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equal conditional predictive ability. The tests are applicable to a mixture
of nested and non-nested models, incorporate estimation uncertainty ex-
plicitly, and allow for misspecification of the forecasting model as well as
non-stationarity of the data. We introduce two finite-sample corrections,
leading to good size and power properties. We also provide a two-step Model
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I. Introduction

In many empirical applications two or more competing forecasting methods for
predicting the same object of interest are available, and we may ask the question,
whether they result in equal losses, potentially conditional on being in certain
states. For instance, one may be interested in comparing forecasts generated
from model-based methods (e.g. GARCH or component-based methods) with
those generated from reduced-form methods (e.g. HAR or ARFIMA) to determine
whether such families of forecasting methods possess equal predictive ability.
Additionally, many empirical applications are concerned with the comparison of a
set of models’ forecasts to that of a baseline model. In macroeconomic applications
researchers typically compare a first-order autoregressive model with models
that include various predictors (see e.g. Stock and Watson (1999, 2003)), or in
financial applications where efficient markets imply that excess returns form a
martingale difference, leading to a null hypothesis where all predictive models
nest the baseline model of zero expected excess returns (see e.g. Goyal and Welch
(2003); Welch and Goyal (2008), and Phillips and Jin (2014)).

In this paper, we facilitate such analyses by developing statistical tests for equal
conditional and unconditional predictive ability among two or more forecasting
methods. The paper extends the tests in Giacomini and White (2006) (henceforth
referenced as GW) to a multivariate setting where one may be interested in
comparing the conditional predictive ability of multiple forecasting methods, and
at the same time extends the (unconditional) multivariate Diebold-Mariano test
statistic (Diebold and Mariano, 1995) in Mariano and Preve (2012) by allowing
for non-stationarity in data (arising from e.g. model misspecification), a mixture
of nested and non-nested models, and by explicitly accounting for estimation
uncertainty in model parameters used in generating the forecasts. Whereas un-
conditional tests allow one to answer the question of whether a set of forecasting
methods performed equally well on average in the past, the conditional tests allow
one to investigate whether the set of forecasting methods performed equally well
conditional on some information set containing e.g. macroeconomic or financial
indicators. The latter reveals potential differences in predictive ability otherwise

hidden in the unconditional test - what seems to be zero on average, may not be



so when conditioning on additional information.

By developing multivariate versions of the GW tests, we enable testing of equal
(un)conditional predictive ability among many forecast methods without having
to employ multiple testing adjustments, which would otherwise be appropriate
if one were to test the similar hypothesis via multiple pairwise tests using the
GW tests. Such adjustments can be quite suboptimal in terms of power (see
e.g. Romano, Shaikh, and Wolf (2010)), and Hubrich and West (2010) document
that one may draw wrong conclusions on the basis of pairwise comparisons of
the forecasting models. Since the proposed tests are natural extensions of GW,
they inherit the main properties of the GW tests regardless of whether we take a
conditional or unconditional perspective. First, they are applicable to multistep
point, interval, probability, or density forecast evaluation for a general loss func-
tion. Secondly, they enable comparison of both nested and non-nested models and,
thirdly, they incorporate non-vanishing estimation uncertainty of the parameters
used in formulating the forecasts. That is, the tests incorporate differences in
model complexities and estimation procedures, without explicitly requiring this
to be done through the loss function. By formulating the tests in this manner, not
only the model, but an additional number of choices made by the forecaster such
as estimation method and window are included in the evaluation, making them
tests for comparing forecast methods and not only forecasting models. Finally, the
tests allow for non-stationarity in the data, arising from e.g. misspecification of

the forecasting model and/or structural breaks in the data-generating process.

Our paper contributes to the large and active literature on forecast evaluation in
several ways. First, we provide the first multivariate test for equal conditional
predictive ability. Secondly, we facilitate easy testing of equal predictive ability
(both conditional and unconditional), since all tests proposed in this paper are
Wald statistics, hence have chi-squared limiting distributions in contrast to non-
standard, context-specific distributions often found in the literature on forecast
comparison tests (see e.g. Clark and McCracken (2001); McCracken (2007); Clark
and McCracken (2012), and Gongalves, McCracken, and Perron (2017)) for which

the asymptotically valid critical values have to be obtained through burdensome



simulation-based methods.! Moreover, we show that the tests are generally in-
variant to any reordering of the forecasting methods under comparison, ensuring
that conclusions drawn from a single test is unaltered by any permutation of the
ordering of the forecasting methods such that no multiple testing adjustments
are required. Thirdly and in contrast to Hubrich and West (2010); Mariano and
Preve (2012); Clark and McCracken (2012), the proposed tests are applicable
to a mixture of nested and non-nested models, hold for a general loss function
and allow for non-stationarity in data. Finally, we allow for comparison of a
wider class of forecasting methods including linear, non-linear, Bayesian, and
non-parameteric methods as opposed to the methods proposed in e.g. Clark and
McCracken (2012); Granziera, Hubrich, and Moon (2014) and Gongalves et al.
(2017), which only apply in the case of linear models.

To improve upon the finite sample properties of the tests, we propose two adjust-
ments. First, we introduce a threshold Wald statistic that employs a threshold
estimator of the covariance matrix. Secondly, we introduce a power-enhancement
component along the lines of Fan, Liao, and Yao (2015), potentially improving
upon power, but with negligible size distortion under the null hypothesis. We
examine the statistical properties of the tests in an elaborate Monte Carlo study,
which indicates that they are well-sized and have good power. Moreover, the

finite-sample adjustments succeed in improving both size and power noticeably.

Since rejection of the null hypothesis of equal conditional predictive ability sug-
gests that one or more of the forecasting methods possess superior predictive
ability, we develop a Model Confidence Set (Hansen, Lunde, and Nason, 2011)
inspired rule for ranking of the forecasting methods into “method confidence sets”,
each containing sets of forecasting methods with indistinguishable conditional
predictive ability. Via this rule, we can utilize that rejection of the null hypothesis
implies that we can predict relative performances of the forecasting methods,

leading to a decision rule for dynamic forecast selection.

In our empirical application, we consider forecasting the conditional variance

INote, however, the recent paper by Hansen and Timmermann (2015), in which they show
asymptotic equivalence of some of these tests with one based on simple Wald statistics.



of the S&P 500 Index’ returns. Using the proposed theory, we investigate what
drives (in)differences in forecasting performance over the 2009-2013 period be-
tween a large set of forecasting methods, including (G)ARCH, Realized GARCH
(Hansen, Huang, and Shek, 2012), and Heterogeneous Autoregressive (HAR)
specifications (Corsi, 2009). Examining the best set of forecasting methods, we
document a number of interesting findings. First, we find that HAR specifications
are preferred over the traditional (G)ARCH specifications, corroborating empiri-
cal findings in Andersen, Bollerslev, Diebold, and Labys (2003) and theoretical
findings in Andersen, Bollerslev, and Meddahi (2004) and Sizova (2011). The
inclusion of a realized measure of volatility in the GARCH dynamics as in the
Realized GARCH model of Hansen et al. (2012) improves substantially on the
performance of the GARCH framework, and makes it comparable to the best HAR
type models. Secondly, we identify structural breaks in the composition of the
best method confidence set. One of these events lines up with the Flash Crash
of May 6, 2010. Specifically, the HAR of Corsi (2009) is consistently included
during normal states of the markets in the period leading up to the Flash Crash,
but drops out completely after this day. Thirdly, even though the forecasting
methods of Patton and Sheppard (2015) are statistically indistinguishable based
on their average past performances (using the unconditional test), our analysis
indicates that the predictive gain relative to simpler models like HAR and HAR-J
stems from very different states. For instance, the HAR-RS-I, HAR-RS-II, and
HAR-SJ-I derive their gain almost exclusively during what we term as “leverage”
and “jump” states, whereas HAR-SJ-II somewhat surprisingly is mostly excluded
in leverage states, but performs especially well in normal market states. Finally,
we show that exploiting the ranking rule based on these state-dependencies of the
forecasting methods’ predictive ability in a novel conditional forecast combination
procedure leads to significant gains in predictive ability relative to individual

forecasting methods and competing forecast combination methods.

The remainder of the paper is organized as follows: Section II introduces multi-
variate statistical tests for equal conditional and unconditional predictive ability
for one-step and multistep forecast horizons including their asymptotic properties.
Section III provides finite-sample corrections for the statistical tests, whereas

Section IV reports size and power properties of the proposed tests in two Monte



Carlo studies. In Section V, we introduce a Model Confidence Set-type decision
rule suitable for dynamic forecast selection, and provide an empirical analysis of
forecasting the conditional variance of the S&P 500 Index’ returns in Section VI.

Finally, Section VII concludes. All proofs are in the Appendix.

II. Multivariate tests for equal predictive ability

This section builds upon the work of Giacomini and White (2006), hence our usage
of notation will be similar. We consider an observed vector W; = (Y;, X;)' defined
on the probability space (Q2,%,P), where Y; is the object of interest and X; is
a vector of predictors.? The filtration %, is defined as the o-field generated by
past and current values of W;, %; =0 (W1,...,W;). We consider a setting where
k+1, k=1, methods are available for forecasting 7 periods into the future. We
denote the time ¢ forecast of Y;.; by fti,r,mi = fi(Wt,Wt_]_,...,Wt_mi_'_l;éi,mi) for
i=1,...,k+1, where f' is a measurable function. Subscript m® on f indicates
that the forecast is generated using m’ observations prior to time ¢. Moreover,
éi,mi denotes the parameter estimates (parametric, semi-parametric, or non-
parametric) used in constructing the forecast for the i’th forecasting method. Let
m =max{m?,...,m**1}. For ease of exposition and along the lines of Giacomini
and White (2006), we require that m < oo, thus ruling out an expanding window,
but allowing for e.g. a rolling window estimator, where the window is allowed
to change size over time as well. Consequently, let m; = max{m%, ... ,m’t“l}, such
that the first forecasts are formulated at time m; and m = max{m1,mg,...}. The
requirement of finiteness of m also allows for a fixed estimation sample scheme,
where the model parameters are estimated once using the first m; observations
and then used to generate all T forecasts. In any case, the number of out-of-
sample forecasts is T'= N — (m1 + 71— 1) with a total sample size of N (time series)

observations.

In order to assess the forecasting ability of each forecasting method, we introduce

the real-valued loss function L, ; (YH,, f i i). Important examples of L include

t,T,m
economic measures such as utility or profits, or statistical measures such as the

2To keep the notation simple, we will focus on the case where Y; is a scalar. The theory
presented below applies in the general case as well.



square or absolute value of the forecast errors, where forecast errors are given
by ei 7= fti,r,mi —Y;.;. For additional examples of loss functions, see e.g. Granger
and Machina (2006) for economic measures and West (2006) or Patton (2011)
for statistical measures. To ease on notation, we suppress in the following the

mi) and write the i’th loss function as L

arguments of L;,; (YHT, ft mT

t,T,

A. The hypothesis of equal conditional predictive ability

For a given loss function, we are interested in determining whether a set of £ + 1
forecasting methods perform equally well conditional on some o-field, %;. That is,

we want to test the hypothesis that

Hy:E[L., ,,|9]=ELY}  19], i=1,..k, (1

or equivalently that
Ho :E[ALy, ;+:1%:1=0, )
where ALy r = (ALY ..., ALY, ) and ALY, = L) . —L/"  for j=

1,...,k. The null hypothesis implies that one cannot predict, conditional on
the information contained in %;, whether one or more forecasting methods will be

more accurate for forecasting the object of interest 7 periods into the future.

We make two remarks on the formulation of the null hypothesis. First, the
null hypothesis is expressed in terms of a conditional expectation, where the
choice of conditioning information is made by the researcher. If ¥, is set to the
trivial o-field, ¥; = {®, 2}, the null hypothesis is comparable to the one considered
in Mariano and Preve (2012). In this case, the hypothesis test provides infor-
mation about the average predictive ability of the forecasting methods in the
past - the idea of Diebold and Mariano (1995) and West (1996) among others. In
contrast, conditioning information enables the researcher to investigate whether
additional information can assist in predicting performance differences between
the forecasting methods. A leading example of conditioning information is ¥; = %;,
which enables the test to capture any persistence in forecasting ability arising

from e.g. misspecification of the forecasting models. Moreover, it is plausible



that some forecasting methods’ predictive ability varies according to the state of
the economic environment, such that conditioning on macroeconomic or financial

indicators would be appropriate.

Secondly, the loss functions depend explicitly on the parameter estimates and
not on their probability limits, leading to a test statistic that takes into account
estimation uncertainty. Importantly, by allowing for asymptotically non-vanishing
estimation uncertainty, the test can accommodate the inclusion of nested models
in the set of forecasting methods - a feature that the (unconditional) multivariate

test in Mariano and Preve (2012) cannot handle.?

A.1. One-step multivariate conditional predictive ability test

In this section, we present the test statistic and its asymptotic properties. The

null hypothesis in (2) is equivalent to stating that
Ho:E[AtALp t+:1=0 (3)

for all ¥;-measurable functions /;. We restrict attention to a subset of these func-
tions, which we gather in the g-dimensional vector h; = (fz(tl), ... ,ﬁfﬂ))’ , referred to
as the test function. For some choice of test function, we construct a multivariate

test for equal conditional predictive ability by
Hoj, :Elh; ® ALy, 1401 =0, @)

where subscript 4 indicates the dependence on the test function. The specification
in (4) is a natural multivariate extension of the test in Giacomini and White

(2006), whose test is a special case obtained when % = 1.

We now consider the leading case with one-step ahead forecasting, 7 = 1 and
1 €Y. For that purpose, we let d,, ;+; = h; ® AL, ;1 and impose three assump-

tions similar to those of Giacomini and White (2006).

3Technically, with ¢, = {,Q} and asymptotically vanishing estimation uncertainty the stan-
dard errors of differences in forecast performance between a set of nested models will equal zero,
leading to non-standard limiting distributions of the test statistics.



Assumption 1. {h;} and {W;} are ¢p—mixing with ¢(t)=0 (¢ "%V r>1, or

a—mixing with a(t) =0 (t_ﬁ_‘), r>1, for some 1> 0.

Assumption 1 imposes relatively mild restrictions on the dependence structure
and heterogeneity of data. We do not impose the common (covariance) stationarity
assumption as used in for instance Diebold and Mariano (1995) and Mariano and
Preve (2012). Specifically, data may exhibit arbitrary structural changes, which is
a common feature found in many empirical studies within e.g. macroeconomic
prediction (see e.g. Stock and Watson (2003) and Schrimpf and Wang (2010)), stock
return prediction (see e.g. Fama and French (1997) and Paye and Timmermann
(2006)), and exchange rate prediction (see e.g. Giacomini and Rossi (2010)) to

name a few. We also document such a case in the empirical section below.

Assumption 2. [E[ldm,t+1,i|2(r+6)] < oo for some § >0, i =1,...,qk, and for all t,

where subscript i indicate the i’th element of d; 141
Assumption 3. Zp=T"1 Zthl [E[dm,t+1d;n,t+1] is uniformly positive definite.

Assumptions 2-3 are mainly technical assumptions ensuring (uniformly) bounded
moments of data and positive definiteness of the asymptotic variance. Both of
these assumptions are common in the forecast evaluation literature. We then

consider the following Wald statistic
2rd,, (5)

where d,, = T_lzg;ldm’t+1, and 37 = T_lzz;ldm,t+1d;n,t+l is a (qk x qk) sample
covariance matrix that consistently estimates the variance of d,, ;1. We note
that for large values of ¢ and/or %, the dimension of 7 and d,, may become
large, potentially leading to issues with statistical inferences in finite samples.
We propose remedies in Section III, but for now we restrict our attention to
the properties of S, , in (5). The asymptotic properties of the test statistic is

summarized in Theorem 1.

Theorem 1 (One-step multivariate conditional predictive ability test). Suppose
Assumptions 1-3 hold. For forecast horizon 1 = 1, test function sequence {h;},

m < oo and under Hy in (2),

Smn L ¥2(qh), as T —oo. (6)

8



Therefore, by Theorem 1 a multivariate test for equal conditional predictive ability
can be conducted by rejecting the null hypothesis whenever S, j, > 214 %, Where
21-a,qk is the (1 - a) quantile of the chi-squared distribution with gk degrees of

freedom.

Since any reordering of the forecasting methods alters the dynamics of d, ++1, it
motivates the following result, which shows that for each permutation (reorder-
ing) of the forecasting methods, regardless of whether the null is true or not, we

get the same value of the test statistic and the same limiting distribution under

the null hypothesis.
Proposition 2 (Permutation invariance). Let L; ; be an arbitrary permutation
of the forecast losses, and define ALfn,t +1=DL;, , where
1 -1 0 0
0O 1 -1 .
D= (7
SR PUREIURRTU
0 0 1 -1
is a k x(k+1) matrix. Let d,, =T 'y d* .. withd’ ,  =h;®AL" . and
A sk _ 1 T % */
27 =721 140190 111 Then,
Snn=TdyEr) 'dy, =S (8)

forall T.

Proposition 2 ensures that conclusions drawn from the hypothesis testing are
unaltered for any permutation of the ordering of the forecasting methods. This

allows the researcher to perform just a single test.

A.2. Alternative hypothesis

When formulating an alternative hypothesis, one must take into account the
fact that data may exhibit non-stationarity. For some ¢ > 0, we formulate the

alternative in line with Giacomini and White (2006) as

Hp :Eld,,JEld,]=c, (9)



for all T sufficiently large. Under stationarity the null and alternative hypothesis
are exhaustive. Under non-stationarity this may not necessarily be the case. If an
important %;-measurable variable is omitted in the test function, it may happen
that [E[o_l:n][E[t_im] = 0 for a particular sample size due to for instance shifting
means without the null hypothesis being true - for example a situation where one
method outperforms (some of) the other methods in certain periods/states, while it
performs worse than the same methods in other periods/states. We consider this
situation in the simulation study of Section IV and document its relevance in the
empirical section below. Therefore, the test has little power against alternatives
where the loss differentials are correlated with %;-measurable random variables
not included in the test function. While this concern is important, it also highlights
the flexibility of the test statistic. As mentioned above, the choice of test function
is made by the researcher to include relevant variables supposed to assist in
disentangling the forecasting abilities of the set of forecast methods. As a result,
the test changes depending on the choice of test function. The result in Theorem
3 summarizes the power properties of the test statistic under the alternative

hypothesis in (9).

Theorem 3. Suppose Assumptions 1-3 hold. For any c € R, and under Hy p, in
9),

PLSmn>cl—1, as T —oo. (10)

In particular, regardless of the critical value chosen for the test, the probability
of rejecting the null hypothesis when the alternative hypothesis is true tends to

unity for T' — oo.

A.3. Multistep multivariate conditional predictive ability test

For a multistep forecast horizon, 7 > 1, and %; € %; we note that the sequence
{h;® AL, ;+;} may be serially autocorrelated up to the order of 7 — 1, since the
null hypothesis in (4) implies that Covlh; ® AL, t+7,h;—j® ALy, 4411 =0 for all
J =7. That is, {h; ® AL, ;,;} may be serially correlated in the forecasting window.
Consequently, we can no longer rely on the sample variance under the null for
estimating the covariance matrix as was the case in the one-step formulation.

Instead, we consider a HAC-type estimator (see e.g. Newey and West (1987) and

10



Andrews (1991)) with a bandwidth choice guided by the implications of the null
hypothesis. The estimator is given by

1 -1 T
27 :? det+Tdm t+r+ZK(J 7) Z ( mt+1dm t+T— J+dm t+T Jd;nHT)],

j=1 t=1+j
(11)

where x(-,-) is a real-valued kernel weight function such that x(j,7) - 1 as T — co
for each j=1,...,7—1 (see Andrews (1991)), and where we put weight only on
the relevant 7 — 1 lags of the sequence. The estimator in (11) is known as the
truncated HAC estimator. In the parsimonious choice of equal weighting, one
obtains the HAC estimator in Hansen (1982) with a rectangular kernel. For a
discussion and investigation of the choice of kernel, we refer the reader to West
(2008) and Clark and McCracken (2013).

For the conditional multistep hypothesis testing, we impose three assumptions

similar to Assumptions 1-3.

Assumption 1*. {h;} and (W} are ¢p—mixing with $(t) =0 (t 77?271 ' r>2, or

a—mixing with a(t) =0 (t_ri_z_‘), r>2, for some 1> 0.

Assumption 2*. [E[Idm,tﬂ,il”‘s] < oo for some 6 >0, i =1,...,qk, and for all t,

where subscript i indicate the i’th element of d;, 1+1.
Assumption 3*. Zp=T"1 Zf_l Eld - d, marrl T 12’ iZt 1+ ([E[dm,tﬂ

myt+1—j

xd’ 1+ Eld 47— d, HT]) is uniformly positive definite.

Along the lines of the former section, we construct a Wald statistic for multistep

multivariate conditional equal predictive ability. The test statistic is given by
Smhr= Td. ZT d, (12)

where d,,, = T™! Z;";l d . t++. Analogue to Theorems 1-3 and Proposition 2, S, 5 1
is asymptotically chi-squared distributed with g% degrees of freedom under the
null hypothesis, has power under the alternative hypothesis in (9), and is permu-

tation invariant. We summarize these results in Theorem 4 below.

Theorem 4 (Multistep multivariate conditional predictive ability test). Suppose

11



Assumptions 1*-3* hold.

(i) For forecast horizon T > 1, test function sequence {h;}, m < oo and under H
in (2),

Smnr L y%qk), as T — oo (13)

(ii) For any c € R, and under Hy p, in (9),

PISmp:r>cl—1, as T —oo. (14)

(iii) Let L; . be an arbitrary permutation of the forecast losses, and define
AL} ,..=DL} . d, =Ty d: ., withd}, ,=h®AL}, ,  and 2

m,t+1 m,t+71 m,t+t1 m,t+1

be the associated covariance estimator defined in equation (11). Then,

S*

m,h,T

=Td,(E) '} = S (15)
forall T.

Consequently, a multivariate test for equal conditional multistep ahead fore-
casting ability can be conducted by rejecting the null hypothesis whenever

Sm,h,r >Z1-a,qk-

A.4. Multivariate unconditional predictive ability test

In the unconditional test with ¢; = {®,Q} (hence, h; =1 for all ) and 7 = 1, the
sequence {AL, ;1} is not ’finitely correlated’. That is, the null does no longer
restrict the serial correlation to only the forecasting window, but {AL,, ..} may
exhibit serial correlation of any order - including infinite. Hence, we impose a

modified version of Assumption 3.
Assumption 3**. 27 = T\ XL Eldn 1rd)y, 1, 1+ TP TS T ([E[dm,m

t=1+j
X d;n’t”_j] + [E[dm,tﬂ_jd;n,tﬂ]) is uniformly positive definite.

12



To accommodate this, we adopt a covariance estimator of the form

. 17Z ,
Sr=rg [ ZiALm,tHALm’HT
=

br T
£ Kb Y (ALperALy, o+ AL ger ALY )|, (16)
j=1 t=1+j

where {br} is an integer-valued truncation point sequence satisfying b7 — oo as
T — oo and b1 = o(T) (see e.g. Newey and West (1987)). Note that we require
b1 — oo for consistency in the the unconditional case as opposed to by =7—1in
the conditional case described in the former section. For a review of data driven
bandwidth selection methods see Clark and McCracken (2013). Along the lines of
former sections, we construct the following Wald statistic which can be used in

testing for multistep unconditional equal predictive ability
Sun¢ =TAL, 27 ALy, (17)

where E;n =71 Zthl ALp, t1-. This test statistic is related to the one of Mariano
and Preve (2012). However, as mentioned above, our test generalizes theirs
along several dimensions. In particular, we enable comparison of nested models,
allow for non-stationary data, and take explicitly into account the estimation
method involved in generating the forecast series for all models. Analogously to
Theorem 4, S7"; _ is asymptotically chi-squared distributed with gk degrees of
freedom under 1,;h,e null, has power under the alternative hypothesis in (9), and is

permutation invariant. Theorem 5 summarizes these results.

Theorem 5 (Unconditional predictive ability test). Suppose Assumptions 1*-2*
and Assumption 3** hold.

(i) For forecast horizon 1 =1, 4; ={@,Q}, m <oo and under Hy in (2),

sune 402y s T — oo, (18)

m,h,T
(ii) For any c € R, and under Hy p, in (9),

PSS >c]l—1, as T — oco. (19)

m,h,T

13



(iii) Let L; . be an arbitrary permutation of the forecast losses, and define
AL}, ;. =DLy, , E; = T_IZZWZIAL;’HT, and X7 be the associated co-
variance estimator via (16). Then,

unes = TAL,,(27) AL, = S (20)

m,h,T
forall T.

Consequently, a multivariate test for equal unconditional forecasting ability can
be conducted by rejecting the null hypothesis whenever S > z1_4%. The
permutation invariance result in Theorem 5iii) is similar to’ I”roposition 2 in
Mariano and Preve (2012), but holds under the milder Assumptions 1*-2* and
Assumption 3**, and hence also applies in a setting with non-stationary data,

inclusion of nested models and explicit account of estimation uncertainty.

III. Finite-sample corrections

The number of elements to be estimated in the covariance matrix is gk(qk + 1)/2.
Consequently, the dimension of the covariance matrix may become large if the
objective is to test equal (un)conditional predictive ability of many methods, say,
in the lower two-digits, and/or if many elements are included in the test function.
Estimating a high-dimensional covariance matrix using the sample covariance
matrix, when the sample size is small relative to the number of elements to
be estimated, may negatively affect the size and power of the proposed tests.
In this section, we provide remedies that correct the original test statistic to
accommodate studies, where gk is large relative to the sample size. To fix ideas,
we consider the conditional case with 7 =1, but results are directly generalizable

to a multistep forecast horizon as well as the unconditional case.

A. A threshold Wald statistic

To improve upon the finite-sample properties of the test statistic in (5), we utilize
that we can consistently estimate Zp via the thresholding approach of Bickel
and Levina (2008). Essentially, the thresholding estimator shrinks small off-
diagonal elements towards zero, thus reducing the impact of the noise intro-

duced by estimating elements that are (close to) zero. In particular, let p;;(-)

14



be a generalized thresholding function (Rothman, Levina, and Zhu, 2009) with
threshold value A;; = C(0;;0;; log(qk)/T)l/2 , for some constant C > 0, and where
oij= T_]'thr:ldm’t+]_,idm,t+]_’j for i,j=1,...,qk. By choosing C sufficient large
one can ensure that the estimated covariance matrix will be positive definite (see
e.g. Fan, Liao, and Mincheva (2013)). The threshold covariance estimator ﬁthr is
then defined by

2

. Oii, ifi =,
t.}?r{ w J (21)

pij(oij), ifi#].
The thresholding function must satisfy for all x € R the following three conditions
(i) pij(x)=0for |x| < A;; (thresholding),
(ii) |p;j(x)| < |x| (shrinkage), and
(iii) |p;;j(x)—x| < A;; (limited shrinkage).

Examples of such functions are soft thresholding, p;;(x) = sgn(x)max{0, |x| — A;;},
hard thresholding, p;;(x) = x1{|x| = A;;}, (Donoho and Johnstone, 1994), the adap-
tive Lasso, and the smoothly clipped absolute deviation (SCAD), which is a
compromise between soft and hard thresholding (Fan and Li, 2001) defined by

sgn(x)max {0, x| — A;;}, if x| < 24,5,
pij(x) =9 (b — Dx—sgn(x)bA;;)(b—2), if21;j<|x| <bA;j, (22)
X, if |x| >b/1ija

for some b > 2. See Rothman et al. (2009) for a review of the thresholding func-
tions’ finite-sample properties. The threshold value depends on the choice of C,
which is to be made by the researcher. One way to do so is to follow the recom-
mendations put forward in Rothman et al. (2009). Alternatively, the parameter

can be chosen in a data-driven manner via cross-validation as in Fan et al. (2013).

Since the number of forecasting methods and the dimension of the test func-
tion are fixed, we obtain that the asymptotic properties of the test statistic with
the sample covariance matrix replaced by the threshold estimator are identical to

those of S, 5, under the null and alternative hypothesis. We henceforth refer to
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this as the threshold Wald (TW) statistic and summarize its asymptotic properties

in the following result.
Proposition 6 (Threshold Wald statistic). Suppose Assumptions 1-3 hold.

(i) For forecast horizon T =1, test function sequence {h;}, m < oo and under H
in (2),

80, =Td, 7  dy L y2qh), as T — oo, (23)

where ﬁt;fr is a threshold estimator of the type in (21).

(ii) For any c € R, and under Hy j, in (9),

PISY. >c1—1, as T —oo. (24)

Consequently, a multivariate test for equal conditional predictive ability across
many methods can be conducted by simply replacing the empirical sample covari-
ance with the threshold estimator, and by rejecting the null hypothesis whenever
Sﬁrll)h > Z1-a,qk- The following result shows that permutation of the forecasting

methods will not alter the test statistic nor limiting distribution asymptotically.

Corollary 7 (Asymptotic permutation invariance). Let d fn be given as in Propo-

... othr* . . . .
sition 2, £ be the associated threshold covariance matrix estimator, and

&thr¥ *

Sy =Td,,(E™ ) 'd,,. (25)

X P
Then, Sﬁrll)h —S;ll)h —0,as T — oco.

We thus conclude that the TW statistic can be used in the same manner as the
standard test statistic in (5), ensuring that a single test will suffice for testing
multivariate equal (un)conditional predictive ability across a set of forecasting
methods. However, we stress that the finite-sample appropriateness of Corollary
7 depends on the finite-sample behavior of the chosen covariance estimator. The
thresholding estimator proposed above is just one of many possible choices, and
that other choices might be preferable under certain structural assumptions on

the covariance matrix.
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B. Power enhancement of the threshold Wald statistic

Tests based on the (threshold) Wald statistic may suffer from low power when the
number of methods and/or elements of the test function are large relative to the
sample size. This is especially true under sparse alternatives, where the number
of elements that violates the null hypothesis is small relative to the dimension
of d,,. To alleviate this potential issue, we introduce a power enhancement
component, Sgg?h, along the lines of Fan et al. (2015). This component boosts
power in specific regions of the alternative hypothesis (e.g. in sparse alternatives),
where power may be low. Consequently, we construct a power-enhanced test
statistic as

@ _ g ©)
S?, =5 +s9, (26)

We assume that the power enhancement component satisfies the following proper-

ties
Assumption 4 (Power enhancement properties).

(@) Sﬁg?h = 0 almost surely,
(i) PIS{), =O0lHol— 1, and

(iii) S ﬁg)h diverges in probability for specific regions of the alternative hypothesis.

Assumption 4i requires non-negativity of the power enhancement component,
thus insuring that power never is adversely affected by the introduction of this
component. 4iii ensures that power is enhanced in certain regions of the alterna-
tive hypothesis. Assumption 4ii ensures that size is not affected (asymptotically)

by inclusion of the power enhancement component. Note that S/ ©

1s not a test
statistic on its own due to Assumption 4ii, which ensures that the asymptotic
distribution of S;%)h under the null hypothesis is determined by that of S;?h
- it simply provides additional power (with little size distortion) by adding a
non-negative component to the original test statistic in specific regions of the
alternative hypothesis. We set the power enhancement component to a screening

statistic (see e.g. Fan et al. (2015)), which satisfies Assumption 4,

S(O) /q Z D ]1{|dm il >V 0ii/TAgp 1}, 27)
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where t_im,i denotes the i’th element, i = 1,...,q%, of d,,,, and Agr,7 is a threshold
that plays an important role in determining the size of the screening set, which
is set to Agp,7 = log{log(T)} \/W. Consequently, the power enhancement
component strengthens the signal of d,, by enhancing the (sufficiently) large
non-zero elements. By Assumption 4ii and Proposition 6 it follows that Sgg?h
inherits the asymptotic properties of the TW statistic in (23). The results are

summarized in Proposition 8.

Proposition 8 (Power enhanced threshold Wald statistic). Suppose Assumptions
1-3 hold.

(i) For forecast horizon T =1, test function sequence {h;}, m < oo and under H
in (2),

§2. L y%qh), as T —oco. (28)

(ii) For any c € R, and under Hy p, in (9),

PIS®, >c1—1, as T —oco. (29)

Consequently, a multivariate test for equal conditional predictive ability with
potentially improved finite-sample properties can be conducted in the usual way

by rejecting the null hypothesis whenever S ﬁi)h > Z1-a,qk-

IV. Simulation study

To examine the finite sample properties of the test statistics, we perform a Monte
Carlo study. The study covers both the conditional and unconditional case. We
also study the impact of the finite-sample corrections put forward in Section III. In
general, we document two important findings. First, the proposed test statistics
have good size and power properties. Secondly, one is allowed to use a relatively
large number of conditioning variables, for instance macroeconomic and financial

indicators, while maintaining good finite-sample properties of the tests.
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A. Simulation design

We consider the case where the data-generating process of the vector loss differ-

ential series {AL;1} is given by

ALgy1 = p+ €441, (30)

with &;,1 being random vectors drawn from a multivariate, £-dimensional, normal
distribution, &;,1 ~ N3(0,T';). Here, I';, denotes the & x £ contemporaneous covari-
ance matrix with equi-off-diagonal entry generated from U(0,1/2) along the lines
of Fan et al. (2015). Moreover, we introduce a regime-shift in the data-generating
process by setting the diagonal in I';, equal to 1.25 in the first half of the sample
and equal to 0.75 in the second half of the sample, thereby introducing a struc-
tural break in the loss series, which divides the data into a high-variance and
low-variance regime typically observed in empirical studies (see e.g. So, Lam, and
Li (1998)). Consequently, the loss differential series has on average approximately
unit variances comparable to the simulation study in Mariano and Preve (2012),
and we allow for contemporaneous correlation in the loss differential series. In
the size and power experiments we set g = 0 and p # 0, respectively. When
implementing the threshold estimator of 7 we employ the soft thresholding
function with a value of C = 2/3 consistent with the recommendations in Fan et al.
(2013) to minimize the number of non-positive definite covariance matrices. To
facilitate comparison, we set the truncation lag of the HAC estimator to zero as
in Giacomini and White (2006). In all experiments, we examine three sample
sizes, T' = {250,500,1000}. Given a reasonable initialization period (estimation
window), the sample size T = 250 is, for instance, comparable to a case with a long
time series of quarterly macroeconomic data, whereas T'= 500 and 7' = 1000 are
comparable to, for instance, a case with a shorter time series of monthly, weekly
or daily data of stock returns. We do 10,000 Monte Carlo replications and set the

nominal size to 10%.

B. Size properties

We first examine the size properties of the original test statistic and the TW
statistic. For the former case, we let & € {1,2,3,4}. This is comparable to the

setting considered in Mariano and Preve (2012). In the latter case, we extend the
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maximum number of methods to 10. For the conditional tests, we set k; = (1,AL;)’
corresponding to the case of testing whether past predictive performance can
inform about future performance. In the many-methods case, we report results
using the TW statistic without inclusion of the power enhancement component.*
This simulation design thus resembles situations often encountered in empiri-
cal exercises, and simultaneously constitutes a challenging setup by including
contemporaneous correlation, regime-switching variance and many instruments.

Table 1 reports the results for the uncorrected test statistic.
« Insert Table 1 about here >

We observe that the unconditional and conditional tests are generally well-sized,
though the conditional test become moderately oversized, when, not surprisingly,
the number of dimension (gk) increases. For large gk, the modified test statistic
thus become relevant. Table 2 reports results obtained using the TW statistic for

the conditional test.
« Insert Table 2 about here >

We observe that the proposed thresholding approach improves noticeable upon
the size distortion that occurs when the total number of methods and dimension
of the test function increase. For the conditional test statistic, empirical sizes are
good for all sample sizes and for all number of methods, occasionally showing only
a slight undersizing. Hence, by employing the TW statistic the test can be applied
even with a rather large number of forecasting methods (and/or instruments)

under examination while maintaining good size.
C. Power properties
Next, we turn to studying the power properties of the test statistic with or without

the finite-sample corrections with the same range of methods, respectively. We let

0.25, ifj=1,
Hj = (31)
0, otherwise,

4When including the power enhancement component, results in Table 3 reveal a moderate
size distortion mainly for 2 = 2, which decreases in sample size and dimension (¢gk). Since the
power-enhancement component will typically only be included in cases where % is not small, we
consider this potential issue a minor concern.
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which resembles a situation where the alternative hypothesis is true due to
lower predictive ability of the first method relative to the remaining methods. In
particular, the first method is 25% worse than the remaining methods in line with
the simulation study in Mariano and Preve (2012). Table 4 reports the results for

the uncorrected test statistic.
« Insert Table 4 about here >

The unconditional test statistic has good power properties for all sample sizes and
number of forecasting methods. The conditional test have good power properties
for T'=500,1000, and reasonable power in the low sample size case with moderate
values of gk. As expected, power decreases with the number of methods in the
T = 250 case, motivating the use of the finite-sample corrections for larger qk.
Using the same structure of p as in (31), we report results of the TW statistic
without the power enhancement component in Table 5 and including the power

enhancement component in Table 6.
« Insert Table 5 and 6 about here >

The power enhancement provides a noticeable increase in power in the conditional
case, leading to good power properties of the conditional test statistic. In general,
power increases in sample size and decreases in the number of methods and

elements of the test function.

C.1. Different predictive ability driven by state variables

To put the multivariate conditional test statistic into an economic perspective, we
consider a situation where one method is more accurate in a given state of the
economy, and less accurate in another state relative to the remaining methods in
the method set, but unconditionally the methods are equally accurate. Following
Giacomini and White (2006), we define a state variable V; with P[V; = 1] = p
and P[V; =0] =1-p. For T =500 we generate 10,000 loss difference sequences

according to

Vi—p

p(1-p)

AL; 1 =p + €141, (32)

where the first element of u is set equal to r and zero otherwise, and the error

terms are generated according to the procedure explained in the former section,
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incorporating contemporaneous correlation and regime-switching variance. It
is clear that E[AL;1] =0 and E[AL! |V, = 1] = r/p in contrast to E[AL} |V, =
0] = —r/(1 - p). We consider a range of r € [0,0.3] with p = 0.5. In the conditional
test, we set h; = (1,V;). We report results for the TW statistic, but for ease of
exposition restrict ourselves to considering the case of £ =4 and £ =9 and plot

the power curves in two figures. The curves are depicted in Figure 1.
« Insert Figure 1 about here >

It is clear that the conditional test quickly achieves power to detect different
performance in different states and that the unconditional test is, as expected,

close to the nominal size of 10%.

V. A rule for ranking and selection of forecasting methods

Rejection of the null hypothesis suggests that one or more of the forecasting meth-
ods possess better predictive ability, however, it provides no guidance towards
which method(s) that causes the rejection. The identification of these method(s)
might be of practical interest. In this section, we provide an algorithm that
ranks forecasting methods into sets with equal conditional predictive ability. This
procedure can be utilized dynamically to select forecast methods that is expected
(conditional on %) to yield the lowest loss at time T + 7 and conditional combina-

tion techniques within, for instance, the best set may be of practical relevance.’

In formulating the algorithm, we utilise a MCS-type procedure (Hansen et al.,
2011) to eliminate methods according to some elimination rule and rank forecast-
ing methods into £ < k + 1 sets, henceforth referenced as “method confidence
sets”, whose elements have equal conditional predictive ability. Let M be the
set of the k& + 1 forecasting methods under consideration and M* a preliminary
set of best forecasting methods (in terms of some loss function). We propose the

following three-step procedure:

e Step 0: Set M = M. Regress AL{n 44100 h; over some rolling window for
in,t+r

j=1,...,k. The conditional expectation, E[AL |%r], is approximated by

5See e.g. Aiolfi and Timmermann (2006), who exploit forecasting combination within “clusters”
of models to improve forecasting ability.
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the predicted value from the j’th regression. Based on f/ ’hT rank all 2+ 1
methods, where 7 is the vector of regression coefficients. The forecasting
method with lowest predicted loss is ranked first, and similarly the method
with highest fitted value is ranked at last.

¢ Step 1: Run the multivariate test for equal conditional predictive ability.

e Step 2: If the test is not rejected, set M* = M. Otherwise, eliminate the
lowest ranked forecasting method from M and iterate Steps 1-2 until the

null is not rejected.

Repeating the steps once leads to a set M containing the best forecasting methods
statistically indistinguishable in terms of conditional predictive ability. Repeating
the procedure until no additional method confidence set can be found finalizes
the algorithm. Consequently, the method confidence sets are ordered from those
yielding least expected loss to those yielding the highest expected loss, M1,...,M 4.
Effectively, this is a multivariate extension of the decision rule proposed in
Giacomini and White (2006). Besides leading to the same ranking across different
forecasting methods, it is also clear that (asymptotic) permutation invariance is
important for conducting the algorithm, because in each iteration with rejection
of the test we eliminate a method, leading to a reordering of the methods. Due to
the permutation invariance, this reordering has no impact on whether we reject

or not in the following iteration.

VI. Forecasting conditional variance of stock returns

To illustrate the workings of the multivariate test and the ranking rule proposed
in former sections, we focus our empirical investigation on forecasting (one day
ahead) the daily open-to-close conditional variance of the S&P 500 Index’ re-
turns. To this end, we suppose that the efficient (log) price process is an Ito

semimartingale of the form

¢ ¢
pt:p0+f bsds+f osdWs + Jy, (33)
0 0

where {b};>¢ is a locally bounded and predictable drift process, {0;}:>0 is a cadlag

process, {W;};>o is a Brownian motion, and {/;};>¢ is a jump process. The quadratic
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variation of this process over one day is

t
QV, :f olds+ Y (Aps). (34)
-1 t<s<t
Due to its latent nature, we turn to the realized variance, which is a natural
estimator of quadratic variation (Andersen, Bollerslev, Diebold, and Labys, 2001),
and hence a good proxy for the conditional variance (Patton, 2011). For a specific

business day ¢, the realized variance is given by the sum of squared intraday

returns, ry j = ptj— Pt,j-1,

RV,=) r;;, t=1,...N, (35)
j=1

where 1/n is the sampling frequency. As n increases, this estimator converges (in
probability) to the quadratic variation of the price process. In practice, however,
we only observe a noisy version of the efficient price due to the presence of market
microstructure effects such as bid-ask bounce and rounding. In order to avoid
problems introduced by the presence of this noise, we sample the price every
5 minutes (Hansen and Lunde, 2006; Liu, Patton, and Sheppard, 2015), thus

leaving us with 78 returns for each full trading day.

A. Data

The data set consists of 5-minute observations of the liquid SPY exchange traded
fund that tracks the S&P 500 Index, which is used in several other studies on
variance measurement, modeling, and forecasting. We collect data for the period
February 2001 to December 2013 and restrict attention to the official trading
hours 9:30:00 and 16:00:00 local New York time. We remove days with shortened
trading sessions. In total, we obtain data for 3,232 business days. Figure 2 depicts
the evolution of daily returns and relevant realized measures used in constructing
the models considered in this section, but restricts attention to the ranking sample
defined below (approximately last five years of the original sample).® They all
show the expected patterns with noticeable moves during periods of market stress
in 2010 and 2011.

6For a complete overview of the high-frequency based measures used in this section please see
Appendix C.
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« Insert Figure 2 about here >

B. Set of forecasting methods and unconditional results

We consider a set of forecasting methods summarized in Table 7. The set consists
of two families of models used in the variance forecasting literature, namely
the (G)ARCH framework and the more recent Heterogeneous Autoregressive
(HAR) framework initiated by Corsi (2009), as well as a hybrid specification in
the form of the Realized GARCH (RGACRH) by Hansen et al. (2012). Details
and specifications of the models and their estimation can be found in Appendix
C.” Consequently, we examine a mixture of old and recent, simple and complex,
nested and non-nested models, with or without estimation uncertainty arising
from different estimation methods. Up until now, a general joint examination
of the (state dependent) differences in the performance of such methods that
accounts for parameter uncertainty and non-stationarity in data has not been
possible without resorting to multiple testing procedures. We estimate the models
using a rolling window of m = 1000 business days consistent with most empirical
studies, hence use the first 1,022 observations for estimation, leading to 2,210

forecasts.
« Insert Table 7 about here >

We note that the distributional and permutation invariance results proposed in
the former sections hold for a general loss function, however since the conditional
variance is unobserved, the losses have to be calculated using a proxy. As shown
in Patton (2011), this limits the set of loss functions that can be used to compare
the models’ forecasting ability to the class of so-called robust loss functions. One
such robust loss function is the Quasi Likelihood (QLIKE) loss function, which is
the one we will adopt in this paper. The QLIKE loss function is given by

. __i _ RV RV,
L{(RV,;.1,RV,, ;) = t.“—log( s

— — )—1, i=1,....k+1, (36)
RVt+1

t+1

"The set of models considered in the present paper has been chosen based on the fact that
they require different estimation methods and represent different levels of complexity - a feature
which our theory is able to accommodate. Thus, the focus has not necessarily been on finding the
best possible specification of each of the given models, but rather to illustrate the flexibility of our
approach. Moreover, to facilitate comparison between the (G)ARCH and HAR frameworks, daily
returns are computed via open-to-close prices.

25



where RV;.1 is the realized volatility, which is our proxy for the conditional vari-
ance, and RV ++1 1s the forecast generated by the i’th forecasting method. We
make this choice of loss function as opposed to the Squared Prediction Error,
which is also contained in the class of robust loss functions of Patton (2011), since
the former leads to more power when comparing losses across different regimes,
which arguably is relevant in our data set. We apply an “insanity filter” like
e.g. Bollerslev, Patton, and Quaedvlieg (2016) and Patton and Sheppard (2015)
and replace negative forecasts with the forecasts generated by the Random Walk,
which only happens six times in the entire sample, hence playing no role on

results besides enabling evaluation of the QLIKE loss function.

The rightmost column in Table 7 reports the average QLIKE loss for each forecast-
ing method over the ranking sample. On average, the HAR forecasting methods
appear to perform better than the traditional (G)ARCH specifications, confirming
the findings in e.g. Andersen et al. (2003).% The inclusion of a realized measure
of volatility as in the realized GARCH model of Hansen et al. (2012) appears to
improve substantially on the performance of the GARCH framework, making it
comparable to the best HAR type models. Due to the large differences in forecast-
ing performance it is not surprising that an unconditional test on the entire set
leads to a strong rejection of the null hypothesis of equal predictive ability. This
also applies if we take out the AR(1) and ARCH(1) that perform particularly bad
on this sample, indicating the relevance of capturing the long-memory feature
of the variance process. Furthermore, it appears that the models proposed by
Patton and Sheppard (2015) perform almost equally well, which is supported by
no rejection (p-value of 0.3893) of an unconditional test of equal predictive ability
among these four forecasting methods. Likewise, an unconditional test of equal
predictive ability between the RGARCH and HARQ do not reject with a p-value of
0.9880. In the following we investigate what drives some of these (in)differences
in performances among the forecasting methods by means of the ranking rule in

Section V and multivariate conditional tests of predictive ability.

8Andersen et al. (2004) and Sizova (2011) provide theoretical justifications for this result
by showing that model misspecification and estimation errors of the realized measure used as
proxy for conditional variance may cause model-based forecasts (such as the ones from G(ARCH)
specifications) to be inferior relative to reduced-form forecasts (such as the ones from HAR
specifications).
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C. Conditional results

To investigate the conditional predictive ability of the individual forecasting
methods we perform Step O of the ranking rule on a rolling basis with 1,000
observations and use a significance level of 10% in the implementation of Step 1.
This leaves a total of 1,210 days for examination below, henceforth referenced as

the “ranking sample”.

We introduce two classes of state variables. First, we construct a bivariate
state variable indicating whether daily returns were negative at time ¢, i.e.
Xy =1{r; <0} fort=1,...,N, where r; denotes daily returns computed via open-
close prices to avoid any overnight and weekend effects. We will refer to this as
the “leverage state variable” for obvious reasons. Secondly, we construct a set
of state variables indicating whether a negative jump, no jump or positive jump
occurred at day ¢. Let oJ; denote the jump test statistic in Barndorff-Nielsen and
Shephard (2006)°, which enables testing for jumps in intraday returns at time
t and obeys J; 4N (0,1) under the null hypothesis of no jumps. We refer to the

paper for additional details. Then, we define

t(l) = 1ig7,50) s > 21-4}, (37)
@ = Lgg<ol{d; > 2124}, (38)

where SJ; = RS* — RS is the signed jump variation, measuring the variation
in intraday returns attributable to jumps of either positive or negative sign and
RS* = Zj r?,j]l{rt,j >0} and RS~ = ?,j rij]l{rt,j < 0} are the positive and neg-
ative realized semi-variances (Barndorff-Nielsen, Kinnebrouk, and Shephard,
2010). The (1 — a) quantile of the standard normal distribution is denoted by z1_,.
We will refer to these variables as the “jump state variables” and use a significance
level of 1% for determination of the presence of a jump as in Barndorff-Nielsen
and Shephard (2006). By construction, the jump state variables are equal to zero
if there is no jump at day ¢. If there is one or more jumps during day ¢, then jt(l)

( jt(z) ) will equal unity if the positive (negative) jumps contribute the most to the

9The test statistic is given by J; = vn RV, —BPV; where BPV; = %Z;‘ olre jllre j-1l and

V(72/4+7-5)TQ,’ =

3
rasz 4 4 4
TQ: = n i) Tiglrejl*Ire 1[I 21,
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daily price movements. The leverage state variable is just moderately correlated
with the jump state variables (-23% with jt(l) and 19% with jt@)), suggesting

they represent distinct market states.

We examine three cases separately. First, we set h; = (1,%;) to investigate
in isolation the impact of a negative return on the previous day. Secondly, we set
h;=(@1,_¢), with ¢, =( jt(l), ;2)) to isolate the impact of a jump on the previous
day and, finally, we set h; = (1,%;, _#;)' to examine the impact of jumps and the
leverage effect in conjunction. Figure 3 depicts M; (the best method confidence

set) over calendar time decomposed into leverage states and non-leverage states.'®
<« Insert Figure 3 about here >

A few things stand out. Firstly, there is a remarkable persistence in which models
are included in the set M7 during both states. Secondly, the figure confirms that
HAR specifications outperform the traditional (G)ARCH specifications both in
normal and leverage states. Even though the GJR specification is build to capture
leverage effects, it is not included in the best set during leverage states. Instead,
the first three leverage models of Patton and Sheppard (2015) are preferred until
early 2012, at which point the HARQ and RGARCH models take over during the
leverage state. Interestingly, RGARCH is included only in the no-leverage state
during the time until the beginning of 2012. By the third quarter of 2012 the
HARQ specification appears to take over the role as the most commonly included

model in M7 during no-leverage states.

The vertical lines in the figure mark two events in the U.S. stock market that
appear to have a large influence on the forecasting performance of the models
under consideration. On May 6, 2010, the Flash Crash occurred with the S&P
500 Index collapsing and rebounding rapidly resulting in turmoil in the following
months. January 3, 2012, was the first trading day of 2012 and marked the
beginning of a period of lower volatility. The periods following these events are

thus characterized by very different volatility regimes as documented in Figure 2

10We use here and for the remainder of the empirical section (unless otherwise stated) the
power-enhanced TW statistic with soft thresholding and C = 2/3. We have also experimented with
different orderings of the forecasting methods, but results are unaltered, which is in line with the
(asymptotic) permutation invariance property.
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above. Interestingly, during normal states, HAR and occasionally HAR-RS-II are
included in the best set up until the Flash Crash, but drop out after this event.
After the markets have calmed again, the HARQ, HAR-RS-I, HAR-RS-II, and
HAR-SJ-I specifications appear to make a comeback for the first few months of
2012. Such structural breaks in (relative) conditional predictive ability of the
forecast methods highlight the importance of having a test that is valid even if
the data is non-stationary.!! These findings are robust to different estimation
windows, m, and inclusion of a HAR model estimated using a short window of
250 days, suggesting that the identified structural breaks are not attributable to
rigidity in parameters of the HAR model, but rather a regime shift in volatility.

Interestingly, we observe that the RGARCH model mainly is preferred in the
normal states, whereas the leverage models HAR-RS-I, HAR-RS-II, HAR-SJ-I as
well as the HARQ model for the second half of the sample are preferred in the
leverage states. This indicates that the superior performance on average in Table
7 of the RGARCH and HARQ models originates from distinctively different states.

Lastly, despite the fact that the four models of Patton and Sheppard (2015)
perform equally well on average, our analysis reveals that the (relative) perfor-
mance of these models differ in important ways. In particular, inclusion of the
HAR-SJ-II specification mainly occurs during normal states, whereas the remain-
ing three models primarily are included during the leverage state. Interestingly,
this suggests that average unconditional superiority (relative to simpler models)
of HAR-SJ-II in Table 7 is driven by performance in normal states, whereas the
gains in the remaining three models of Patton and Sheppard (2015) are derived
from leverage states. In Table 8, we report a summary of M conditional of
the relevant states and whether M; for each time period contains only a single

forecasting method.
« Insert Table 8 about here >

The table confirms the overall ranking of the forecasting methods from Table 7
in the first column, and confirms that the forecasting gain of HARQ, HAR-RS-

HThe presence of the regime shifts is robust to a different choice of rolling window used in
Step 0 equal to 500 observations, indicating that it is not caused by observations from the 2008
market turmoil dropping out of the rolling window.
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I, HAR-RS-II, and HAR-SJ-I relative to the simpler methods is derived from
leverage states, whereas the HAR-SJ-II and RGARCH perform particularly well

during normal states. In fact, whenever M is a singleton (29% of the sample), it
is most often either HARQ or RGARCH.

Figure 4 depicts a corresponding plot when we condition only on the jump vari-

ables, and Table 9 provides a summary of the resulting M;.

< Insert Figure 4 about here >
« Insert Table 9 about here >

Interestingly, and in contrast to the clear differences across states in the lever-
age case, it appears that the same models to a large degree are chosen almost
independently of the jump states and sign. That is, jumps appear to have little
effect in general on the relative forecasting ability among the forecasting methods.
They do, however, play a noticeable role in the 2010-2011 period, which has been
characterized by a large degree of market turmoil and, according to Figure 2,
several large jumps. From the Flash Crash in May 2010 and until the end of 2011,
the HAR-RS-I and HAR-RS-II are generally excluded from the best set in jump
states. Instead, this period is dominated by specifications explicitly accounting for
jumps, i.e. the HAR-J, HAR-SJ-I and HAR-SJ-II, as well as the RGARCH model.
Furthermore, as it was the case in the leverage scenario considered previously,
the baseline HAR model is only included during the initial part of the sample.
Despite the fact that the RGARCH model is included in M; 74% of the time, it
is never chosen when M is a singleton. Instead, we find that in the case where
M is a singleton (10% of the sample), it consists of either HARQ or HAR-SJ-II.
The fact that the HARQ model is the most likely one to be chosen in this case is
interesting because the model not directly accounts for the jumps, although as
argued in Bollerslev et al. (2016) the jumps are indirectly accounted for through

the inclusion of realized quarticity.

Table 10 reports results from the joint case with the test function containing

both the leverage and jump state variables.

« Insert Table 10 about here >
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The table generally confirms the findings from the separate cases above, however,
we derive an additional conclusion. In the negative jump days the Random Walk
is included in the best set around 38-39% of the times independently of being
in a leverage or no leverage state. That is, forecasting the conditional variance
following days with negative jumps and beating a Random Walk in predictive
ability appears to be particularly challenging. Furthermore, the RGARCH model
remains the most commonly included model in M1, and it is picked in 74.3% of

the cases where M is a singleton.

D. Dynamic forecast combination

It stands out from the former section that the forecasting methods’ predictive
ability is time-varying in two ways. First, two structural breaks appear to occur
during the sample period. Secondly, the forecasting methods’ predictive ability
relative to each other depend on the state of the market as characterized by jump
and/or leverage states. Based on these state-dependencies, about one-fifth of the
days we were able to identify a single superior model, mainly chosen among the
RGARCH of Hansen et al. (2012), HARQ of Bollerslev et al. (2016), and HAR-
SJ-II of Patton and Sheppard (2015). For the remaining days, the best two or
more forecasting methods provide statistically indistinguishable predictive ability,
comprising a best method confidence set, M1, at each day (whose composition
varies over time). This suggests a potentially beneficial conditional, dynamic

forecast combination procedure for each day as the following:

o If M, = {i} (singleton), select the i’th forecasting method,

¢ otherwise, perform forecast combination within Mj.

This section thus evaluates the performance of such conditional forecast combina-
tion procedure, which exploits predictability of forecast losses identified by the
test statistic developed in this paper. A related approach is put forward in Aiolfi
and Timmermann (2006), who conduct forecast combination within ’clusters’ of
forecasting models with most predictable forecast errors based on lagged forecast
errors. Among a very large set of models supposed to forecast quarterly macroe-
conomic data, they find gains relative to choosing the previous best forecasting
model at each time point. Recently, Wang, Ma, Wei, and Wu (2016) forecast

realized variance of the S&P 500 Index’ returns using a set of HAR specifications
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comparable to the set examined in this paper. In an attempt to exploit (unob-
served) time-varying predictive ability of the models, they implement a Dynamic
Model Averaging combination. Despite its higher degree of sophistication, it leads
to limited gains relative to individual forecasts generated by the models in Patton
and Sheppard (2015).

To capture potential persistence in the forecast losses, we include lagged loss
differentials as a state variable in the test function, hence set h; = (1,%;, _%;,AL;) .
For each time period, we compute combination weights using a window of m,,

past days via the following expression
w=K 1/ + 1 (s - Kl ) (39)
K™ 1+ g K>

where K denotes the number of elements in M and 1 is a K-dimensional vector
of ones. The combination weights in (39) are the conventional g-prior shrinkage
weights (see e.g. Zellner (1986)). Here, w1,s denotes the estimated time-varying
least squares (LS) weights (Bates and Granger, 1969; Granger and Ramanathan,
1984; Diebold and Pauly, 1987) using the restrictions that the weights are non-
negative (to ensure non-negative forecasts) and contain no intercept in the regres-
sion specification.'? Effectively, g controls the shrinkage towards equal weights
away from the LS estimator and, thus, controls impact of estimation error. This
weight estimation is motivated by the simulation study in Elliott and Timmer-
mann (2005), which reveals that a rolling window least squares estimator may be
preferable when combination weights are subject to a structural break, whereas a
simple equal-weighted average may be preferable in cases with frequent regime
shifts. Both instances may be present qua the findings in the former section,

motivating a weighting scheme that enables the presence of both.

A direct competitor for the conditional forecast combination (FC) procedure is a
naive forecast combination, which utilizes information in all forecasting methods

at each time point by combining within the entire M(. By pre-selection at each

2Imposing the additional restrictions that the weights are (weakly) less than unity and sum to
one corresponds to the mean square optimal weights in Bates and Granger (1969). However, they
may lead to inferior results according to e.g. Granger and Ramanathan (1984); Holmen (1987),
hence we proceed without this restriction.

32



time point a relevant set of forecasting methods (the best method confidence set,
M), the conditional forecast combination trades off information from methods
for less estimation error in combination weights, potentially leading to superior

performance. We examine both cases in the following.

We consider g =0.33,1,3 corresponding to a case with approximately 75%, 50%,
25% weight put on the LS weights, respectively. We choose a medium length
of the rolling window equal to two years, m,, = 375, to ensure a fair basis of
comparison between the conditional and naive methods, though conclusions are
qualitatively unaltered if a shorter window of 250 days (one year) or a longer
window of 750 days (three years) is used. To make the relative gains stand out
more clearly, we normalize the QLIKE loss measures of the relevant forecast
combination procedures by the QLIKE loss of each individual model such that a
number below unity indicates superiority of the forecast combination procedure

relative to the individual models. Table 11 reports the results.
« Insert Table 11 about here >

The conditional forecast combination procedure systematically improves upon
the individual forecasting methods’ performances for all values of g. Specifically,
it provides a gain relative to the HAR model of approximately 17-18%, about
10-13% relative to the leverage models of Patton and Sheppard (2015) and about
4-5 % to the RGARCH and HARQ of Hansen et al. (2012) and Bollerslev et al.
(2016), respectively. We consider this finding an interesting and promising result
for the ranking algorithm proposed above, considering that i) the RGARCH
and HARQ models are chosen almost one-fourth of the times whenever Mj is
a singleton, and ii) the forecast errors of the methods in M; whenever it is
not a singleton arises from similar models leading to highly correlated forecast
errors and, hence, a limit on the gain of forecast combination. Despite this, an
unconditional test of equal predictive ability between the HARQ specification and
the conditional forecast combination procedure (for each value of g) rejects on
conventional levels with p-values of 0.0060, 0.0029, and 0.0295 for g =0.33,1, 3,
respectively, documenting a statistically significant gain in terms of predictive
ability of the proposed procedure. Relative to the naive combination, the benefit
of narrowing down M to a relevant set of forecasting methods at each time

point is clear. Estimation error seems to dominate the performance of the naive
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combination strategy, leading to inferior results in general relative to most HAR
models and a significant 18% relative to the conditional forecast combination

procedure proposed here.

VII. Conclusion

Our new statistical tests for equal conditional predictive ability among a set
of two or more forecasting methods may be seen as a multivariate generaliza-
tion of the Giacomini-White tests (Giacomini and White, 2006), and in a special
case provide an extension of the multivariate Diebold-Mariano test statistic in
Mariano and Preve (2012) for equal unconditional predictive ability. They apply
in a setting that allows for a mixture of nested and non-nested models as well
as non-stationarity in data, and explicitly accounts for estimation uncertainty
in parameters used to make predictions. All our tests hold for a general loss
function, have chi-squared limiting distributions, and are generally invariant to

any reordering of the forecasting methods, thus facilitating easy implementation.

Simulations suggest that our tests have good finite-sample size and power. To
potentially improve upon statistical properties of the test statistics in the case
with many methods and/or instruments, we introduce two finite-sample adjust-
ments. First, we developed test statistics employing a threshold estimator of the
covariance matrix, and secondly, we introduced a power enhancement component
along the lines of Fan et al. (2015). The simulation study confirms that the finite-

sample corrections succeed in improving both size and power.

A new Model Confidence Set (Hansen et al., 2011) inspired rule allows for ranking
the forecasting methods into sets containing forecasting methods of indistinguish-
able conditional predictive ability. In an empirical application to forecasting the
conditional variance of the S&P 500 Index’ returns, we provide evidence of what
drives (in)differences in forecasting performance between a diversified set of fore-
casting methods including (G)ARCH, Realized GARCH, and HAR specifications.
The results show, among other things, that exploiting the ranking rule in a novel
conditional forecast selection procedure leads to significant gains in predictive

ability relative to individual forecasting methods and competing forecast combi-
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nation methods. Finally, our empirical work shows that there is room for further
improvement in the forecasting of return variance following days with negative

jumps.
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