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Abstract

This paper presents a new estimator of the global regularity index of a multifractional
Brownian motion. Our estimation method is based upon a ratio statistic, which compares
the realized global quadratic variation of a multifractional Brownian motion at two different
frequencies. We show that a logarithmic transformation of this statistic converges in proba-
bility to the minimum of the Hurst functional parameter, which is, under weak assumptions,
identical to the global regularity index of the path.
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1 Introduction
Fractional Brownian motion (fBm) is one of the most prominent Gaussian processes in

the probabilistic and statistical literature. Popularized by Mandelbrot and van Ness [MVN68]
in 1968, it found various applications in modeling stochastic phenomena in physics, biology,
telecommunication and finance among many other fields. Fractional Brownian motion is char-
acterized by its self-similarity property, the stationarity of its increments and by its ability to
match any prescribed constant local regularity. Mathematically speaking, for any H ∈ (0, 1),
a fBm with Hurst index H, denoted by BH = (BH

t )t≥0, is a zero mean Gaussian process with
the covariance function given by

E[BH
s B

H
t ] = 1

2
(
t2H + s2H − |t− s|2H

)
.

Various representations of fBm can be found in the existing literature; we refer to [Nua06,
Mis08, Nou12, LLVH14] and references therein. The Hurst parameter H ∈ (0, 1) determines
the path properties of the fBm: (i) The process (BH

t )t≥0 is self-similar with index H, i.e.
(aHBH

t )t≥0 = (BH
at)t≥0 in distribution for any a > 0, (ii) (BH

t )t≥0 has Hölder continuous paths
of any order strictly smaller than H, (iii) fractional Brownian motion has short memory if and
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only if H ∈ (0, 1/2]. Moreover, fBm exhibits long range dependance if H belongs to (1/2, 1).
The statistical estimation of the Hurst parameter H in the high frequency setting, i.e. the
setting of mesh converging to 0 while the interval length remaining fixed, is often performed by
using power variation of BH . Recall that a standard power variation of an auxiliary process
(Yt)t≥0 on the interval [0, T ] is defined by

V (Y, p)nT :=
[nT ]∑
i=0

∣∣∣Y i+1
n
− Y i

n

∣∣∣p .
This type of approach has been investigated in numerous papers; we refer to e.g. [GL89, IL97]
among many others. The fact that most of the properties of fBm are governed by the single
parameter H restricts its application in some situations. In particular, its Hölder exponent
remains the same along all its trajectories. This does not seem to be adapted to describe ade-
quately natural terrains as it has been shown in [BELV12], for instance. In addition, long range
dependence requires H > 1/2, and thus imposes paths smoother than the ones of Brownian
motion. Multifractional Brownian motion (mBm) was introduced to overcome these limitations.
Several definitions of a multifractional Brownian motion exist. The first ones were proposed in
[PLV95] and [BJR97]. A more general approach was introduced in [ST06] while the most recent
definition of mBm (which contains all the previous ones) has been given in [LLVH14]. The latter
definition is both more flexible and retains the essence of this class of Gaussian processes. Recall
first that a fractional Brownian field on R+× (0, 1) denoted by B = (B(t,H))(t,H)∈R+×(0,1) is a
Gaussian field such that, for any H, the process (B(t,H))t∈R+

is a fBm with Hurst parameter
H. Define for any (t,H) ∈ R+ × (0, 1)

B1(t,H) := 1
cH

∫
R

eitu − 1
|u|H+1/2W̃1(du), (1.1)

B2(t,H) :=
∫
R

(
|t− u|H−1/2 − |u|H−1/2

)
W2(du),

B3(t,H) :=
∫
R

(
(t− u)H−1/2

+ − (−u)H−1/2
+

)
W3(du),

B4(t,H) :=
∫ T

0
1{0≤u<t≤T}(t, u) KH(t, u) W4(du),

where

cH :=
(2 cos(πH)Γ(2− 2H)

H(1− 2H)

) 1
2
, (1.2)

Γ denotes the standard gamma function, dH :=
( 2HΓ(3/2−H)

Γ(1/2+H)Γ(2−2H)
)1/2 and

KH(t, s) := dH (t− s)H−1/2 + cH(1/2−H)
∫ t

s
(u− s)H−3/2(1− ( su)1/2−H)du,

HereWi, i = 1, 2, 3, 4, denotes an independently scattered standard Gaussian measure on R, and
W̃1 denotes the complex-valued Gaussian measure which can be associated in a unique way to
W1 (see [ST06, p.203-204] and [ST94, p.325-326] for more details). It is straightforward to check
that all Gaussian fields (Bi(t,H))(t,H)∈R×(0,1) are fractional Brownian fields. A multifractional
Brownian motion is simply a “path” traced on a fractional Brownian field. More precisely, it
has been defined in [LLVH14, Definition 1.2] as follows:

Definition 1. Let h : R+ → (0, 1) be a deterministic function and B := (B(t,H))(t,H)∈R+×(0,1)
be a fractional Brownian field. A multifractional Brownian motion (mBm) with functional
parameter h is the Gaussian process Bh = (Bh

t )t∈R+
defined by Bh

t := B(t, h(t)), for all t ∈ R+.
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It is easy to verify that the process Bh := (Bh
t )t∈R+

defined by

Bh
t = 1

ch(t)

∫
R

exp(itx)− 1
|x|h(t)+1/2 W̃ (dx), (1.3)

where W̃ denotes the complex-valued Gaussian measure is a multifractional Brownian mo-
tion with functional parameter h (which lies on the underlying fractional field B1, defined in
(1.1)). It is straightforward to check that any multifractional Brownian motion in the sense
of [ST06, Def.1.1] is also a mBm in sense of Definition 1. Multifractional Brownian motions
(B1(t, h(t)))t∈R+

and (B2(t, h(t)))t∈R+
lead to the so-called harmonizable mBm, first consid-

ered in [BJR97]. (B3(t, h(t)))t∈R+
yields the moving average mBm defined in [PLV95]. Both

are particular cases of mBms in the sense of [ST06]. Finally, (B4(t, h(t)))t∈R+
corresponds to

the Volterra multifractional Gaussian process studied in [BDM10]. This last process is an mBm
in our sense.

Intuitively speaking, the multifractional Brownian motion behaves locally as fractional Brow-
nian motion, but the functional parameter h is time-varying. Moreover, it remains linked to
local regularity of Bh, but in a less simple way than in the case of the fBm. More precisely, if
we assume that h belongs to the set Cη([0, 1],R), for some η > 0, and is such that

0 < hmin := min
t∈[0,1]

h(t) ≤ hmax := max
t∈[0,1]

h(t) < min{1, η}, (1.4)

then hmin is the regularity parameter of Bh (see [ACLV00, Corollaries 1,2 and Proposition 10]).
In this setting the functional parameter h needs to be estimated locally in order to get a full
understanding of the path properties of the multifractional Brownian motion Bh. Bardet and
Surgailis [BS13] have proposed to use a local power variation of higher order filters of increments
of Bh to estimate the function h. More specifically, they prove the law of large numbers and
a central limit theorem for the local estimator of h (i) based on log-regression of the local
quadratic variation, (ii) based on a ratio of local quadratic variations.

In this paper we are aiming at the estimation of the parameter hmin, which represents
the regularity (or smoothness) of the multifractional Brownian motion Bh = (Bh

t )t≥0 defined
in (1.3). For this particular statistical problem the local estimation approach investigated in
[BS13] appears to be rather inconvenient. Instead our method relies on a ratio statistic, which
compares the global quadratic variation at two different frequencies. We remark that in general
it is impossible to find a global rate an such that the normalized power variation anV (Bh, p)nT
converges to a non-trivial limit. However, ratios of global power variations can very well be
useful for statistical inference. Indeed, we will show that under appropriate conditions on the
functional parameter h, the convergence

Sn(Bh) :=

∑n−1
i=0

(
Bh
i+1
n

−Bh
i
n

)2

∑n−2
i=0

(
Bh
i+2
n

−Bh
i
n

)2 −→
n→+∞

2−2hmin , holds almost surely.

Then a simple log transformation gives a strongly consistent estimator of the global regularity
hmin of a mBm.

The paper is structured as follows. Section 2 presents the basic distribution properties of
the multifractional Brownian motion, reviews the estimation methods from [BS13] and states
the main asymptotic results of the paper. Proofs are given in Section 3.
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2 Background and main results
In [BS13] Bardet and Surgailis deal with a little bit more general processes than multifractional
Brownian motions. However, in order not to overload the notations we will focus in this paper
on the normalized multifractional Brownian motion (i.e. the mBm defined by (1.3)). From
now on we will refer to this process as the multifractional Brownian motion and denote it by
Bh = (Bh

t )t≥0.

2.1 Basic properties and local estimation of the functional parameter h

We start with the basic properties of the mBm Bh with functional parameter h. Its covariance
function is given by the expression

Rh(t, s) := E[Bh
t B

h
s ] =

c2
ht,s

2ch(t)ch(s)

(
|t|2ht,s + |s|2ht,s − |t− s|2ht,s

)
, (2.1)

where ht,s := h(t)+h(s)
2 and cx has been defined in (1.2). It is easy to check that x 7→ cx

is a C∞((0, 1))-function. The local behaviour of the multifractional Brownian motion is best
understood via the relationship(

u−h(t)(Bh
t+us −Bh

t )
)
s≥0

f.d.d.−→
(
Bh(t)
s

)
s≥0

as u→ 0,

where f.d.d.−→ denotes the convergence of finite dimensional distributions. Hence, in the neigh-
bourhood of any t in (0, 1), the mBm Bh behaves as fBm with Hurst parameter h(t). This
observation is essential for the local estimation of the functional parameter h. In the following
we will briefly review the statistical methods of local inference investigated in Bardet and Sur-
gailis [BS13], which is based on high frequency observations Bh

0 , B
h
1/n, . . . , B

h
(n−1)/n, B

h
1 . While

the original paper is investigating rather general Gaussian models whose tangent process is
a fractional Brownian motion, we will specialize their asymptotic results to the framework of
multifractional Brownian motion.

Let us introduce the generalized increments of a process Y = (Yt)t≥0. Consider a vector of
coefficients a = (a0, . . . , aq) ∈ Rq+1 and a natural number m ≥ 1 such that

q∑
j=0

jkaj = 0 for k = 0, . . . ,m− 1 and
q∑
j=0

jmaj 6= 0.

In this case the vector a ∈ Rq+1 is called a filter of order m. The generalised increments of Y
associated with filter a at stage i/n are defined as

∆n
i,aY :=

q∑
j=0

ajY i+j
n
.

Standard examples are a(1) = (−1, 1), ∆n
i,a(1)Y = Y(i+1)/n − Yi/n (first order differences) and

a(2) = (1,−2, 1), ∆n
i,a(2)Y = Y(i+2)/n−2Y(i+1)/n+2Yi/n (second order differences). In both cases

we have that q = m. Now, we set ψ(x, y) := (|x+ y|)/(|x|+ |y|) and set

Λ(H) := E[ψ(∆n
0,aB

H ,∆n
1,aB

H)], H ∈ (0, 1).
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The function Λ does not depend on n and is strictly increasing on the interval (0, 1). For any
α ∈ (0, 1), which determines the local bandwidth, the ratio type estimator of h(t) is defined as

ĥn,αt := Λ−1
( 1

card{i ∈ J0, n− q − 1K : |i/n− t| ≤ n−α}
∑

i∈J0,n−q−1K: |i/n−t|≤n−α
ψ(∆n

i,aB
h,∆n

i+1,aB
h)
)
.

(2.2)
Here and throughout the paper we denote Jp, qK := {p, p+ 1, p+ 2, . . . , q} for any p, q ∈ N with
p ≤ q. The authors of [BS13] only investigate the estimator ĥn,αt relative to the filter a = a(2),
which we assume in this subsection from now on. The consistency and asymptotic normality of
the estimator ĥn,αt is summarized in the following theorem. We remark that the condition for
the central limit theorem crucially depends on the interplay between the bandwidth parameter
α and the Hölder index η of the function h.

Theorem 1. ([BS13, Proposition 3]) Assume that h belongs to Cη([0, 1]) and that condition
(1.4) is satisfied.

(i) For any t ∈ (0, 1) and α ∈ (0, 1) it holds that

ĥn,αt
P−→ h(t), as n→∞.

(ii) When α > max
(

1
1+2 min(η,2) , 1− 4(min(η, 2)− supt∈(0,1) h(t))

)
it holds that

√
2n1−α

(
ĥn,αt − h(t)

)
d−→ N (0, τ2) as n→∞,

where the asymptotic variance τ2 is defined in [BS13, Eq. (2.17)].

The paper [BS13] contains the asymptotic theory for a variety of other local estimators of
h(t). We dispense with the detailed exposition of these estimators, since only ĥn,αt is somewhat
related to our estimation method.

Remark 1. Nowadays, it is a standard procedure to consider higher order filters for Gaussian
processes to obtain a central limit theorem for the whole range of Hurst parameters. Let us
shortly recall some classical asymptotic results, which are usually referred to as Breuer-Major
central limit theorems. We consider the scaled power variation of a fractional Brownian motion
BH with Hurst parameter H ∈ (0, 1) based on first order filter a(1) and second order filter a(2):

V (BH , p; a(1))n := n−1+pH
n−1∑
i=0
|∆n

i,a(1)B
H |p and V (BH , p; a(2))n := n−1+pH

n−2∑
i=0
|∆n

i,a(2)B
H |p.

It is well known that, after an appropriate normalization, the statistic V (BH , p; a(1))n exhibits
asymptotic normality for H ∈ (0, 3/4], while it converges to the Rosenblatt distribution for
H ∈ (3/4, 1). On the other hand, the statistic V (BH , p; a(2))n exhibits asymptotic normality
for all H ∈ (0, 1). We refer to [BM83, Taq79] for a detailed exposition.

2.2 Estimation of the global regularity parameter hmin

In this section we will construct a consistent estimator of the global regularity parameter hmin,
which has been defined at (1.4). Our first condition is on the set h−1({hmin}), which is neces-
sarily compact since h belongs to Cη([0, 1]). We assume that this set has the following form

Mh := h−1({hmin}) =
( q⋃
i=1

[ai, bi]
)⋃  m⋃

j=1
{xj}

 , (q,m) ∈ N2 \ (0, 0), (2.3)
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where N = {0, 1, 2, . . .} and the intervals [ai, bi] are disjoint and such that none of the xj ’s

belongs to
q⋃
i=1

[ai, bi]. Depending on whether q ≥ 1 or q = 0, we will need an additional assump-

tion. Below, we denote by h(p)
l (x) (resp. h(p)

r (x)) the pth left (resp. right) derivative of h at
point x.

(A ) There exist positive integers pj such that function h is pj times continuously left and
right differentiable at point xj for j = 1, . . . ,m such that

pj = min{p : h
(p)
l (xj) 6= 0} = min{p : h(p)

r (xj) 6= 0}.

We remark that since h reaches its minimum at points xj , we necessarily have that h(pj)
r (xj) > 0

and that h(pj)
l (xj) > 0 if pj is even and h

(pj)
l (xj) < 0 if p is odd. Now, we proceed with the

construction of the consistent estimator of the global regularity parameter hmin based on high
frequency observations Bh

0 , B
h
1/n, . . . , B

h
(n−1)/n, B

h
1 . First of all, let us remark that considering

the estimator mint∈[0,1] ĥ
n,α
t , where ĥn,αt has been introduced in the previous section, is not a

trivial matter since the functional version of Theorem 1 is not available. Instead our statistics
relies on the global quadratic variation rather than local estimates.

For the mBm Bh = (Bh
t )t∈[0,1], we introduce the notations

V (Bh; k)n :=
n−k∑
i=0

(
Bh
i+k
n

−Bh
i
n

)2
, Sn(Bh) := V (Bh; 1)n

V (Bh; 2)n . (2.4)

Our first result determines the limit of E[V (Bh; 1)n]/E[V (Bh; 2)n].

Proposition 2. Let h : [0, 1]→ (0, 1) be a deterministic Cη([0, 1])-function satisfying (1.4) and
such that the set Mh has the form (2.3). If q = 0 we also assume that condition (A ) holds.
Define

U h
n := E[V (Bh; 1)n]

E[V (Bh; 2)n] .

Then it holds that

lim
n→+∞

U h
n =

(1
2

)2hmin

. (2.5)

The convergence result of Proposition 2 is rather intuitive when q ≥ 1, which means that the
minimum of the function h is reached on a set of positive Lebesgue measure. In this setting it is
quite obvious that the statistic V (Bh; k)n is dominated by squared increments (Bh

(i+k)/n−B
h
i/n)2

for i/n ∈ ∪qi=1[ai, bi]. Thus, the estimation problem is similar to the estimation of the Hurst
parameter of a fractional Brownian motion (Bhmin

t )t∈∪qi=1[ai,bi] with Hurst parameter hmin, for
which the convergence at (2.5) is well known. When q = 0, and hence Leb(Mh) = 0, the proof
of Proposition 2 becomes much more delicate.

Remark 2. Assume for illustration purpose that q = 0, m = 1, x := x1 and p := p1. Condition
(A ) is crucial to determine the precise asymptotic expansion of the quantity E[V (Bh; k)n]. As
a prototypical example let us consider the simple function

h(t) = c+ dtp, t ∈ [0, 1], (2.6)
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where c ∈ (0, 1) and d > 0 such that c+ d < 1. In this case hmin = c and x = 0. We obtain the
following asymptotic decomposition:

E[V (Bh; k)n] ≈
n−k∑
i=0

(
k

n

)2h(i/n)
=
(
k

n

)2c n−k∑
i=0

exp (2d(i/n)p{ln k − lnn}) .

Observing that the map x 7→ xp, x ∈ [0, 1], is monotone increasing, we conclude from the latter

E[V (Bh; k)n] ≈ n
(
k

n

)2c ∫ 1

0
exp (2dxp{ln k − lnn}) dx

= k2c n1−2c

p(ln(n/k))1/p

∫ ln(n/k)

0
y−1+1/p exp (−2dy) dy

≈ k2c n1−2c

p(ln(n/k))1/p

∫ ∞
0

y−1+1/p exp (−2dy) dy. (2.7)

From this simple example we learn that the constant p from condition (A ) determines the
leading term of E[V (Bh; k)n]. Indeed, a similar argumentation and the lower and upper bounds
in (3.16) and (3.17) in the proof show that

E[V (Bh; k)n] = O
(
n1−2hmin

(lnn)1/p

)
as n→ +∞, for k = 1, 2,

in the general setting of Proposition 2. Furthermore, in the framework of (2.6), we may easily
determine the bias associated with convergence at (2.5) using (2.7):

U h
n −

(1
2

)2hmin

= O
( 1

lnn

)
as n→ +∞. (2.8)

The condition min{p : h
(p)
l (x) 6= 0} = min{p : h

(p)
r (x) 6= 0} of assumption (A ) is not essential

for the proofs. For instance, when min{p : h(p)
l (x) 6= 0} > min{p : h(p)

r (x) 6= 0} the expectation
E[V (Bh; k)n] would be dominated by the terms in the small neighbourhood on the right hand
side of x and the statement of Proposition 2 can be proved in the same manner.

Our main result shows strong consistency of the statistic Sn(Bh).

Theorem 3. Assume that h ∈ C2([0, 1]) and the set Mh has the form (2.3). If q = 0 we also
assume that condition (A ) holds. Then we have the following result:

Sn(Bh) a.s.−→
(1

2

)2hmin

. (2.9)

In particular, the following convergence holds:

ĥmin := − ln(Sn(Bh))
2 ln(2)

a.s.−→ hmin. (2.10)

The asymptotic result of Theorem 3 can be extended to more general Gaussian processes
than the mere multifractional Brownian motion. As it has been discussed in [BS13], when a
Gaussian process possesses a tangent process Bh(t) at time t, we may expect Theorem 3 to hold
under certain assumptions on its covariance kernel. We refer to assumptions (A)κ and (B)α
therein for more details on sufficient conditions.

When q ≥ 1 we obtain the following weak limit theorem.
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Theorem 4. Assume that h ∈ C2([0, 1]) and the set Mh has the form (2.3). If q ≥ 1 and
supt∈[0,1] h(t) < 3/4 we obtain the central limit theorem

n−1/2+2hmin

(
n−k∑
i=0

{(
Bh
i+k
n

−Bh
i
n

)2
− E

[(
Bh
i+k
n

−Bh
i
n

)2
]})

k=1,2

d−→ N2(0,Σ), (2.11)

where the matrix Σ ∈ R2×2 is defined by

Σ11 = 2r
∑
j∈Z

ρ2
11(j), Σ22 = 24H+1r

∑
j∈Z

ρ2
22(j), Σ12 = Σ21 = 22H+1r

∑
j∈Z

ρ2
12(j)

with r =
∑q
j=1(bj − aj) and

ρ11(j) = cov(Bhmin
i −Bhmin

i−1 , B
hmin
i+j −B

hmin
i+j−1), ρ22(m) = cov(Bhmin

i −Bhmin
i−2 , B

hmin
i+j −B

hmin
i+j−2),

ρ12(m) = cov(Bhmin
i −Bhmin

i−1 , B
hmin
i+j −B

hmin
i+j−2), j ∈ Z,

and Bhmin denotes the fractional Brownian motion with Hurst parameter hmin.

It is well known that |ρkk′(j)| ≤ C|j|2hmin−2 for k, k′ = 1, 2 and thus Σ < ∞ when hmin <
3/4. As stated in Remark 1 a central limit theorem can be obtained without the restriction
supt∈[0,1] h(t) < 3/4 when the first order increments are replaced by second order increments.
In the setting q = 0, which implies that Leb(Mh) = 0, the weak limit theorem seems to be out
of reach.

Remark 3. The main result (2.11) can be reformulated as follows:
√
n
(
n−1+2hminV (Bh; k)n − En(k)

)
k=1,2

d−→ N2(0,Σ), En(k) := n−1+2hminE[V (Bh; k)n].

Following the arguments of Section 3.1.1 we may conclude that

lim
n→+∞

En(k) = rk2hmin k = 1, 2,

where r =
∑q
j=1(bj − aj). Applying the δ-method to the function f(x, y) = x/y, we obtain the

central limit theorem
√
n

(
V (Bh; 1)n

V (Bh; 2)n −U h
n

)
d−→ N

(
0, (r−12−2hmin ,−2−2hmin)Σ(r−12−2hmin ,−2−2hmin)?

)
,

where y? denotes the transpose of y, under conditions of Theorem 4. However, the bias asso-
ciated with Proposition 2 has a logarithmic rate. To illustrate this fact we consider a simple
example

h(t) = c1[0,1/2](t) + (c+ d(t− 1/2)p)1(1/2,1](t),
where c ∈ (0, 3/4), d > 0 and c + d/2p < 3/4 (cf. (2.6)). Following the arguments in (2.7) we
deduce the asymptotic expansion

E[V (Bh; k)n] = 1
2n
(
k

n

)2c (
1 + C(p, d)

(ln(n/k))1/p

)
+ o

(
n1−2c(lnn)−1/p

)
,

where C(p, d) is a constant that depends on p and d. In this framework we obviously obtain
that

U h
n −

(1
2

)2hmin

= O
( 1

(lnn)1/p

)
as n→ +∞.

Hence, the bias dominates the variance and in this situation the central limit theorem of (2.11)
is of little use.
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3 Proofs
Throughout this section we denote all positive constants by C, or Cp if they depend on an
external parameter p, although they may change from line to line.

3.1 Proof of Proposition 2

For k = 1, 2 we introduce the notation

V (k)
n :=

n−k∑
i=0

(
k

n

)2h(i/n)
, (3.1)

which serves as the first order approximation of the quantity E[V (Bh; k)n]. Applying [BS10,
Lemma 1 p.13] we conclude that

∣∣∣E[V (Bh; k)n]− V (k)
n

∣∣∣ ≤ C lnn
nη∧1

n−k∑
i=0

(
i

n

)2h(k/n)
≤ C lnn

n2hmin−1+η∧1 (3.2)

for any (n, k) ∈ N× {1, 2}. We have the inequality∣∣∣∣∣U h
n −

(1
2

)2hmin
∣∣∣∣∣ ≤ |E[V (Bh; 1)n]− V (1)

n |+ |E[V (Bh; 2)n]− V (2)
n |

V
(2)
n

+
∣∣∣∣∣V

(1)
n

V
(2)
n

−
(1

2

)2hmin
∣∣∣∣∣

=: µ(1)
n + µ(2)

n . (3.3)

We first show that µ(1)
n → 0 as n → ∞. When hmin = hmax we trivially have µ(1)

n = 0. If
hmin < hmax, we fix ε ∈ (0, hmax − hmin). By Leb(A) we denote the Lebesgue measure of any
measurable set A. We have that

Leb
(
h−1([hmin, hmin + ε])

)
> 0.

Thus, there exists n0 ∈ N such that for all n ≥ n0 it holds that

Card{i ∈ J0, n− kK; h(i/n) ∈ [hmin, hmin + ε]} ≥ n Leb
(
h−1([hmin, hmin + ε])

)
/2.

This implies that

V (2)
n ≥

∑
i∈J0,n−kK; h(i/n)∈[hmin,hmin+ε]

( 2
n

)2h(i/n)
≥ Cn1−2(hmin+ε).

Hence, applying Inequality (3.2), we conclude that:

µ(1)
n ≤ C lnn · n2ε−η∧1,

which proves that µ(1)
n →

n→+∞
0, for any ε small enough.
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3.1.1 Convergence of µ(2)
n in the case q ≥ 1

We first prove that µ(2)
n → 0 in the case q ≥ 1. Assume again that hmin < hmax. First, we

observe the lower bound

V (k)
n ≥

q∑
l=1

∑
i∈J0,n−kK; i/n∈[al,bl]

(
k

n

)2h(i/n)
=
(
k

n

)2hmin q∑
l=1

card{i ∈ J0, n− kK; i/n ∈ [al, bl]}

≥ n
(
k

n

)2hmin q∑
l=1

(
bl − al − 2

n

)
. (3.4)

For the upper bound we fix 0 < ε < hmax − hmin and consider the decomposition

V (k)
n =

∑
i∈J0,n−kK; h(i/n)∈[hmin,hmin+ε]

(
k

n

)2h(i/n)
+

∑
i∈J0,n−kK; h(i/n)6∈[hmin,hmin+ε]

(
k

n

)2h(i/n)
.

Setting λn(ε) := n−1card{i ∈ J0, n− kK; h(i/n) ∈ [hmin, hmin + ε]}, we deduce the assertions

λn(ε)→ Leb
(
h−1([hmin, hmin + ε])

)
as n→∞,

Leb
(
h−1([hmin, hmin + ε])

)
→ Leb

(
h−1({hmin})

)
=

q∑
l=1

(bl − al) > 0 as ε→ 0.

Now, we conclude that

V (k)
n ≤ nλn(ε)

(
k

n

)2hmin

+ n(1− λn(ε))
(
k

n

)2(hmin+ε)
. (3.5)

Throughout the proofs we write lim for lim inf and lim for lim sup. Applying inequalities (3.4)
and (3.5), we obtain that

lim
n→+∞

n
∑q
l=1(bl − al − 2

n)

nλn(ε) + n(1− λn(ε))
(

2
n

)2ε

≤ lim
n→+∞

22hmin V
(1)
n

V
(2)
n

≤ lim
n→+∞

22hmin V
(1)
n

V
(2)
n

≤

lim
n→+∞

nλn(ε) + n(1− λn(ε))
(

1
n

)2ε

n
∑q
l=1(bl − al − 2

n)
.

Hence, we deduce that

2−2hminLeb
(
h−1({hmin})

)
Leb (h−1([hmin, hmin + ε])) ≤ lim

n→+∞

V
(1)
n

V
(2)
n

≤ lim
n→+∞

V
(1)
n

V
(2)
n

≤ 2−2hminLeb
(
h−1([hmin, hmin + ε])

)
Leb (h−1({hmin}))

.

By letting ε tend to 0, we readily deduce taht µ(2)
n → 0 as n→ +∞.

3.1.2 Convergence of µ(2)
n in the case q = 0

Without loss of generality we assume that m = 1 andMh = h−1({hmin}) = {x} with x ∈ (0, 1).
Recall that in this setting we assume condition (A ) with p := p1. We let γ be a positive
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number such that γ < 2−1 min{|h(p)
l (x)|, h(p)

r (x)}. Now, there exists a ε = ε(γ) > 0 with
ε < min{x, 1− x, γ} such that:

∀y > x with 0 < y − x < ε :

hmin + 1
p! (y − x)p (h(p)

r (x)− γ) ≤ h(y) ≤ hmin + 1
p! (y − x)p (h(p)

r (x) + γ), (3.6)

∀y < x with 0 < x− y < ε :

hmin + 1
p! (y − x)p (h(p)

l (x)− (−1)pγ) ≤ h(y) ≤ hmin + 1
p! (y − x)p (h(p)

l (x) + (−1)pγ). (3.7)

We proceed with the derivation of upper and lower bounds for the quantity µ(2)
n . We start with

the decomposition V (k)
n = Γ(1)

n,k(γ, ε) + Γ(2)
n,k(γ, ε) + Γ(3)

n,k(γ, ε) where

Γ(1)
n,k(γ, ε) :=

∑
i∈J0,n−kK; i/n∈[x,x+ε]

(
k

n

)2h(i/n)
;

Γ(2)
n,k(γ, ε) :=

∑
i∈J0,n−kK; i/n∈[x−ε,x)

(
k

n

)2h(i/n)
;

Γ(3)
n,k(γ, ε) :=

∑
i∈J0,n−kK; i/n∈[x−ε,x+ε]c

(
k

n

)2h(i/n)
.

It is clear that Γ(3)
n,k(γ, ε) ≤ n(k/n)2h(yε), where we have set

yε := argmin{h(u) : u ∈ (x− ε, x+ ε)c ∩ [0, 1]}.

For the other two quantities, we deduce that Γ(r)
n,k(γ, ε) ≤ Γ(r)

n,k(γ, ε) ≤ Γ(r)
n,k(γ, ε) with

Γ(1)
n,k(γ, ε) :=

(
k

n

)2hmin ∑
i∈J0,n−kK: i/n∈[x,x+ε]

(
k

n

)2(p!)−1(i/n−x)p(h(p)
r (x)+γ)

,

Γ(2)
n,k(γ, ε) :=

(
k

n

)2hmin ∑
i∈J0,n−kK: i/n∈[x−ε,x)

(
k

n

)2(p!)−1(i/n−x)p(h(p)
l

(x)+(−1)pγ)

and Γ(1)
n,k(γ, ε) := Γ(1)

n,k(−γ, ε) and Γ(2)
n,k(γ, ε) := Γ(2)

n,k(−γ, ε). Using (3.6) and (3.7), it is easy to
see that, for every (k, n) ∈ {1, 2} × N:

µ(2)
n

(γ, ε) ≤ V
(1)
n

V
(2)
n

≤ µ(2)
n (γ, ε), (3.8)

with

µ(2)
n

(γ, ε) :=
Γ(1)
n,1(γ, ε) + Γ(2)

n,1(γ, ε)

Γ(1)
n,2(γ, ε) + Γ(2)

n,2(γ, ε) + n(2/n)2h(yε)
,

µ(2)
n (γ, ε) :=

Γ(1)
n,1(γ, ε) + Γ(2)

n,1(γ, ε) + n(1/n)2h(yε)

Γ(1)
n,2(γ, ε) + Γ(2)

n,2(γ, ε)
.
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From (3.8) we obtain that

0 ≤ 22hminµ(2)
n ≤

∣∣∣∣∣22hmin V
(1)
n

V
(2)
n

− 1
∣∣∣∣∣ ≤ Un(γ, ε) + Un(−γ, ε), (3.9)

where

Un(γ, ε) := |∆n,2(γ, ε)|−1
(
|22hmin∆n,1(γ, ε)−∆n,2(γ, ε)|+ 2n1−2h(yε)

)
, (3.10)

∆n,k(γ, ε) := Γ(1)
n,k(γ, ε) + Γ(2)

n,k(γ, ε), ∆n,k(γ, ε) := ∆n,k(−γ, ε). (3.11)

In view of (3.9) it is sufficient to show that lim
γ→0

lim
n→+∞

Un(γ, ε) = 0. Define

dγ := 2(p!)−1(h(p)
r (x) + γ) and d′γ := 2(p!)−1(h(p)

l (x) + (−1)pγ).

For any (a, b) in R+ × (R \ {0}), we also set

Sn,k(a, ε) :=
∑

i∈J0,n−kK: i/n∈[x,x+ε]

(
k

n

)a(i/n−x)p

, (3.12)

Tn,k(b, ε) :=
∑

i∈J0,n−kK: i/n∈[x−ε,x)

(
k

n

)b(i/n−x)p

. (3.13)

We deduce the identities Γ(1)
n,k(γ, ε) = (k/n)2hminSn,k(dγ , ε) and Γ(2)

n,k(γ, ε) = (k/n)2hminTn,k(d′γ , ε).
Note moreover that d′γ > 0 when p is even and d′γ < 0 when p is odd. We therefore assume from
now on that b > 0 when p is even and that b < 0 when p is odd. For any η ∈ R \ {0}, we define

f
(η)
n,k(u) :=

(
k

n

)η(u−x)p

.

Since i 7→ f
(a)
n,k(i/n) is decreasing on J[nx] + 1, [n(x + ε)]K while i 7→ f

(b)
n,k(i/n) is increasing if

p even (resp. decreasing if p odd) on J[n(x − ε)] + 1, [nx]K, one can use an integral test for
convergence, which provides us with the following upper bounds

n
∫ βn(a)
αn(a) y

1/p−1e−y dy

p(a ln(n/k))1/p ≤ Sn,k(a, ε) ≤
n
∫ µn(a)
τn(a) y

1/p−1e−y dy

p(a ln(n/k))1/p , (3.14)

n
(∫ β′n(b)
α′n(b) y

1/p−1e−y dy − ρ(b)
n,k(ε)

)
p((−1)pb ln(n/k))1/p ≤ Tn,k(b, ε) ≤

n
(∫ µ′n(b)
τ ′n(b) y

1/p−1e−y dy − ρ(b)
n,k(ε)

)
p((−1)pb ln(n/k))1/p . (3.15)

Here we use the notation

αn(a) := a ln(n/k)
( [nx] + 1

n
− x

)p
, βn(a) := a ln(n/k)

( [n(x+ ε)] + 1
n

− x
)p
,

τn(a) := a ln(n/k)
( [nx]

n
− x

)p
, µn(a) := a ln(n/k)

( [n(x+ ε)]
n

− x
)p

and ρ(b)
n,k(ε) := f

(b)
n,k(

[n(x−ε)]+1
n ) + f

(b)
n,k(

[nx]
n ). Furthermore,

(α′n(b), β′n(b), τ ′n(b), µ′n(b)) := (z(1)
n (b), z(2)

n (b), z(3)
n (b), z(4)

n (b)) if p is even,
(α′n(b), β′n(b), τ ′n(b), µ′n(b)) := (z(3)

n (b), z(4)
n (b), z(1)

n (b), z(2)
n (b)) if p is odd,
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where we have set

z(1)
n (b) := b ln(n/k)

( [nx]− 2
n

− x
)p
, z(2)

n (b) := b ln(n/k)
( [n(x− ε)] + 1

n
− x

)p
,

z(3)
n (b) := b ln(n/k)

( [nx]− 1
n

− x
)p
, z(4)

n (b) := b ln(n/k)
( [n(x− ε)] + 2

n
− x

)p
.

In view of the inequalities (3.14) and (3.15), as well as identities (3.12) and (3.13), we then
deduce that

n1−2hmink2hminun,k,p(dγ)
(ln(n/k))1/p ·

( 1
dγ

)
≤ Γ(1)

n,k(γ, ε) ≤
n1−2hmink2hminvn,k,p(dγ)

(ln(n/k))1/p ·
( 1
dγ

)
, (3.16)

n1−2hmink2hminu′n,k,p(d′γ)
(ln(n/k))1/p ·

( 1
|d′γ |

)
≤ Γ(2)

n,k(γ, ε) ≤
n1−2hmink2hminv′n,k,p(d′γ)

(ln(n/k))1/p ·
( 1
|d′γ |

)
. (3.17)

Here we have used the notation

un,k,p(a) := 1
p

∫ βn(a)

αn(a)
y1/p−1e−y dy, vn,k,p(a) := 1

p

∫ µn(a)

τn(a)
y1/p−1e−y dy,

u′n,k,p(b) := 1
p

∫ β′n(b)

α′n(b)
y1/p−1e−y dy −

(
(−1)pb ln(n/k)

)1/p
ρ

(b)
n,k(ε)

pn
,

v′n,k,p(b) := 1
p

∫ µ′n(b)

τ ′n(b)
y1/p−1e−y dy −

(
(−1)pb ln(n/k)

)1/p
ρ

(b)
n,k(ε)

pn
.

Since Γ(r)
n,k(γ, ε) = Γ(r)

n,k(−γ, ε), (3.16) and (3.17) also provide us with upper and lower bounds
for Γ(r)

n,k(γ, ε). Finally, we obtain the following lower and upper bounds

n1−2hmink2hmin

(ln(n/k))1/p · Λn,k(γ, ε) ≤ ∆n,k(γ, ε) ≤
n1−2hmink2hmin

(ln(n/k))1/p Λ′n,k(γ, ε), (3.18)

n1−2hmink2hmin

(ln(n/k))1/p · Λn,k(−γ, ε) ≤ ∆n,k(γ, ε) ≤
n1−2hmink2hmin

(ln(n/k))1/p Λ′n,k(−γ, ε), (3.19)

where

Λn,k(γ, ε) := 1
dγ
· un,k,p(dγ) + 1

|d′γ |
· u′n,k,p(d′γ),

Λ′n,k(γ, ε) := 1
dγ
· vn,k,p(dγ) + 1

|d′γ |
· v′n,k,p(d′γ).

Denote cp :=
∫+∞

0 y1/p−1e−y dy. Recalling the definition of the constants dγ and d′γ , a straight-
forward computation shows that, for any (k, k′) ∈ {1, 2}2 with k 6= k′:

lim
n→+∞

Λn,k(γ, ε) = lim
n→+∞

Λ′n,k(γ, ε) = cp
p

(1/dγ + 1/|d′γ |), (3.20)

lim
n→+∞

|Λ′n,k′(γ, ε)− Λn,k(−γ, ε)| ≤ C (2|γ|+ |1/d−γ − 1/dγ + 1/|d′−γ | − 1/|d′γ ||) ≤ C|γ|. (3.21)

Starting from (3.18), and using (3.20) and (3.21), we see that there exists a positive integer n0
and C > 0 such that for all n ≥ n0

|∆n,k(γ, ε)|−1 ≤ C (ln(n/k))1/p

n1−2hmink2hmin
. (3.22)
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Finally, inequalities (3.20), (3.21) and (3.22) imply that there exists a positive integer N such
that for all n ≥ N :

Un(γ, ε) ≤ C
(
|γ|+ (lnn)1/p

n2(h(yε)−hmin)

)
.

From the previous inequality, lim
n→+∞

Un(γ, ε) ≤ C|γ| and thus we get lim
γ→0

lim
n→+∞

Un(γ, ε) = 0,
which completes the proof.

Remark 4. In the previous proof (in the case q = 0), using (3.20), one can also see that the
bias related to the convergence of µ(2)

n to 0 is of order 1/ lnn.

3.2 Proof of Theorem 3

In the first step we will find an upper bound for the covariance function of the increments of
Bh. We define

rn(i, j) := cov
(
Bh
i+k
n

−Bh
i
n
, Bh

j+k
n

−Bh
j
n

)
, k = 1, 2.

Recalling the notation at (2.1), we conclude the identity

rn(i, j) = Rh

(
i+ k

n
,
j + k

n

)
−Rh

(
i

n
,
j + k

n

)
−Rh

(
i+ k

n
,
j

n

)
+Rh

(
i

n
,
j

n

)
.

Since h ∈ C2([0, 1]) and the function c defined at (1.2) is a C∞((0, 1))-function, we deduce by
an application of Taylor expansion

|rn(i, j)| ≤ n−2
2∑

l,l′=1
|∂ll′Rh(ψnij)| for |i− j| > 2, (3.23)

where ∂ll′Rh denotes the second order derivative in the direction of xl and xl′ , and ψnij ∈
(i/n, (i+ k)/n)× (j/n, (j + k)/n). Now, we will compute an upper bound for the right side of
(3.23) for i 6= j. First, we observe that

Rh(t, s) = F (t, s) G(t, s, h(t) + h(s)),

where

F (t, s) =
c2
ht,s

ch(t)ch(s)
, G(t, s,H) = 1

2
(
|t|H + |s|H − |t− s|H

)
.

We remark that G(t, s, 2H) is the covariance kernel of the fractional Brownian motion with
Hurst parameter H ∈ (0, 1).

Since h ∈ C2([0, 1]), c ∈ C∞((0, 1)) and cx 6= 0 for x ∈ (0, 1), we conclude that

|∂lF (t, s)|, |∂ll′F (t, s)| ≤ C, l, l′ = 1, 2, (t, s) ∈ [0, 1]2.

We concentrate on the second order derivative ∂11Rh(ψnij); the estimates for the other second
order derivatives are obtained similarly. We have that

∂11Rh(t, s) = ∂11F (t, s) ·G(t, s, h(t) + h(s))

+ 2∂1F (t, s)
[
∂1G(t, s, h(t) + h(s)) + h′(t) · ∂3G(t, s, h(t) + h(s))

]
+ F (t, s)

[
∂11G(t, s, h(t) + h(s)) + 2h′(t) · ∂13G(t, s, h(t) + h(s))

)
.

+ h′′(t) · ∂3G(t, s, h(t) + h(s)) + (h′(t))2 · ∂33G(t, s, h(t) + h(s)))
]
.
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For the derivatives of the function G, we deduce the following estimates

|∂1G(t, s, h(t) + h(s))| ≤ C
(
th(t)+h(s)−1 + |t− s|h(t)+h(s)−1

)
,

|∂3G(t, s, h(t) + h(s))| ≤ C
(
− ln t · th(t)+h(s) − ln s · sh(t)+h(s) − ln |t− s| · |t− s|h(t)+h(s)

)
|∂11G(t, s, h(t) + h(s))| ≤ C

(
th(t)+h(s)−2 + |t− s|h(t)+h(s)−2

)
|∂13G(t, s, h(t) + h(s))| ≤ C

(
(1− ln t) th(t)+h(s)−1 + (1− ln |t− s|)|t− s|h(t)+h(s)−1

)
|∂33G(t, s, h(t) + h(s))| ≤ C

(
ln2 t · th(t)+h(s) + ln2 s · sh(t)+h(s) + ln2 |t− s| · |t− s|h(t)+h(s)

)
,

which hold for t, s ∈ (0, 1] with t 6= s and the third inequality holds whenever h(t) + h(s) 6= 1
(if h(t) +h(s) = 0 we simply have ∂11G(t, s, h(t) +h(s)) = 0). Similar formulas and bounds are
obtained for other second order derivatives of Rh. Using the boundedness of functions F , h and
its derivatives, together with the above estimates and (3.23) we obtain the inequality

|rn(i, j)| ≤ Cn−h(i/n)−h(j/n)
(
ih(i/n)+h(j/n)−2 + jh(i/n)+h(j/n)−2

+|i− j|h(i/n)+h(j/n)−2
)

(3.24)

≤ Cn−2hmin
(
i2hmin−2 + j2hmin−2 + |i− j|2hmin−2

)
, i, j ≥ 1, |i− j| > 2.

When |i− j| ≤ 2 we deduce from [BS10, Lemma 1 p.13] that

|rn(i, j)| ≤ var
(
Bh
i+k
n

−Bh
i
n

)
+ var

(
Bh
j+k
n

−Bh
j
n

)
≤ Cn−2hmin . (3.25)

We recall the identity cov(Z2
1 , Z

2
2 ) = 2cov(Z1, Z2)2 for a Gaussian vector (Z1, Z2). By (3.24)

and (3.25) we immediately conclude that

var(V (Bh; k)n) ≤ Cn−4hmin+1
n∑
i=1

i4hmin−4 ≤ C


n−4hmin+1 hmin ∈ (0, 3/4)
lnn · n−2 hmin = 3/4
n−2 hmin ∈ (3/4, 1)

(3.26)

In view of Proposition 2 it is sufficient to show that

V (Bh; k)n)
E[V (Bh; k)n]

a.s.−→ 1, k = 1, 2, (3.27)

to prove Theorem 3. We assume again without loss of generality that q = 0, m = 1 and
Mh = h−1{hmin} = {x}. Using the notations from the previous subsection together with the
inequalities (3.16) and (3.17), we deduce the following lower bound, for n large enough and for
ε small enough:

E[V (Bh; k)n] ≥ Γ(1)
n,k(γ, ε) + Γ(2)

n,k(γ, ε) ≥ Cε
n1−2hmin

(lnn)1/p . (3.28)

Now, observe that the random variable

Rn(k) = V (Bh; k)n)
E[V (Bh; k)n] − 1 = E[V (Bh; k)n]−1

(
V (Bh; k)n)− E[V (Bh; k)n]

)
15



is an element of the second order Wiener chaos. Thus, for any q ≥ 2 there exists a constant Cq
such that

E[|Rn(k)|q]1/q ≤ CqE[|Rn(k)|2]1/2, (3.29)

which is due to the hypercontractivity property on a Wiener chaos of a fixed order (see e.g.
[NP12, Theorem 2.7.2]). The inequalities (3.26) and (3.28) imply the existence of a constant
r > 0 with E[|Rn(k)|2]1/2 ≤ Cn−r. We conclude that

E[|Rn(k)|q] ≤ Cqn−rq.

Choosing q sufficiently large to ensure that qr > 1, we deduce that Rn(k) a.s.−→ 0 by Borel-Cantelli
lemma. This completes the proof of Theorem 3.

3.3 Proof of Theorem 4

We use the following decomposition:

V (Bh; k)n =
∑

i: i/n∈
q⋃
j=1

[aj ,bj ]

(
Bh
i+k
n

−Bh
i
n

)2
+

∑
i: i/n∈[0,1]\

q⋃
j=1

[aj ,bj ]

(
Bh
i+k
n

−Bh
i
n

)2

=: V1(Bh; k)n + V2(Bh; k)n,

En1 (k) := E[V1(Bh; k)n], En2 (k) := E[V2(Bh; k)n].

We recall that h(x) = hmin for all x ∈
q⋃
j=1

[aj , bj ]. Applying classical results for fractional

Brownian motion with Hurst parameter hmin ∈ (0, 3/4) (see e.g. [IL97]) we obtain the central
limit theorem

n−1/2+2hmin
(
V1(Bh; k)n − En1 (k)

)
k=1,2

d−→ N2(0,Σ),

where the matrix Σ ∈ R2×2 is defined in Theorem 4. We introduce the sets D(ε) := {x ∈
[0, 1] : h(x) ∈ [hmin, hmin + ε]} \

q⋃
j=1

[aj , bj ] and D′(ε) := {x ∈ [0, 1] : h(x) > hmin + ε} for ε > 0.

Due to condition (2.3) we have that

Leb(D(ε))→ 0 as ε→ 0.

Observe the decomposition

V2(Bh; k)n =
∑

i: i/n∈D(ε)

(
Bh
i+k
n

−Bh
i
n

)2
+

∑
i: i/n∈D′(ε)

(
Bh
i+k
n

−Bh
i
n

)2
.

Now, we use the fact that supt∈[0,1] h(t) < 3/4 and inequality (3.26) to conclude the upper
bound

var
(
n−1/2+2hminV2(Bh; k)n

)
≤ C

(
Dn(ε) + n−2ε

)
where we have set Dn(ε) := n−1Card{i ∈ J0, n − kK : i/n ∈ D(ε)}. Since limn→+∞Dn(ε) =
Leb(D(ε)), for any ε > 0, we deduce that n−1/2+2hmin

(
V2(Bh; k)n − En2 (k)

)
k=1,2

P−→ 0, which
completes the proof of Theorem 4.

16



References
[ACLV00] A. Ayache, S. Cohen, and J. Lévy Véhel. The covariance structure of multifractional Brownian

motion, with application to long range dependence (extended version). ICASSP, Refereed
Conference Contribution, 2000.

[BDM10] B. Boufoussi, M. Dozzi, and R. Marty. Local time and Tanaka formula for a Volterra-type
multifractional Gaussian process. Bernoulli, 16(4):1294–1311, 2010.

[BELV12] Olivier Barrière, Antoine Echelard, and Jacques Lévy Véhel. Self-regulating processes. Elec-
tron. J. Probab., 17:no. 103, 30, 2012.

[BJR97] A. Benassi, S. Jaffard, and D. Roux. Elliptic Gaussian random processes. Rev. Mat. Iberoamer-
icana, 13(1):19–90, 1997.

[BM83] P. Breuer and P. Major. Central limit theorems for nonlinear functionals of gaussian fields.
J. Multivariate Anal., 13(3):425–441, 1983.

[BS10] J.-M. Bardet and D. Surgailis. Nonparametric estimation of the local Hurst function of
multifractional Gaussian processes. Preprint <hal-00526294v1>, available at http: // hal.
archives-ouvertes. fr/ docs/ 00/ 52/ 62/ 94/ PDF/ Bardet_ Surgailis_ mbm10. pdf , 123,
2010.

[BS13] Jean-Marc Bardet and Donatas Surgailis. Nonparametric estimation of the local Hurst func-
tion of multifractional Gaussian processes. Stochastic Process. Appl., 123(3):1004–1045, 2013.

[GL89] X. Guyon and J. Leon. Convergence en loi h-variations d’un processes gaussien stationnaire.
Ann. I.H.P., 25:265–282, 1989.

[IL97] J. Istas and G. Lang. Quadratic variations and estimation of the local hölder index of a
gaussian process. Ann. I.H.P., 33(407-436), 1997.

[LLVH14] J. Lebovits, J. Lévy Véhel, and E. Herbin. Stochastic integration with respect to multifrac-
tional Brownian motion via tangent fractional Brownian motions. Stochastic Process. Appl.,
124(1):678–708, 2014.

[Mis08] Y.S. Mishura. Stochastic calculus for fractional Brownian motion and related processes, vol-
ume 1929 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2008.

[MVN68] B. Mandelbrot and J.W. Van Ness. Fractional Brownian motions, fractional noises and ap-
plications. SIAM Rev., 10:422–437, 1968.

[Nou12] Ivan Nourdin. Selected aspects of fractional Brownian motion, volume 4 of Bocconi & Springer
Series. Springer, Milan; Bocconi University Press, Milan, 2012.

[NP12] I. Nourdin and G. Peccati. Normal approximations with Malliavin calculus. From Stein’s
method to universality. Cambridge University Press, 2012.

[Nua06] D. Nualart. The Malliavin Calculus and Related Topics. Springer, 2006.

[PLV95] R. Peltier and J. Lévy Véhel. Multifractional Brownian motion: definition and preliminary
results, 1995. rapport de recherche de l’INRIA, n0 2645.

[ST94] G. Samorodnitsky and M.S. Taqqu. Stable Non-Gaussian Random Processes, Stochastic Mod-
els with Infinite Variance. Chapmann and Hall/C.R.C, 1994.

[ST06] S. Stoev and M. Taqqu. How rich is the class of multifractional Brownian motions? Stochastic
Processes and their Applications, 116:200–221, 2006.

[Taq79] M. Taqqu. Convergence of integrated processes of arbitrary hermite rank. Z. Wahrsch. Verw.
Gebiete, 50(1):53–83, 1979.

17

http://hal.archives-ouvertes.fr/docs/00/52/62/94/PDF/Bardet_Surgailis_mbm10.pdf
http://hal.archives-ouvertes.fr/docs/00/52/62/94/PDF/Bardet_Surgailis_mbm10.pdf


Research Papers 
2016 

 
 

 

 

 

2016-16: Martin M. Andreasen and Kasper Jørgensen: Explaining Asset Prices with Low 
Risk Aversion and Low Intertemporal Substitution 

2016-17: Robinson Kruse, Christian Leschinski and Michael Will: Comparing Predictive 
Accuracy under Long Memory - With an Application to Volatility Forecasting 

2016-18: Søren Johansen and Bent Nielsen: Tightness of M-estimators for multiple 
linear regression in time series 

2016-19: Tim Bollerslev, Jia Li and Yuan Xue: Volume, Volatility and Public News 
Announcements 

2016-20: Andrea Barletta, Paolo Santucci de Magistris and Francesco Violante: 
Retrieving Risk-Neutral Densities Embedded in VIX Options: a Non-Structural 
Approach 

2016-21: Mikkel Bennedsen: Semiparametric inference on the fractal index of Gaussian 
and conditionally Gaussian time series data 

2016-22: Søren Johansen and Morten Ørregaard Nielsen: The cointegrated vector 
autoregressive model with general deterministic terms 

2016-23: Yunus Emre Ergemen and Carlos Vladimir Rodríguez-Caballero: A Dynamic 
Multi-Level Factor Model with Long-Range Dependence 

2016-24: Shin Kanaya: Convergence rates of sums of α-mixing triangular arrays: with 
an application to non-parametric drift function 

2016-25: Gustavo Fruet Dias, Marcelo Fernandes and Cristina M. Scherrer: Improving 
on daily measures of price discovery 

2016-26: Martin M. Andreasen, Tom Engsted, Stig V. Møller and Magnus Sander: Bond 
Market Asymmetries across Recessions and Expansions: New Evidence on Risk 
Premia 

2016-27: Kim Christensen, Ulrich Hounyo and Mark Podolskij: Testing for 
heteroscedasticity in jumpy and noisy high-frequency data: A resampling 
approach 

2016-28: Kim Christensen, Roel Oomen and Roberto Renò: The Drift Burst Hypothesis  

2016-29: Hossein Asgharian, Charlotte Christiansen, Rangan Gupta and Ai Jun Hou: 
Effects of Economic Policy Uncertainty Shocks on the Long-Run US-UK Stock 
Market Correlation 

2016-30: Morten Ørregaard Nielsen and Sergei S. Shibaev: Forecasting daily political 
opinion polls using the fractionally cointegrated VAR model 

2016-31: Carlos Vladimir Rodríguez-Caballero: Panel Data with Cross-Sectional 
Dependence Characterized by a Multi-Level Factor Structure 

2016-32: Lasse Bork, Stig V. Møller and Thomas Q. Pedersen: A New Index of Housing 
Sentiment 

2016-33: Joachim Lebovits and Mark Podolskij: Estimation of the global regularity of a 
multifractional Brownian motion 

 


	Introduction
	Background and main results
	Basic properties and local estimation of the functional parameter h
	Estimation of the global regularity parameter hmin

	Proofs
	Proof of Proposition 2
	Convergence of (2)n in the case q1
	Convergence of (2)n in the case q= 0

	Proof of Theorem 3 
	Proof of Theorem 4


