularly challenging. Furthermore, the RGARCH model

remains the most commonly included model in M1, and it is picked in 74.3% of

the cases where M1 is a singleton.

D. Dynamic forecast combination

It stands out from the former section that the forecasting methods’ predictive

ability is time-varying in two ways. First, two structural breaks appear to occur

during the sample period. Secondly, the forecasting methods’ predictive ability

relative to each other depend on the state of the market as characterized by jump

and/or leverage states. Based on these state-dependencies, about one-fifth of the

days we were able to identify a single superior model, mainly chosen among the

RGARCH of Hansen et al. (2012), HARQ of Bollerslev et al. (2016), and HAR-

SJ-II of Patton and Sheppard (2015). For the remaining days, the best two or

more forecasting methods provide statistically indistinguishable predictive ability,

comprising a best method confidence set, M1, at each day (whose composition

varies over time). This suggests a potentially beneficial conditional, dynamic

forecast combination procedure for each day as the following:

• If M1 = {i} (singleton), select the i’th forecasting method,

• otherwise, perform forecast combination within M1.

This section thus evaluates the performance of such conditional forecast combina-

tion procedure, which exploits predictability of forecast losses identified by the

test statistic developed in this paper. A related approach is put forward in Aiolfi

and Timmermann (2006), who conduct forecast combination within ’clusters’ of

forecasting models with most predictable forecast errors based on lagged forecast

errors. Among a very large set of models supposed to forecast quarterly macroe-

conomic data, they find gains relative to choosing the previous best forecasting

model at each time point. Recently, Wang, Ma, Wei, and Wu (2016) forecast

realized variance of the S&P 500 Index’ returns using a set of HAR specifications
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comparable to the set examined in this paper. In an attempt to exploit (unob-

served) time-varying predictive ability of the models, they implement a Dynamic

Model Averaging combination. Despite its higher degree of sophistication, it leads

to limited gains relative to individual forecasts generated by the models in Patton

and Sheppard (2015).

To capture potential persistence in the forecast losses, we include lagged loss

differentials as a state variable in the test function, hence set ht = (1,R t,Jt,∆Lt)′.
For each time period, we compute combination weights using a window of mw

past days via the following expression

ŵ = K−1ι′K + 1
1+ g

(
ŵLS −K−1ι′K

)
, (39)

where K denotes the number of elements in M1 and ιK is a K-dimensional vector

of ones. The combination weights in (39) are the conventional g-prior shrinkage

weights (see e.g. Zellner (1986)). Here, ŵLS denotes the estimated time-varying

least squares (LS) weights (Bates and Granger, 1969; Granger and Ramanathan,

1984; Diebold and Pauly, 1987) using the restrictions that the weights are non-

negative (to ensure non-negative forecasts) and contain no intercept in the regres-

sion specification.12 Effectively, g controls the shrinkage towards equal weights

away from the LS estimator and, thus, controls impact of estimation error. This

weight estimation is motivated by the simulation study in Elliott and Timmer-

mann (2005), which reveals that a rolling window least squares estimator may be

preferable when combination weights are subject to a structural break, whereas a

simple equal-weighted average may be preferable in cases with frequent regime

shifts. Both instances may be present qua the findings in the former section,

motivating a weighting scheme that enables the presence of both.

A direct competitor for the conditional forecast combination (FC) procedure is a

naive forecast combination, which utilizes information in all forecasting methods

at each time point by combining within the entire M0. By pre-selection at each

12Imposing the additional restrictions that the weights are (weakly) less than unity and sum to
one corresponds to the mean square optimal weights in Bates and Granger (1969). However, they
may lead to inferior results according to e.g. Granger and Ramanathan (1984); Holmen (1987),
hence we proceed without this restriction.
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time point a relevant set of forecasting methods (the best method confidence set,

M1), the conditional forecast combination trades off information from methods

for less estimation error in combination weights, potentially leading to superior

performance. We examine both cases in the following.

We consider g = 0.33,1,3 corresponding to a case with approximately 75%, 50%,

25% weight put on the LS weights, respectively. We choose a medium length

of the rolling window equal to two years, mw = 375, to ensure a fair basis of

comparison between the conditional and naive methods, though conclusions are

qualitatively unaltered if a shorter window of 250 days (one year) or a longer

window of 750 days (three years) is used. To make the relative gains stand out

more clearly, we normalize the QLIKE loss measures of the relevant forecast

combination procedures by the QLIKE loss of each individual model such that a

number below unity indicates superiority of the forecast combination procedure

relative to the individual models. Table 11 reports the results.

¿ Insert Table 11 about here À
The conditional forecast combination procedure systematically improves upon

the individual forecasting methods’ performances for all values of g. Specifically,

it provides a gain relative to the HAR model of approximately 17-18%, about

10-13% relative to the leverage models of Patton and Sheppard (2015) and about

4-5 % to the RGARCH and HARQ of Hansen et al. (2012) and Bollerslev et al.

(2016), respectively. We consider this finding an interesting and promising result

for the ranking algorithm proposed above, considering that i) the RGARCH

and HARQ models are chosen almost one-fourth of the times whenever M1 is

a singleton, and ii) the forecast errors of the methods in M1 whenever it is

not a singleton arises from similar models leading to highly correlated forecast

errors and, hence, a limit on the gain of forecast combination. Despite this, an

unconditional test of equal predictive ability between the HARQ specification and

the conditional forecast combination procedure (for each value of g) rejects on

conventional levels with p-values of 0.0060, 0.0029, and 0.0295 for g = 0.33,1,3,

respectively, documenting a statistically significant gain in terms of predictive

ability of the proposed procedure. Relative to the naive combination, the benefit

of narrowing down M0 to a relevant set of forecasting methods at each time

point is clear. Estimation error seems to dominate the performance of the naive
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combination strategy, leading to inferior results in general relative to most HAR

models and a significant 18% relative to the conditional forecast combination

procedure proposed here.

VII. Conclusion

Our new statistical tests for equal conditional predictive ability among a set

of two or more forecasting methods may be seen as a multivariate generaliza-

tion of the Giacomini-White tests (Giacomini and White, 2006), and in a special

case provide an extension of the multivariate Diebold-Mariano test statistic in

Mariano and Preve (2012) for equal unconditional predictive ability. They apply

in a setting that allows for a mixture of nested and non-nested models as well

as non-stationarity in data, and explicitly accounts for estimation uncertainty

in parameters used to make predictions. All our tests hold for a general loss

function, have chi-squared limiting distributions, and are generally invariant to

any reordering of the forecasting methods, thus facilitating easy implementation.

Simulations suggest that our tests have good finite-sample size and power. To

potentially improve upon statistical properties of the test statistics in the case

with many methods and/or instruments, we introduce two finite-sample adjust-

ments. First, we developed test statistics employing a threshold estimator of the

covariance matrix, and secondly, we introduced a power enhancement component

along the lines of Fan et al. (2015). The simulation study confirms that the finite-

sample corrections succeed in improving both size and power.

A new Model Confidence Set (Hansen et al., 2011) inspired rule allows for ranking

the forecasting methods into sets containing forecasting methods of indistinguish-

able conditional predictive ability. In an empirical application to forecasting the

conditional variance of the S&P 500 Index’ returns, we provide evidence of what

drives (in)differences in forecasting performance between a diversified set of fore-

casting methods including (G)ARCH, Realized GARCH, and HAR specifications.

The results show, among other things, that exploiting the ranking rule in a novel

conditional forecast selection procedure leads to significant gains in predictive

ability relative to individual forecasting methods and competing forecast combi-
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nation methods. Finally, our empirical work shows that there is room for further

improvement in the forecasting of return variance following days with negative

jumps.
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A. Figures

Figure 1: Power curves for the conditional and unconditional test

(a) Five methods (k = 4) (b) Ten methods (k = 9)

Figure a) and b) depict the power curves for the unconditional and conditional
test statistic with T = 500 observations and five or ten forecasting methods,
respectively, and data generating process according to (32). The solid horizontal
line marks the significance level of 10%.
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Figure 2: Evolution of realized measures
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This figure depicts the evolution of relevant realized measures
and daily returns of the S&P 500 Index over the ranking sam-
ple period (approximately 2009-2014). See Appendix C for a
definition of the variables. Realized measures are annualized
and shown in percentages, whereas daily returns are shown in
percentages.
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Figure 3: Diagnostics of M1 when ht = (1,R t)′
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6 May 2010 3 January 2012

No leverage (Rt = 0)

This figure depicts the inclusions in M1 (best method confidence set) of each
forecasting method from Table 7 conditional on being in a leverage (upper
figure) or non-leverage state (lower figure). A circle represents inclusion
in M1. The vertical dashed lines mark two important events for the U.S.
stock market. The figure is generated by means of the ranking rule in
Section V with rolling estimation windows of 1,000 days for generating the
forecasts and ranking the forecasting methods. We implement Step 1 using
the power-enhanced TW statistic with soft thresholding and C = 2/3 and a
significance level of 10%.
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Figure 4: Diagnostics of M1 when ht = (1,Jt)′
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This figure depicts the inclusions in M1 (best method confidence set) of each
forecasting method from Table 7 conditional on being in a positive jump
(upper figure), no jump (middle figure) or negative jump state (lower figure).
A circle represents inclusion in M1. The figure is generated by means of
the ranking rule in Section V with rolling estimation windows of 1,000
days for generating the forecasts and ranking the forecasting methods.
We implement Step 1 using the power-enhanced TW statistic with soft
thresholding and C = 2/3 and a significance level of 10%.
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B. Tables

Table 1: Empirical size with no finite-sample corrections
This table reports the rejection frequencies (empirical sizes) of the multivariate test
for equal predictive density with a nominal size of 10%, data generating process given
by (30) with µ = 0 and 10,000 Monte Carlo replications. Panel A reports results for
the unconditional case, whereas Panel B reports results for the conditional case with
ht = (1,∆Lt)′.

Panel A: Unconditional test
No. of methods T = 250 T = 500 T = 1000

2 0.102 0.103 0.099
3 0.112 0.103 0.096
4 0.116 0.093 0.093
5 0.121 0.092 0.112

Panel B: Conditional test
No. of methods T = 250 T = 500 T = 1000

2 0.102 0.099 0.102
3 0.107 0.102 0.107
4 0.132 0.122 0.111
5 0.173 0.116 0.113
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Table 2: Empirical size with threshold Wald statistic
This table reports the rejection frequencies (empirical sizes) of the multivariate test
for equal conditional predictive ability using the TW statistic in (23) with a nominal
size of 10%, data generating process given by (30) with µ= 0 and 10,000 Monte Carlo
replications. The table reports results for the conditional case with ht = (1,∆Lt)′.

Conditional test
No. of methods T = 250 T = 500 T = 1000

2 0.103 0.102 0.101
3 0.096 0.103 0.103
4 0.093 0.089 0.099
5 0.093 0.088 0.086
6 0.088 0.087 0.083
7 0.082 0.083 0.085
8 0.086 0.080 0.088
9 0.088 0.088 0.083

10 0.122 0.094 0.088
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Table 3: Empirical size with TW statistic and power enhancement
This table reports the rejection frequencies (empirical sizes) of the multivariate test for
equal conditional predictive ability using the TW statistic including the power enhance-
ment component (S(2)

m,h in (26)) with a nominal size of 10%, data generating process given
by (30) with µ= 0 and 10,000 Monte Carlo replications. The table reports results for the
conditional case with ht = (1,∆Lt)′.

Panel B: Conditional test
No. of methods T = 250 T = 500 T = 1000

2 0.294 0.240 0.204
3 0.159 0.127 0.109
4 0.138 0.108 0.096
5 0.121 0.105 0.094
6 0.114 0.096 0.084
7 0.102 0.095 0.089
8 0.108 0.086 0.082
9 0.117 0.090 0.090

10 0.130 0.099 0.097
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Table 4: Empirical power with no finite-sample corrections
This table reports the rejection frequencies (empirical powers) of the multivariate test for
equal predictive ability with a nominal size of 10%, data generating process given by (30)
with µ determined via (31) and 10,000 Monte Carlo replications. Panel A reports results
for the unconditional case, whereas Panel B reports results for the conditional case with
ht = (1,∆Lt)′.

Panel A: Unconditional test
No. of methods T = 250 T = 500 T = 1000

2 0.986 1.000 1.000
3 0.984 1.000 1.000
4 0.978 1.000 1.000
5 0.975 1.000 1.000

Panel B: Conditional test
No. of methods T = 250 T = 500 T = 1000

2 0.974 0.999 1.000
3 0.938 0.998 1.000
4 0.886 0.997 1.000
5 0.880 0.996 1.000
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Table 5: Empirical power with threshold Wald statistic
This table reports the rejection frequencies (empirical powers) of the multivariate test for
equal conditional predictive ability using the TW statistic in (23) with a nominal size of
10%, data generating process given by (30) with µ determined via (31) and 10,000 Monte
Carlo replications. The table reports results for the conditional case with ht = (1,∆Lt)′.

Conditional test
No. of methods T = 250 T = 500 T = 1000

2 0.972 1.000 1.000
3 0.930 1.000 1.000
4 0.870 0.996 1.000
5 0.784 0.982 1.000
6 0.713 0.970 1.000
7 0.624 0.948 1.000
8 0.576 0.918 1.000
9 0.527 0.887 1.000

10 0.525 0.847 1.000
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Table 6: Empirical power with TW statistic and power enhancement
This table reports the rejection frequencies (empirical powers) of the multivariate test for
equal conditional predictive ability using the TW statistic including the power enhance-
ment component (S(2)

m,h in (26)) with a nominal size of 10%, data generating process given
by (30) with µ determined via (31) and 10,000 Monte Carlo replications. The table reports
results for the conditional case with ht = (1,∆Lt)′.

Panel B: Conditional test
No. of methods T = 250 T = 500 T = 1000

2 0.995 1.000 1.000
3 0.967 1.000 1.000
4 0.937 0.999 1.000
5 0.901 0.996 1.000
6 0.855 0.994 1.000
7 0.821 0.988 1.000
8 0.797 0.986 1.000
9 0.768 0.983 1.000

10 0.752 0.978 1.000
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Table 7: Set of forecasting models
This table summarizes the set of forecasting methods considered with details given
in Appendix C. The third column shows the estimation procedure associated with each
forecasting method, where “OLS” refers to Ordinary Least Squares and “ML” to Maximum
Likelihood. The rightmost column reports the average QLIKE loss measure over the
ranking sample.

Model name Reference
Estim.

method
QLIKE

RW N/A N/A 0.1925
AR(1) N/A OLS 0.2775
ARCH(1) Engle (1982) ML 0.4739
GARCH(1,1) Bollerslev (1986) ML 0.1998
GJR(1,1,1) Glosten, Jagannathan, and Runkle (1993) ML 0.1969
RGARCH(1,1) Hansen et al. (2012) ML 0.1522
HAR Corsi (2009) OLS 0.1755
HAR-J Andersen, Bollerslev, and Diebold (2007) OLS 0.1756
HARQ Bollerslev et al. (2016) OLS 0.1518
HAR-RS-I Patton and Sheppard (2015) OLS 0.1665
HAR-RS-II Patton and Sheppard (2015) OLS 0.1652
HAR-SJ-I Patton and Sheppard (2015) OLS 0.1684
HAR-SJ-II Patton and Sheppard (2015) OLS 0.1621
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Table 8: Inclusion frequencies of M1 with ht = (1,R t)′
This table reports the inclusion frequencies (numbers are in percentages) of the forecasting
methods under consideration in the ranking sample (last 1,210 observations in the
sample). The second column provides frequencies over the entire ranking sample, whereas
the third and fourth columns conditions on being in a leverage and non-leverage state,
respectively. The rightmost column provides the inclusion frequency given the best
method confidence set, M1, is a singleton, i.e. contains a single element. We use the
power-enhanced TW statistic from Section III with soft thresholding and C = 2/3.

Method F F|R = 1 F|R = 0 F|M1 = {i}

RW 0.00 0.00 0.00 0.00
AR(1) 0.00 0.00 0.00 0.00
ARCH(1) 0.00 0.00 0.00 0.00
GARCH(1,1) 0.00 0.00 0.00 0.00
GJR(1,1,1) 0.00 0.00 0.00 0.00
RGARCH(1,1) 58.86 36.14 72.63 40.63
HAR 13.55 4.40 20.52 0.57
HAR-J 18.51 3.44 29.99 0.00
HARQ 39.92 61.38 23.58 44.03
HAR-RS-I 28.10 60.61 3.35 0.00
HAR-RS-II 30.00 60.61 6.70 0.00
HAR-SJ-I 33.47 69.79 5.82 0.00
HAR-SJ-II 38.60 12.24 58.66 14.77

Pct of sample 100.00 45.84 54.16 29.09
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Table 9: Inclusion frequencies of M1 with ht = (1,Jt)′
This table reports the inclusion frequencies (numbers are in percentages) of the forecasting
methods under consideration in the ranking sample (last 1,210 observations in the
sample). The second column provides frequencies over the entire ranking sample, whereas
the third, fourth and fifth columns conditions on being in a positive, no and negative
jump state, respectively. The rightmost column provides the inclusion frequency given
the best method confidence set, M1, is a singleton, i.e. contains a single element. We use
the power-enhanced TW statistic from Section III with soft thresholding and C = 2/3.

Method F F|J (1) = 1 F|J = 0 F|J (2) = 1 F|M1 = {i}

RW 3.88 5.94 3.71 3.49 0.00
AR(1) 1.24 0.00 1.37 1.16 0.00
ARCH(1) 0.00 0.00 0.00 0.00 0.00
GARCH(1,1) 1.24 0.00 1.37 1.16 0.00
GJR(1,1,1) 1.24 0.00 1.37 1.16 0.00
RGARCH(1,1) 74.38 74.26 74.19 76.74 0.00
HAR 28.93 23.76 29.72 25.58 0.00
HAR-J 40.50 38.61 40.96 37.21 0.00
HARQ 50.17 50.50 50.44 46.51 69.67
HAR-RS-I 39.34 28.71 40.76 34.88 0.00
HAR-RS-II 43.55 32.67 44.97 39.53 0.00
HAR-SJ-I 51.82 44.55 52.69 50.00 0.00
HAR-SJ-II 67.19 57.43 68.52 62.79 30.33

Pct of sample 100.00 7.96 85.07 6.97 10.08
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Table 10: Inclusion frequencies of M1 with ht = (1,R t,Jt)′
This table reports the inclusion frequencies (numbers are in percentages) of the forecasting
methods under consideration in the ranking sample (last 1,210 observations in the
sample). The notation is similar to Tables 8-9. We use the power-enhanced TW statistic
from Section III with soft thresholding and C = 2/3.

Panel A: R = 0

Method F F|J (1) = 1 F|J = 0 F|J (2) = 1

RW 9.50 5.26 7.73 39.13
AR(1) 5.62 4.21 4.92 17.39
ARCH(1) 0.00 0.00 0.00 0.00
GARCH(1,1) 5.62 4.21 4.92 17.39
GJR(1,1,1) 5.79 4.21 4.92 17.39
RGARCH(1,1) 70.99 20.00 98.24 100.00
HAR 29.67 24.21 39.19 17.39
HAR-J 29.34 43.16 39.19 17.39
HARQ 47.85 4.21 47.80 65.22
HAR-RS-I 40.91 65.26 18.45 17.39
HAR-RS-II 42.73 72.63 19.68 17.39
HAR-SJ-I 39.26 4.21 20.39 17.39
HAR-SJ-II 34.46 51.58 44.99 17.39

Pct of sample 100.00 7.85 47.02 1.90

Panel B: R = 1

Method F|M1 = {i} F|J (1) = 1 F|J = 0 F|J (2) = 1

RW 0.00 33.33 6.83 38.10
AR(1) 0.00 33.33 5.07 11.11
ARCH(1) 0.00 0.00 0.00 0.00
GARCH(1,1) 0.00 33.33 5.07 11.11
GJR(1,1,1) 0.00 33.33 5.51 11.11
RGARCH(1,1) 74.32 33.33 47.14 66.67
HAR 0.00 66.67 19.60 25.40
HAR-J 0.00 83.33 16.52 11.11
HARQ 2.70 33.33 49.56 96.83
HAR-RS-I 0.00 100.00 65.20 34.92
HAR-RS-II 0.00 100.00 67.84 28.57
HAR-SJ-I 6.76 33.33 71.81 36.51
HAR-SJ-II 16.22 33.33 21.59 12.70

Pct of sample 18.35 0.50 37.52 5.21
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Table 11: Forecast selection/combination evaluation
This table reports the QLIKE loss measures of the conditional forecast combination
or naive forecast combination procedures divided by the QLIKE loss measures of each
individual forecasting method under consideration. The last row provides the QLIKE loss
measures of the proposed procedures over the raking sample. We consider three values
of the shrinkage parameter/g-prior of Zellner (1986) equal to g = 0.33,1,3 and a rolling
window of 375 observations for estimation of the combination weights.

Method Cond. FC
(g = 0.33)

Naive FC
(g = 0.33)

Cond. FC
(g = 1)

Naive FC
(g = 1)

Cond. FC
(g = 3)

Naive FC
(g = 3)

RW 0.7536 0.8993 0.7544 0.9002 0.7637 0.9091
AR(1) 0.5226 0.6237 0.5232 0.6242 0.5296 0.6304
ARCH(1) 0.3061 0.3653 0.3064 0.3656 0.3102 0.3693
GARCH(1,1) 0.7260 0.8664 0.7267 0.8672 0.7357 0.8758
GJR(1,1,1) 0.7367 0.8791 0.7374 0.8799 0.7465 0.8886
RGARCH(1,1) 0.9529 1.1371 0.9538 1.1381 0.9655 1.1494
HAR 0.8264 0.9862 0.8273 0.9871 0.8374 0.9969
HAR-J 0.8259 0.9856 0.8267 0.9865 0.8369 0.9962
HARQ 0.9558 1.1405 0.9567 1.1416 0.9685 1.1529
HAR-RS-I 0.8713 1.0397 0.8721 1.0406 0.8828 1.0510
HAR-RS-II 0.8779 1.0476 0.8788 1.0486 0.8896 1.0590
HAR-SJ-I 0.8614 1.0279 0.8622 1.0288 0.8728 1.0390
HAR-SJ-II 0.8951 1.0682 0.8960 1.0691 0.9070 1.0797

QLIKE 0.1451 0.1731 0.1452 0.1733 0.1470 0.1750
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C. Set of forecasting models

This section very briefly introduces each element of the set of forecasting methods

under consideration in Section VI. First, the forecast of the Random Walk (RW) is

trivially the previous period’s realization of the realized variance, whereas the

autoregressive model of order one, AR(1), is defined by

RVt+1 =β0 +βdRVt +εt+1, (C.1)

which can be consistently estimated by Ordinary Least Squares (OLS).

The (G)ARCH framework of Engle (1982) and Bollerslev (1986) directly models

the daily conditional variance, σ2
t . In this paper, we consider a first-order autore-

gressive daily return specification (mean equation) as suggested in e.g. Andersen

et al. (2003), r t+1 =ϕ0+ϕ1r t+ηt+1, where ηt+1 =σt+1ut+1 and ut+1 ∼ N(0,1) i.i.d.,

leading to the ARCH(1) specification

σ2
t+1 =ω+αη2

t , (C.2)

and the GARCH(1,1) specification

σ2
t+1 =ω+αη2

t +βσ2
t . (C.3)

To capture the well-known property of leverage effect in financial markets, Glosten

et al. (1993) considers the following extension of the GARCH(1,1) model, which is

known as a GJR(1,1,1) model:

σ2
t+1 =ω+αη2

t +βσ2
t +γη2

t1{ηt < 0}, (C.4)

where the third argument in GJR(1,1,1) refers to the number of interaction com-

ponents. Under the distributional assumption on ut+1, the ARCH(1), GARCH(1,1)

and GJR(1,1,1) models can be estimated consistently by Maximum Likelihood.

To relate realized measures such as the realized variance to the conditional

variance while maintaining the features of the GARCH specifications, Hansen
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et al. (2012) propose the Realized GARCH(1,1) (RGARCH). The model is given by

r t+1 =ϕ0 +σt+1ut+1 (C.5)

log(σ2
t+1)=ω+β log(σ2

t )+γ log(RVt) (C.6)

log(RVt+1)= ξ+φ log(σ2
t+1)+δ(ut+1)+ zt, (C.7)

where zt ∼ N(0,σ2
z), ut and zt independent, and the asymmetric leverage function

is given by δ(ut+1)= δ1ut+1+δ2(u2
t+1−1). Note that we use the specification where

the (vector) of realized measures is constituted only by the realized variance, but

acknowledge that the RGARCH framework can be readily extended to include

information from additional realized measures. The model is estimated by Maxi-

mum Likelihood and one-step forecasts of the conditional variance are obtained

directly from the GARCH equation in (C.6).

Recently, the Heterogeneous Autoregressive realized variance model (HAR) by

Corsi (2009) has emerged as a popular specification due to its simplicity and

ability to mimic the long-memory property of conditional variance. It is given by

RVt+1 =β0 +βdRVt +βwRVw,t +βmRVm,t +εt+1, (C.8)

where RVw,t and RVm,t are the average realized variance from day t−4 to t and

from day t−21 to t, respectively. The model can be consistently estimated by

OLS. This is also true for the remaining models considered in this section. In the

HAR-J modification, Andersen et al. (2007) add a jump component such that

RVt+1 =β0 +βdRVt +β j Jt +βwRVw,t +βmRVm,t +εt+1, (C.9)

where the jump component is defined by Jt = max(RVt −BPVt,0) with BPVt =
u−2 ∑n

j=2 |r t, j−1||r t, j| and u =p
(2/π).

Exploiting the asymptotic theory for realized variance estimation, Bollerslev

et al. (2016) introduce the Q-family of HAR models by introducing time-varying

parameters that vary with the degree of estimation error in the realized variance
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measure. Specifically, we include the standard HARQ specification given by

RVt+1 =β0 + (βd +βQRQt)RVt +βwRVw,t +βmRVm,t +εt+1, (C.10)

where RQt = n/3
∑n

j=1 r4
t, j is the realized quarticity at time t.13

To capture the leverage effect, Patton and Sheppard (2015) introduce signed

realized measures in the HAR specification. The first model, HAR-RS-I, decom-

poses daily realized variance into two semi-variances, leading to the specification

RVt+1 =β0 +β+
dRS+

t +β−
dRS−

t +βwRVw,t +βmRVm,t +εt+1, (C.11)

where RS+
t = ∑n

j=1 r2
t, j1{r t, j > 0} and, correspondingly, RS−

t = ∑n
j=1 r2

t, j1{r t, j < 0}.

The second model, HAR-RS-II, adds an interaction term supposed to capture the

leverage effect arising from the previous day’s return via

RVt+1 =β0 +β+
dRS+

t +β−
dRS−

t +βlRVt1{r t < 0}+βwRVw,t +βmRVm,t +εt+1.

(C.12)

The third model, HAR-SJ-I, instead introduces signed jump variation along with

bi-power variation. The model is given by

RVt+1 =β0 +β jSJt +βbBPVt +βwRVw,t +βmRVm,t +εt+1, (C.13)

where SJt = RS+
t −RS−

t . The last model, HAR-SJ-II, decomposes signed jump

variation into positive and negative jumps via

RVt+1 =β0 +β+
j SJ+

t +β−
j SJ−

t +βbBPVt +βwRVw,t +βmRVm,t +εt+1, (C.14)

where SJ+
t = SJt1{SJt > 0} and, correspondingly, SJ−

t = SJt1{SJt < 0}.

13Given the assumption on the efficient (log) price in (33), it may be more appropriate to
use the (jump robust) tri-power quarticity of Barndorff-Nielsen and Shephard (2006) given by

TQt = n
(

Γ(1/2)
22/3∗Γ(7/6)

)3 ∑n
j=3 |r t, j|4/3|r t, j−1|4/3|r t, j−2|4/3. However, it leads to similar results for the

HARQ specification and to remain close to the primary specification in Bollerslev et al. (2016), we
proceed with the use of RQt.

59



D. Proofs

Proof of Theorem 1. Let dm,t+1 = ht ⊗∆Lm,t+1 and write

dm,t+1d′
m,t+1 = g(ht,Wt+1, . . . ,Wt−m) (D.1)

for some measurable function g. Since m <∞, and {ht} and {W t} are mixing of

the same size according to Assumption 1, it follows from Theorem 3.49 in White

(2001) that {dm,t+1d′
m,t+1} is mixing of the same size as {ht} and {W t}.

By Assumption 2 there exists C̄ ∈R+ and δ> 0 such that E[|dm,t+1,i|2(r+δ)]< C̄ <∞
for i = 1, . . . , qk and for all t, where subscript i indicates the i’th element in dm,t+1.

Hence, by the Cauchy-Schwartz inequality, we obtain

E[|dm,t+1,idm,t+1, j|r+δ]≤ E[|d2
m,t+1,i|r+δ]1/2E[|d2

m,t+1, j|r+δ]1/2 < C̄ (D.2)

for i, j = 1, . . . , qk and for all t. By Corollary 3.48 in White (2001), it then follows

that Σ̂T −ΣT
P−→ 0. Furthermore, by Assumption 2 it follows that ΣT is finite and

by Assumption 3 it is uniformly positive definite.

Next, let λ ∈Rqk with λ′λ= 1 and consider

λ′Σ−1/2
T

p
T d̄m,t+1 = T−1/2

T−1∑
t=1

λ′Σ−1/2
T dm,t+1. (D.3)

Let λ̃i denote the i’th element of the product λ′Σ−1/2
T , such that λ′Σ−1/2

T dm,t+1 =∑qk
i=1 λ̃idm,t+1,i. Hence, under the null hypothesis

E[λ′Σ−1/2
T dm,t+1|Gt]= E

[
qk∑
i=1
λ̃idm,t+1,i|Gt

]
=

qk∑
i=1
λ̃iE[dm,t+1,i|Gt]= 0, (D.4)
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by measurability of λ̃i, such that the sequence {λ′Σ−1/2
T dm,t+1,Gt} is a MDS. The

asymptotic variance is

σ2
d =Var[λ′Σ−1/2

T

p
T d̄m]

=λ′Σ−1/2
T Var[

p
T d̄m]Σ−1/2

T λ

=λ′Σ−1/2
T ΣTΣ

−1/2
T λ

= 1 (D.5)

for sufficiently large T. Furthermore, since Σ̂T −ΣT
P−→ 0 it follows by the Continu-

ous Mapping Theorem that

1
T

T∑
t=1
λ′Σ−1/2

T d′
m,t+1dm,t+1Σ

−1/2
T λ−σ2

d

=λ′Σ−1/2
T Σ̂TΣ

−1/2
T λ−λ′Σ−1/2

T ΣTΣ
−1/2
T λ

P−→ 0. (D.6)

Lastly, we need to check that λ′Σ−1/2
T dm,t+1 has absolute 2+ δ moment. By

Minkowski’s inequality and Assumption 2 we obtain

E[|λ′Σ−1/2
T dm,t+1|2+δ]= E

[∣∣∣ qk∑
i=1
λ̃idm,t+1,i

∣∣∣2+δ]

≤
(

qk∑
i=1
λ̃iE

[
|dm,t+1,i|2+δ

]1/(2+δ)
)2+δ

<∞. (D.7)

Consequently, we can apply the CLT for MDS and deduce that λ′Σ−1/2
T

p
T d̄m

d−→
N(0,1). By the Cramér-Wold device it then follows that

Σ−1/2pT d̄m
d−→ N(0, I qk). (D.8)

Since Σ̂T −ΣT
P−→ 0, we deduce that

p
T(Σ̂−1/2

T d̄m)′
p

TΣ−1/2
T d̄m = T d̄′

mΣ̂
−1
T d̄m

d−→ χ2
qk, (D.9)

as T →∞.
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Proof of Proposition 2. Let L∗
m,t+1 be an arbitrary permutation of the forecast

losses, i.e. L∗
m,t+1 = PLm,t+1, where P is a (k+1)× (k+1) permutation matrix and

Lm,t+1 = (L1
m,t+1, . . . ,Lk+1

m,t+1)′. Define the k× (k+1) matrix D by

D =


1 −1 0 . . . 0

0 1 −1 . . . ...
... . . . . . . . . . 0

0 . . . 0 1 −1


such that ∆L∗

m,t+1 = DL∗
m,t+1 = DPLm,t+1. In total, the number of permutations

of the forecast losses at each point of time t is (k+1)!. Mariano and Preve (2012)

show that there always exists a nonsingular matrix B of dimension k× k such

that B∆Lm,t+1 =∆L∗
m,t+1. Consequently, define the qk× qk matrix A = (I q ⊗B),

where I q is the q× q identity matrix. By standard properties of the Kronecker

product A is nonsingular, and we have that

d∗
m,t+1 = ht ⊗∆L∗

m,t+1 = (I qht)⊗ (B∆Lm,t+1)= (I q ⊗B)(ht ⊗∆Lm,t+1)= Adm,t+1.

(D.10)

Since the null hypothesis implies that the asymptotic variance can be estimated

consistently by the sample variance, it follows that

Σ̂
∗
T ≡ 1

T

T∑
t=1

d∗
m,t+1d∗′

m,t+1 =
1
T

T∑
t=1

Adm,t+1d′
m,t+1A′ = AΣ̂T A′.

Due to the nonsingularity of A and Σ̂T , it follows that

d̄∗′
m,t+1(Σ̂∗

T)−1d̄∗
m,t+1 = d′

m,t+1A′(AΣ̂T A′)−1Adm,t+1

= d′
m,t+1Σ̂

−1
T dm,t+1,

which shows that the test is invariant to a permutation of the ordering of the

forecast losses.

Proof of Theorem 3. By the same arguments as in the proof for Theorem 1,

it follows that the sequence {dm,t+1} is mixing of the same size as {W t} and {ht}.
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Furthermore, Assumption 2 ensures that each element of dm,t+1 is bounded

uniformly in t, such that

d̄m −E[d̄m] P−→ 0 (D.11)

by Corollary 3.48 in White (2001). Under the alternative hypothesis there exists

η> 0 such that E[d̄′
m]E[d̄m]> 2η for T sufficiently large. It follows that

P[d̄′
md̄m > η]≥P[d̄′

md̄m −E[d̄′
m]E[d̄m]>−η]

≥P[|d̄′
md̄m −E[d̄′

m]E[d̄m]| < η]→ 1, (D.12)

where the convergence to unity is due to (D.11). By identical arguments as the

proof of Theorem 1, d′
m,t+1dm,t+1 is mixing with the same size as {W t} and each

element is uniformly bounded in t. Corollary 3.48 in White (2001) can then be

applied, and it follows that Σ̂T is a consistent estimator of ΣT . By Assumption 3,

ΣT is uniformly positive definite. Let c ∈R+. It then follows from Theorem 8.13 in

White (1994) that

P[Sm,h > c]→ 1, as T →∞. (D.13)

Proof of Theorem 4. i) We proceed by a similar procedure as in the proof of

Theorem 1, however with modifications due to the dependency in dm,t+τ under

the null hypothesis. First, by Assumptions 2* and 3*, ΣT is finite and uni-

formly positive definite. Let λ ∈ Rqk with λ′λ= 1 and consider λ′Σ−1/2
T

p
T d̄m =

T−1/2 ∑T
t=1λ

′Σ−1/2
T dm,t+τ. Since the null hypothesis imposes E[dm,t+τ|Gt]= 0, iden-

tical arguments as in Theorem 1 imply that {λ′Σ−1/2
T dm,t+τ} being mixing of

the same size as {ht} and {W t}. Moreover, the asymptotic variance satisfies

σ2
d = Var[λ′Σ−1/2

T

p
T d̄m] = λ′Σ−1/2

T ΣTΣ
−1/2
T λ = 1 for all T sufficiently large. Via

Minkowski’s inequality and computations as in (D.7), λ′Σ−1/2
T dm,t+τ has absolute

2+δ moment for some δ > 0. Then, by Corollary 3.1 in Wooldridge and White

(1988) we deduce that λ′Σ−1/2
T

p
T d̄m

d−→ N(0,1). Hence, by the Cramér-Wold device

it follows that Σ−1/2
T

p
T d̄m

d−→ N(0, I qk).
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It remains to be shown that Σ̃T −ΣT
P−→ 0. Consider

Σ̃T −ΣT = 1
T

T∑
t=1

(
dm,t+τd′

m,t+τ−E[dm,t+τd′
m,t+τ]

)
+ 1

T

τ−1∑
j=1

κ( j,τ)
T∑

t=1+ j

(
dm,t+τd′

m,t+τ− j −E[dm,t+τd′
m,t+τ− j]

+dm,t+τ− jd′
m,t+τ−E[dm,t+τ− jd′

m,t+τ]
)
. (D.14)

By Theorem 3.49 in White (2001), {dm,t+τd′
m,t+τ− j} is mixing of the same size as

{ht} and {W t} for each j = 0, . . . ,τ−1. Moreover, each of its elements are bounded

uniformly in t by Assumption 2*. Hence, since κ( j,τ)→ 1 as T →∞ and κ(0,τ)= 1

it follows via Corollary 3.48 in White (2001) that

1
T
κ( j,τ)

T∑
t=1+ j

(
dm,t+τd′

m,t+τ− j −E[dm,t+τd′
m,t+τ− j]

)
P−→ 0,

for each j = 0, . . . ,τ−1. Combined with equation D.14, this implies that Σ̃T −ΣT
P−→

0. Hence, we can deduce via similar steps as in (D.9) that Sm,h,τ
d−→ χ2(qk) as

T →∞.

ii) The result follows by arguments similar to those in the proof of Theorem

3. Hence, {dm,t+τ} is mixing with the same size as {ht} and {W t} and each element

in dm,t+τ is bounded uniformly in t by Assumption 2*. Then it follows by Corollary

3.48 in White (2001) that d̄m−E[d̄m] P−→ 0, and consequently similar computations

as in (D.12) applies. By arguments identical to those in the proof of Theorem

4i, Σ̃T −ΣT
P−→ 0, where ΣT is positive definite by Assumption 3*. Theorem 8.13

in White (1994) then implies that under HA,h in (9) and for any constant c ∈R+,

P[Sm,h,τ > c]→ 1 as T →∞.

iii) Due the arguments in the proof of Proposition 2 it suffices to show that

Σ̃T∗= AΣ̃T A′, where A = I q ⊗B. Thus, let

Σ̃T(p)≡ 1
T

T∑
t=1+p

dm,t+τd′
m,t+τ−p,
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for p = 0,1,2 . . .. It then follows that

Σ̃T(p)∗ ≡ 1
T

T∑
t=1+p

d∗
m,t+τd∗′

m,t+τ−p = 1
T

T∑
t=1+p

Adm,t+τd′
m,t+τ−p A′ = AΣ̃T(p)A′.

Consequently, it follows that Σ̃∗
T = AΣ̃T A′, which completes the proof.

Proof of Theorem 5. i) Due to arguments similar to those in the proof of

Theorem 4i, it suffices to show consistency of the variance estimator, Σ̆T in (16).

Since bT →∞ as T →∞ and bT = o(T), it follows by similar arguments as in the

proof of Theorem 4 that for each j = 0, . . . ,bT

1
T
κ( j,bT)

T∑
t=1+ j

(
∆Lm,t+τ∆L′

m,t+τ− j −E[∆Lm,t+τ∆L′
m,t+τ− j]

)
P−→ 0,

such that Σ̆T −ΣT
P−→ 0. See also Andrews (1991). Hence, by arguments identical

to those in the proof of Theorem 4i, it follows that Sund
m,h,τ

d−→ χ2(k) as T →∞.

ii) Let ht = 1 such that dm,t+τ =∆Lm,t+τ. Under Assumption 3**, it then follows

from the proof of Theorem 4ii that Theorem 8.13 in White (1994) applies, proving

that under HA,h in (9) and for any constant c ∈R+, it holds that P[Sund
m,h,τ > c]→ 1

as T →∞.

iii) The result follows from identical arguments as those in the proof of The-

orem 4iii using B instead of A. By Proposition 2, permutation invariance of the

test statistic, Sund
m,h,τ then follows.

Proof of Proposition 6. Due to the proof of Theorem 1, it suffices to show that

ΣT − Σ̂thr
T

P−→ 0 or equivalently that Σ̂T − Σ̂thr
T

P−→ 0. Since λi j = C(σiiσi j log(qk)/T)

for some C > 0 it follows that λi j → 0 as T →∞. Consequently, by the properties

of the thresholding function pi j(·) it follows directly that Σ̂T − Σ̂thr
T

P−→ 0.

ii) By identical arguments as in the former proof of Proposition 6i and Theo-
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rem 3, it follows as a direct consequence of the fact that Σ̂T − Σ̂thr
T

P−→ 0 that, under

HA,h in (9), P[S(1)
m,h > c]→ 1 as T →∞ for any constant c ∈R+.

Proof of Corollary 7. It suffices to show that Σ̂T − Σ̂thr
T

P−→ 0, which follows di-

rectly from the proof of Proposition 6i. Hence, by Proposition 2 we deduce that

S(1)∗
m,h −S(1)

m,h
P−→ 0.

Proof of Proposition 8. i) By Proposition 6 we have that S(1)
m,h

d−→ χ2(qk), hence

it suffices to show that the power enhancement component S(0)
m,h satisfies S(0)

m,h
P−→ 0

as T →∞ under H0,h. This follows if Assumption 4ii can be verified for the pro-

posed power enhancement component in (27), which is shown in Theorem 3.1 in

Fan et al. (2015).

ii) By Proposition 6ii, we have under HA,h in (9) that P[S(1)
m,h > c]→ 1] as T →∞

for any c ∈R+, hence by non-negativity of the power-enhancement component in

(27), the result follows.
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