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Abstract

We propose a non-structural pricing method to derive the risk-neutral density (RND)

implied by options on the CBOE Volatility Index (VIX). �e methodology is based on or-

thogonal polynomial expansions around a kernel density and yields the RND of the under-

lying asset without the need for a parametric speci�cation. �e classic family of Laguerre

expansions is extended to include the GIG and the generalized Weibull kernels, thus relax-

ing the conditions required on the tail decay rate of the RND to ensure convergence. We

show that the proposed methodology yields an accurate approximation of the RND in a

large variety of cases, also when the no-arbitrage and e�cient option prices are contami-

nated by measurement errors. Our empirical investigation, based on a panel of traded VIX

options, reveals some stylized facts on the RND of VIX. We �nd that a common stochastic

factor drives the dynamic behavior of the risk neutral moments, the probabilities of volatil-

ity tail-events are priced in the options as jumps under the risk-neutral measure, and the

variance swap term structure depends on two factors, one accounting for the slope and one

for the mean-reverting behavior of the VIX.
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variance swaps
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1 Introduction

�e Volatility Index (VIX) was introduced in 1993 by the Chicago Board Options Exchange

(CBOE) to measure the market expected volatility. In its �rst formulation, the VIX was de-

�ned as an average of S&P 100 call and put implied volatilities. In response to the growing

interest in volatility trading, in 2004 the CBOE introduced the VIX futures alongside a revised

formulation of the VIX which was based on the replication of variance swap contracts wri�en

on the broader S&P 500 (SPX) index. Speci�cally, in its current formulation, see CBOE (2015),

the VIX is computed as the present value of a portfolio of SPX call and put options constructed as

a static replication of a 30-days variance swap. In 2006, options wri�en on the VIX also started

trading. Since then, several authors have studied the pricing of VIX options. �e main strand

of literature addresses VIX derivative pricing under stochastic volatility models, mostly within

the a�ne class. �is branch is pioneered by Zhang and Zhu (2006) and Zhu and Zhang (2007),

who derive dynamics for the VIX starting from a square-root model for the spot variance. �e

works of Sepp (2008a,b) extend this approach by introducing jumps in the spot variance within

the a�ne jump-di�usion (AJD) framework of Du�e et al. (2000). �e recent paper by Bardge�

et al. (2014) further generalizes the framework of Sepp (2008a,b) by allowing for a stochastic

long-run mean of variance. Non-a�ne pure-di�usion extensions of the square-root model for

the spot variance are in Gatheral (2008) and Bayer et al. (2013). Finally, modeling frameworks

based on in�nite-dimensional speci�cations of the variance swap term-structure are proposed

by Buehler (2006), Bergomi (2008), and Cont and Kokholm (2013).

A common feature of these contributions is that the risk-neutral density (RND) is assumed

to be fully described by stochastic dynamic equations of the state-variables, which are functions

of the underlying model parameters. Unfortunately, fully parametric speci�cations of the dy-

namics of price and volatility come at the cost of an intrinsic risk of misspeci�cation, see for

example Cont (2006) for a discussion. �e problem of correct model speci�cation in VIX option

pricing is particularly troublesome since the linkage between VIX and SPX is not fully explicit,

and they both depend on the variance, which is an unobservable quantity. Even when modeling

is solely addressed to the marginal density of the VIX, a comparative analysis of the performance

of simple stochastic volatility models in pricing of VIX options tends to con�rm the potential

issue of misspeci�cation. For example, Christo�ersen et al. (2010) and Wang and Daigler (2011)

�nd some evidence in favor of models that assume log-normal dynamics for the instantaneous

variance, although none of these models achieve small pricing errors over the entire range of

strike prices. Moreover, the econometric analysis carried out by Mencia and Sentana (2013) re-

veals that the risk of model misspeci�cation in structural pricing of VIX options is particularly

high during �nancial crises. �is re�ects the general disagreement in the literature on the ”na-

ture” and the roughness of the instantaneous volatility. In particular, although the instantaneous

volatility is most commonly modeled as a jump-di�usion process, Todorov and Tauchen (2011)

�nd that it is best described by a pure jump process, with clear consequences on the VIX index
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and its related options. Reducing the model risk concerned with VIX option pricing is possible

but o�en comes at the cost of analytical tractability and availability of closed-form solutions.

�us, modeling frameworks conceived for capturing stylized facts of the VIX are rarely suited

for estimation purposes.

In this view, non-structural methods for estimating the RND directly from VIX options rep-

resent a viable alternative to stochastic modeling. �e term ”non-structural” is referred, in gen-

eral, to any option pricing method that does not rely on the postulation of a speci�c parametric

expression for the RND. �is entails considerable reduction of the risk associated with mis-

speci�cation. �e idea that vanilla option prices can be linked to the RND through an explicit

non-structural relation was pioneered by Breeden and Litzenberger (1978). In the context of

VIX option pricing, a non-structural technique has recently been employed by Song and Xiu

(2016) with the purpose of estimating the volatility pricing kernel, which is the ratio between

the physical and the risk-neutral density of the VIX. More precisely, as in many other works

addressing non-structural option pricing, the authors propose to retrieve the RND by inferring

the second-order derivatives of option prices with respect to strikes directly from the market.

�e non-structural approach proposed in this paper does not directly consider the second-order

derivatives of option prices, but it recovers the RND by means of an orthogonal polynomial ex-

pansion around a kernel density, see for instance Szegö (1939). Classic examples of orthogonal

expansions are the Hermite, which are obtained when the kernel is a Gaussian density, and the

Laguerre, which are obtained when the kernel is an exponential density. �e key feature of or-

thogonal expansions is that they yield an explicit functional form of the RND without the need

of specifying stochastic dynamics of the state-variables. Instead, this method imposes mild in-

tegrability conditions on the form of the RND, proving to be particularly robust to misspeci�ca-

tion. �ere is extensive literature on the use of orthogonal expansions in �nancial applications.

Seminal examples are Jarrow and Rudd (1982), Corrado and Su (1996b), Madan and Milne (1994),

Coutant et al. (2001), and Jondeau and Rockinger (2001), while more recent contributions are

Rompolis and Tzavalis (2008), Zhang et al. (2011), Ñı́guez and Perote (2012), and Xiu (2014). In

all these cases, the expansions are provided in terms of Hermite polynomials. Our methodology

can be thought of as an alternative of Hermite expansions to the case of kernels with positive

support. Indeed, adapting the expansion kernel to the data (for instance by choosing a kernel

with support on the positive axis only) may be a be�er alternative to the inverse approach of

adapting the data to the kernel (for instance by log-change or standardization). In particular, we

extend the Laguerre expansions, used recently by Filipovic et al. (2013) and Mencia and Sentana

(2016), by introducing a family of kernels that encompasses well known distributions such as

the exponential, the Gamma, the Weibull and the GIG, among others. We show that the intro-

duction of the extended Laguerre (eLaguerre) kernels increases the adaptability of the approach

by reducing the number of restrictions to be imposed on the form of the RND.

We contribute to the VIX option pricing literature on several aspects. First, we provide

general convergence conditions of orthogonal expansions to the true RND. �ese conditions
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relate to the rate of tail decay of the expansion kernel. We show that the log-normal density, due

to its slow tail decay rate, does not represent a suitable candidate for the expansion kernel as this

would generally lead to inaccurate approximations. Instead, our extended Laguerre kernels are

be�er suited to approximate the RND associated with the VIX options, due to the very �exible

decay rate on both tails. Indeed, owing to the irregular nature of the instantaneous volatility,

see Todorov and Tauchen (2011) and Todorov et al. (2014), the tails of the RND of the VIX are

expected to display features that can only be captured if a �exible choice of the kernel density

is adopted. Second, in the spirit of Aı̈t-Sahalia and Lo (1998), Jondeau and Rockinger (2001) and

Aı̈t-Sahalia and Duarte (2003), we propose a robust methodology to estimate the parameters of

the polynomial expansion by a minimum distance criterion based on the observed option prices.

We prove that the proposed methodology yields a very accurate approximation of the RND also

when the no-arbitrage and e�cient option prices are contaminated by measurement errors.

Although this paper focuses on VIX options, our methodology is outlined in full generality, and

hence it can be applied to any option to recover the implied RND.

�e analysis of the RND is carried out on a panel of VIX options collected at monthly fre-

quency for the period January 2010 - April 2016. �e results highlight the reliability of our

methodology to recover RND up to negligible rounding errors and to mimic relevant quantities

embedded in the VIX options, such as the volatility of volatility index, i.e. VVIX. �e time se-

ries of the �rst four risk-neutral moments of VIX display some interesting clues about volatility

expectations. First, we discover the presence of a positive correlation between mean and vari-

ance of VIX (reversed leverage e�ect) as well as a common factor structure across moments and

times-to-maturity. Second, by ��ing a multiplicative error model (MEM) on the time series of

the VIX risk-neutral moments, we �nd strong empirical evidence in favour of a non-negligible

volatility jump probability under Q that is priced in the options. �ird, the variance swap term

structure is empirically studied. �e variance swap term-structure implicit in the VIX second

moments is coherent with the one directly computed from SPX options, proving that the two

markets are consistent with each other. �is result entails that the second moment of VIX can

be traded through a combination of long and short positions on SPX options. Finally, we show

that it is crucial to account for the mean-reverting behavior of the realized variance to describe

the term-structure with a constant slope term.

�e paper is organized as follows. Section 2 recaps the VIX formula and de�nes its RND,

while Section 3 summarizes some properties of orthogonal polynomial expansions. Section 4

discusses the estimation procedure based on principal components regression of the expansion

coe�cients, under additional consistency constraints. Section 5 addresses whether and how

the estimated RND is a�ected by option prices contaminated by measurement errors associated

with no-arbitrage violations. Finally, Section 6 presents the empirical applications with real

data. Appendix A contains the proofs of the theorems related to the orthogonal polynomials,

while Appendix B contains some supplementary material with details on the ��ing procedure,

the numerical experiments and the robustness to no-arbitrage violations.
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2 �e VIX index

Introduced in 1993 by the Chicago Board Options Exchange (CBOE), the VIX is a risk-neutral

forward measure of market volatility calculated as the fair value of a 30-days variance swap

rate. Futures and options on the VIX are the �rst derivatives on volatility to be traded on a

regulated security exchange, see Carr and Wu (2006) and Carr and Lee (2009) for a detailed

historical review of the VIX. At the core of the VIX construction, which is detailed in CBOE

(2015), lies the model-free methodology of Carr and Madan (1998), Bri�en-Jones and Neuberger

(2000), and Jiang and Tian (2005), to price a variance swap via static replication. According to

this methodology, under standard risk-neutrality and no-arbitrage assumptions, the s-variance

swap rate at time t , VSt ,s , can be computed as

VSt ,s = −
2

s
EQt

[
log

(
SPXt+s

xF

)]
, (1)

where Q denotes the risk-neutral pricing measure and xF is the SPX forward price observed at

time t for maturity t + s . �e right-hand term in (1) can be replicated by the following portfolio

of SPX calls and puts

−
2

s
Et

[
log

(
SPXt+s

xF

)]
=

2e−r ·s

s

(∫ xF

0

1

x2
PSPX(x )dx +

∫ ∞

xF

1

x2
CSPX(x )dx

)
, (2)

where r is the risk-free rate and CSPX(x ) and PSPX(x ) denote prices of SPX call and put options

observed at time t , expressed as functions of the strike x . �e square of VIX is de�ned by �xing

s to 30 days and by discretizing the in�nite strip of out-of-the-money options in (2) over the

�nite set of available strikes

VIX
2

t

100

=
2e−r ·s

s
*.
,

∑
xi≤x0

∆xi

x2

i

PSPX(xi ) +
∑
xi≥x0

∆xi

x2

i

CSPX(xi )
+/
-
+

1

s

[
xF
x0

− 1

]
2

, (3)

where ∆xi is half the distance between xi+1 and xi−1, x0 is the greatest available strike below xF .

In practice, when options with maturity exactly equal to s are not available, the VIX is calculated

by interpolating the values of (3) calculated by using SPX options with the largest available

maturity below 30 days (near term) and the smallest available maturity above 30 days (next

term). We should also remark that, in principle, formula (1) is not exact when the trajectories of

the SPX are subject to jumps. However, as pointed out by Carr and Wu (2009), the contribution

of price jumps in the computation of (1) can be neglected in practice.

�e VIX index typically exhibits high negative correlation to the stock market, thus proving

an e�ective tool to hedge (or leverage) volatility separately from directional price moves. As a

ma�er of fact, many investors deem the VIX to be a leading indicator of market sentiment - the

index is o�en referred to as the market fear gauge. �is is re�ected by high trading volumes of

VIX options, which stand at approximately 37% of the average daily volume of SPX options, as
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noticed by Mencia and Sentana (2013). Under risk-neutrality and no-arbitrage assumptions, for

�xed observation time t , time-to-maturity τ , and strike K , the price of a VIX call option CK (t ,τ )

and the price of a VIX put option PK (t ,τ ) are given by

CK (t ,τ ) = e−rτ
∫ ∞

0

fQ(t ,τ ;x ) (x − K )+dx , PK (t ,τ ) = e−rτ
∫ ∞

0

fQ(t ,τ ;x ) (K − x )+dx , (4)

where fQ(t ,τ ; ·) is the conditional RND of VIXt+τ , given all the past information up to time t .

When not misleading, we will omit the dependence of the RND on t ,τ and simply denote it by

fQ. �e RND of the VIX is the object of interest in this paper. In the next section, we discuss a

robust methodology to retrieve fQ directly from the VIX option prices.

3 Orthogonal polynomials

�e methodology that we adopt builds upon the following expansion of the RND

fQ ≈ f (n)
Q

(x ) := ϕ (x ) *
,
1 +

n∑
k=1

ek (x )+
-
, n ≥ 1 , (5)

where ϕ is a chosen probability density function (kernel) and ek are corrective factors with

e0 = 1. �e kernel function ϕ can be seen as the 0-order term in (5)

f (0)
Q

(x ) := ϕ (x ) ,

and it can be interpreted as an initial proxy for the RND. In this work, we consider expansions

where the corrective factors e1, . . . , en take the following form

ek (x ) = ckh
ϕ
k
(x ),

where, for every k = 1, . . . ,n, ck is a real constant and h
ϕ
k

is a polynomial of degree k in the

state variable x . �e polynomials h
ϕ
1
, . . . ,h

ϕ
n only depend on the kernel ϕ, and therefore the

coe�cients c1, . . . , cn embed all the information on the RND.

�e consistency of this approach relies on two results of functional analysis discussed in

Sections 3.1 and 3.2. �e �rst result ensures that if h
ϕ
1
, . . . ,h

ϕ
n are orthogonal to each other, in a

sense that will be clari�ed below, then by construction the resulting approximate density f (n)

enjoys unitary mass and other desirable properties regarding its moments. �e second result

reveals that the relation expressed in (5) is non-structural, meaning that no speci�c form of

the RND needs to be postulated in order to ensure that (5) is an admissible expansion, i.e., that

f (n)
Q
→ fQ as n → ∞. �e results in Sections 3.1 and 3.2 are obtained under the maintained

assumption that ϕ is a probability density function with support D ⊆ R and possessing �nite
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polynomial moments, that is ∫
D

|x |kϕ (x )dx < +∞, ∀k ∈ N.

3.1 Properties of orthogonal polynomials

�e elements of the family (h
ϕ
k
)k∈N are said to be orthogonal polynomials with respect to ϕ if, for

all k ∈ N and all j ∈ N such that j , k ,

deg

(
h
ϕ
k

)
= k and

∫
D

h
ϕ
k
(x )h

ϕ
j (x )ϕ (x )dx = 0. (6)

�e existence of a family (hk )k∈N of orthogonal polynomials with respect toϕ can be shown con-

structively, e.g., by applying the Gram-Schmidt orthogonalization to the basis 1,x , . . . ,xn, . . ..

For �xed n ∈ N, h
ϕ
1
, . . . ,h

ϕ
n are uniquely determined, up to a sign, if they also obey to the fol-

lowing normality condition ∫
D

h
ϕ
k
(x )2ϕ (x )dx = 1 . (7)

Henceforth, for a given kernel ϕ possessing �nite moments, we denote by (h
ϕ
k
)k∈N the unique

(up to a sign) family of related orthogonal polynomials satisfying condition (7) for every k ∈ N.

Furthermore, for a given n ∈ N, we denote byW := (wi,j ) the (n + 1) × (n + 1) lower triangular

matrix containing the coe�cients of h
ϕ
0
, . . . ,h

ϕ
n . Speci�cally, for i = 1, . . . ,n we have

h
ϕ
i (x ) = wi,0 +wi,1x + . . . +wi,ix

i , (8)

and wi,j = 0 for j > i .

For the numerical computation of the basis h
ϕ
1
, . . . ,h

ϕ
n , the following recurrence relation can

be used as a more e�cient alternative to the Gram-Schmidt procedure. De�ne

h
ϕ
0
(x ) = 1, h

ϕ
1
(x ) =

x −Mϕ

√
Vϕ

,

where Mϕ
and Vϕ

are the mean and the variance of ϕ, respectively. �e remaining terms,

h
ϕ
2
, . . . ,h

ϕ
n , can be computed as

h
ϕ
k
(x ) =

1

Ck

[
(x − ak )h

ϕ
k−1

(x ) − bkh
ϕ
k−2

(x )
]
, (9)

where

ak =

∫
D

xh
ϕ
k−1

(x )2ϕ (x )2dx , bk =

∫
D

xh
ϕ
k−1

(x )h
ϕ
k−2

(x )ϕ (x )2dx ,

Ck =

(∫
D

[
(x − ak )h

ϕ
k−1

(x ) − bkh
ϕ
k−2

(x )
]

2

ϕ (x )2dx

) 1

2

.
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An important property of orthogonal polynomials is that they ful�ll a mass conservation

principle that extends to all moments. More speci�cally, for �xed p ≥ 0∫
D

xp f (n)
Q

(x )dx =

∫
D

xp f
(p)
Q

(x )dx , ∀n ≥ p. (10)

A major consequence of (10) is that, irrespective of the order n, the approximated RND obtained

by (5) always integrates to 1, irrespective of the order n, i.e.,∫
D

f (n)
Q

(x )dx = 1 ∀n ∈ N. (11)

Furthermore, in view of (10), we can interpret c1, . . . , cp as corrective factors of the �rst p mo-

ments of ϕ to match the corresponding moments of fQ. In general, f (n)
Q

is not guaranteed to

be a positive function over its support, even under the assumption that ϕ is a positive function.

�is property is recovered when the n-th coe�cient cn ful�lls some constraints. More precisely,

f (n)
Q
≥ 0 if and only if

c inf

n ≤ cn ≤ c
sup

n , (12)

where

c inf

n = − sup

x : h
ϕ
n (x )>0

f (n−1)
Q

(x )

h
ϕ
n (x )

, c
sup

n = inf

x : h
ϕ
n (x )<0

f (n−1)
Q

(x )

h
ϕ
n (x )

.

�e result above follows a�er noticing that

f (n)
Q
= f (n−1)
Q

+ cnh
ϕ
n .

3.2 Admissibility of orthogonal expansions

�is paragraph is devoted to discussing the admissibility of expansion (5) for the RND. �e fol-

lowing theorem represents a prerequisite for se�ing up a mathematically well-posed procedure

to estimate the expansion coe�cients c1, . . . , cn based on observed option prices.

�eorem 3.1. Assume that supp( fQ) ⊆ D ⊆ R+ and that ϕ−1 f 2

Q
is integrable over its support.

Moreover, assume that limx→+∞ ϕ (x )e
ςx

1

2 = 0 for some ς > 0 and that pϕ is bounded for some
polynomial p. �en:

(a) there exists a sequence (ck )k∈N such that, for a proper subsequence of indexes1 (kn )n∈N,

fQ(x ) = lim

n→+∞
ϕ (x ) *.

,
1 +

kn∑
k=1

ckh
ϕ
k
(x )+/

-
for a.e. x ∈ D ;

1
�ere is no need for a subsequence if the RND ful�lls additional regularity assumptions, e.g., smoothness.
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(b) the following holds in the limit

lim

n→+∞

∫ +∞

0

Π(x ) f (n)
Q

(x )dx =

∫ +∞

0

Π(x ) fQ(x )dx , (13)

for any function Π such that Πϕ
1

2 ∈ L2(D).

Proof. See Appendix A.1. �

Point (a) in �eorem 3.1 provides su�cient conditions to ensure that the RND admits the

representation (5) or, in other words, that f (n)
Q

converges to fQ for some c1, . . . , cn, . . .. Point

(b) ensures that we can move the limit within the integral pricing formulas in (4) and obtain

convergent expansions for prices of call and put options. Looking at the hypotheses of �eorem

3.1, we note that they are essentially sharp conditions, meaning that they cannot be further

relaxed and, in fact, they sharpen the assumption of Filipovic et al. (2013), which allows for

Gamma-type decay in the kernel. Indeed, if ϕ−1 f 2

Q
is not integrable, then the expansion (5) is not

well-de�ned since it may diverge as n → ∞. �is means that the kernel should not decay faster

than the RND. On the other hand, if limx→+∞ ϕ (x )e
ςx

1

2
−γ
> 0 for some γ , ς > 0, then �eorem

3.1 is still well-de�ned but will not necessarily converge to fQ, as pointed out by �eorem A.3-

(ii), reported in the Appendix A.1. �is suggests that the expansion (5) may not be su�ciently

informative on the RND when the kernel decays too fast, i.e., faster than e−
√
x
. However, in

view of �eorem 3.1, the kernel ϕ mostly serves as an initializing state of the expansion (5).

�erefore, as long as the choice of ϕ complies with the hypotheses underlying �eorem 3.1, its

impact on the form of f (n)
Q

will be of marginal importance, provided that n is su�ciently large.

�e validity of this statement is supported by numerical illustrations provided in Section B.2 of

the Supplementary material. Finally, the following remark highlights the existence of a linear

mapping between the coe�cients (ck )k∈N and the moments of fQ.

Remark 3.2. If the hypotheses underlying �eorem 3.1 are satis�ed, then one can show that for
every k ∈ N

ck =

∫
supp(ϕ)

h
ϕ
k
(x ) fQ(x )dx =

k∑
i=0

wk,i

∫ +∞

−∞

xi fQ(x )dx (14)

wherewk,i is the i-th coe�cient of hϕ
k
.

3.3 �e extended Laguerre and the log-Hermite expansions

In this sub-section, we study the properties of a class of kernel densities that can form the basis

for the polynomial expansions used to retrieve the RND of VIX. Based on restrictions imposed

by �eorem 3.1, we propose the following family of kernels with support on D = [0,+∞[,

ϕ (x ) ∝ xα−1e−(βx
p+ξx−1)1D (x ), α , β , ξ ,p ∈ Θ, (15)
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where

Θ =
{
α , β, ξ ,p ∈ R | β > 0, 0 < p ≤ 1, (α > 0, ξ = 0) ∨ (α ∈ R, ξ > 0)

}
.

�e speci�cation (15) embeds a number of notable sub-cases such as the Gamma (for p = 1, ξ =

0), the generalized inverse Gaussian (GIG, for p = 1), and the generalized Weibull (GW, for

ξ = 0) kernel. �erefore, the orthogonal expansions arising from (15) extend the classic La-

guerre expansions that are associated with a Gamma kernel. For this reason, we refer to these

expansions as extended Laguerre. �is family is �exible enough to capture di�erent tail behav-

iors and it proves e�ective in reproducing the peculiar tail behavior of the RND implied by VIX

options, as later shown in Section B.2. Indeed, the tail behavior of the GIG and GW kernels char-

acterizes their ability to meet the conditionϕ−
1

2 fQ ∈ L
2(D), required by �eorem 3.1. Looking at

the le� tail, the GW kernel clearly has the slowest decay, and thus it is the most �exible in terms

of behavior around the origin. However, �eorem 3.1 also requires that limx→+∞ ϕ (x )e
ςx

1

2 = 0

for some ς > 0. �is condition is always met by the GIG kernel, and it is met by the GW kernel

when p is restricted to fall between [
1

2
, 1].

As alternative to the extended Laguerre kernel family, one could consider the log-normal

(LN) kernel, that is

ϕ (x ) ∝
1

x
e−

1

2σ 2
(log(x )−µ )2, µ ∈ R, σ > 0. (16)

Expanding the underlying RND based on the LN kernel is conceptually similar to applying a

Hermite expansion to the logarithm of the underlying. Furthermore, there is documented em-

pirical evidence that the volatility, a quantity comparable to the VIX, is roughly log-normally

distributed, see e.g. Christo�ersen et al. (2010), Wang and Daigler (2011) and Bayer et al. (2013).

�is makes the LN kernel an interesting competitor for either the GIG or the GW kernel. Con-

cerning the condition ϕ−
1

2 fQ ∈ L
2(D), the LN kernel ensures the greatest �exibility in terms of

requirements on the right tail of the RND. However, the condition limx→+∞ ϕ (x )e
ςx

1

2 = 0 for

some ς > 0 is never met by the LN kernel. �us, the LN kernel does not guarantee that the

RND is fully recovered by the expansion (15). �erefore, using the LN kernel inherently entails

further restrictions on the form of fQ, and it may reduce the ”non-structurality” of the approach.

4 Retrieving the RND from the option prices

In this section, we outline a procedure to estimate the coe�cients c1, . . . , cn of the expansion

(5) by minimizing the distance between the RND implied and the observed option prices. �e

key feature of the proposed procedure is to estimate the option pricing formulas in (4) based

on the observed market prices by choosing a su�ciently large n in the expansion (5), where

the coe�cients c1, . . . , cn are the unknown terms that convey the information about fQ. �e

consistency of this procedure relies on �eorem 3.1.

For �xed K ≥ 0, n ∈ N, and c = [c1, . . . , cn]
> ∈ Rn, the prices associated with the expansion

10



of order n are de�ned as

C (n)
K (c ) :=

∫ +∞

K
ϕ (x ) *

,
1 +

n∑
k=1

ckh
(ϕ)
k

+
-
(x − K ) dx ,

P (n)
K (c ) :=

∫ K

0

ϕ (x ) *
,
1 +

n∑
k=1

ckh
(ϕ)
k

+
-
(K − x ) dx .

�e expressions above can be rewri�en in the following compact form

C (n)
K (c ) = A(K )

0
+A(K )c , P (n)

K (c ) = B (K )
0
+ B (K )c (17)

where

A(K )
0
=

∫ +∞

K
ϕ (x ) (x − K ) dx , B0(K ) =

∫ K

0

ϕ (x ) (K − x ) dx ,

and A(K )
and B (K )

are 1 × n vectors, whose i-th element is given by

A(K )
i =

i∑
j=0

wi,j

∫ +∞

K

(
x j+1 − Kx j

)
ϕ (x )dx , B (K )

i =

i∑
j=0

wi,j

∫ K

0

(
Kx j − x j+1

)
ϕ (x )dx . (18)

�erefore, for chosen ϕ and n, one may estimate c1, . . . , cn by collecting a cross-section of

undiscounted market prices, CObs
Km

(t ,τ ) and PObsKm
(t ,τ ), for m = 1, . . . ,M , and by �nding the

solution ĉ = [ĉ1, . . . , ĉn]
>

of the following optimization problem

ĉ = argmin

c∈Rn
Q (t ,τ ; c ) , (19)

where Q (t ,τ ; ·) de�nes an objective function to be minimized. Given that the expressions in

(17) are linear in the coe�cients c , natural choice for Q (t ,τ ; ·) is the criterion function of the

minimum least squares problem for the following linear model

Y = X0 + Xc + ε, (20)

where the 2M × n matrix X is

X =



A(K1)
1

. . . A(K1)
n

...
. . .

...

A(KM )
1

. . . A(KM )
n

B (K1)
1

. . . B (K1)
n

...
. . .

...

B (KM )
1

. . . B (KM )
n



,

Y = [CObs
K1

(t ,τ ), . . . ,CObs
KM

(t ,τ ), PObsK1

(t ,τ ), . . . , PObsKM
(t ,τ )]′, andX0 = [AK1

0
, . . . ,AKM

0
,BK1

0
, . . . ,BKM

0
]
′
.

�e 2M × 1 vector ε represents the error term, whose properties are discussed more in detail in

11



Section 5. In this way, the objective function takes the following quadratic form

Q (t ,τ ; c ) = (Y∗ − Xc )′(Y∗ − Xc ), (21)

where Y∗ = Y−X0 is a 2M × 1 vector and X0 is the option price vector generated by the kernel.

Unfortunately, the columns of X are functions of the �rst non-standardized n moments. As

a consequence, they display an increasing degree of multicollinearity as the expansion order n

grows. Employing the standard LS minimization to solve (21) is therefore not suitable when n

is large. �is is a well-known problem in the literature on orthogonal polynomial expansions.

For example, Jarrow and Rudd (1982) and Corrado and Su (1996a,b) consider expansions only

up to the fourth order, i.e., n = 4, and they calibrate the standardized skewness and kurtosis to

the options on the SPX. Similarly, Jondeau and Rockinger (2001) estimate the RND of the Franc-

Mark exchange rate by matching only the �rst four moments, which implies once again that n

does not exceed 4. In this regard, it is important to stress that the RND of VIX is expected to be

characterized by a long right tail, meaning that the moments higher than the fourth may provide

signi�cant information on the shape of the RND. We solve the problem of multicollinearity by

orthogonalization of the regressors in (20). �e la�er, accomplished by means of PCA, also

allows to achieve a dimensionality reduction of the problem in (19) without discarding a priory

potentially relevant information. �e Supplementary material, in Section B.1, provides further

details on the implementation of the PCA analysis in this context. �e vector of coe�cients that

minimizes the quadratic objective quadratic function under the PCA constraints is denoted by

c̃ . Given the vector c̃ , the estimated RND function
˜f (n)
Q

is determined as

˜f (n)
Q

(x ) = ϕ (x ;θ ) *
,
1 +

n∑
k=1

c̃kh
ϕ
k
(x )+

-
. (22)

Note that the kernel ϕ in (22) is now expressed as function of an additional term, to highlight

its dependence on a set of parameters θ ∈ Θ. For example, θ = [α , β, ξ ]
′

for the GIG kernel,

θ = [α , β ,p]
′

for the GW kernel, and θ = [µ,σ 2
] for the LN kernel. �e choice of θ does not

play a crucial role in this context as long as ϕ (·;θ ) ful�lls the assumptions of �eorem 3.1. In

practice, we set θ to the value that minimizes the residuals variance for the expansion of order

0. �e minimization is performed under the restriction of zero-mean residuals, which implies

absence of systematic pricing errors. A number of numerical examples, reported in Section

B.2 of the Supplementary material, display the robustness and the �exibility of the proposed

methodology.

5 No-arbitrage violations

Market prices are typically subject to a number of frictions that are typically functions of the

market liquidity. Obviously, possible arbitrage opportunities can hardly be exploited due to the

12



presence of transaction costs in the form of bid and ask spread. However, from a purely mathe-

matical perspective, the fact that the mid-quote is adopted to approximate the latent arbitrage-

free option price can be seen as a violation of the no-arbitrage assumption. �is means that

even in absence of discretization/truncation errors it is not possible to achieve exact matching

of all the observed option prices by minimizing (19), since the option prices obtained through a

RND are free of (static) arbitrages by construction. �erefore, in de�ning the linear model (20)

on which we build the estimation procedure based on orthogonal polynomials, we can assume

that the error term ε subsumes all the uncertainty associated with the fact that the polynomial

expansion is truncated to a �nite n, that the number of available strikes M is �nite and that

the market prices may be subject to no-arbitrage violations. In other words, the error term in

(20) can be split as ε = δ + ϵ , where δ is a vector of non-stochastic terms coming from the

fact that both n and M are �nite, while ϵ is a random term that approximates all the deviations

from the latent arbitrage-free option prices resulting from the trading activity. In particular, we

assume that ϵ is a vector of random variables with zero mean and that the vector Y = Y − ϵ
is arbitrage-free. An example of speci�c distributional form for ϵ is given in Section B.6 in the

Supplementary material.

In the following, an in�ll asymptotic analysis is carried out to show that, as the observed

prices are sampled increasingly over a �xed interval of strikes and asn → ∞, then δ → 0 and the

only remaining error term is the noise associated with the no-arbitrage violations. Assuming

that the observed option strikes fall in a �xed �nite interval I = [K1,KM], we de�ne the ”in�ll

version” of (21) as

Q(n) (t ,τ ; c = [c1, . . . , cn]
>) :=

1

KM − K1

∫
I

(
CObs
K (t ,τ ) −C (n)

K (c )
)

2

+
(
PObsK (t ,τ ) − P (n)

K (c )
)

2

dK .

(23)

Note that there are other ways to de�ne an ”in�ll counterpart” of Q consistently. �e de�nition

that we adopt, justi�ed by mathematical convenience, builds on the fact that the integral in (23)

is the limit of
1

MQ , under continuity assumptions for the integrand. Since multiplying Q by any

constant does not a�ect the solution ĉ of (19), then (23) can be interpreted as a valid in�ll version

of (21). �e observed pricesCObs (t ,τ ), PObs (t ,τ ) appearing in (19) are assumed to take the form

CObs
K (t ,τ ) = CK (t ,τ ) + ϵ

C
K , PObsK (t ,τ ) = PK (t ,τ ) + ϵ

P
K ,

where C· (t ,τ ),C· (t ,τ ) ∈ C2(I ) are de�ned as in (4), while ϵC = (ϵCK )K∈I and ϵP = (ϵPK )K∈I are

zero mean processes on a probability space (Ωϵ ,F ϵ , Pϵ ), belonging to L2(Ωϵ × I ). Under these

assumptions, the in�ll target functionQ(n)
is well-de�ned and has �nite expected value for every

t ,τ ,n.

Proposition 5.1 (In�ll asymptotics). Assume that the hypotheses of �eorem 3.1 are satis�ed and

13



denote by c?(n) the minimum of Q(n) (t ,τ ; ·), for every n ∈ N. �e following inequality holds

lim

n→+∞
E

[
Q(n) (t ,τ ; c?(n))

]
≤

1

KM − K1

E

[∫
I

(
ϵCK

)
2

+
(
ϵPK

)
2

dK

]
. (24)

�e inequality in (24) becomes an equality under the following additional hypotheses:

(i) �ere exists n̄ ∈ N such that, for all n ≥ n̄, c?(n) is obtained by constraining (19) to the space
of coe�cients c1, . . . , cn such that

ϕ *.
,
1 +

kn∑
k=1

ckh
ϕ
k

+/
-
≥ 0 on D .

(ii) Let C?· (t ,τ ) ∈ C
2(I ) and P?· (t ,τ ) ∈ C

2(I ) be arbitrage-free call and put curves, respectively.
�en, almost surely∫

I

(
CObs
K (t ,τ ) − C?K (t ,τ )

)
2

+
(
PObsK (t ,τ ) − P?K (t ,τ )

)
2

dK ≥

∫
I

(
ϵCK

)
2

+
(
ϵPK

)
2

dK .

Proof. See Appendix A.2. �

�e inequality (24) de�nes an upper-bound on the expected value of the target function,

Q(n) (t ,τ ; c?(n)). In particular, the expected value of the target function evaluated in c?(n) is

lower than the variance of the non-arbitrage residuals. Under the additional assumptions (i)-

(ii), Proposition 5.1 states that our estimation method provides the arbitrage-free prices closest

to the observed ones. In particular, assumption (i) requires that the estimation always returns a

probability density function, while assumption (ii) can be interpreted as a uniqueness require-

ment on the target RND. �is establishes an interesting linkage with the work of Aı̈t-Sahalia and

Lo (1998). Furthermore, under no-arbitrage (i.e. ϵC = 0 and ϵP = 0), Proposition 5.1 ensures that

the sum of the squared residuals goes to zero as n → ∞, so that the estimated and the observed

prices coincide.

Summing up, Proposition 5.1 provides conditions ensuring that the estimation procedure

based on orthogonal polynomials is robust to the presence of measurement errors in the option

prices. �is is a remarkable feature that is o�en lacked by non-structural techniques based on

the straightforward computation of second-order derivatives, whose estimation is typically very

sensitive to data inconsistencies. Below, we derive a theoretical lower bound for the estimation

residuals that is inferred directly from the put-call parity violations a�ecting the observed option

prices. In Section B.6 in the Supplementary material we show that this lower bound can be

consistently used as a proxy for (24). Moreover, we show that the validity of Proposition 5.1 is

empirically con�rmed by a number of numerical tests.
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5.1 An observable lower bound for the estimation residuals

Following Proposition 5.1, it seems natural to set a tolerance on the variability of the residuals,

which are de�ned as ε̃ = Y∗ − Xc̃ . �is tolerance should quantify the presence of arbitrage

opportunities. Given a �xed threshold ∆Q > 0, we de�ne as admissible any RND implying

option prices whose distance from the observed ones is below ∆Q
. Consistently, we say that a

density
˜f (n)
Q

is admissible if

1

M

M∑
m=1

(
CObs
Km
− C̃ (n)

Km

)
2

+
1

M

M∑
m=1

(
PObsKm

− P̃ (n)
Km

)
2

≤ ∆Q ,

where C̃ (n)
Km

and P̃ (n)
Km

are call and put prices associated with
˜f (n)
Q

. Since the option data are always

a�ected by some noise, in view of Proposition 5.1 the existence of admissible RNDs is not guar-

anteed when ∆Q
is chosen to be too small. A lower bound for the set of all possible values of ∆Q

can be inferred from put-call parity violations. Given
˜f (n)
Q

, denote by Mean
Q

the risk-neutral

futures price computed as

Mean
Q =

∫ +∞

0

x ˜f (n)
Q

(x )dx ,

and by ∆pcp
the variance of the put-call parity violations

∆pcp =
1

M

M∑
m=1

(
CObs
Km

(t ,τ ) − PObsKm
(t ,τ ) + Km −Mean

Obs
)

2

, (25)

where Mean
Obs =

1

M

∑M
m=1

(
CObs
Km

(t ,τ ) − PObsKm
(t ,τ ) + Km

)
. It follows that

∆pcp =
1

M

M∑
m=1

[
CObs
Km

(t ,τ ) − PObsKm
(t ,τ ) −C (n)

Km
+ P (n)

Km
+

(
FQ − FObs

)]
2

≤
1

M

M∑
m=1

(
CObs
Km

(t ,τ ) − C̃ (n)
Km

)
2

+
1

M

M∑
m=1

(
PObsKm

(t ,τ ) − P̃ (n)
Km

)
2

+
(
Mean

Q −Mean
Obs

)
2

,

which yields the following inequality

∆Q ≥ ∆pcp −
(
Mean

Q −Mean
Obs

)
2

. (26)

From (26) we obtain a lower bound for the tolerance level that must be allowed on the estimation

residual. Moreover, it proves that admissible solutions of (19) with tolerance level lower than

∆pcp−
(
Mean

Q
1
−Mean

Obs
)

2

do not exist. �erefore, (26) suggests that se�ing the tolerance level

as ∆Q = ∆pcp
is a convenient choice since ∆pcp

is an observable quantity and is expected to be

only slightly greater than the lower bound.
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6 Empirical Analysis

In this section we estimate the RND of the VIX on a panel of option prices observed in the period

from January 2010 to April 2016, sampled at monthly frequencies, and with time-to-maturity,

τ , ranging from 1 to 5 months.
2

�e data is obtained from the OptionMetrics database. For each

month in the sample, we collect option prices observed on the �rst Tuesday following the third

Friday of the month. �is ensures that observations will not overlap in the base monthly fre-

quency, meaning that 1-month options observed at time t always expire prior to the subsequent

observation occurring at time t + 1. We operate minimum pre-�ltering of the data. More specif-

ically, we exclude all OTM puts (calls) with mid-quote below 0.025$ together with the ITM calls

(puts) with the same strikes. �ese contracts turn out to be highly illiquid (if traded at all) and

therefore they are likely subject to mispricing. With this �ltering criterion, we have an average

total number of 56 available contracts for each date and time-to-maturity. Under normal mar-

ket conditions, the strike values that are taken into consideration typically fall between 10$ and

45$, with this range remaining quite stable over time and maturities due to the mean-reverting

behavior of the VIX. However, the interval of available strikes enlarges during turmoil periods,

with maximum values reaching peaks of 100$. For further details see Table 7 in Section B.7

of the Supplementary material. In the following, we focus on a speci�c date and maturity in

the sample to illustrate the e�ectiveness of the orthogonal polynomials in correcting ϕ and to

con�rm the robustness of the methodology to the choice of the kernel.

6.1 November 16, 2011

On November 16, 2011, the cross-section of VIX options expiring on December 21, 2011 (τ =

1) quoted by the CBOE consists of 64 contracts. �e choice of this date is not coincidental.

Indeed, the end of the year 2011 is characterized by high levels of market volatility, registered

in connection with the European sovereign debt crisis and the US sovereign debt downgrading.

As a consequence, on November 16, 2011, the VIX index reached a value of 33.51%. At the

same time, the trading of VIX options spanned strike values in the range between 15$ and 90$.

A�er the pre-�ltering, we end up with 52 contracts (26 calls and 26 puts) with strikes ranging

between 21$ and 80$. Hence, on the chosen date, trading of deep out-of-the-money options is

su�ciently high to ensure informative market prices in a wide range of strikes and, in particular,

suggests uncommonly long right-tail in the RND. To highlight the robustness of our results to

the choice of the kernel, we consider both the GIG and the GW kernels. �e parameters of

the two kernels are chosen to minimize the variance of Y ∗. As discussed in Section 4, we can

increase the expansion order n to high values, thanks to the orthogonalization of regressors

and the dimension reduction thereby operated by means of PCA. �erefore, we set the order

to a relatively high value n = 18. We �nd that 5 and 6 principal components explain the 99%

2
Weekly VIX options and options with time-to-maturity τ = 6 are also traded, but unfortunately they are not

available for all dates in the sample.
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of the total variance of X for the GW and the GIG kernel, respectively. �e estimated RNDs

obtained using expansions of ordern = 18 are reported in Figure 1 (solid lines), together with the

corresponding kernels (dashed lines). From the visual inspection of Figure 1, it emerges that the
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Figure 1: Estimated RNDs. �e le� panel depicts the graphs of the two kernels considered in this section

together with the corresponding estimated RNDs obtained for n = 18. �e right panel reports the same

contents of the le� panel in semi-log scale, to highlight tail features that are di�cult to observe in linear

scale. Each couple of percentage values denotes, from top to bo�om, the average mass levels of the two

kernels and the two corresponding estimated RNDs, related to the quantiles identi�ed by the dashed

vertical lines.

RND of VIX should have short le� tails. �e densities and the associated kernels display relevant

di�erences on the right tails. �e di�erences mostly occur in a part of the domain above the

98% quantile, thus signaling the relevance of a proper characterization of the right tail in pricing

OTM calls and ITM puts of VIX. �e importance of the correction provided by the orthogonal

polynomials is be�er understood by comparing the implied volatility curves generated by the

two kernels and their corresponding expansions, reported in Figure 2. �e implied volatilities

generated by both kernels are considerably di�erent from those generated by market prices,

while the expansions are able to produce implied volatilities that closely replicate the observed

ones. All these observations point in the same direction: neither of the two baseline kernels is

able to reproduce the tail-features of the RND of VIX. In particular, they both display positive

excess mass between the 75% and 95% quantiles while, on the other hand, they display negative

excess mass in the area covered by the last 5 percentiles. Coherently with �eorem 3.1, the

expansions obtained using the two di�erent kernels converge to the same density, as the two

functions diverge from each other only starting from roughly the 99.5% quantile.

6.2 Stylized facts on VIX risk-neutral moments

�e analysis carried out for November 11, 2016 is replicated for all dates and maturities in the

sample. From Figure 3, it emerges that the orthogonal expansion (blue line) outperforms the

GW kernel (red line) and, in all cases, it generates a root mean square error that lies around the
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Figure 2: Black and Scholes implied volatility curves obtained from market prices, GIG kernel, GW

kernel, and the resulting approximated RNDs with expansion order equal to n = 18.
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Figure 3: Root mean square error between market VIX option prices and approximate prices implied

by both the GW kernel and its related expansion. Option prices have been collected based on monthly

observations taken from January 2010 to April 2016 with τ = 1 and τ = 5 months. �e grey area is the

market implied threshold, de�ned as

√
∆pcp

, see equation (25).

the sample and the accuracy gain achieved by correcting the GW kernel through the orthogonal

expansion. To further assess the consistency of the estimated RND with market data, we can

look at the VVIX, i.e., the volatility-of-volatility index inferred from VIX options through the

same algorithm used for the VIX itself. �e VVIX can be linked to the RND of the VIX through

3
Similar results are obtained with other maturities, τ = 2, 3, 4 and are reported in the Supplementary material

together with a table reporting the summary statistics associated with the �t.

18



the following formula, which is analogous to (1)

VVIX
2

t ,τ

100

= −
2

τ

∫ +∞

0

log
*
,

x

Mean
Q
t ,τ

+
-
fQ(t ,τ ;x )dx , (27)

where Mean
Q
t ,τ := EQt [VIXt+τ ] denotes the forward price of VIX at time t for maturity t + τ .

Figure 4, which reports the observed time series of the VVIX and that computed by (27), con�rms

that the estimated RND implies generally consistent estimates of the VVIX. Discrepancies are

small in size and can be a�ributed to discretization errors a�ecting the CBOE formula for the

computation of the VVIX.
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Figure 4: VVIX time series. Comparison between observed values of the VVIX and those obtained by

formula (27), for τ = 1 and τ = 5 months.

By direct inversion of the linear relation in (14), it is possible to retrieve the �rstk risk-neutral

moments of the VIX for each value of t and τ . An empirical analysis of the risk-neutral moments

of the VIX reveals a set of stylized facts related to the market expectation of volatility (and its

powers). Figure 5 reports the time series of mean (Mean
Q
t ,τ ) and variance (Var

Q
t ,τ ), for all times-

to-maturity. From Panels (a) and (b), we notice that the �rst two expected risk-neutral moments

exhibit large variations associated with the escalation of the European sovereign debt crisis in

the second half of 2011. From 2013 to the end of the sample, both moments display lower levels

and more stable pa�erns re�ecting agents’ con�dence in more stable market conditions. For

what concerns the �rst moment, the spread between maturities has remained largely uniform

along the sample, i.e., an average spread between τ = 5 and τ = 1 of 3.094 with a standard

deviation of 2.135. Additionally, from Panel (c) we can see that changes of sign in the slope of

the term structure are sporadic and tend to occur concurrently with extreme market conditions,

in analogy with the well-known case of inverted yield curve. �e periods with negative slope

of the mean term structure are associated with the �rst Greek debt crisis (April-May 2010), the

escalation of the European sovereign debt crisis (October-November 2011), the second Greek

debt crisis (July 2015) and the slowdown of Chinese production (February 2016), which all re�ect
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expectations of increasing market volatility in the short term.
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Figure 5: Time series of the VIX risk-neutral mean and variance. Panel a) and b) report the time series of

Mean
Q
t,τ ) and Var

Q
t,τ for di�erent times-to-maturity, τ = 1 (blue), τ = 2 (red), τ = 3 (yellow), τ = 4 (purple)

and τ = 5 (green). Panels c) and d) also report the time series of the slope of Mean
Q

and Var
Q

. �e slope

is de�ned as Mean
Q
t,1 −Mean

Q
t,1 and Var

Q
t,1 − Var

Q
t,1 ∀t = 1, . . . ,T for mean and variance, respectively.

A generally positive slope in the term structure is also observed for Var
Q
t ,τ , whose dynam-

ics closely resemble those followed by Mean
Q
t ,τ , see Panel (b). �e slope of the variance term

structure, measured by the spread between values of Var
Q
t ,τ observed for τ = 5 and τ = 1, peaks

during periods of market turmoil up to 177.022, against an average value of 73.751 over the

whole period. �is behavior re�ects agents’ lack of con�dence about the level of market stabil-

ity in the long term. Only in one case, during the second Greek debt crisis in July 2015, does

the slope not increase to abnormal levels in response to the market turmoil, although it remains

positive.

We further investigate the link between Mean
Q
t ,τ and Var

Q
t ,τ to measure the leverage e�ect.

�e leverage e�ect generally relates to the negative correlation between the change of an asset

price and its volatility. We perform regressions of ∆Mean
Q
t ,τ on a constant and ∆Var

Q
t ,τ for each

maturity τ . �e coe�cients associated with the change in Var
Q
t ,τ are all positive and increasing
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in τ , ranging from 0.241 (τ = 1) to 0.315 (τ = 5), and the regressions R-squared are around 75%.

Such evidence suggests the presence of a leverage e�ect with positive (reversed) sign. As the

uncertainty about future levels of market volatility increases, it is arguable that this has direct

implications on the expected level of market volatility itself, which increases proportionally.

By means of the normalized versions of the third and fourth moments reported in Figure

6, namely the skewness (Sk
Q
t ,τ ), and kurtosis (Kurt

Q
t ,τ ), we can study how the shape of the RND

changes over time. Both Sk
Q
t ,τ and Kurt

Q
t ,τ appear highly volatile and share similar dynamics,

as also suggested by their sample correlations reaching levels close to 97%. Contrary to what

we have observed for mean and variance, Sk
Q
t ,τ and Kurt

Q
t ,τ plummet during periods of market

turmoil. �us, the third and the fourth moment increase at a slower rate with respect to the

variance. As the conditional mean and variance of VIX increase, moving away from the zero

lower bound, the distribution tends to become more symmetric and thinner-tailed. Notably,
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Figure 6: Time series of the VIX risk-neutral skewness and kurtosis. Panel a) and b) report the time

series of Sk
Q
t,τ ) and Kurt

Q
t,τ for di�erent times-to-maturity, τ = 1 (blue), τ = 2 (red), τ = 3 (yellow), τ = 4

(purple) and τ = 5 (green).

both Sk
Q
t ,τ and Kurt

Q
t ,τ exhibit a term structure that is systematically downward sloped. Sample

averages decrease from 3.43 (τ = 1) to 2.78 (τ = 5) for the Sk
Q
t ,τ and from 22.90 (τ = 1) to

15.55 (τ = 5) for Kurt
Q
t ,τ . As the prediction horizon increases, the distribution implied by the

VIX options re�ects higher expectations and volatility for the level of VIX, together with a more

symmetric and platykurtic distribution.

�e similarity in the dynamic behavior of the �rst four moments becomes striking a�er

simple rescaling. As an example, Figure 7 plots the standardized time series of the �rst four

moments for τ = 1 and τ = 5, with lines tracking one another. �e sample correlations are

well above 90% for both τ = 1 and τ = 5, supporting the existence of a strong link between

(standardized) moments. To further explore the behavior of the implied moments both over the

time dimension and the term-structure, we test for the existence of a common factor structure

across maturities and moment orders. �is is conceptually similar to the analysis carried out

by Andersen et al. (2015b) on the SPX implied volatility surfaces. �e PCA, carried out on the
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Figure 7: Standardized moments for short (τ = 1) and long τ = 5 time-to-maturity. �e standardization

is performed as Zi =
Mi−M̄i
S (Mi )

for i = 1, . . . , 4 where M̄ and S (Mi ) are the time-series sample mean and

standard deviation of the i-th moment.

cross-section of τ , shows that the �rst principal component of Mean
Q
t ,τ explains 98% of its total

covariance. Similarly, the �rst principal component of Var
Q
t ,τ explains almost 96% and, for the

third and fourth moments, the �rst principal component explains 89% and 82% of the related

cross sectional (across maturities) variability.

When regressing Mean
Q
t ,τ on a constant and the �rst principal component, we �nd regression

intercepts that increase with the maturity, ranging from 19.26 (τ = 1) to 22.17 (τ = 5), but

slopes that are fairly invariant. �is suggests that VIX options prices incorporate premia for

the uncertainty about future market conditions as the horizon increases, but also that these

premia are constant over time, and thus deterministic in nature. Similar results are obtained

when repeating the same exercise for the variance, although in this case the slope coe�cients,

increasing with τ from 12.1 to 21.8, re�ect a (less than proportional) increase in the variability of

Var
Q
t ,τ with the time-to-maturity. �e PCA for the third and fourth moments shows qualitatively

the same results, up to higher orders of magnitude. We also test whether and to what extent the

high degree of correlation between the four moments, as illustrated in Figure 7, is due to the

presence of a common factor. We �nd that the �rst principal component explains nearly 93% of

the total covariation between the 20 variables. �is result provides strong evidence of a main

driver for the RND of VIX over time.

6.3 VIX jumps under Q

�e peculiar proportional structure of the moments of the VIX under risk neutrality suggests

that there might exist a multiplicative error model, MEM, driving the dynamics of future states

of the VIX over time under the Q-measure. �e MEM model is de�ned as

Xt = µtηt , t = 1, . . . ,T , (28)
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where, for a �xed maturity τ , Xt = VIXt+τ , µt is the expectation of VIXt+τ computed at the time

t , ηt is an i.i.d. stochastic term, independent of µt , with positive support and with mean equal to

1, andT is the sample size. MEM type dynamics for the VIX index are also studied in Mencia and

Sentana (2016), who adopt a Laguerre expansion for the innovation term ηt under the physical

measure P. �ey also analyze the process under Q, using the VIX futures and assuming an

exponentially a�ne stochastic discount factor to model the risk premium. In this way, they

retrieve information on the risk-neutral higher moments of VIX by a structural assumption to

link P and Q. We instead perform a direct analysis of the distributional assumptions on the VIX

under Q, exploiting higher risk-neutral moments obtained from the VIX options. �e idea of

using transformations of option prices to back out estimates of a parametric model is in line

with the methodology adopted in Pastorello et al. (2000) and Pan (2002), among others.

By se�ing ηt ∼ i .i .d .Γ(1,ν ) (mean-shape form) in (28), which corresponds to a zero-order

Laguerre expansion we obtain

EQt [VIXt+τ ] = µt ,

EQt [VIX
3

t+τ ] = µ3

t

(
2

ν2
+

3

ν
+ 1

)
,

EQt [VIX
2

t+τ ] = µ2

t

(
1

ν
+ 1

)
,

EQt [VIX
4

t+τ ] = µ4

t

(
6

ν3
+

11

ν2
+

6

ν
+ 1

)
.

Under the MEM-Gamma the proportionality between second, third and fourth moment is con-

trolled by a single parameter, ν . �e MEM-Gamma can be augmented with jumps, thus obtaining

the MEM-J of Caporin et al. (2017), de�ned as

Xt = µtZtηt , t = 1, . . . ,T , (29)

where Zt is the VIX jump component, and the innovation ηt ∼ i .i .d .Γ (1,ν ). �e jump term, Zt

is de�ned as

Zt =




dλ Nt = 0∑Nt
j=1

Yj,t Nt > 0

(30)

where Nt is a Poisson random variable with intensity λ > 0 and dλ =
(
e−λ + λ

)−1

is a scalar

positive function of λ, denoting the baseline value of Zt in absence of jumps. When Nt > 0, the

process Zt is a compound Poisson process. Following Caporin et al. (2017), we assume that the

jump sizes are driven by a Gamma distribution Γ (dλ, ς ) (in mean-shape form), from which it

follows that the innovation term ξt = Ztηt is driven by a countably in�nite mixture of Gamma
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MEM-Gamma MEM-J

ν̂ χ 2(2) ν̂ ˆλ χ 2(1)

τ = 1 26.38
a

0.000 55.79
a

0.351
a

0.053

τ = 2 12.87
a

0.000 47.33
a

0.513
a

0.200

τ = 3 12.65
a

0.000 41.04
a

0.591
a

0.161

τ = 4 9.433
a

0.000 26.65
a

0.585
a

0.117

τ = 5 7.411
a

0.000 19.66
a

0.563
a

0.054

Table 1: GMM estimates of the parameters of the MEM-Gamma and the MEM-J. �e estimation is per-

formed by matching the parametric expressions of EQt [VIX
2

t+τ ], EQt [VIX
3

t+τ ] and EQt [VIX
4

t+τ ] outlined

above with their empirical counterpart obtained from the RNDs retrieved from the option prices. �e

�rst moment is exactly matched, i.e. Mean
Q
t,τ := EQt [VIXt+τ ] = µt , by construction, and it is used as a

driver for the dynamics of the higher order moments. �e subscripts a, b and c stand for signi�cance at

1%, 5% and 10%, respectively. χ 2 (2) and χ 2 (1) are the p-values of the J-test for over-identifying restric-

tions whose distribution is χ 2 (m − r ), where m = 3 is the number of moment conditions adopted in the

estimation and r is the number of free parameters.

and Kappa distributions with closed-form moments given by

EQt [VIXt,τ ] = µt ,

EQt [VIX
2

t,τ ] = µ2

t

[
λ

ς
+ e−λ +

(
λ + λ2

)]
d2

λ

(
1 + ν−1

)
,

EQt [VIX
3

t,τ ] = µ3

t


e−λ *

,

2d3

λ

ν2
+ 3

d3

λ

ν
+ d3

λ
+
-
+ (λ3 + 3λ2 + λ)d3

λς
2Cν,ς + 3(λ2 + λ)d3

λςCν,ς + 2λd3

λCν,ς


,

EQt [VIX
4

t,τ ] = µ4

t


e−λ *

,
6

d4

λ

ν3
+ 11

d4

λ

ν2
+ 6

d4

λ

ν
+ d4

λ
+
-
+ (λ4 + 6λ3 + 7λ2 + λ)d4

λς
3Dν,ς + 6(λ3 + 3λ2 + λ)d4

λς
2Dν,ς


+ µ4

t

(
11(λ2 + λ)d4

λςDν,ς + 6λd4

λDν,ς
)
,

(31)

where

Cν ,ς =
ν2 + 3ν + 2

ν2ς2
, Dν ,ς =

ν3 + 6ν2 + 11ν + 6

ν3ς3
.

�e MEM-J generates a mixture of distributions conceptually similar to the mixture generated

by the Laguerre expansion used in Mencia and Sentana (2016), but it has a further interpretation

for the tail-events as generated by jumps.

For every τ = 1, . . . , 5, based on the parametric expressions (31), we estimate the MEM-

Gamma and the MEM-J models by GMM exploiting the time-series of the �rst four risk-neutral

moments of the VIX. �e GMM estimates of the parameters are reported in Table 1. �e es-

timates of the parameter ν obtained under the Gamma distribution are always signi�cant and

they decrease with maturity. Since ν is the inverse of the variance of ηt in the Gamma speci�ca-

tion, this evidence correctly signals the increase in the uncertainty around future values of the

VIX at longer horizons. However, the MEM with Gamma distributed innovations does a poor

job matching the structure of the higher moments of the VIX under the Q-measure. Indeed, the
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Figure 8: Steady-state risk neutral densities of VIXτ implied by the MEM-Gamma model and by the

MEM-J model of Caporin et al. (2017) for τ = 1 (upper panel) and τ = 5 (lower panel).

J-test for over-identifying restrictions, which is distributed as a χ 2
with 2 degrees of freedom,

strongly rejects the null hypothesis that the higher moments are those implied by a Gamma

distribution. Instead, adding �exibility to the higher moments of VIX by adding the jump term,

as in the MEM-J speci�cation, provides a good description of the linkages between the VIX risk-

neutral moments, since the p-value of the J-test is larger than 5% for every τ = 1, . . . , 5. Looking

at the parameter estimates, we note that ν̂ decreases with maturity for both MEM speci�cations,

thus signaling an increase of the variance at longer horizons. In the MEM-J, the mixing parame-

ter λ, which governs the expected number of jumps in each month, is rather stable across τ and

close to 0.5. �is means an average of 1 jump every second month. Notably, the parameter λ is

always signi�cant, thus indicating that tail events, namely those generated by jumps, are priced

in the VIX options. A graphical illustration of contribution of jumps on the probability of tail

events is provided in Figure 8. �e �gure reports the model-implied RND of the VIX under Q in

”steady state” that is obtained by se�ing µt to its long-run value represented by its sample mean,

µ̄ = 1

T

∑T
t=1

Mean
Q
t ,τ . In steady state, the option-implied probability of observing VIX larger than

31% is negligible under the MEM-Gamma for τ = 1, while it is approximately 4.5% if jumps are

included in the model. Analogous evidence emerges for τ = 5.

6.4 Variance swap term-structure

In this paragraph, we analyze the term structure of the (annualized percentage) realized variance

(RV) in terms of variance swaps (VS). As discussed in Section 2, the square of VIX can be seen

as the swap rate of a VS maturing in one month, that is VSt ,t+1 = EQt [RVt ,t+1] = VIX
2

t , and we

assume zero interest rate, which is indeed negligible in the sample under investigation. �is

relationship can be generalized to link 1-month forward VS prices to the second moment of the

VIX, as shown below

EQt [RVt+τ ,t+τ+1] = EQt [VIX
2

t+τ ]. (32)
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Equation (32) clearly generalizes the de�nition of VIX, which is recovered for τ = 0. By aggre-

gating the terms on the RHS of (32) over τ one can obtain variance swap prices for maturities

longer than one month, that is

VSt ,t+n = EQt [RVt ,t+n] =
1

n

n∑
τ=1

EQt [RVt+τ−1,t+τ ] =
1

n

n∑
τ=1

EQt [VIX
2

t+τ−1
]. (33)

�e relation in (33) holds under the inherent assumption that the joint market of VIX and RV is

priced consistently under the unique risk neutral measure Q, so that

EQt [VIX
2

t+τ ] = EQt
[
EQt+τ [RVt+τ ,t+τ+1]

]
= EQt [RVt+τ ,t+τ+1] .

In principle, by generalizing the VIX formula (3), one can always replicate VSt ,τ through a port-

folio of SPX options expiring in n months. �is provides a tool to assess whether the SPX and

the VIX markets are consistent with each other. In Figure 9 we report the time series of VSt ,t+τ

for τ = 3 months (le� panel) and τ = 4 months (right panel). Each plot displays the VS com-

puted from SPX options by extending formula (3) (red line) and the VS implied by the RND of

VIX through (33) (blue line). Figure 9 suggests that there are no pro�table arbitrage opportu-

nities based on trading VS across the SPX and the VIX markets. In particular, this means that

the second risk-neutral moment of the VIX can be regarded as an equity derivative, as it can be

replicated by combining short and long positions on SPX options expiring in τ +n − 1 and τ +n

months, respectively.
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Figure 9: Time series of 3-months and 4-months VS. �e �gures display VS implied by SPX market (red

line) and the VS implied by the VIX market (blue line).

Based on the time series of EQt [VIX
2

t+τ ], we characterize the driving factors of the VS term-

structure. As starting point we consider the simple model below

yt ,τ = eκ (τ+1)xt (34)
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τ = 0 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

κ̂ 0.3130 0.2795 0.2447 0.2110 0.1835 0.1627

S .E.(κ) 0.0676 0.0342 0.0247 0.0194 0.0162 0.0139

t-test 4.6303
a

8.1650
a

9.9131
a

10.8702
a

11.3064
a

11.7156
a

Table 2: Estimate of the time-to-maturity compounding factor. �e standard errors are computed with

the Newey-West robust estimator. a, b and c stand for signi�cance at 1%, 5%, and 10%, respectively. For

τ = 0, EQt [VIX
2

t+τ ] is VIX
2

t .

where yt ,τ = EQt [RVt+τ ,t+τ+1], xt = RVt−1,t . �is model represents a spot-future parity, where κ

is a time-to-maturity compounding factor, which determines the slope of the term-structure of

VS.

For each given τ , the parameter κ can be estimated by a simple regression in logs as

ζt ,τ = κ (τ + 1) + ut ,τ , t = 1, . . .T (35)

where ζt ,τ = log(EQt [VIX
2

t+τ ]) − log(RVt−1,t ), with observations on RVt−1,t constructed by cu-

mulating daily RV over the 30 days period between t − 1 and t . �e daily RV is constructed

from 5 minute returns on SPX. �e estimation results are reported in Table 2. �e value of κ

estimated for τ = 0 is twice as large as the value of κ estimated for τ = 5, thus signaling a

rather steep downward sloped term structure of VS. �e decreasing behavior of the estimates of

k signals that model (34) does not provide an accurate description of the term structure of VS,

as it prescribes a constant positive dri� in RV under Q.

We therefore suggest a generalization of (34) by including a term accounting for the mean-

reversion of RV, that is

yt ,τ = eκ (τ+1)xt ·mrt (36)

wheremrt is a multiplicative term that adjusts for the mean-reversion. We assume thatmrt is a

function of the ratio between RVt ,t−1 and VIXt , and it determines the level of the term-structure

of VS relative to the current level of the underlying. �e econometric speci�cation becomes

ζt ,τ = κ (τ + 1) + αξt + ut , t = 1, . . .T (37)

where ξt = log(RVt−1,t ) − log(VIX
2

t ) can be interpreted as the residuals from the long-run equi-

librium between RV and VIX
2
. �is term is mean-reverting due to the cointegration relationship

between the two quantities, see Bollerslev et al. (2013) among others. Table 3 shows that the

correction based on the mean-reversion makes the parameter κ much more stable across τ ,

and approximately equal to 13.8%. We can interpret this number as the monthly growth rate,

adjusted by mean-reversion, of the VS. Similarly, Johnson (2012) �nds that the term structure

implicit in VIX futures cannot be well described by an unique slope factor, but another state-

dependent term is needed to provide a good approximation of the surface.
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τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

κ̂ 0.1388 0.1547 0.1461 0.1324 0.1204

S .E.(κ) 0.0105 0.0118 0.0107 0.0095 0.0086

t-test(κ) 13.2102 13.0934 13.6426 13.9938 14.0555

Table 3: Estimate of the time-to-maturity compounding factor. �e standard errors are computed with

the Newey-West robust estimator. a, b and c stand for signi�cance at 1%, 5% and 10%, respectively.

7 Conclusion and directions for future research

In this paper, we proposed a methodology based on a �nite orthogonal expansion to infer the

RND underlying the VIX option prices. �e method generalizes the Laguerre expansions and

suits cases where the density is supported over the positive real axis. �e approach is non-

structural since it does not require restrictive parametric assumptions on the underlying asset

dynamics, reducing the number of restrictions to be imposed on the form of the RND. �erefore,

we drastically reduce the intrinsic risk of misspeci�cation entailed in parametric models. While

in our applications we addressed the RND underlying VIX options, the same technique can

be applied to di�erent classes of �nancial derivatives sharing the same characteristics, e.g., to

interest rates and in�ation. Our empirical study on VIX options highlights the usefulness of this

technique to directly study several features of the VIX through its RND and associated moments.

�e empirical analysis suggests that the proposed methodology may be particularly use-

ful when the study of risk-premia embedded in option prices is of interest, see Bollerslev and

Todorov (2011), Andersen et al. (2015b) and Schneider (2015), or to compute a VaR on volatility

(VolaR, see Caporin et al., 2017), adjusted for risk aversion as in Aı̈t-Sahalia and Lo (2000). A

multivariate functional dynamic model for the RND would be a further natural extension of this

work, see Grith et al. (2013). �is would provide an alternative to the parametric methodology

of Andersen et al. (2015a) to carry out inference on the underlying processes based on panels of

options. Along these lines, the study of the risk premia embedded in VIX options could be car-

ried out by studying the shape and the variability over time of the pricing kernel in a bivariate

se�ing that also includes the SPX. �is would further extend the work of Song and Xiu (2016) to

potentially assess the risk aversion parameter of investors using the VIX for hedging purposes

as opposed to those taking speculative positions on it.
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Szegö, G. (1939). Orthogonal polynomials. American Mathematical Society.

Todorov, V. and Tauchen, G. (2011). Volatility jumps. Journal of Business & Economic Statistics,
29(3):356–371.

Todorov, V., Tauchen, G., and Grynkiv, I. (2014). Volatility activity: Speci�cation and estimation.

Journal of Econometrics, 178, Part 1:180 – 193.

Wang, Z. and Daigler, R. T. (2011). �e performance of VIX option pricing models: Empirical

evidence beyond simulation. Journal of Futures Markets, 31(3):251–281.

Xiu, D. (2014). Hermite polynomial based expansion of European option prices. Journal of
Econometrics, 179(2):158–177.

Zhang, J. E. and Zhu, Y. (2006). VIX futures. Journal of Futures Markets, 26(6):521–531.

Zhang, L., Mykland, P. A., and Aı̈t-Sahalia, Y. (2011). Edgeworth expansions for realized volatil-

ity and related estimators. Journal of Econometrics, 160(1):190–203.

Zhu, Y. and Zhang, J. E. (2007). Variance term structure and VIX futures pricing. International
Journal of �eoretical and Applied Finance, 10(01):111–127.

31



A Appendix

A.1 Proof of �eorem 3.1

Some preliminary are stated before the main proof. First, we recall a standard result of functional

analysis. For a proof the reader may refer, e.g., to Rudin (1987)-�eorem 4.14.

Lemma A.1. Assume that ϕ−
1

2 fQ ∈ L2(D) and supp( fQ) ⊆ D. Consider the Hilbert space

(Hϕ , 〈· , ·〉) de�ned by

Hϕ =
{
ψ , ϕ−

1

2ψ ∈ L2(D)
}
,

〈
ψ1,ψ2

〉
:=

∫
D

ψ1(x )ψ2(x )
1

ϕ (x )
dx , ∀ψ1,ψ2 ∈ Hϕ ,

and the subspace

H ∗ϕ = Cl
(
span

{
ϕh

ϕ
k
,k ∈ N

})
⊆ Hϕ .

�en, there exists a sequence (ck )k∈N such that function

f (∞)
Q

:= lim

n→+∞
ϕ *.

,
1 +

kn∑
k=1

ckh
ϕ
k

+/
-

in Hϕ

solves the minimum distance problem

f (∞)
Q
= argmin

ψ∈H ∗ϕ

〈
ψ − fQ,ψ − fQ

〉 1

2 . (38)

In particular, ifH ∗
ϕ
= Hϕ we have f

(∞)
Q
= fQ almost everywhere.

De�nition A.2 (Closed polynomial set inHϕ). �e kernel ϕ is said to generate closed polyno-

mial sets if

Cl

(
span

{
xk ,k ∈ N

})
= L2

ϕ (x )dx (D). (39)

In this case, we say that either (xk )k∈N or (h
ϕ
k
)k∈N is closed with respect to ϕ.

�e following result provides necessary and su�cient conditions to determine whether ϕ

generates closed polynomial sets. �e results, whose proof is deferred to the end of the section,

extends the classic result of closure of Laguerre polynomials.

�eorem A.3 (Conditions to the closure of (h
ϕ
k
)k∈N). Let ϕ be a positive integrable function and

D = [0,+∞[.

(i) If limx→+∞ ϕ (x )e
ςx

1

2 = 0 for some ς > 0 and there exists a polynomial p such that pϕ is

bounded, then ϕ generates closed polynomial sets.
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(ii) If limx→+∞ ϕ (x )e
ςx

1

2
−γ
> 0 for some γ , ς > 0, then ϕ does not generate closed polynomial

sets.

We can now prove �eorem 3.1. In the following, Hϕ and H ∗
ϕ

refer to the Hilbert spaces

de�ned in Lemma A.1.

If (h
ϕ
k
)k∈N is closed with respect to ϕ, then Hϕ = H

∗
ϕ

and from Lemma A.1 it follows that

f ∗
Q
= fQ whenever ϕ−

1

2 fQ ∈ L
2(D). �e �rst implication can be readily shown by noticing that

fQ ∈ Hϕ implies ϕ−1 fQ ∈ L2

ϕ (x )dx
(D). �en, the closure of (h

ϕ
k
)k∈N implies that ϕ−1 fQ can be

approximated by a certain polynomial series a0 + a1x + a2x
2 + . . . in L2

ϕ (x )dx
(D) or equivalently

that fQ can be approximated by a certain series c0ϕh
ϕ
0
+ c1ϕh

ϕ
1
+ c2ϕh

ϕ
2
. . . inHϕ .

�en, (a) follows immediately from Lemma A.1 by noticing that the assumptions on ϕ imply

Hϕ = H
∗
ϕ

, in view of �eorem A.3-(i). To prove (13), we observe that for every ϕ ∈ H ∗
ϕ

and

every n ∈ N

�����

∫ +∞

0

Π(x ) f (n)
Q

(x )dx −

∫ +∞

0

Π(x ) f (∞)
Q

(x )dx
�����
≤

∫ +∞

0

Π(x ) ���f
(n)
Q

(x ) − f (∞)
Q

(x )���dx

=

∫
D

ϕ
1

2 (x )Π(x ) ���ϕ
− 1

2 (x ) f (n)
Q

(x ) − ϕ−
1

2 (x ) f (∞)
Q

(x )���dx ≤ b ·
〈
f (n)
Q
− f (∞)
Q
, f (n)
Q
− f (∞)
Q

〉 1

2 ,

where b =
〈
ϕ

1

2Π,ϕ
1

2Π
〉 1

2

is �nite by hypothesis. �en, (13) follows from Lemma A.1.

Proof of �eorem A.3

�e following lemma is needed to prove one part of the theorem.

Lemma A.4. Suppose that ϕ∗ generates closed polynomial sets and ϕ = h ·ϕ∗, where h is bounded

and positive a.e. on D. �en ϕ generates closed polynomial sets.

Proof. By the Riesz-Fischer characterization it su�ces to prove that if there exists f ∈ L2

ϕ (x )dx
(D)

such that ∫
D

f (x )xkϕ (x )dx = 0 ∀k ∈ N,

then it must hold that f (x ) = 0 a.e. on D. De�ne д(x ) = h(x ) f (x ), then∫
D

д2(x )ϕ∗(x )dx ≤ max

x∈D
h(x ) ·

∫
D

f 2(x )ϕ (x )dx < +∞

which proves д ∈ L2

ϕ∗ (x )dx
(D). Furthermore

∫
D

д(x )xkϕ∗(x )dx =

∫
D

f (x )xkϕ (x )dx = 0

for every k ∈ N, which implies in view of hypothesis that д(x ) = 0 a.e. on D and therefore

f (x ) = 0 a.e. on D due to positivity assumptions on h(x ). �
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To prove statement (i) we start by recalling a classic result due to Hewi� (1954) showing that

every bounded functionψ supported on the entire real line and such that

lim

|x |→+∞
ψ (x )eς |x | = 0 (40)

generates closed polynomial sets. Based on this result, statement (i) can be proven under the

additional hypothesis that ϕ is bounded. Indeed, under this assumption, the function ψ (x ) =

|x |ϕ ( |x |
1

2 ) is bounded on R and satis�es (40), and therefore it generates closed polynomial sets.

Statement (i) is then a straightforward consequence of the main theorem reported in Shohat

(1942). To prove statement (i) with no additional requirements on ϕ, we remark that by hypoth-

esis there exist a polynomial p and ς∗ > 0 such that the function ϕ∗ de�ned by

ϕ∗(x ) := p (x )eς
∗
√
xϕ (x )

is bounded on D. Since ϕ∗ clearly preserves the same integrability and asymptotic properties

of ϕ, then it generates closed polynomial sets. Now, consider f such that f 2ϕ is integrable and∫
D

f (x )xkϕ (x )dx = 0, ∀k ∈ N.

Moreover, de�ne д as

д(x ) = e−ς
∗
√
x f (x ), x ∈ D .

We have ∫
D

д(x )2ϕ∗(x )dx ≤ sup

x∈D

���p (x )e
−ς∗
√
x ���

∫
D

f 2(x )ϕ (x )dx < +∞.

On the other hand, for every k ∈ N∫
D

д(x )xkϕ∗(x )dx =

∫
D

f (x )xkp (x )ϕ (x )dx = 0,

which proves д(x ) = 0 and therefore f (x ) = 0 a.e. on D. �en, statement (i) is proved.

�e proof of statement (ii) is based on a known counterexample in the theory of orthogonal

polynomials (cf. entry ”Closed system of elements” in Hazewinkel (1988)), showing that every

functionψ of the form

ψ (x ) = e−|x |
2m

2m+1

, x ∈ R, m ∈ N ,

does not generate closed polynomial sets. By combining this counterexample with the results

of Shohat (1942), we can prove that the functionψ supported on [0,+∞[ and de�ned by

ψ (x ) = e−x
m

2m+1

, x ≥ 0, m ∈ N.
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does not generate closed polynomial sets. By a change of variable and through the Riesz-Fischer

characterization, one can extend the la�er result to the case where ψ is supported on [x0,+∞[

and is of the form

ψ (x ) = e−ς (x−x0)
m

2m+1

, x ≥ x0, m ∈ N.

for some ς > 0 and x0 ≥ 0. To prove statement (ii), then, we proceed by contradiction

and suppose that there exists an integrable function ϕ, supported on [0,+∞[ and such that

limx→+∞ ϕ (x )e
ςx

1

2
−γ
> 0 for some γ , ς > 0, which generates closed polynomial sets. To this aim,

we observe that by the hypothesis made on the right-tail of ϕ, there exists x0 ≥ 0 such that

ϕ (x ) > 0 for all x ≥ x0. �e closure property of polynomial sets with respect to ϕ holds in

particular when the support is restricted, by truncation, to [x0,+∞[. Furthermore, the function

h de�ned by

h(x ) = e−ς (x−x0)
m

2m+1ϕ (x )−1,

is bounded on [x0,+∞[, for m su�ciently large. �en, as a consequence of Lemma A.4, the

function e−ς (x−x0)
m

2m+1

generates closed polynomial sets on [x0,+∞[, which is a contradiction.

�e proof is thereby concluded.

�

A.2 Proof of Proposition 5.1

For the notational simplicity, throughout the proof we omit the dependence on t ,τ of Q(n)
,CObs

,

PObs , C, andP. We also set r = 0. Moreover, we denote by (ck )k∈N and f (n)
Q

the quantities de�ned

in �eorem 3.1-(a). For every n ∈ N we have

(KM − K1) · E
[
Q(n) (c?(n))

]
= E

[∫
I

(
CObs
K −C (n)

K (c?(n))
)

2

+
(
PObsK − P (n)

K (c?(n))
)

2

dK

]

≤ E

[∫
I

(
CK + ϵ

C
K −C

(n)
K (c )

)
2

+
(
PK + ϵ

P
K − P

(n)
K (c )

)
2

dK

]

= E

[∫
I

(
CK −C

(n)
K (c )

)
2

+
(
ϵCK

)
2

+ 2ϵCK
(
CK −C

(n)
K (c )

)
dK

]

+ E

[∫
I

(
PK − P

(n)
K (c )

)
2

+
(
ϵPK

)
2

+ 2ϵPK
(
PK − P

(n)
K (c )

)
dK

]

=

∫
I

(
CK −C

(n)
K (c )

)
2

+
(
PK − P

(n)
K (c )

)
2

dK + E

[∫
I

(
ϵCK

)
2

+
(
ϵPK

)
2

dK

]
.
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�en, by (4), we get∫
I

(
CK −C

(n)
K (c )

)
2

+
(
PK − P

(n)
K (c )

)
2

dK

=

∫
I

[∫
D

(
fQ(x ) − f (n)

Q
(x )

)
(K − x )+dx

]
2

+

[∫
D

(
fQ(x ) − f (n)

Q
(x )

)
(x − K )+dx

]
2

dK

≤

∫
I

[∫
D

���fQ(x ) − f (n)
Q

(x )��� |K − x |dx
]

2

dK ≤ b ·

∫
D

���fQ(x ) − f (n)
Q

(x )���
2 1

ϕ (x )
dx ,

where b =
∫
I

∫ +∞
0

(K − x )2ϕ (x )dxdK is �nite. �en, in view of �eorem 3.1

lim

n→+∞

∫
I

(
CK −C

(n)
K (c )

)
2

+
(
PK − P

(n)
K (c )

)
2

dK = 0 ,

which proves (24). �e proof is concluded by noticing that, under the additional hypotheses (i)

and (ii)

E
[
Q(n) (c?(n))

]
≥

1

KM − K1

E

[∫
I

(
ϵCK

)
2

+
(
ϵPK

)
2

dK

]
, ∀n ≥ n̄ .
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B Supplementary material

B.1 A Robust Technique

B.1.1 Orthogonal regressors

We propose to solve the problem of multicollinearity outlined in Section 4 by means of a prin-

cipal component analysis (PCA), which allows to estimate the coe�cients of an expansion of

any arbitrarily large order n. �e PCA analysis is implemented as follows: �rst, to avoid scale

e�ects, we standardize each column of X, as

Zi =
Xi −

1

2M

∑
2M
j=1

Xji√
1

2M−1

∑
2M
j=1

(
Xji −

1

2M

∑
2M
j=1

Xji

)
2

, i = 1, . . . ,n (41)

where Xi and Xji denote the i-th column and the j, i-th element of X, respectively. �en, we

determine the 2M × n matrix of principal components as V = PZ and the n × n orthonormal

matrix of weights P from the spectral decomposition ZP = PΛ. Lastly, we extract the sub-matrix

Ṽ = V·,1:s of the �rst s principal components, associated with a given threshold on the explained

total variance (e.g. 99%), to be used as regressor. For example, whenn > 10, the �rst 4-5 principal

components typically explain at least the 99% of the total variance.

Once we have obtained V, we estimate the coe�cients γ̂ = (γ̂1, . . . , γ̂s ) of the following

regression,

Y∗ = Ṽγ + u, (42)

where γ represents the loading on the �rst s principal components. �e estimated coe�cients

c̃ are �nally retrieved by reverting the orthogonalization as follows

c̃ = (Oγ̂ ) ◦


√
2M − 1∑

2M
j=1

(Xj1 −
1

2M

∑
2M
j=1

Xj1)2
, . . . ,

√
2M − 1∑

2M
j=1

(Xjn −
1

2M

∑
2M
j=1

Xjn )2



′

, (43)

where O is the n × s matrix obtained from the �rst s columns of P and ◦ denotes the Hadamard

product.

B.1.2 Regression through the origin

In regression (42), there is no intercept and the columns of Ṽ have zero-mean by construction,

while Y∗ has zero mean if and only if the sample mean of Y and X0 coincide. To enforce that

E (Y∗) = E (Y − X0) = 0, the initial estimation of the kernel parameters, θ , must be constrained

such that E (X0) = E (Y). �is represents a very mild constraint but it has several practical

advantages. First, it ensures that the approximation of order 0 does not produce systematic

mispricing, since the observed market prices are centered around the estimated price curve
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generated by the kernel. Second, the residuals of (42) have zero mean for any order n ≥ 1 by

construction.

Since the principal components are constructed from the standardized regressors Z, when

remapping the solution of (42) onto the solution of (20), a constant term equal to

∑n
i=1

diRi

appears, where R = Oγ̂ and di =

√
1

2M−1

∑
2M
j=1

Xji√∑
2M
j=1

(Xji−
1

2M
∑

2M
j=1

Xji )2
, i = 1, . . . ,n. �erefore, in order to

guarantee that the relation in equation (20) holds for any n ≥ 1, the following constrained

optimization is performed

[γ1, . . . ,γs] = argmin

γ1,...,γs

Q̃ (t ,T ;γ1, . . . ,γs ), (44)

s.t.

n∑
i=1

diRi = 0

where Q̃ (t ,T ;γ1, . . . ,γs ) = (Y− Ṽγ )′(Y− Ṽγ ). �is restriction also guarantees that c̃ is such that

there is no systematic pricing error or, in other words, that ε̃ = Y−X0 −Xc̃ are centered around

zero for any n.

B.1.3 Positivity and unitary mass

Since the estimation of c̃1, . . . , c̃n is performed on a �nite set of option prices, the estimated RND

˜f (n)
Q

could display signi�cant negative mass even for large values of n. �erefore, we add an

extra implicit constraint to the optimization problem (44). In particular, the optimal parameters

γ1, . . . ,γs are found by solving the following constrained minimum distance problem

[γ1, . . . ,γs] = argmin

γ1,...,γs

Q̃ (t ,T ;γ1, . . . ,γs |θ ), (45)

s.t.

n∑
i=1

diRi = 0

s.t. 1 − ∆pos <

∫ ∞

0

������
ϕ (x ;θ ) *

,
1 +

n∑
k=1

ck (γ )h
ϕ
k

+
-

������
dx < 1 + ∆pos

where ∆pos = is the tolerance on the unity mass constraint, e.g. ∆pos = 0.000001, while the

coe�cients c1(γ ), . . . , cn (γ ) are functions of the parameters γ1, . . . ,γs , determined as in (43).

B.1.4 Kernel displacement

Consistency conditions ensured by �eorem 3.1 are rather �exible with respect to the support

of the kernel. In principle, it is su�cient that the support of the RND is contained in the support

of the kernel. However, if the support of ϕ is too large with respect to the support of fQ, then

the expansion (5) is ”forced” to converge to zero for all points that are outside the support of
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fQ. �is has clear disadvantages from an empirical perspective, since the kernel, which is the

starting point of the optimization in (45), associated with c1, . . . , cn = 0, does not satisfy the

constraint of unit mass in supp( fQ). Even if in general we may assume that supp( fQ) ⊆ R
+

,

when the le� tail of the true RND is particularly short around a point Kmin > 0, this implies that

that nearly the whole probability mass is concentrated away from the origin. Since the put price

curve of VIX contract normally becomes quickly linear as the strike price approaches the deep

OTM region, the RND is expected to display a strong negative skewness associated with a very

short le� tail. Hence, when fQ displays such a behavior on the le� tail, it may be convenient to

choose the kernel ϕ so that the following condition is satis�ed∫ Kmin

0

ϕ (x ,θ )dx = 0. (46)

A simple way to guarantee (46) is to displace the domain of a kernel by Kmin. �e idea of using

displaced densities is not new to �nance, see e.g. Brigo and Mercurio (2002), and has a�racted

particular interest in the context of volatility derivatives, see e.g. Carr and Lee (2007) and Lee and

Wang (2009). �e kernel displacement is done by considering a set K∗ of shi�ed strikes de�ned

as K∗ = [K1 − Kmin, . . . ,KM − Kmin], and de�ning the matrix of regressors X with respect to

K∗. Once the optimal c̃ are obtained as solution of the of the problem (45) based on K∗, then the

estimated RND is determined as follows

˜f (n)
Q

(x ) = ϕ (x − Kmin;θ ) *
,
1 +

n∑
k=1

c̃kh
ϕ
k
(x − Kmin )+

-
. (47)

which guarantees that

∫ Kmin

0

˜f (n)
Q

(x )dx = 0. �e choice of Kmin is based on the analysis of the

convexity of deeply OTM put prices, see the discussion in Section 6.

B.2 Numerical illustrations

In this section, we test the accuracy of the proposed approach by means of two numerical exam-

ples under no-arbitrage. �e purpose here is to show that the orthogonal polynomials are able

to approximate RNDs, belonging to di�erent families, with a high degree of accuracy. �erefore,

we perform the estimation on option prices generated by structural models for which the RND

is known in closed-form. �e option prices that are thereby considered are arbitrage-free by

construction. In this section we illustrate the practical relevance of the asymptotic conditions

on the RND required in �eorem 3.1 to ensure a convergent estimation. To obtain the target

RND and the related option prices, we consider two simple but popular models. In the �rst case,

the VIX is determined as a function of the instantaneous variance process of the Heston model,

as explained in Zhang and Zhu (2006). In the second case, the RND of the log-VIX is assumed to

be normal inverse Gaussian (NIG), an approach that is adopted in Huskaj and Nossman (2013).
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In both cases, the estimation of c1, . . . , cn is performed according to the methodology outlined in

Section 4 on a set of M = 42 option prices relative to strikes in the interval [K1,KM] = [10, 55].

�e option prices to be matched are generated through direct integration of the RND implied

by the two models. �e expansions order is set to 20, which is su�ciently high to ensure that

the ��ing cannot be further improved by adding more terms to the expansion. Furthermore,

choosing a high order for the expansion illustrates the convergence and stability properties of

the approach. Notably, the true risk-neutral densities associated with the two models display

di�erent decay rates on the tails, thus o�ering an interesting evaluation on how violating the

conditions of Lemma A.1 may possibly generate divergent expansions. Moreover, this numerical

exercise provides valuable information on the robustness of the estimates to the initial choice

of the expansion kernel. In particular, although the asymptotic properties of ϕ have a tangible

e�ect on the accuracy of the approximation, the choice of its parameters has only a marginal

impact, provided that it guarantees that convergence and closure conditions are respected (see

�eorem 3.1).

B.3 Heston model

Under Heston dynamics, the undiscounted SPX price (St )t≥0 and its variance (vt )t≥0
are gener-

ated according to the following SDE

d log St = −
1

2

vtdt +
√
vtdWt ,

dvt = k (v̄ −vt )dt + η
√
vtdW

∗
t ,

where dWt and dW ∗
t are correlated Brownian motions with constant correlation ρ. �e param-

eters k and v̄ govern the speed of mean reversion and long-run value of vt respectively, while

η is the volatility-of-volatility parameter. Following the approach of Zhang and Zhu (2006), un-

der the Heston model the square of the VIX at time T can be expressed as the following linear

function of vT

VIXT = 100 · (a1 · vT + a2)
1

2 , a1 =
1 − ekτ

kτ
, a2 = v̄ (1 − a1), τ =

30

365

.

Moreover, the density of vT given vt = z has the following closed-from expression

(vT | vt = z) ∼ д, д(s ) = C1s
kv̄
η2
− 1

2e
− 2ks
η2 (1−e−kT ) I 2kv̄

η2
−1
(C2

√
s ),

where C1 =
2k

η2 (1−e−k (T−t ) )
and C2 = 2C1

√
e−k (T−t )z do not depend on the state variable s and Iν

denotes the modi�ed Bessel function of �rst kind of order ν . Hence, the RND of VIXt is also
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known in closed-form

fQ(x ) =
2

a
x · д

(
x2 − b

a

)
and vanilla options prices can be generated through the integral formulas in (4). �e support

of fQ is [

√
a2,+∞[ and, by the asymptotic properties of Iν (see for example Abramowitz and

Stegun, 1964), it can be shown that fQ(x ) ∼ xα
∗

e−β
∗x2+γ ∗x

as x → +∞, where the leading term is

clearly e−β
∗x2

. Moreover, whenever the support of ϕ strictly contains [

√
a2,+∞[, the le�-tail de-

cay of fQ does not in�uence the integrability of f 2

Q
ϕ−1

. �erefore, the condition ϕ
1

2 f ∈ L2(D) of

�eorem 3.1 is met for any choice of the kernel among the families of GIG, GW and LN densities.

Figure 10 portrays the true RND of the Heston model and the related orthogonal polynomial

expansions based on di�erent choices of the kernel. �e approximated densities reported in

Figure 10 highlight the ability of the expansions based on the GIG and the GW kernels to well

recover the original density fQ. On the contrary, the LN kernel fails in approximating fQ, al-

though several corrective terms are considered in the expansion and the convergence condition

fQϕ
−1/2 ∈ L2(D) is satis�ed. �e expansion based on the LN kernel proves particularly ine�ec-

tual on both tails of fQ. �is is a practical consequence of the fact that the LN density does not

generate closed polynomial sets (see �eorem A.3), and may serve as an interpretive example

of the importance of the hypotheses required by �eorem 3.1.

10 15 20 25 30 35 40 45 50 55
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

10 15 20 25 30 35 40 45 50 55

10-4

10-3

10-2

1% 15
%

75
%

95
%

98
%

99
%

True GIG GW LN

Figure 10: Probability density functions in standard scale (le�) and semi-logarithmic scale (right). Com-

parison between the true density of VIX implied by the Heston model and the estimated RNDs of order 20.

�e parameters for the Heston model are: k = 1.71, v̄ = 0.097, η = 0.577,v (0) = v̄ andT −t = 30/365. �e

dashed vertical lines on the right panel identify several relevant probability levels and the corresponding

quantiles.
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B.4 NIG distribution

We assume that the log-VIX at maturity T follows a NIG distribution, that is

log (VIXT ) ∼ д, д(s ) = C ·
K1

(
α
√
δ 2 + (s − µ )2

)
√
δ 2 + (s − µ )2

eβ (s−µ ),

where C = αδ
π e

δγ
is the normalization constant and Kν denotes the modi�ed Bessel function

of the second kind (cf. Abramowitz and Stegun (1964)). �erefore, by the change of variable

s = log(x ) we obtain the RND of the VIX

fQ(x ) =
1

x
· д (log(x )) .

�e asymptotic properties ofKν determine polynomial decay of fQ both on the right and the le�

tail. It follows that none of the kernels considered here meets the condition fQϕ
− 1

2 ∈ L2(R+).

Figure 11 reports the true RND implied by the log-NIG density, and related expansions based

on di�erent choices of the kernel. As expected, in all cases the main convergence issues involve

the tails. In particular, the expansion based on the GIG kernel is defective on both tails, which

is consistent with the fact that a GIG kernel decays more rapidly than the true RND, at both

sides. Due to the polynomial decay of the GW kernel on le� tail, which accommodates the slow

decay of the true RND, the GW-based expansion proves inexact only on the right tail. Finally,

the LN kernel provides again the weakest performance, but it is worth noticing that here the

approximation is more accurate than in the previous test. �is is a consequence of the fact that

the LN is nested within the log-NIG family, and therefore here fQ is intuitively ”closer” to a

log-normal than in the previous case.

B.5 Robustness to kernel speci�cation

We now test the robustness of our estimation to the initialization of the kernel parameters, θ .

So far, the parameters of the kernels were optimally determined by minimizing the residuals

variance for the expansion of order 0. However, it is interesting to empirically assess how the

initial choice of the parameters θ ∈ Θ a�ects the accuracy of (5). To answer this question,

we perturb the parameters of optimally calibrated kernels, so that the moments and the option

prices implied by the kernels heavily mismatch those generated by the true fQ. In Table 4

we report the �rst four moments of the GIG and the GW kernels, where mean and variance

are drastically perturbed as compared to the values implied by the true density of the Heston

model. �e last two columns of the table highlight the capability of the polynomial expansions

to yield precise ��ing of the moments of the RND, even when the kernel largely deviates from

the true density. It is inherently assumed, however, that the assumptions of �eorem 3.1 are
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Figure 11: Probability density functions in standard scale (le�) and semi-logarithmic scale (right). Com-

parison between the true density of VIX implied by the NIG density and the estimated RNDs of order

20. �e parameters for the NIG density are chosen as follows: α = 14.36, β = 9.8, µ = 2.97, γ = 0.38.

�e dashed vertical lines on the right panel identify relevant probability levels and the corresponding

quantiles.

True GIG kernel GW kernel GIG (order 20) GW (order 20)

Mean 30.13 27.65 35.44 30.14 30.17

Variance 65.36 50.79 165.78 65.27 65.81

Skewness 50.26 21.07 56.86 50.16 50.40

Kurtosis 2.86 0.80 6.07 2.82 2.87

Table 4: �e table reports mean, variance, standardized skewness and kurtosis of the true density of

the Heston model, of the calibrated kernel densities (GIG kernel and GW kernel) and of their related

expansions of order larger than 20.

always satis�ed. Figure 12 portrays the true density implied by the Heston model, the perturbed

kernels, and the RNDs obtained by estimating the coe�cients of the corresponding orthogonal

expansions.
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Figure 12: Probability density functions in standard scale (le�) and semi-logarithmic scale (right). Com-

parison between the true density implied by the Heston model, the ”mismatching” kernels, and the related

estimated expansions. �e dashed vertical lines locate some relevant mass levels and the corresponding

quantiles.

�e non-calibrated kernels clearly mismatch the true RND and totally deviate from each

other, but almost perfect approximations of the RND are a�ained in both cases through expan-

sions of order 20. �us, the estimation based on the orthogonal expansions proves to be very

robust with respect to the initialization of ϕ.
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Figure 13: Call and put option prices implied by the Heston model, the mismatching GIG and GW

kernels, and related expansions of order 20.

Figure 13, depicting the option prices generated by the densities reported in Figure 12, con-

�rms that the accuracy of the estimated RND is a�ected by the choice of the kernel only to a

minor extent. Indeed, the kernel has almost no impact on the estimation, provided that the con-

ditions of convergence have been guaranteed and that the expansion order can be set su�ciently

large - which is our case.

44



B.6 Robustness to no-arbitrage violations

We assess here the practical validity of Proposition 5.1 by means of Monte Carlo simulations.

To this end, we evaluate how adding a random noise to a discrete set of arbitrage-free prices

obtained from a known RND a�ects the estimates of RND obtained by solving the problem in

(19). Consistently with notations of Section 4, we assume the following form for the vector Y of

observed prices

Y = Y + ϵ,

where Y are arbitrage free option prices and ϵ is a vector of random shocks embedding all the

violations from the no-arbitrage assumption. Speci�cally, we assume that the vector of observed

call and put prices are given by

C = C + ϵC , P = P + ϵP

where C = [CK1
(t ,τ ), . . . ,CKM (t ,τ )]

′
, P = [PK1

(t ,τ ), . . . ,PKM (t ,τ )]
′
, ϵC and ϵP are indepen-

dent vectors of independent centered Gaussian variables with non-constant variance

σ 2

C,i = Var[ϵCi ], σ 2

P ,i = Var[ϵPi ], i = 1, . . . ,M .

Choosing a non-constant variance is owed to the fact that the magnitude of no-arbitrage viola-

tions must be consistent with the magnitude of option prices, which are monotonic quantities.

�erefore, σ 2

C = [σ 2

C,1, . . . ,σ
2

C,M] and σ 2

P = [σ 2

P ,1, . . . ,σ
2

P ,M] are assumed to be an increasing and

a decreasing vector, respectively. To identify σ 2

C and σ 2

P we further assume that the arbitrage

error ϵF induced on the vector F of future prices implied by the put-call parity consists of i.i.d.

components, that is

F = C − P + K = F + ϵF ,

where

F = Ci − Pi + Ki ∀i = 1, . . . ,M

is the unique arbitrage-free future price. Hence ϵF = ϵC − ϵP and E[ϵF ] = 0. Assuming σ 2

F :=

Var[ϵF ] < ∞, identi�cation of Var[ϵC] and Var[ϵP ] can therefore be achieved by

σ 2

C,i + σ
2

P ,i = σ
2

F ,
σ 2

C,i

σ 2

P ,i

=
Ci

Pi
, i = 1, . . . ,M,

which gives

σ 2

P ,i =
σ 2

F

1 +
C2

i
P2

i

, σ 2

C,i = σ
2

F − σ
2

P ,i , i = 1, . . . ,M . (48)
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Note that observable quantity ∆pcp
de�ned in (25) is a sample counterpart of σ 2

F . �erefore,

since σ 2

F = σ 2

C,i + σ
2

P ,i by construction, up to switching the integration order in (24), ∆pcp
can

consistently approximate the right hand of (24). We therefore carry out Monte Carlo simulations

with the purpose of investigating the robustness of the orthogonal polynomial expansion to the

no-arbitrage violations and the usefulness of the threshold ∆pcp
to provide an indication for

the lower bound on the variance of residuals. Each Monte Carlo simulation consists of a set of

perturbed option prices Y over a �xed number M = 25 of strikes. �e vector of arbitrage-free

call and put prices, Y , is generated only once, by direct integration of the VIX-RND implied by

the Heston model, with parameters k = 1.71, v̄ = 0.097, η = 0.577, v (0) = v̄ and τ = 30/365.

�e arbitrage components ϵC and ϵP for each Monte Carlo simulation are obtained as



ϵC

ϵP


=



σC

σP


◦ R,

where ◦ denotes the Hadamard product, σC ,σP are determined as in (48), and R is a 2M×1 vector

of i.i.d. standard Gaussian realizations, symmetrically truncated to ensure Y ≥ 0. We repeat the

procedure based on either the GIG or the GW kernel, and for σF = 0.01, 0.03, 0.05.
4

�e results

of these Monte Carlo simulations are summarized in Table (5). �e so called divergence rate,

which is associated to the cases in which the RSME exceeds the threshold 2

√
∆pcp

, is intended

to approximate the frequency of violations of the conditions of Proposition 5.1. On the other

hand, the second column of Table 5 endorses the validity of (24), since the RSME is below

√
∆pcp

in a large percentage of cases. Furthermore, by looking at the Monte Carlo average of the RMSE,

it emerges that the variance of the error associated to the expansion of order 10 decreases with

σF and it is of the same order of σF in most cases. Di�erently, the two kernels on average are not

associated to a residual variance that is comparable to ∆pcp
and the RMSE remains very high

also when σF = 0.01. �e third column of Table 5 reports the �ltering rate as a measure of how

o�en, among the convergent cases, the noise produced on data does not a�ect the estimated

RND. As expected, the �ltering rate increases as the level of noise, namely σF , decreases. �is is

consistent with Proposition 5.1 since the hypotheses 5.1.i)-ii) are expected to be less restrictive

as σF decreases. �ese additional hypotheses require that the estimated RND is constrained

to be positive - which is the case here - and that the observed prices do not embed multiple

arbitrage-free curves. Intuitively, under these hypotheses, the estimated RND is not a�ected

by the arbitrage noise existing in the observed prices. �e �gures reported in Table 5 provide

a solid con�rmation of this intuition, since the percentage of cases where the noise does not

a�ect the estimated RND grows as σ 2

F decreases, which in turn implies reducing the uncertainty

on the RND. Consistently, the L2
distance between the estimated and the true RND decreases as

4
Typical values of

√
∆pcp

determined on real data fall in the interval [0.01, 0.05], which roughly correspond to

an uncertainty between 1 and 5 cents of dollar on the futures prices implied by the put-call parity.
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σ 2

F decreases, as shown in the ��h column. Finally, the last column of Table 5 con�rms that the

estimation based on expansions of order 10 outperforms the related kernel in all cases.

Order 10 Kernel

Div. rate Fi�. rate Filt. rate RMSE L2 RMSE L2

σF = 0.01

GIG 14.4 % 71.4 % 100 % 0.0123 0.0069 0.0969 0.0218

GW 15.6 % 71.3 % 100 % 0.0125 0.0070 0.0962 0.0217

σF = 0.03

GIG 5.6 % 74 % 82.57 % 0.0362 0.0135 0.0988 0.0217

GW 4.7 % 76.3 % 80.47 % 0.0356 0.0131 0.0980 0.0217

σF = 0.05

GIG 6.8 % 81.5 % 56.81 % 0.0713 0.0186 0.1024 0.0218

GW 4.7 % 83.2 % 57.81 % 0.0536 0.0174 0.1017 0.0217

Table 5: �e table summarizes the results of N = 1000 Monte Carlo tests described above, correspond-

ing to di�erent kernels and di�erent values of σ 2

F . �e �rst column reports the divergence rate of the

estimation, determined as the percentage of tests such that the residual root-mean squared error (RMSE)

is greater than 2

√
∆pcp

. �e second column reports the rate of optimal ��ing according to Equation (26),

that is the percentage of tests yielding a RMSE lower or equal to σF . �e third column reports the per-

centage of tests for which the arbitrage component is successfully ”�ltered”. �e arbitrage component

is considered to be �ltered when the RND estimated on the perturbed data and the RND estimated on

arbitrage-free data achieve the same level of accuracy, in terms of magnitude (∼ 10
−3) of their distance

from the true RND, measured as L2
norm (L2). Only convergent tests are considered in this computation.

�e last four columns report the Monte Carlo average of RMSE and L2 relative to the expansion of order

10 and kernel (order 0).

B.7 Details on the Empirical Analysis

GIG GW

Par. Estimate Par. Estimate

α -0.899 α 2.467

β 0.090 β 0.874

ξ 33.99 p 0.605

Table 6: �e table reports the kernel parameters for the GIG and GW kernels respectively, estimated

using the procedure detailed in Section B.1.2.
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τ = 1 month τ = 2 months τ = 3 months τ = 4 months τ = 5 months

M Min Max M Min Max M Min Max M Min Max M Min Max

20 Jan 2010 21 17 60 22 15 75 20 18 75 19 15 70 20 15 75

24 Feb 2010 19 17 50 23 17 75 18 18 70 21 10 75 20 15 80

24 Mar 2010 18 15 42.5 21 15 55 21 15 80 20 15 80 20 15 80

21 Apr 2010 20 15 47.5 21 15 60 22 15 70 24 15 80 23 15 75

26 May 2010 25 19 100 28 10 90 28 15 100 26 15 90 31 15 100

23 Jun 2010 21 20 80 23 18 90 28 15 100 30 16 100 20 15 80

21 Jul 2010 21 17 75 23 17 85 31 15 100 19 20 80 21 10 80

25 Aug 2010 19 22.5 75 27 18 95 22 10 80 21 10 80 21 10 80

22 Sep 2010 22 17 65 27 15 80 22 20 80 20 20 75 22 15 80

20 Oct 2010 23 15 55 23 18 75 22 18 80 24 10 80 21 15 80

24 Nov 2010 21 15 47.5 24 15 70 23 15 75 22 15 80 22 15 80

22 Dec 2010 21 15 50 26 15 75 23 15 75 21 15 75 20 15 75

26 Jan 2011 18 14 40 23 13 55 27 13 75 27 13 75 26 13 70

23 Feb 2011 22 15 60 25 15 75 25 14 70 26 14 75 28 13 80

23 Mar 2011 20 15 47.5 25 15 70 25 15 75 27 14 80 26 13 70

20 Apr 2011 22 13 47.5 27 14 75 27 14 75 27 14 80 25 15 75

25 May 2011 19 14 42.5 25 13 60 25 13 65 25 15 75 24 15 70

22 Jun 2011 21 15 50 24 14 65 24 15 70 24 15 70 26 15 80

20 Jul 2011 22 14 55 24 15 70 25 15 75 25 15 75 28 15 80

24 Aug 2011 22 21 90 26 19 100 25 19 95 29 16 90 31 17 95

21 Sep 2011 24 22.5 95 26 20 95 30 16 95 31 18 100 33 16 100

26 Oct 2011 23 19 75 28 17 90 32 17 100 33 16 100 34 15 100

23 Nov 2011 24 21 90 30 19 100 34 15 100 35 10 100 34 15 100

21 Dec 2011 26 17 70 29 16 80 31 15 85 33 15 95 31 16 90

25 Jan 2012 25 15 55 27 16 70 32 16 95 31 15 85 32 15 90

22 Feb 2012 26 15 60 30 16 85 29 15 75 31 15 85 33 15 95

21 Mar 2012 28 12 55 31 12 70 31 12 70 34 10 75 35 11 85

25 Apr 2012 24 13 45 30 12 65 33 12 80 32 12 75 34 10 95

23 May 2012 27 16 70 31 14 80 33 14 90 31 15 85 30 15 80

20 Jun 2012 31 14 80 36 13 100 30 15 80 29 15 75 30 15 80

25 Jul 2012 28 14 65 31 15 85 30 15 80 32 15 90 30 15 80

22 Aug 2012 31 13 75 31 13 75 31 13 75 32 13 80 31 13 75

26 Sep 2012 26 13 50 32 11 70 30 12 65 31 12 70 32 12 75

24 Oct 2012 27 13 55 31 12 70 31 12 70 31 12 70 32 13 80

21 Nov 2012 26 13 50 33 12 80 31 12 70 30 13 70 30 13 70

26 Dec 2012 25 14 50 32 12 75 29 13 65 31 12 70 32 12 75

23 Jan 2013 20 12 32.5 28 11 50 34 11 80 31 10 60 31 10 60

20 Feb 2013 22 12 37.5 30 11 60 33 10 70 35 10 80 30 11 60

20 Mar 2013 25 11 42.5 30 11 60 35 9 75 30 11 60 34 11 80

24 Apr 2013 23 11 37.5 31 11 65 33 11 75 36 9 80 31 11 65

22 May 2013 25 12 45 31 11 65 32 11 70 31 10 60 31 11 65

26 Jun 2013 22 13 40 28 13 60 33 11 75 31 12 70 30 12 65

24 Jul 2013 20 12 32.5 28 11 50 29 11 55 31 11 65 28 12 55

21 Aug 2013 23 12 40 30 11 60 29 11 55 32 10 65 30 11 60

25 Sep 2013 19 12 30 25 12 45 29 12 60 31 11 65 30 11 60

23 Oct 2013 22 12 37.5 28 12 55 29 11 55 31 11 65 27 12 50

20 Nov 2013 22 12 37.5 27 12 50 31 11 65 31 11 65 29 11 55

24 Dec 2013 21 13 37.5 27 12 50 28 11 50 31 11 65 30 11 60

22 Jan 2014 25 12 45 29 11 55 30 11 60 30 11 60 30 11 60

26 Feb 2014 21 12 35 27 12 50 31 11 65 30 12 65 31 11 65

26 Mar 2014 20 13 35 24 13 45 30 12 65 30 11 60 30 11 60

23 Apr 2014 19 12 30 24 12 42.5 29 12 60 32 11 70 29 11 55

21 May 2014 19 12 30 23 12 40 30 11 60 30 11 60 33 11 75

25 Jun 2014 23 10.5 28 24 10 37.5 29 10 50 30 11 60 30 10 55

23 Jul 2014 23 10.5 28 30 10 40 29 10 50 31 10 60 31 10 60

20 Aug 2014 26 10.5 32.5 29 10 50 31 10 60 31 10 60 33 10 70

24 Sep 2014 24 11.5 32.5 30 11 45 30 10 55 33 10 70 32 11 70

22 Oct 2014 31 12.5 60 31 11 65 30 12 65 32 11 70 31 11 65

26 Nov 2014 25 11.5 35 32 12 60 31 11 65 31 11 65 30 12 65

24 Dec 2014 28 12 45 34 11.5 65 30 11 60 30 12 65 32 11 70

21 Jan 2015 28 13.5 55 30 12 65 29 12 60 30 12 65 31 12 70

25 Feb 2015 25 12.5 40 31 12.5 60 31 12 70 31 12 70 33 11 75

25 Mar 2015 23 13 37.5 31 12 55 29 12 60 30 12 65 32 11 70

22 Apr 2015 26 12 40 31 12 55 30 12 65 32 11 70 31 12 70

20 May 2015 25 12 37.5 31 11 65 31 12 70 31 11 65 32 11 70

24 Jun 2015 27 11.5 40 32 11.5 55 31 11 65 31 12 70 31 12 70

22 Jul 2015 26 11.5 37.5 29 11 55 32 11 70 30 12 65 31 12 70

26 Aug 2015 31 14 75 35 12.5 80 31 12 70 30 12 65 32 11 70

22 Sep 2015 29 14 65 32 13 70 30 12 65 31 12 70 31 12 70

20 Oct 2015 30 12.5 55 29 12 60 31 11 65 32 11 70 31 12 70

24 Nov 2015 25 12 37.5 32 12.5 65 30 12 65 31 12 70 31 12 70

22 Dec 2015 29 13 55 33 12 65 31 11 65 33 12 80 31 12 70

19 Jan 2016 30 13.5 65 29 14 70 32 13 80 31 12 70 32 11 70

23 Feb 2016 25 14.5 50 29 14.5 70 28 14 65 30 13 70 32 13 80

22 Mar 2016 28 13 50 32 12.5 65 29 12 60 31 12 70 30 12 65

19 Apr 2016 27 12 42.5 29 12 60 30 12 65 31 12 70 31 12 70

Table 7: Summary of the panel of VIX options.
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τ = 1 month τ = 2 months τ = 3 months τ = 4 months τ = 5 months
√
∆pcp

Kernel Expans.

√
∆pcp

Kernel Expans.

√
∆pcp

Kernel Expans.

√
∆pcp

Kernel Expans.

√
∆pcp

Kernel Expans.

20 Jan 2010 0.0886 0.0621 0.0538 0.0556 0.103 0.0362 0.0664 0.0799 0.0355 0.0807 0.116 0.0438 0.0654 0.13 0.037

24 Feb 2010 0.0744 0.075 0.0431 0.032 0.0943 0.0239 0.0458 0.103 0.0333 0.0532 0.106 0.0514 0.07 0.128 0.0364

24 Mar 2010 0.0554 0.0616 0.0322 0.0416 0.0782 0.0232 0.0344 0.0689 0.022 0.0518 0.103 0.0297 0.072 0.0877 0.0402

21 Apr 2010 0.0296 0.0948 0.0235 0.0326 0.0775 0.0206 0.0337 0.0935 0.0239 0.0416 0.0948 0.03 0.0717 0.106 0.0486

26 May 2010 0.0761 0.0968 0.0562 0.0798 0.253 0.0603 0.0776 0.17 0.0459 0.0869 0.151 0.0511 0.0767 0.172 0.0578

23 Jun 2010 0.0321 0.123 0.0267 0.0459 0.121 0.0393 0.0465 0.177 0.0379 0.0608 0.0992 0.0419 0.0668 0.11 0.0433

21 Jul 2010 0.0305 0.096 0.0205 0.0403 0.0812 0.0257 0.0713 0.125 0.0465 0.0685 0.0906 0.0383 0.0708 0.128 0.0376

25 Aug 2010 0.0328 0.0733 0.0226 0.0463 0.075 0.0301 0.0469 0.129 0.0272 0.085 0.143 0.0448 0.0749 0.133 0.0414

22 Sep 2010 0.0443 0.0572 0.0305 0.0369 0.063 0.0239 0.0389 0.0935 0.0287 0.0367 0.0783 0.0209 0.0493 0.145 0.031

20 Oct 2010 0.0471 0.0982 0.0327 0.0706 0.118 0.0503 0.0405 0.124 0.0248 0.0813 0.142 0.042 0.087 0.13 0.0474

24 Nov 2010 0.0383 0.0713 0.0248 0.0367 0.0738 0.0281 0.0757 0.145 0.0482 0.0555 0.172 0.0427 0.0698 0.122 0.0436

22 Dec 2010 0.0402 0.0496 0.0278 0.0558 0.123 0.0336 0.0333 0.109 0.0308 0.0585 0.105 0.0346 0.0347 0.107 0.0254

26 Jan 2011 0.0224 0.0681 0.0169 0.023 0.0706 0.0176 0.0351 0.0994 0.0227 0.0334 0.0812 0.0228 0.0383 0.0708 0.0229

23 Feb 2011 0.028 0.0691 0.023 0.0519 0.0971 0.0327 0.0491 0.0757 0.0352 0.0547 0.0828 0.037 0.0536 0.113 0.0402

23 Mar 2011 0.0329 0.0506 0.0276 0.0303 0.0935 0.0262 0.0349 0.0805 0.0246 0.0339 0.097 0.021 0.0442 0.118 0.0357

20 Apr 2011 0.0295 0.0952 0.019 0.03 0.0852 0.0227 0.039 0.114 0.0359 0.0526 0.107 0.0534 0.0406 0.117 0.0351

25 May 2011 0.0282 0.0761 0.0187 0.0267 0.102 0.0217 0.0227 0.0927 0.0202 0.0322 0.0871 0.0231 0.0458 0.115 0.0386

22 Jun 2011 0.0236 0.079 0.0209 0.027 0.077 0.0215 0.0296 0.0789 0.0257 0.0374 0.127 0.036 0.0312 0.106 0.0224

20 Jul 2011 0.023 0.0906 0.0193 0.0278 0.0873 0.024 0.0299 0.143 0.0226 0.0331 0.0917 0.0211 0.0323 0.0851 0.0382

24 Aug 2011 0.0371 0.0754 0.0352 0.0445 0.121 0.0362 0.0385 0.143 0.0336 0.0411 0.183 0.0417 0.0779 0.137 0.0577

21 Sep 2011 0.0358 0.0903 0.0274 0.0273 0.0985 0.022 0.0385 0.187 0.0307 0.0583 0.118 0.059 0.0795 0.15 0.0432

26 Oct 2011 0.0238 0.0843 0.0172 0.0284 0.0808 0.0252 0.0272 0.0714 0.0203 0.0333 0.0999 0.0324 0.0641 0.136 0.0359

23 Nov 2011 0.026 0.0692 0.0245 0.0423 0.0925 0.033 0.0398 0.115 0.0274 0.0571 0.261 0.0329 0.0738 0.275 0.0421

21 Dec 2011 0.0304 0.112 0.0235 0.0343 0.0889 0.0289 0.0442 0.153 0.0286 0.0462 0.156 0.0265 0.0437 0.103 0.0437

25 Jan 2012 0.0326 0.0831 0.0221 0.0337 0.0569 0.0284 0.0438 0.0543 0.032 0.0447 0.0853 0.0337 0.058 0.0974 0.0352

22 Feb 2012 0.028 0.0762 0.0222 0.0305 0.0684 0.0291 0.0289 0.175 0.0286 0.0553 0.161 0.0322 0.0837 0.167 0.0447

21 Mar 2012 0.0302 0.0704 0.0191 0.0334 0.0546 0.0218 0.04 0.0614 0.0319 0.0442 0.157 0.0305 0.0468 0.143 0.0302

25 Apr 2012 0.02 0.0771 0.0164 0.0423 0.107 0.0268 0.0394 0.0654 0.0232 0.0437 0.074 0.0271 0.0599 0.144 0.0322

23 May 2012 0.042 0.0611 0.025 0.0461 0.0676 0.0295 0.0475 0.061 0.0314 0.035 0.153 0.0261 0.0594 0.106 0.0362

20 Jun 2012 0.028 0.0742 0.0198 0.0426 0.0661 0.0271 0.0308 0.0687 0.0236 0.0317 0.0823 0.031 0.0418 0.0797 0.0363

25 Jul 2012 0.0276 0.066 0.0205 0.0386 0.083 0.0254 0.0453 0.0804 0.0293 0.0536 0.159 0.0305 0.0645 0.0837 0.0363

22 Aug 2012 0.029 0.07 0.0198 0.042 0.0744 0.0281 0.0303 0.0598 0.0232 0.0439 0.0523 0.0334 0.0415 0.0548 0.0266

26 Sep 2012 0.0227 0.0757 0.019 0.0279 0.118 0.0215 0.0263 0.0737 0.0197 0.0294 0.0545 0.0205 0.0394 0.0672 0.0244

24 Oct 2012 0.0318 0.075 0.0297 0.034 0.0794 0.0278 0.0331 0.0857 0.0259 0.0375 0.0662 0.0338 0.0532 0.0702 0.0342

21 Nov 2012 0.0281 0.0771 0.0191 0.0417 0.0331 0.0255 0.0302 0.0704 0.0296 0.0404 0.0721 0.0267 0.04 0.0734 0.0264

26 Dec 2012 0.0322 0.0525 0.0203 0.0291 0.0958 0.024 0.0408 0.0572 0.0292 0.0561 0.0945 0.0324 0.0593 0.0617 0.0323

Table 8: Root mean square error (RMSE): errors between the observed VIX option prices and the approximate

prices implied by GW kernel and related expansion.
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τ = 1 month τ = 2 months τ = 3 months τ = 4 months τ = 5 months
√
∆pcp

Kernel Expans.

√
∆pcp

Kernel Expans.

√
∆pcp

Kernel Expans.

√
∆pcp

Kernel Expans.

√
∆pcp

Kernel Expans.

23 Jan 2013 0.0311 0.0566 0.0201 0.0235 0.053 0.0192 0.0495 0.0672 0.0303 0.0485 0.106 0.0313 0.0434 0.113 0.0302

20 Feb 2013 0.0281 0.0605 0.0214 0.036 0.0576 0.0233 0.0385 0.0862 0.0284 0.0597 0.108 0.0376 0.0523 0.0642 0.0316

20 Mar 2013 0.0186 0.0624 0.0168 0.0402 0.0674 0.0309 0.0364 0.123 0.0311 0.0487 0.0676 0.0348 0.0641 0.0561 0.0398

24 Apr 2013 0.0203 0.0556 0.0162 0.0293 0.0621 0.0238 0.045 0.0602 0.0347 0.0539 0.117 0.0384 0.0523 0.0551 0.0337

22 May 2013 0.034 0.0641 0.0219 0.0295 0.0651 0.0213 0.0325 0.0483 0.0264 0.038 0.105 0.033 0.0369 0.0805 0.028

26 Jun 2013 0.0254 0.0758 0.0209 0.0235 0.0591 0.0228 0.037 0.102 0.0304 0.0366 0.0417 0.0289 0.0332 0.0438 0.0272

24 Jul 2013 0.0224 0.0554 0.0171 0.0271 0.0612 0.0199 0.0334 0.0544 0.0227 0.0442 0.0363 0.0252 0.0445 0.0473 0.0278

21 Aug 2013 0.0361 0.0629 0.0317 0.049 0.0986 0.0371 0.0249 0.0913 0.0235 0.0573 0.103 0.0408 0.0531 0.0609 0.0371

25 Sep 2013 0.0257 0.0335 0.0175 0.0246 0.0588 0.0203 0.0447 0.0646 0.0367 0.0489 0.0588 0.0373 0.045 0.045 0.0359

23 Oct 2013 0.0261 0.0721 0.0222 0.0286 0.0712 0.0214 0.0305 0.051 0.0254 0.0439 0.0461 0.0265 0.0373 0.0432 0.0317

20 Nov 2013 0.0289 0.0608 0.0205 0.0272 0.0663 0.0195 0.0347 0.0918 0.0208 0.0353 0.0405 0.0244 0.0388 0.0406 0.0273

24 Dec 2013 0.0277 0.0372 0.0272 0.0305 0.0884 0.029 0.0655 0.0897 0.0624 0.0386 0.0668 0.0299 0.037 0.0561 0.0277

22 Jan 2014 0.0256 0.0509 0.0212 0.0236 0.128 0.0233 0.0369 0.0933 0.0341 0.041 0.0546 0.0273 0.05 0.0677 0.0363

26 Feb 2014 0.0269 0.0565 0.0187 0.0189 0.0841 0.0179 0.0253 0.108 0.0224 0.0303 0.0815 0.0249 0.0306 0.0703 0.03

26 Mar 2014 0.0253 0.0545 0.016 0.027 0.04 0.0263 0.0249 0.056 0.022 0.0363 0.107 0.0367 0.0354 0.0681 0.0338

23 Apr 2014 0.0328 0.0514 0.0228 0.0242 0.0195 0.0182 0.0362 0.0652 0.0337 0.0467 0.0985 0.0421 0.0405 0.0633 0.036

21 May 2014 0.0316 0.0379 0.02 0.0255 0.0652 0.0208 0.0237 0.037 0.0193 0.0306 0.0635 0.0267 0.0421 0.0576 0.0353

25 Jun 2014 0.0215 0.0369 0.0147 0.021 0.0492 0.0194 0.0304 0.0303 0.0196 0.0241 0.0631 0.0184 0.0341 0.0614 0.0312

23 Jul 2014 0.0199 0.0503 0.017 0.0234 0.091 0.02 0.0207 0.0628 0.0174 0.0337 0.0869 0.027 0.0326 0.0858 0.0319

20 Aug 2014 0.0187 0.0343 0.0148 0.0233 0.056 0.0179 0.0209 0.0623 0.0213 0.0425 0.106 0.039 0.0415 0.0609 0.0327

24 Sep 2014 0.0239 0.0713 0.0198 0.0237 0.0823 0.018 0.0309 0.0622 0.0257 0.0392 0.131 0.0361 0.0393 0.0687 0.0379

22 Oct 2014 0.0223 0.071 0.0185 0.0259 0.102 0.0237 0.0314 0.0834 0.0307 0.0284 0.0793 0.0222 0.0262 0.0752 0.0252

26 Nov 2014 0.0332 0.0618 0.0221 0.0261 0.129 0.0187 0.0221 0.127 0.0221 0.0295 0.0838 0.0298 0.027 0.0613 0.0271

24 Dec 2014 0.0303 0.0745 0.0198 0.0337 0.129 0.0213 0.0371 0.104 0.0353 0.0347 0.0778 0.0311 0.0413 0.063 0.028

21 Jan 2015 0.0319 0.0564 0.0214 0.0264 0.122 0.0265 0.0179 0.103 0.018 0.0279 0.0522 0.0224 0.0395 0.0704 0.038

25 Feb 2015 0.0265 0.0684 0.0172 0.0208 0.066 0.0209 0.0149 0.0722 0.0141 0.0261 0.0616 0.0251 0.0368 0.139 0.0289

25 Mar 2015 0.0285 0.0629 0.0177 0.0179 0.0928 0.0171 0.0263 0.0521 0.0262 0.0296 0.0693 0.0296 0.0299 0.0673 0.0283

22 Apr 2015 0.0248 0.0859 0.0207 0.0222 0.0833 0.0204 0.0233 0.0584 0.0204 0.0232 0.11 0.0236 0.0276 0.0741 0.0242

20 May 2015 0.0208 0.0767 0.0195 0.0287 0.106 0.0208 0.0275 0.0756 0.0239 0.0224 0.102 0.0184 0.033 0.139 0.0307

24 Jun 2015 0.0281 0.089 0.0207 0.0342 0.0696 0.0308 0.0343 0.124 0.032 0.0348 0.0744 0.0274 0.0507 0.0778 0.0395

22 Jul 2015 0.0219 0.0908 0.02 0.0255 0.0421 0.0219 0.031 0.0983 0.0279 0.0411 0.0894 0.0384 0.0418 0.0635 0.0368

26 Aug 2015 0.0307 0.0442 0.0235 0.046 0.0786 0.044 0.0565 0.0702 0.0418 0.0425 0.0974 0.041 0.0593 0.0715 0.0379

22 Sep 2015 0.0291 0.0969 0.0257 0.0286 0.0768 0.0236 0.0314 0.102 0.0309 0.0481 0.115 0.0489 0.0491 0.0959 0.0407

20 Oct 2015 0.0223 0.0883 0.0183 0.023 0.0408 0.021 0.0206 0.11 0.0208 0.0364 0.116 0.0264 0.0445 0.0888 0.0479

24 Nov 2015 0.03 0.0684 0.0232 0.0335 0.044 0.0261 0.0422 0.0701 0.0418 0.0396 0.0875 0.0379 0.0495 0.0809 0.0472

22 Dec 2015 0.0291 0.073 0.0202 0.027 0.114 0.0272 0.0369 0.101 0.0249 0.0571 0.0638 0.0427 0.0632 0.0746 0.0485

19 Jan 2016 0.0312 0.0699 0.0214 0.0249 0.059 0.0219 0.0448 0.0816 0.0438 0.0453 0.105 0.0455 0.0377 0.133 0.0401

23 Feb 2016 0.025 0.0518 0.0201 0.0282 0.0698 0.0215 0.036 0.0683 0.0338 0.0338 0.0708 0.03 0.0532 0.0699 0.0525

22 Mar 2016 0.0249 0.0775 0.0171 0.0324 0.0768 0.0254 0.0312 0.0772 0.0214 0.0472 0.0661 0.0436 0.0506 0.0771 0.0477

19 Apr 2016 0.0249 0.0623 0.0191 0.0233 0.098 0.022 0.0282 0.0524 0.0256 0.0362 0.0525 0.0306 0.042 0.0609 0.0343

Table 9: Root mean square error (RMSE): errors between the observed VIX option prices and the approximate

prices implied by GW kernel and related expansion.
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