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Abstract

This paper examines local changes in annual temperature data for the northern and south-

ern hemispheres (1850–2014) by using a multivariate generalisation of the shifting–mean

autoregressive model of González and Teräsvirta (2008). Univariate models are first fitted

to each series by using the QuickShift methodology. Full information maximum likelihood

estimates of a bivariate system of temperature equations are then obtained and asymptotic

properties of the corresponding estimators considered. The system is then used to perform

formal tests of co–movements, called co–shifting, in the series. The results show evidence of

co–shifting in the two series. Forecasting this pair of series is considered as well.
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1 Introduction

In recent years there has been considerable debate in the climate change literature,
interestingly enough, not about whether global warming can be detected in avail-
able time series data but rather the proper way to characterize this phenomenon in
the modelling process. The essence of the debate is this: do global and hemispheric
temperature data follow a unit root (difference stationary) process wherein shocks
to the world’s climate can be expected to have a permeant effect, perhaps with a
shared stochastic trend (cointegration) between northern and southern hemispheric
observations? Or do the observed data fluctuate around a deterministic, perhaps non-
linear trend wherein the mean (trend) of the series might exhibit occasional breaks
or shifts? This recent debate is perhaps best characterized by five recent publica-
tions in the journal Climatic Change. These are: Gay-Garcia, Estrada and Sánchez
(2009), Kaufmann, Kauppi and Stock (2010a), Estrada, Gay and Sánchez (2010),
Mills (2010), and Kaufmann, Kauppi, Mann and Stock (2013). Arguing in favor
of trend stationarity with occasional but infrequent mean breaks, Gay-Garcia et al.
(2009) build on prior work by Perron (1989), Perron (1990), Leybourne, Newbold
and Vougas (1998), Harvey and Mills (2002), and others who have developed tests for
unit roots against the alternative of trend stationarity with occasional mean breaks
(shifts). Related work that has concluded that temperature data are best character-
ized by unit roots and, possibly, stochastic trends include Harvey and Mills (2001),
Kaufmann and Stern (2002), Liu and Rodŕıguez (2005), Kaufmann, Kauppi and Stock
(2006a,b), Johansen (2010), Breusch and Vahid (2011). Relevant studies that have
assumed that temperature series are stationary but that they follow a deterministic
and possibly breaking trend include Harvey and Mills (2001), Seidel and Lanzante
(2004), Gil-Alana (2008a,b), Ivanov and Evtimov (2010), and Breusch and Vahid
(2011).1

Considering unit roots and co–integration amounts to taking a global look at the
nonstationary series under study. In the case of hemispheric temperature series it
is quite natural to assume that both are nonstationary and possess a unit root. It
is also natural to expect that the unit root in them is common in the sense there
exists a linear combination of the series that eliminates it. One might even expect the
coefficients of this combination to be 1 and −1 (or some nonzero multiples of them).
Many papers already mentioned find this to be the case.

In this paper we shall nevertheless model these temperature series differently. Instead

1Harvey and Mills (2001) report results for both stochastic trend models as well as models with
deterministic trends that change (shift) in a potentially smooth manner. As well, Breusch and
Vahid (2011) also explore the possibility of both stochastic and deterministic trends for available
temperature data, with the latter being allowed to break at least once.
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of global common features we are interested in local similarities between them. The
idea is to try and find episodes or periods during which the time series have ‘behaved
similarly.’ The starting–point of this approach is to assume that the series can be
described by a number of deterministic shifts and stationary movements around them.
Similarity is taken to mean that some of the shifts are common, that is, they can be
eliminated by a linear combination of the two series. As a by–product, the series may
be forecast by extrapolating the deterministic component, although such forecasts are
not particularly reliable when the forecasting horizon increases.

Our analysis employs variants of the smooth transition autoregressive model in which
the transition variable is time, see, for example, Lin and Teräsvirta (1994) and
González and Teräsvirta (2008). In fact, we generalise the latter model, that is,
the Shifting–Mean Autoregressive Model (SM–AR) to the multivariate case, which
results in the Vector Shifting–Mean Autoregressive (VSM-AR) model. In terms of a
modelling framework the present paper is most closely related to that of Harvey and
Mills (2001). Even so, these authors did not consider the possibility of co–shifting
between the northern and southern hemisphere in their analysis.

The plan of the paper is a follows. In Section 2 we present the univariate SM–AR
model and in Section 3 its multivariate counterpart, the VSM–AR model. Section 4 is
devoted to modelling and a discussion of the concept of co–shifting. The hemispheric
temperature series are introduced in Section 5. Univariate SM-AR results using these
series are considered in Section 6, whereas Section 7 contains the multivariate VSM–
AR results. Section 8 concludes and proofs appear in Appendix A.

2 Shifting–Mean Autoregressive Model

We begin with a brief review of the Shifting Mean Autoregressive (SM–AR) by
González and Teräsvirta (2008). This model, which is an autoregressive model with
a time–varying intercept is defined as follows:

yt = δ (t) +

p∑
j=1

ϕjyt−j + εt, (1)

where εt ∼ iid(0, σ2) and where δ(t) is an intercept term that possibly varies with
time. The time–varying intercept is a linear combination of logistic functions:

δ (t) = δ0 +

q∑
i=1

δig (t/T ; γi, ci), (2)
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where
g (t/T ; γi, ci, ) =

(
1 + exp {−γi (t/T − ci)}

)−1
, γi > 0, (3)

and T is the number of observations. It follows that the value of δ(t/T ) changes
(possibly nonmonotonically) from δ0 to δ0+

∑q
j=1 δj as a function of t. The definition

(3) implies that g (t/T ; γj, cj) and thus δ(t/T ) is continuous and infinitely many times
differentiable in γj and cj. Rescaled time in the argument of g (t/T ; γj, cj) leaves the
relative location of transitions intact as T → ∞. Assume that the roots of the
polynomial ϕ(z) = 1−

∑p
j=1 ϕjz

j lie outside the unit circle. Then the expectation of
yt at t/T equals

Eyt = ϕ−1(1)δ (t/T ) .

The specification given by (1)–(3) provides considerable flexibility in modelling shift-
ing means in time series data, depending on the number of shifts, q, and the values
taken by the parameters. For example, large values of γi imply that the underlying
shift, whose mid-point occurs at time ci, becomes rather abrupt. Alternatively, for
small values of γi (and assuming for the moment that q = 1), the shift from δ0 to
δ0 + δ1 is smooth, and will take more time to complete.

3 Vector Shifting–Mean Autoregressive Model

In order to consider the two temperature series jointly we generalise the SM–AR
model into a vector model as follows. Let

yt = δ (t/T ) +

p∑
j=1

Φjyt−j + εt, (4)

where yt = (y1t, ..., ykt)
′ is a k × 1 stochastic vector, εt ∼ iid(0,Ω), where Eεt = 0,

Ω is a k × k positive definite covariance matrix, Φj, j = 1, ..., p, are k × k pa-
rameter matrices, and T is the number of observations. Furthermore, δ(t/T ) =
(δ1(t/T ), ..., δk(t/T ))

′ is a k × 1 time–varying intercept vector comparable to (2),
where

δj(t/T ) = δj0 +

qj∑
i=1

δjig(t/T ; γji, cji). (5)

It follows that the time–varying intercept vector in (4) equals

δ (t/T ) = δ0 +

q∑
i=1

Gi(t/T )δi, (6)
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where δi is a k × 1 parameter vector, i = 0, 1, . . . , q. Furthermore, Gi(t/T ), are
diagonal matrices defined as:

Gi(t/T ) = diag
(
g(t/T ; γi1, ci1), ..., g(t/T ; γik, cik)

)
, (7)

where, as before,

g(t/T ; γji, cji) =
(
1 + exp{−γji(t/T − cji)}

)−1
, γji > 0, (8)

for j = 1, ..., k, and i = 1, ..., q. Equations (4)–(8) define the Vector Shifting–Mean
Autoregressive Model.

We make the following assumptions:

Assumption A1. The roots of |I−
∑p

j=1Φjz
j| = 0 lie outside the unit circle.

Assumption A2. In the transition function g(t/T ; γi, ci), γi > 0, i = 1, ..., q; c1 <
. . . < cq. This implies g(t/T ; γi, ci) ̸= g(t/T ; γj, cj) for i ̸= j.

If this assumption is relaxed such that cj = cj+1 for some j, then g(t/T ; γj, cj) ̸=
g(t/T ; γj+1, cj+1) requires γj ̸= γj+1.

Assumption A3. Parameter space Θ∗ is compact, the true parameter θ∗
0 is an

interior point of Θ∗.

Assumption A4. The density is positive (bounded away from zero) for all θ∗ ∈ Θ∗.

Assumption A5. The errors εt ∼ iidN (0,Σ), where Σ is positive definite.

From these assumptions it follows that while the VSM–AR model is nonstationary,
{yt − δ (t/T )} is a stationary and ergodic sequence. Let Φ(z) = I −

∑p
j=1Φjz

j,

assuming that A1 holds. Its inverse exists and equals Φ−1(z) =
∑∞

i=0Ψiz
i = Ψ(z).

Set Ψ(1) = Ψ. Then, analogously to the univariate case,

Eyt = Ψδ (t/T ) . (9)

According to A3, the elements of δ (t/T ) are bounded. It follows that the shifting
mean (9) is bounded as well, and yt is bounded in probability. In this respect the
VSM–AR model differs from nonstationary VARs with stochastic as well as broken
linear trends, see Kaufmann, Kauppi and Stock (2006a,b, 2010b) and others. It is
also different from the smooth transition trend model of Harvey and Mills (2002).
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4 Modelling with the VSM–AR

4.1 Specification of the Model

In practice, the number of lags in (4) and the number of transitions (logistic functions)
in δj(t/T ) are unknown and have to be determined from the data. It may be noted
there is a potential identification problem due to the construction of (6). If γij = 0,
δij and cij are unidentified nuisance parameters. This is a common problem in many
nonlinear time series models; see for example Teräsvirta, Tjøstheim and Granger
(2010, Chapter 5) for discussion. As a result, specification of the number of transitions
qj proceeds from specific to general.

In this work we first determine the number of transitions and the lag length p there-
after. The number of transitions for the j th equation, qj, is essentially determined
using the specification technique suggested by White (2006), called QuickNet. Fol-
lowing González, Hubrich and Teräsvirta (2009), we call our variant QuickShift. By
using QuickNet or QuickShift, a nonlinear specification and estimation problem is con-
verted into a linear model selection and estimation problem. For the j th equation,
this problem is one of choosing a subset of transition functions from the set

Sj =
{(

1 + exp
{
− γji(t/T − cji)

})−1
, i = 1, ...,M

}
, (10)

where M is large. The set is obtained by constructing a grid of points (γji, cji) and
computing the values of the corresponding logistic function. It is clear that the quality
of the estimates depends on the size of Sj. For this reason, in an application like the
present one with 162 observations, the number of elements in Sj is likely to exceed the
number of observations. The transitions are chosen from Sj as follows. First regress
yjt on an intercept (i.e., mean center yjt). Next, choose the element of Sj that is
most strongly correlated with the mean centered yjt (has the strongest contribution
to the explanation of yjt) and add it to the regression. Compute the residuals from
this regression. Choose the element of Sj that has the largest (absolute) correlation
with this residual and add it in turn to the regression. Continue using the same rule
until a model selection criterion tells one to stop. White (2006) used BIC by Rissanen
(1978) and Schwarz (1978).

In QuickShift we instead test the hypothesis that the latest added regressor in the
new regression has coefficient zero. If the original significance level equals α0, for
reasons of parsimony the significance level of the kth test equals αk−1 = τ k−1α0,
where 0 < τ < 1. Testing and adding transitions is continued until the first non-
rejection. Since the dynamics, the lags of yt, see (4), are ignored, the Newey–West
standard deviation estimates are applied in the tests. Having found qj, the maximum
lag, pj, may be determined using the same technique. In this paper, however, we
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choose the same lag length for the whole system; see Section 6.

4.2 Estimation of Parameters

The accuracy of the linear estimates obtained by using the grid may already be suf-
ficient for many practical purposes if the grid is sufficiently dense. Alternatively, one
can use the parameter values thus obtained as starting–values for nonlinear maximum
likelihood (ML) estimation. For inference, we have to consider asymptotic properties
of our ML estimators. In order to discuss them, note that the parameters of the
model are estimated equation by equation. This holds for a linear VAR model, see
e.g., Lütkepohl (2005, pp. 70–72) but is also true for the VSM–AR model in which
nonlinearity is restricted to the deterministic intercept. Define Φj = [ϕ′

j1, ...,ϕ
′
jk]

′,
where ϕjm is the mth row of Φj. Setting yt−m = (y′

1,t−m, ...,y
′
k,t−m)

′, the ith equation
of (4) can be written as

yjt = δj (t/T ) +

pj∑
m=1

ϕ′
jmyt−m + εjt, (11)

j = 1, ..., k. Let θ0 be the true vector of parameters in (11). Asymptotic properties
of the maximum likelihood estimator θ̂ of θ0 are studied in Appendix A.

Since an analytic solution to the problem of maximising the log–likelihood function
of (11) does not exist, we have to choose a suitable algorithm for the purpose; see, for
example, Teräsvirta, Tjøstheim and Granger (2010, Chapter 12). Here we apply the
Broyden, Fletcher, Goldfarb and Shanno (BFGS) quasi–Newton method. QuickShift
is used to provide the initial values for the algorithm. Following Goodwin, Holt and
Prestemon (2011), for numerical reasons we define γ = exp (ηi) and estimate ηi.

2

4.3 Co–shifting

As mentioned in the Introduction, local similarities in the two temperature series
are our main concern in this study. They are defined through shifts (if any) in the
intercept vector of the VSM–AR model. We are interested in knowing whether several
of more of the shifts in the equations of our model are common, that is, are shared by
both equations. Putting it more formally, the shifting mean is a feature, and if there
is a linear combination of the elements of yt such that the feature is eliminated, it is

2This parametrization for γi automatically ensures that γi > 0 holds, which implies that the
identification condition γi > 0 holds. Moreover, it facilitates a grid search wherein equal spacings
between (large) γi values are not optimal.
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a common feature. To illustrate this in our framework, consider a simple bivariate
VSM–AR model with two shifts in the intercept:

yt = δ0 +G1(t/T )δ1 +G2(t/T )δ2 +

p∑
j=1

Φjyt−j + εt, (12)

where
Gi(t/T ) = diag

(
g(t/T ; γi1, ci1), g(t/T ; γi2, ci2)

)
,

and δi = (δi1, δi2)
′, i = 1, 2. The shifting intercept is a common feature if there is a

two–dimensional vector α such that α′yt is linear, that is, the two shifts in (12) have
been eliminated. A necessary condition for this to happen is that g(t/T ; γij, cij) =
g(t/T ; γi, ci), j = 1, 2, or, in matrix notation:

Gi(t/T ) = g(t/T ; γi, ci)I2, i = 1, 2, (13)

where I2 is a (2× 2) identity matrix. This implies that the slope and location param-
eters in the two transition functions in both equations are the same. If the necessary
condition (13) is completed by the condition δ2 = λδ1, λ ̸= 0, there exists a vector
α ̸= 0 that eliminates the shift. This is called (strong) co–shifting.

The latter condition of linear dependence is indeed quite strong, in particular if the
number of transitions is large. Therefore, defining partial or weak co–shifting is of
interest. For example, assume

G1(t/T ) = g(t/T ; γ1, c1)I2.

Then there exists a nonzero vector α such that α′δ1 = 0, which eliminates the first
but not necessarily the second shift:

α′yt = α′δ0 +α′G2(t/T )δ2 +

p∑
j=1

α′Φjyt−j +α′εt.

This is an example of weak co–shifting. If also

G2(t/T ) = g(t/T ; γ21, c21)I2

there exists another nonzero vector β such that β′δ2 = 0 and

β′yt = β′δ0 + β′G1(t/T )δ1 +

p∑
j=1

β′Φjyt−j + β′εt.

As already discussed, a single vector α can eliminate both shifts only if δ2 = λδ1.
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Note that co–shifting does not mean that the shifts contribute to holding the two
series together. This property of linear cointegration is not present in co–shifting.
This is because the elements of δ1 and δ2 are not restricted to mimic this feature of
cointegrated random variables.

The definition of weak co–shifting accords well with the definition of contemporaneous
mean co–breaking, as stated in Hendry and Mizon (1998) and Hendry and Massmann
(2007). These authors consider a location shift in the unconditional mean of a vector
autoregressive process at time t: E(yt − ρ0) = τt. If there is a time–point t such that
τt ̸= 0, this defines a structural break. If there is a vector α that cancels the break,
α′τt = 0, then α is contemporaneous co–breaking for the sequence yt of order one.
The definition in Hendry and Mizon (1998) is more general than what this simple
example suggests. It stipulates that the break may be eliminated by reducing the
dimension of the system from k to ℓ, ℓ < k, and not necessarily to one as in our
example. In our bivariate case, the mean ρt equals

ρt = ρ(0)I(t/T < c) + ρ(1){1− I(t/T < c)}
= ρ(1) + (ρ(0) − ρ(1))I(t/T < c), ρ(0) ̸= ρ(1)

where I(A) is an indicator function: I(A) = 1 when A holds, zero otherwise. The
break is eliminated when there exists α such that α′(ρ(0)−ρ(1)) = 0. This can occur
only if ρ(0) = λρ(1), λ ̸= 0.

4.4 Testing Co–shifting Restrictions

Co–shifting may be viewed as a special case of common nonlinearity as defined by
Anderson and Vahid (1998). They derived a general test of common nonlinearity as a
test of overidentifying restrictions in the generalized method of moments framework.
Our test of co–shifting is simply a test of parameter restrictions in the VSM–AR
model. If we test against strong co–shifting, the null hypothesis is

H0 : (γi1, ci1) = . . . = (γik, cik) , i = 1, . . . , q, (14)

and δj = λjδ1, λj ̸= 0, j = 2, . . . , q. This amounts to testing k(3q− 1) restrictions in
(4). If only a subset of shifts are under test, the number of restrictions decreases. As
already mentioned, the number of transitions need not be the same in all equations
of (4).

To implement tests of co–shifting in the VSM–AR model it is natural to consider a
likelihood ratio test. The test statistic is defined as:

LR = T
[
ln |Ω̃| − ln |Ω̂|

]
, (15)
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where LR has an asymptotic χ2
k(3q−1) distribution under the null hypothesis. This

requires θ̂ to be consistent and asymptotically normal; see Appendix A. In (15) Ω̂
denotes the maximum likelihood estimate of the residual covariance matrix for the
general (unrestricted) model and Ω̃ the corresponding estimates for the co–shifting
(restricted) model that involves k(3q − 1) restrictions on the parameters of (4).

A well known problem with the test statistic in (15) is that its asymptotic χ2
k(3q−1)

null distribution is not a good approximation to its finite–sample null distribution
when the dimension of the model and the null hypothesis are large compared to the
length of the time series. In that case the test suffers from positive size distortion;
see, for example, Candelon and Lütkepohl (2001) and Shukur and Edgerton (2002).
A number of remedies have been proposed, but simulations almost invariably show
that the best solution to the problem is to use Rao’s F–test, see for example (Rao,
1973, p. 556). This does require, however, that the errors can be assumed indepen-
dent and identically distributed. If the presence of conditional heteroskedasticity is
suspected, one can generate a finite–sample null distribution of the test statistic by
wild bootstrap; see, for example, Ahlgren and Catani (in press). This can be done
even if there is no conditional or unconditional heteroskedasticity, but in that case
computational ease speaks for Rao’s F–test. Additional details on computing and
using Rao’s F in the context of an LM–based test for stationary vector autoregressive
systems are provided by Teräsvirta, Tjøstheim and Granger (2010, pp. 100–102).

4.5 Evaluation

The estimated VSM–AR model has to be evaluated. One has to check whether
or not the stability condition concerning the roots of |I −

∑p
j=1Φjz

j| = 0 holds.
Misspecification tests need to be carried out. They include the multivariate test of
normality, see Lütkepohl and Krätzig (2004, p. 128), the multivariate test of no error
autocorrelation adopted from Yang (2012), and the test of constancy of the error
covariance matrix by Eklund and Teräsvirta (2007). Their framework can be used for
testing constancy against various alternatives. In this work the alternative is that the
variances are changing smoothly over time whereas the correlations remain constant.
It would also be possible to develop a test of linearity for the VAR component against
vector smooth transition AR. In our application, however, this component is rather
minor, so we do not require such a test here.
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5 Data

The data used in the empirical analysis are annual average hemispheric temperature
series from 1850–2014, and are described in detail in Brohan et al. (2006). As men-
tioned previously, versions of these time series have been used by various authors
in recent years to empirically investigate features of global warming, including Gay-
Garcia, Estrada and Sánchez (2009), Kaufmann, Kauppi and Stock (2010a), Estrada,
Gay and Sánchez (2010), and Mills (2010). A time series plot of the basic data is
reported in Figure 1. As illustrated there, temperatures in both hemispheres appear
to have a slight downward trend between approximately 1880 and 1910, with tem-
peratures in the southern hemisphere showing what appears to be a slightly steeper
decline. Then, from about 1910 until approximately 1945 both series exhibit an up-
ward trend, with temperatures in the northern hemisphere appearing to increase more
rapidly than those in the southern. There is then a leveling off between the 1940s and
approximately 1980, after which both series exhibit a rather steep upward trend and,
moreover, appear to increase at approximately the same rate. These observations
are based on a casual inspection of the data and trends in Figure 1; formal model
specification, estimation, and testing will follow next.

6 VSM–AR Estimation and Results

We first specify and estimate our VSM-AR model by QuickShift and use the resulting
estimates as starting values for the nonlinear estimation algorithm.3 The system
lag length, p, is determined by using a sequence of likelihood ratio tests; coincident
with results reported by Harvey and Mills (2001), we find that p = 3 is adequate.
In specifying the VSM–AR model, we initially followed Kaufmann and Stern (1997)
and Harvey and Mills (2001), who reported that lags of northern temperatures could
be excluded from the southern equation. A Granger non–causality test performed
with respect to lags of northern temperatures in the southern hemisphere equation
strongly indicates, however, that these exclusion restrictions should be rejected. This
result is a consequence of the fact that the deterministic component in our model is
different from that of the previous models. To that end, the model was respecified
and re–estimated to include lags of northern temperatures in the southern hemisphere
equation.

3In obtaining ML estimates we follow established practice (see, e.g., van Dijk, Strikholm and
Teräsvirta, 2003) and constrain values of γi to be bounded above, in this case at 50. Doing so helps
avoid potential numerical problems. As with our implementation of QuickShift, we also constrain
the values of ci parameters to be bounded on the [0.05, 0.95] interval, although this may not be
necessary.
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The model with additional mean shifts is only identified under the alternative hypoth-
esis, and the ensuing identification problem is circumvented by approximating the
additional transitions by a (third–order) Taylor expansion as in Luukkonen, Saikko-
nen and Teräsvirta (1988). The null hypothesis cannot be rejected at any plausible
significance level. Based on these results we conclude that the VSM–AR model with
four mean shifts in the northern equation; with three mean shifts in the southern
equation; and with lagged temperatures from the north appearing in the equation for
the south, is a reasonable representation of the hemispheric temperature data.

Next we turn to our main question: do the two temperature series exhibit any form
of co–shifting? Visual inspection gives at least some reason to believe that the hemi-
spheric temperature data have at least one and likely two intercept shifts in common.
The possibilities include a long, relatively slow shift that started in the second half
of the 20th century and another shift that occurred during the 1930s. The null hy-
pothesis to be tested is that these two logistic transitions (but not their coefficients)
are identical. The likelihood ratio test statistic defined in (15) thus has four degrees
of freedom as each transition function contains two parameters.

Test results associated with this co–shifting hypothesis are reported in Table 1 where
it is seen that the null hypothesis is not rejected. Since the model is only two-
dimensional, the asymptotic χ2-test and Rao’s F yield almost identical p–values.
The model is re–estimated with these restrictions imposed. Table 2 contains mis-
specification tests of the estimated equations of this model and of the whole system.
Normality of errors is tested both for each equation separately and for the whole sys-
tem and is not rejected. It appears that the errors are not autocorrelated and that
the error covariance matrix is stable over time.

Estimation results for the VSM–AR are reported in Table 2; information regarding the
timing and nature of the estimated logistic function shifts in the model is summarized
in Table 3. The estimation results have interesting interpretations. The coefficients
of the common slow transition with c = 0.95 has different signs in the northern
and southern hemisphere equations. The positive sign in the northern hemisphere
equation clearly implies that the shift describes the long positive trend–like movement
in that temperature series visible in Figure 2. Furthermore, this figure suggests that
the same shift in the southern hemisphere equation contributes to explaining the
long but slow downward movement from 1850 to 1920. To compensate for this, the
southern hemisphere equation contains a positive shift with ĉ = 0.908. The slope
coefficient of this transition is much larger than that of the slow transition, so the net
effect remains positive. This is a case in which co–shifting does not imply that the
two series are moving together in a similar fashion but rather that they have similar
episodes at different periods of time. An extra shift is required for describing the
long–run increase in the two series.
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The second common transition has positive coefficients in both equations. They are
not, however, equal as the coefficient estimate in the southern equation is greater
than the corresponding one in the northern equation. The shift is therefore more
pronounced in the latter, as Figure 2 shows.

Of the remaining transitions the first one in the northern hemisphere equation is
there to counteract the slow shift with a positive coefficient, as the upward movement
from 1850 to 1880 changes to a downward drift to match the downward movement
in the southern hemisphere series. The sharp shift around 1945 is taking care of the
rapid temperature change in the northern hemisphere at that time. Put together, the
shifting mean indicates that while the two series undoubtedly move together, they do
display individual local tendencies.

It is seen from (9) that all transitions, common or not, contribute to both equations
through the lag structure. It is also obvious that the shifts belonging to a certain
equation dominate the explanation in that equation, because the dynamic structure
is not very strong. Indeed, the largest root of the VAR component is real but only
equals 0.508, which means that the effects of shifts belonging to the other equation
remain small. In fact, the infinite sum in (9) can be well approximated by truncating
it already after the fourth lag.

7 Forecasting

We construct forecasts from our VSM–AR model through 2035 by simulation. The
simulated random errors are drawn from the multivariate normal distribution with
the estimated covariance matrix Ω̂ for the VSM–AR model. The forward simulations
are repeated 25,000 times. Actual values over the sample period (1860–2014) and
simulated values (2015–2035) are illustrated in Figure 3. Approximate 95% confi-
dence intervals are represented by the shaded areas during the forecasting period.
Uncertainty due to estimated parameters is not, however, accounted for.

According to the results shown in Figure 3, temperatures in both hemispheres will
likely continue to increase for at least the next fifteen years. Temperatures in the
south are predicted to increase at the rate that is slowing relative to that in the
north. As noted in Table 3, this is a consequence of the fact that the latest shift in
the southern hemisphere equation reaches its inflection point around 1999. Because
this shift is not as slow as the positive shift in the northern hemisphere equation,
the transition function and thus the predicted shifting mean begin to bend much
more quickly than the corresponding transition in the northern equation. This causes
the impression that the southern temperature will permanently increase more slowly
than the northern one. That hardly seems plausible and demonstrates the fact that
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these forecasts may only have relevance in the short but not in the long run. Their
confidence intervals, however, do overlap. In the long run, new transitions cannot be
excluded either. That possibility is not included in the forecasts or, rather, forward
projections of the present tendencies.

8 Conclusions

In this paper builds we consider local similarities between the northern and southern
hemisphere annual temperature series. In order to do that we generalise the switching-
mean autoregressive model by González and Teräsvirta (2008) into a vector model.
Within this model we define the concept of co–shifting with which considering local
similarities becomes possible.

Under regularity conditions we prove consistency and asymptotic normality for maxi-
mum likelihood estimators of the parameters of the VSM–AR model. Since the model
contains deterministic components, the asymptotic theory we apply is triangular array
asymptotics.

In the empirical analysis the modelling sequence begins by using the QuickShift proce-
dure developed by González and Teräsvirta (2008) to identify the number of relevant
shifts in each series. When we apply this approach to the hemispheric temperature
series we find that four logistic function components are adequate to characterize
the shifts in the mean of the northern series whilst only three are required for the
southern series. After estimating the parameters of the model by maximum likeli-
hood, subsequent testing reveal that two logistic function components are common to
both equations. Interpreting the model with (weak) co–shifting is not straightforward
because one of the common shifts does not have the same sign in both equations.

Importantly, the estimated VSM–AR has been subjected to a battery of diagnostic
and evaluative tests. The estimated model passes them. We are therefore confident
that the estimated VSM–ARmodel of hemispheric temperatures provides a reasonable
representation of the data and, moreover, an accurate representation of the mean
shifts that have occurred in these series over time.
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Appendix A

The Model

The ith equation of the VSM–AR model (4)–(??) has the following form:

yit = δi(t/T ) +

p∑
j=1

ϕ′
ijyt−j + εit, (A.1)

where ϕ′
ij is the ith row of Φj, and the ith element of the intercept vector equals

δi(t/T ) = δi0 +

q∑
j=1

δijg(t/T ; γij, cij).

In what follows we omit the subscript i.

The log–likelihood function (T observations) of (A.1) is defined as follows:

LT (θ, ε) =
T∑
t=1

ℓ(εt;θ), (A.2)

where

ℓ(εt;θ) = k − (1/2) lnσ2 − ε2t
2σ2

. (A.3)

In (A.3), σ2 is the ith diagonal element ofΣ. The parameter vector θ = (ϕ′
1, ...,ϕ

′
p, δ

′,γ ′, c′)′

∈ Θ ⊂ R3q+p+1, where ϕi = (ϕi1, ..., ϕik)
′ = vec(Φ′

i) is a k×1 vector, δ = (δ0, δ1, ..., δq)
′

is a (q + 1)× 1 vector, and γ = (γ1, ..., γq)
′ and c = (c1, ..., cq)

′ are q × 1 vectors. Let
θ0 = (ϕ′

10, ...,ϕ
′
p0, δ

′
0,γ

′
0, c

′
0)

′ be the corresponding true parameter vector.

In order to consider the maximum likelihood estimator θ̂ of the parameter vector
θ0, we first define the score of (A.3). It appears (for observation t) in the following
lemma:

Lemma A.1. The (kp+3q+1)×1 score function ∂ℓ(εt;θ)/∂θ of (A.3) for observation
t has the form

∂ℓ(εt;θ)/∂θ =
∂

∂θ
ln f(εt|θ)=− εt

σ2

∂εt
∂θ

=
εt
σ2

g(t/T ;θ),

where g(t/T ;θ)=(y′
t−1, ...,y

′
t−p,g

′
δ(t/T ),g

′
γ(t/T ),g

′
c(t/T ))

′, and T is the number of
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observations. The blocks of g(t/T ;θ) are

yt−j = ∂g(t/T )/∂ϕ = (y1,t−j, ..., yk,t−j)
′, j = 1, ..., p,

gδ(t/T ) = ∂g(t/T )/∂δ = (1, g1(t/T ), ..., gq(t/T ))
′,

gγ(t/T ) = ∂g(t/T )/∂γ = (gγ1(t/T ), ..., gγq(t/T ))
′,

gc(t/T ) = ∂g(t/T )/∂c =(gc1(t/T ), ..., gcq(t/T ))
′,

where gγj(t/T ) = δjgj(t/T ){1− gj(t/T )}(t/T − cj) and gcj(t/T ) = −γjδjgj(t/T ){1−
gj(t/T )} for j = 1, ..., q.

The Hessian matrix of (A.3) for observation t is given in the following lemma:

Lemma A.2. The Hessian ∂2ℓ(εt;θ)/∂θ∂θ
′ for observation t equals

∂2ℓ(εt;θ)/∂θ∂θ
′ = − 1

σ2
{g(t/T ;θ)g′(t/T ;θ) + εt(θ)

∂2g(t/T ;θ)

∂θ∂θ′ },

where

g(t/T ;θ)g′(t/T ;θ)

=


Mϕϕ(t/T ) Mϕδ(t/T ) Mϕγ(t/T ) Mϕc(t/T )

Mδδ(t/T ) Mδγ(t/T ) Mδc(t/T )
Mγγ(t/T ) Mγc(t/T )

Mcc(t/T )

 ,(A.4)

with

Mϕϕ(t/T ) =

 Mϕϕ11(t/T ) ... Mϕϕ1p(t/T )
...

Mϕϕp1(t/T ) ... Mϕϕpp(t/T )

 , (A.5)

and
Mϕα(t/T ) =

[
M′

ϕα1(t/T ) ... M′
ϕαp(t/T )

]′
. (A.6)

In (A.5) Mϕϕij(t/T ) = yt−iy
′
t−j, and in (A.6), Mϕαj(t/T ) = yt−jg

′
ϕα(t/T ), i, j =

1, ..., p and α = δ, γ, c. Finally, in (A.4),

Mδδ(t/T ) = gδ(t/T )g
′
δ(t/T ),

Mδα(t/T ) = gδ(t/T )g
′
α(t/T ) + εtDδα(t/T ), α = γ, c,

Mγα(t/T ) = gγ(t/T )g
′
α(t/T ) + εtdiag(gγα1(t/T ), ..., gγαq(t/T )), α = γ, c,

Mcc(t/T ) = gc(t/T )g
′
c(t/T ) + εtdiag(gcc1(t/T ), ..., gccq(t/T )).

where Dδα(t/T ) = [0,gα(t/T )]
′. The diagonal elements in the three diagonal matrices
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are

gγγj(t/T ) = δjgj(t/T ){1− gj(t/T )}{1− 2gj(t/T )}(t/T − cj)
2,

gccj(t/T ) = δjγ
2
j gj(t/T ){1− gj(t/T )}{1− 2gj(t/T )},

gγcj(t/T ) = −δjγjgj(t/T ){1− gj(t/T )}{1− 2gj(t/T )}(t/T − cj),

for j = 1, ..., q.

Consistency

We begin by proving consistency of the maximum likelihood estimator θ̂ by using
triangular array asymptotics; for a useful exposition, see Hillebrand, Medeiros and
Xu (2013). We have the following result:

Theorem A1. Consider equation (A.1) and suppose that Assumptions A1–A5 hold.

Then the maximum likelihood estimator θ̂ is consistent for θ0.

Proof. We prove this result by verifying the conditions of Theorem 2.5 in in Newey
and McFadden (1994, p. 2131):

Theorem (Newey and McFadden). Suppose that εt (i = 1, ..., T ) are iid with proba-
bility distribution function f(εt|θ0). If

(i) θ ̸= θ0, then f(εt|θ0) ̸= f(εt|θ),

(ii) θ0 ∈ Θ which is compact, and the density is positive (bounded away from zero)
for all θ ∈ Θ,

(iii) ln f(εt|θ) is continuous at each θ ∈ Θ with probability one,

(iv) E supθ∈Θ | ln f(εt|θ)| < ∞,

then the maximum likelihood estimator θ̂
p→ θ0 as T → ∞.

Assumption (i) is satisfied due to A2, (ii) is valid due to A3 and A4, and (iii) follows
from Lemma A.1. To show (iv), apply the mean value theorem, the triangle inequality,
and the Cauchy–Schwarz inequality to | ln f(εt|θ)|. This yields:

| ln f(εt|θ)| = | ln f(εt|θ0) +
∂

∂θ′ ln f(εt|θ)(θ − θ0)|

≤ | ln f(εt|θ0)|+ || ∂

∂θ′ ln f(εt|θ)|| × ||(θ − θ0)||

≤ C1 + C2C3 < ∞, (A.7)
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where θ is an intermediate value between θ and θ0, | ln f(εt|θ0)| ≤ C1 because of
A4, and || ∂

∂θ′ ln f(εt|θ)|| ≤ C2 because of Lemma A.1. Furthermore, ||θ − θ0|| ≤ C3

follows from the fact that Θ is compact (A3), so the elements of ||θ−θ0|| are bounded
for θ ∈ Θ. In (A.7), Ci, i = 1, 2, 3, are generic positive constants. As | ln f(εt|θ)| is
finite for all θ ∈ Θ (A4), the expectation of its supremum is finite as well. �

Note that A5 is quite strong. It would be sufficient to assume εt ∼ iid(0, σ2). Not
assuming normality would mean that (A.7) would be a quasi log-likelihood for obser-
vation t, and the resulting estimator would be a quasi ML estimator.

Asymptotic Normality

In order to consider asymptotic normality of θ̂, in addition to Lemma A.2 we need
the five lemmas below.

Lemma A.3. Let xt be a stationary and ergodic VAR(p) process with zero mean:

xt =

p∑
j=1

Φjxt−j + εt,

where {εt} ∼ iidN (0,Σ). It has the infinite–order moving average representation

xt =
∞∑
j=0

Ψjεt−j,

where Ψ0 = I,
∑∞

j=0 |Ψj| < ∞ (ergodicity), and

Extx
′
t−m =

∞∑
j=0

ΨjΣΨ′
j+m.

Proof. Omitted. �

Lemma A.4. Consider the VSM–AR model (4)–(8):

yt = δ(t/T ) +

p∑
j=1

Φjyt−j + εt,

where Assumptions A1–A5 hold. Let MϕϕmnT = (1/T )
∑T

t=1 yt−my
′
t−n, where n =
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m+ s, s ≥ 0. Then

lim
T→∞

EMϕϕmnT = Ψ

∫ 1

0

δ(r)δ′(r)drΨ′ +
∞∑
i=0

ΨiΣΨ′
i+s,

where Ψ =
∑∞

i=0Ψi.

Proof. Write (4) as follows:

(Ik −
p∑

j=1

ΦjL
j)yt = δ(t/T ) + εt.

Since A1 holds, there exists the infinite–order moving average representation

yt = (Ik −
p∑

j=1

ΦjL
j)−1δ(t/T ) + εt =

∞∑
i=0

Ψiδ(
t− i

T
) + xt,

where xt =
∑∞

i=0Ψiεt−i. Then

yt − Eyt =
∞∑
i=0

Ψi{δ(
t− i

T
)− δ(

t

T
)}+ xt

and, at time t,

E(yt−m − Eyt−m)(yt−n − Eyt−n)
′

= [
∞∑
i=0

Ψi[δ(
t−m− i

T
)− δ(

t−m

T
)][

∞∑
j=0

Ψjδ(
t− n− j

T
)− δ(

t− n

T
)]′

+Ext−mxt−n

where, from Lemma A.3,

Extx
′
t−s =

∞∑
i=0

ΨiΣΨ′
i+s.
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Set [Tr] = t and consider

1

T − n

T∑
t=n+1

δ(
t−m− i

T
)δ′(

t− n− j

T
)

=
1

T − n

T∑
t=n+1

∫ (t+1)/T

t/T

δ(
[Tr]−m− i

T
)δ′(

[Tr]− n− j

T
)dr

=

∫ (T+1)/T

(n+1)/T

δ(
[Tr]−m− i

T
)δ′(

[Tr]− n− j

T
)dr

→
∫ 1

0

δ(r)δ′(r)dr, (A.8)

for m = 0, 1, ..., p, n ≥ m, as T → ∞. It follows that

1

T − n

T∑
t=n+1

E(yt−m − Eyt−m)(yt−n − Eyt−n)
′ →

∞∑
i=0

ΨiΣΨ′
i+s,

as T → ∞. Next,

1

T − n

T∑
t=n+1

Eyt−mEy
′
t−n = Ψδ(

t−m

T
)δ′(

t− n

T
)Ψ′,

so, from (A.8),

lim
T→∞

1

T − n

T∑
t=n+1

Eyt−mEy
′
t−n = Ψ

∫ 1

0

δ(r)δ′(r)drΨ′.

Since
Eyt−my

′
t−n = Eyt−mEy

′
t−n + E(yt−m − Eyt−m)(yt−n − Eyt−n)

′,

one obtains

EMϕϕmn = lim
T→∞

1

T − n

T∑
t=n+1

Eyt−my
′
t−n

= Ψ

∫ 1

0

δ(r)δ′(r)drΨ′ +
∞∑
i=0

ΨiΣΨ′
i+s,

for m = 1, ..., p, n ≥ m. �

The next two lemmas concern the limits of EMϕα(t/T ) and EMαβ(t/T ), α, β = δ, γ, c,
as T → ∞.
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Lemma A.5. Consider equation (A.1) and let MϕmαT = (1/T )
∑T

t=1 yt−mg
′
ϕα(t/T ),

α = δ, γ, c. Then

lim
T→∞

EMϕmαT = Ψ

∫ 1

0

δ(r)g′
ϕα(r)dr,

for m = 1, ..., p.

Proof. Write

Eyt−mg
′
ϕα(t/T ) = Ψδ(

t−m

T
)g′

ϕα(t/T ).

Setting t = [Tr],

1

T −m

T∑
t=m+1

Eyt−mg
′
ϕα(t/T )

= Ψ{ 1

T −m

T∑
t=m+1

δ(
t−m

T
)}g′

ϕα(t/T )

= Ψ
T∑

t=m+1

∫ (t+1)/T

t/T

δ(
[Tr]−m

T
)g′

ϕα([Tr]/T )dr

= Ψ

∫ (T+1)/T

(m+1)/T

δ(
[Tr]−m

T
)g′

ϕα([Tr]/T )dr

→ Ψ

∫ 1

0

δ(r)g′
ϕα(r)dr,

for m = 1, ..., p, as T → ∞. �

Lemma A.6. Consider equation (A.1) and let MαβT = (1/T )
∑T

t=1 gα(t/T )g
′
β(t/T )+

εt diag(gaβ1(t/T ), ..., gaβq(t/T )), α, β = γ, c. Then

lim
T→∞

EMαβT =

∫ 1

0

gα(r)g
′
β(r)dr, (A.9)

where the elements of (A.9) are bounded.

Proof. Since Ediag
(
gaβ1(t/T ), ..., gaβq(t/T )

)
= 0, we have,

EMαβT = (1/T )
T∑
t=1

gα(t/T )g
′
β(t/T ),
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α, β = γ, c. Set t = [Tr] and write

EMαβT =
T∑
t=1

∫ (t+1)/T

t/T

gα(
[Tr]

T
)g′

β(
[Tr]

T
)dr

=

∫ (T+1)/T

1/T

gα(
[Tr]

T
)g′

β(
[Tr]

T
)dr

→
∫ 1

0

gα(r)g
′
β(r)dr

for α, β = δ, γ, c, as T → ∞. Since gαi(r), α = γ, c, i = 1, ..., q; is bounded for

r ∈ (0, 1], see Lemma A.1,
∫ 1

0
gαi(r)gβj(r)d r < ∞. �

Lemma A.7. Consider equation (A.1) and let MδδT = (1/T )
∑T

t=1 gδ(t/T )g
′
δ(t/T )

and MδαT = (1/T )
∑T

t=1 gδ(t/T )g
′
δ(t/T ) + εtDδα(t/T ), α = γ, c. Then

lim
T→∞

EMδδT =

∫ 1

0

gδ(r)g
′
δ(r)dr, (A.10)

and

lim
T→∞

EMδαT =

∫ 1

0

gδ(r)g
′
α(r)dr, (A.11)

for α = g, c, as T → ∞. The elements of (A.10) and (A.11) are bounded.

Proof. Since EεtDδα(t/T ) = 0, α = γ, c, EMδαT = (1/T )
∑T

t=1 gδ(t/T )g
′
α(t/T ), α =

γ, c. Set t = [Tr] and write

EMδδT =
T∑
t=1

∫ (t+1)/T

t/T

gδ(
[Tr]

T
)g′

δ(
[Tr]

T
)dr =

∫ (T+1)/T

1/T

gδ(
[Tr]

T
)g′

δ(
[Tr]

T
)dr

→
∫ 1

0

gδ(r)g
′
δ(r)dr,

as T → ∞. Since gδ0(r) = 1, and gδi(r) = gi(r), i = 1, ..., q, are bounded between

zero and one,
∫ 1

0
gδi(r)gδj(r)dr < ∞ for all i, j. Likewise,

lim
T→∞

EMδαT =

∫ 1

0

gδ(r)g
′
α(r)dr, (A.12)

for α = γ, c. The general element
∫ 1

0
gδi(r)gαj(r)dr of (A.12) is bounded because gαj(r)

is bounded by Lemma A.1 and the transition function gi(r) is bounded between zero
and one. �

21



We can now state and prove the following result:

Theorem A2. Assume that the result of Theorem A1 holds, that is, the maximum
likelihood estimator θ̂

p→ θ0 as T → ∞. Assume further that Assumptions A1-A5 are
valid. Then √

T (θ̂
p→ θ0)

d→ N(0,J−1)

where

J = lim
T→∞

EJT = (1/σ2) lim
T→∞

(1/T )
T∑
t=1

E
∂

∂θ
ln f(εt|θ0)

∂

∂θ′{ln f(εt|θ0)}

= (1/σ2) lim
T→∞


EMϕϕT EMϕδT EMϕγT EMϕcT

MδδT EMδγT EMδcT

EMγγT EMγcT

EMccT

 . (A.13)

In (A.13),

EMϕϕT =

 EMϕϕ11T ... EMϕϕ1pT

...
EMϕϕp1T ... EMϕϕppT

 ,

and
EMϕα(t/T ) =

[
EM′

ϕα1T ... EM′
ϕαpT

]′
,

with the same block division as in (A.5) and (A.6), respectively. Then

lim
T→∞

EMϕϕmnT = Ψ

∫ 1

0

δ(r)δ′(r)drΨ′ +
∞∑
i=0

ΨiΣΨ′
i+s

where s = n−m > 0 and Ψ =
∑∞

i=0Ψi. Furthermore,

lim
T→∞

EMϕmαT = Ψ

∫ 1

0

δ(r)g′
ϕα(r)dr

for α = γ, c and i = 1, ..., q; α = δ and i = 0, 1, ..., q. Finally,

lim
T→∞

MαβT = [mαβ,ij] =

∫ 1

0

gα(r)g
′
β(r)dr

for α, β = γ, c and i = 1, ..., q; α = δ and i = 0, 1, ..., q.

Proof. We prove Theorem A2 by verifying the conditions of Theorem 3.3 in Newey
and McFadden (1994, p. 2146):

Theorem (Newey and McFadden). Suppose that hypotheses of Theorem 2.5 are sat-
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isfied and

(i) θ0 is an interior point of Θ,

(ii) f(εt|θ) is twice continuously differentiable and f(ε|θ) > 0 in a neighbourhood
N of θ0,

(iii)
∫
supθ∈N || ∂

∂θ
f(ε|θ)||dε < ∞ and

∫
supθ∈N || ∂2

∂θ∂θ′f(ε|θ)||dε < ∞,

(iv) J = E{ ln ∂
∂θ
f(εt|θ0)}{ ∂

∂θ′ ln f(εt|θ0)} exists and is nonsingular,

(v) E supθ∈N || ∂2

∂θ∂θ′ ln f(ε|θ)|| < ∞, where N is a neighbourhood of θ0.

Then
√
T (θ̂ − θ0)

d→ N (0,J−1).

Condition (i) follows from A3 and (ii) from A4 and Lemma A.2. Condition (iii) is
satisfied. In order to verify (iv), we consider blocks of (A.13). First note that JT is
nonsingular for T > 3q+kp+1, so J−1

T exists. Lemma A.4 yields limT→∞ EMϕϕ(t/T ),
Lemma A.5 provides the elements of limT→∞ EMϕα(t/T ), α = δ, γ, c, Lemma A.6 does
the same for limT→∞ Mαβ(t/T ), α, β = γ, c and Lemma A.7 for limT→∞ Mδδ(t/T ) and
limT→∞ Mδα(t/T ), α = γ, c. Putting these together defines J = limT→∞ JT . Condition
(v) is satisfied because the deterministic components in the matrix ∂2

∂θ∂θ′ ln f(ε|θ) are
bounded. Furthermore, the elements of this matrix have finite expectations for all
θ ∈ Θ. Finally, since matrix inversion is a continuous transformation, it follows from
the continuous mapping theorem that when JT → J, then J−1

T → J−1. This concludes
the proof. �
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Table 2: System Estimates for the Hemispheric Temperature VSM–AR with Co–
Shifting Restrictions Imposed.

Northern Hemisphere:†

ynt = − 0.448
(0.016)

+ 2.030
(0.023)

(1 + exp{− 0.682
(0.078)

[t/T − 0.950
(¯)

]/0.290})−1

+ 0.069
(0.021)

(1 + exp{− 25.423
(3.057)

[t/T − 0.452
(0.007)

]/0.290})−1

− 0.237
(0.001)

(1 + exp{− 9.528
(0.760)

[t/T − 0.267
(0.007)

]/0.290})−1

− 0.174
(0.015)

(1 + exp{− 50
(¯)

[t/T − 0.589
(0.004)

]/0.290})−1

+ 0.646
(0.069)

ynt−1 − 0.580
(0.053)

ynt−2 + 0.264
(0.104

ynt−3 − 0.136
(0.088)

yst−1 + 0.372
(0.079)

yst−2 − 0.173
(0.079

yst−3 + ε̂nt

R2 = 0.890, σ̂n = 0.091, Sk = 0.100, Ek = 0.191, LJB = 0.518(0.771)

Southern Hemisphere:†

yst = − 0.029
(0.030)

− 0.866
(0.062)

(1 + exp{− 0.682
(0.078)

[t/T − 0.950
(¯)

]/0.290})−1

+ 0.273
(0.031)

(1 + exp{− 25.423
(3.057)

[t/T − 0.452
(0.007)

]/0.290})−1

+ 0.775
(0.200)

(1 + exp{− 3.769
(0.662)

[t/T − 0.908
(0.026)

]/0.290})−1

+ 0.652
(0.090)

ynt−1 − 0.630
(0.074)

ynt−2 + 0.356
(0.144

ynt−3 − 0.052
(0.114)

yst−1 + 0.433
(0.103)

yst−2 − 0.288
(0.109

yst−3 + ε̂st

R2 = 0.853, σ̂s = 0.115 Sk = −0.243, Ek = 0.508, LJB = 3.346(0.188)

ρ̂ns = 0.912

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
System Statistics:

lnL = 422.972, AIC = −10.478, BIC = −9.830, LMΩt = 2.096× 10−4(0.999), Sks = 1.840(0.398),

Eks = 1.553(0.460), LJBs = 3.393(0.494), LMV AR(4) = 7.39× 10−3(0.999), LMV AR(6) = 8.06× 10−3(0.999),

LMV AR(8) = 6.33× 10−3(0.999), LMV AR(10) = 7.53× 10−3(0.999), LMV AR(12) = 6.80× 10−3(0.999)

† See footnote 6.

Note: ρ̂ns is the estimated correlation between the residuals. Sk denotes skewness and Ek excess kurtosis. LJB
is the Lomnicki–Jarque–Bera test of normality of the residuals. These same statistics with a subscripted s are for
the system, as described by (Lütkepohl and Krätzig, 2004, pp. 129–130). AIC and BIC denote, respectively, the
system Akaike information criterion and the Rissanen–Schwarz Bayesian information criterion. LMΩt denotes
the system LM test of Eklund and Teräsvirta (2007) for a time–varying covariance matrix. LMV AR(j) denote
system LM F–tests, based on Rao’s F , for remaining vector autocorrelation at lags j = 4, 6, 8, 10, 12. Values
in parentheses beside test statistics are p–values.
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Panel A: Northern Hemisphere
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Panel B: Southern Hemisphere
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Figure 2: Bivariate VAR Results with Co–Trending Restrictions for Temperature
Anomalies for the Northern (Panel A) and Southern (Panel B) Hemispheres, 1850–
2014. The dashed line indicates the shifting mean and the dash–dot lines indicate the
estimated transition functions.
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Figure 3: Temperature Anomalies in the Northern (Panel A) and Southern (Panel
B) Hemispheres, Actual, 1850–2014, and Simulated, 2015–2035. Shaded areas denote
95–percent confidence intervals.
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