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Abstract

A panel data model with a multi-level cross-sectional dependence is pro-
posed. The factor structure is driven by top-level common factors as well as
non-pervasive factors. I propose a simple method to filter out the full factor
structure that overcomes limitations in standard procedures which may mix
up both levels of unobservable factors and may hamper the identification of
the model. The model covers both stationary and non-stationary cases and
takes into account other relevant features that make the model well suited to
the analysis of many types of time series frequently addressed in macroeco-
nomics and finance. The model makes it possible to examine the time series
and cross-sectional dynamics of variables allowing for a rich fractional coin-
tegration analysis. A Monte Carlo simulation is conducted to examine the
finite sample features of the suggested procedure. Findings indicate that the
methodology proposed works well in a wide variety of data generation pro-
cesses and has much lower biases than the alternative estimation methods
either in the I(0) or I(d) cases.
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1 Introduction

Panel data models are used in economics and finance to analyze complex systems
and phenomena that control for individual heterogeneity, allow for cross-sectional
dependence, and identify and estimate effects that are not detectable in pure cross
section or time series frameworks. Recent studies have focused on testing non-
stationarity in presence of cross-sectionally correlated errors. Phillips and Sul
(2003) and Moon and Perron (2004) allow for different factor structures to test
for unit roots in panels but the cross-sectional dependence is considered only as a
nuisance. In contrast, the ’Panel Analysis of Nonstationarity in Idiosyncratic and
Common components’ (PANIC) approach proposed by Bai and Ng (2004) consid-
ers such dependence as an object of interest and makes the framework very suitable
to study unit roots, common trends, and common cycles in large dimensional pan-
els.

The presence of cross-sectional dependence can noticeably complicate sta-
tistical inference in a panel data model. In cases of ’full’ dependence among cross-
sectional units, or denoted as ’strong dependence’ by Pesaran and Tosetti (2011),
estimators that ignore such a dependence could be inconsistent no matter how large
the cross section dimension N is for finite time dimension T , see e.g. Hsiao and
Tahmiscioglu (2008), Phillips and Sul (2007). There has been an increasing in-
terest in dealing with cross-sectionally correlated errors in panel data sets. It is
well-known that when the cross section dimension (N) is small and the time series
dimension (T ) is large, the standard approach of treating the model as a system of
seemingly unrelated regression equations (SURE) and then estimate this system as
generalized least squares (GLS) may be applicable. However, in macroeconomics
and finance, panel data sets are generally presented in the form of a large cross-
sectional dimension and with errors that are typically correlated with the regressors
making the basic approach inappropriate.

Based on factor models that have been extensively studied in recent years
from works of Bai (2003) and Bai and Ng (2002), the use of factor-augmented re-
gressions has recently become very popular in the literature. The main idea is that
cross-sectional dependence in panel data sets is driven by a small number of unob-
servable common factors that can be included as additional regressors. A common
approach to deal with this unobservable structure in a panel data model is to use
estimates of the factors to augment the model. Pesaran (2006) proposes to use
cross-sectional averages of the observables as good proxies for the unobservable
common factors. He refers to these estimators as the Common Correlated Effects
(CCE). In contrast, Bai (2009) suggests to estimate the factor structure with princi-
pal components analysis (PCA). Westerlund and Urbain (2015) formally compare
both of these approaches.

In contrast with the PCA approach, CCE methods do not require a prior
knowledge of the number of unobserved common factors. This makes the esti-
mation procedure simpler than the PCA. For this reason, the CCE approach has
gained attention in the literature in recent years. Pesaran and Tosetti (2011) study
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asymptotic properties of the CCE estimates when disturbances are generated by a
spatial process. Kapetanios et al. (2011) and Ergemen and Velasco (2015) study
the performance of CCE estimators when I(1) and I(d) processes, respectively, are
considered in the common factors. Furthermore, Harding and Lamarche (2011)
and Ergemen (2016) introduce endogeneity between the observable variables.

The baseline framework in this paper is a panel data model which can be
divided in R blocks whose full cross-sectional dependence is characterized by two
orthogonal levels, see e.g. Wang (2010), Choi et al. (2016), and Breitung and Eick-
meier (2016). In the first (top) level, I define pervasive factors that drive the cross-
sectional dependence between blocks, while in the second (sub) level, I define the
block-specific factors that drive the cross-sectional dependence within-blocks. I
follow ideas embodied by Pesaran (2006) to get CCE estimators but with a sim-
ple extended procedure that is executed in two separate steps. In the first step,
the cross-sectional averages within-blocks are used to proxy the sub-level cross-
sectional dependence. Then, after filtering out the block-specific factors from the
panel, the cross-sectional averages between-blocks are used to project out the top-
level factor from the specification. CCE estimators, under slope heterogeneity or
homogeneity assumptions, are then obtained as discussed in Pesaran (2006).

In this paper, I also cover the case with long-range dependence extending
the results of a couple of very recent proposals. First, I extend the results pro-
vided by Ergemen and Velasco (2015) who do not consider more than one block
and do not allow a multi-level factor structure. Second, the approach of Ergemen
and Rodríguez-Caballero (2016) is extended by adding explanatory variables in the
model. The fractionally integrated model proposed in this paper allows to exhibit
long-range dependence without restrictions on both levels of unobservable com-
mon factors being either stationary or nonstationary processes as in Ergemen and
Rodríguez-Caballero (2016). Then, the model does not restrict the common factors
to the I(1) case as Kapetanios et al. (2011). Furthermore, innovations of regressors
and regressand are allowed to be fractionally integrated. Thereby, the model can
be useful for a wide range of empirical applications where the variables exhibit
long-range dependence on non-integer orders. To estimate the model, I follow the
ideas mentioned before to filter out the full factor structure but using (fractionally)
differenced cross-sectional averages as proposed by Ergemen and Velasco (2015).
Then, estimation of the residual memory parameters of the model is based on a
conditional-sum-of-square (CSS) criterion function of the residuals.

The framework studied in this paper differs from Pesaran (2006) since I
assume that cross-sectional dependence is driven by a multi-level factor structure
that is characterized by unobservable pervasive top-level common factors as well
as unobservable block-specific factors which characterize the between- and within-
block cross-sectional dependence in the data. Even though the model makes use
of multi-level factor structures, it differs from some dynamic multi-level factors
models, such as Wang (2010), Diebold et al. (2008), Kose et al. (2008), and Choi
et al. (2016), in the sense that I use them merely to control for the cross-sectional
dependence. Moreover, dynamic factor models do not consider the presence of
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explanatory variables.
The study of panel data models in blocks with a factor structure has not been

considered until very recently. On the one hand, Ando and Bai (2016b) consider
a grouped panel data model in which cross-section units are divided into several
groups with its own factor structure which is different in nature to the factor struc-
ture proposed in this paper in the sense that they do not consider a pervasive fac-
tor between different groups. On the other hand, Ando and Bai (2016a) propose
a model where cross-section units are classified by clustering techniques in un-
known grouped factors whose structure is closely similar to that proposed in this
paper. Both proposals do not focus on the CCE method of Pesaran (2006) and
consider only the I(0) case in contrast to the present paper which also allows for
long-range dependence.

The framework of this paper can be applied whenever a panel of data can be
organized into blocks. These blocks can be formed naturally for instance by divid-
ing the panel data sets by some economic sectors or countries as in many macroeco-
nomic studies, or by using some prior information or by implementing multivariate
statistical procedures as clustering or recursive partitioning, see e.g. Bonhomme
and Manresa (2015). The block factor structure approach would provide an easy
way to allow for cross-sectional covariations that are not sufficiently pervasive to
be treated as common factors in contrast with standard procedures. A large num-
ber of papers have applied multi-level factor models to study government bond
yield data (Diebold et al. (2008)), international business cycle comovements (Kose
et al. (2003)), and national and regional factors in housing construction (Stock and
Watson (2009b)).

The paper is organized as follows. The next section introduces the model
and the factor structure that characterizes the cross-sectional dependence in the
panel for the I(0) case and the necessary model assumptions are discussed. Section
3 explains the modeling strategy to control the cross-sectional dependence. Section
4 presents the estimation procedure and the respective asymptotic analysis. Section
5 details the model with long-range dependence, the filtering method as well as the
estimation procedure and the asymptotic theory. Section 6 briefly discusses some
extensions. Section 7 presents the finite-sample properties of both models based
on an extensive Monte Carlo designs, and finally, Section 8 concludes the paper.

Throughout the paper, M stands for a finite positive constant,
‖A‖ = (trace(A′A))1/2 for a matrix A, A− denotes the generalized inverse for
a matrix A, rk(A) denotes the rank of A, (N,T )j denotes the joint cross-section
and time series asymptotics, →q.m. denotes convergence in quadratic mean, →p

denotes convergence in probability, and →d denotes convergence in distribution.
All mathematical proofs are presented in the appendix.
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2 The model

Consider a panel data model composed by R blocks of data. Such blocks are fre-
quently referred to as regions in the literature. A multi-level factor structure drives
the cross-sectional dependence in the model and is characterized by pervasive top-
level factors affecting all the blocks in the panel and block-specific factors that
affect only a specific block of the panel. Such factors are also denominated as
global and regional factors in the literature.

Let yr,it be the observation on the ith cross section unit at time t in the block
r for i = 1, . . . , N , t = 1, . . . , T , r = 1, . . . , R, and suppose that it is generated
according to the following linear heterogeneous panel data model

yr,it = α′r,idr,t + β′r,ixr,it + er,it,

er,it = µ′r,iGt + λ′r,iFr,t + εr,it,
(1)

where dr,t is aR ·N×1 vector of observed common effects (including determinis-
tics such as intercepts, trends, or seasonal dummies) in the block r, xr,it is a k × 1
vector of observed individual-specific regressors on the ith cross section unit at time
t in the block r, Gt is the rG × 1 vector of unobserved top-level common effects
or global factors, Fr,t is the rF × 1 vector of unobserved block-specific common
effects or regional factors, and εr,it are the individual-specific idiosyncratic errors
that are independent of Gt, Fr,t, and Xr,it. I assume the number of blocks, R,
to be fixed because it is more reasonable for practical purposes and is much more
tractable for an asymptotic analysis. It is possible to consider that the number of
cross section units vary among blocks at the cost of complicating notation. So it is
assumed that the cross section dimension of the panel is R×N . R could be much
more smaller than N in empirical applications, however it is not required to have a
specific rate between them.

If the multi-level factor structure given by Gt and Fr,t is also independent
of xr,it, (1) is a simple panel data regression model with exogenous regressors and
can be estimated consistently and efficiently using GLS based on the multi-level
factor structure. However, in general, the unobserved pervasive and block-specific
factors can be correlated with (dr,t,xr,it), then consistency will be lost.

To allow for this possibility, I adopt the following specification for the indi-
vidual specific regressors

xr,it = A′r,idr,t +M ′r,iGt + Λ′r,iFr,t + vr,it, (2)

where Ar,i,Mr,i, and Λr,i are N × k, rG × k, and rf × k matrices with fixed
components in the specific block r, vr,it are the specific components of xr,it dis-
tributed independently of the factor structure and across i and r. In this section, it
is assumed that all innovations are stationary, however, more general processes can
be allowed in xr,it and yr,it by including long memory, unit roots or deterministic
trends in dr,t or in the multi-level factor structure. I discuss these cases in the fol-
lowing sections. In this section, I only focus on the case where dr,t, Gt, and Fr,t
are covariance stationary.
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Following the literature on multi-level factor models, see e.g. Wang (2010),Choi
et al. (2016), and Breitung and Eickmeier (2016), the factor structure incorporated
in models (1) and (2) imposes a block of zero restrictions on the associated matrix
of factor loadings so that the factor structure on the model can be represented in
vector form as e1,·t

...
eR,·t

 =


µ1 λ1 0 · · · 0
µ2 0 λ2 · · · 0
...

. . .
...

µR 0 0 · · · λR




Gt
F1,t

...
FR,t

 +

 ε1,·t
...

εR,·t

 ,

or more compactly as
et = Γ∗ Φ∗t + εt, (3)

where Φ∗t =
(
G′t, F

′
1,t, . . . , F

′
R,t

)′
. Then, the factor structure considered in this

paper is the sum of a pervasive common component, a non-pervasive common
component, and an idiosyncratic component. Common components of the block
r are driven by the respective rG and rF vectors of common factors, which are
loaded with possibly different coefficients and lags in the case of a dynamic setup.

The intuition behind this factor structure is that the top-level factor compo-
nent would capture common movements between blocks of data whilst the block-
specific component would capture only common movements within the specific
block. This framework differs from standard factor structures in two ways; first,
in the block of zero restrictions in Γ∗ defined in (3), and second, in the number of
factors that grows with the number of blocks contrary to standard factor models
where the number of factors is always fixed. Generally, when adding new series
by considering new block of data in 3, the factor space will be expanded since new
blocks of data would bring new block-specific shocks into the system. However,
since the number of blocks at R is fixed, the number of factors is also fixed, which
is necessary to achieve asymptotic results.

The importance of this kind of factor structure arises naturally in many dif-
ferent applications. For example when analyzing international business cycles, a
multi-level factor model could be used to separate the country-specific comove-
ments from the world-wide comovements.

Combining (1) and (2) the model can be re-written for the specific block r
as

zr,it︸︷︷︸
(k+1)×1

= B′r,i︸︷︷︸
(k+1)×N

dr,t︸︷︷︸
N×1

+ C′r,i︸︷︷︸
(k+1)×rG

Gt︸︷︷︸
rG×1

+ D′r,i︸︷︷︸
(k+1)×rFr

Fr,t︸︷︷︸
rFr×1

+ ur,it︸︷︷︸
(k+1)×1

, (4)
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where

zr,it =

(
yr,it
xr,it

)
, Br,i = (αr,i Ar,i)

(
1 0
βr,i Ik

)
,

Cr,i = (µr,i Mr,i)

(
1 0
βr,i Ik

)
, Dr,i = (λr,i Λr,i)

(
1 0
βr,i Ik

)
,

ur,it =

(
εr,it + β′r,i vr,it

vr,it

)
,

Ik is an identity matrix of order k, and the rank of matrices Cr,i and Dr,i are
determined by the rank of the rG × (k + 1) and rFr × (k + 1) matrices of the
unobserved top-level and block-specific factor loadings, respectively. However, in
a general way, the rank of the multi-level factor structure is determined by rk(Γ∗)
which is rG +

∑R
r=1 rFr , i.e., the number of pervasive factors plus the sum of the

number of block-specific factors in each region r.
This setup is similar to that proposed in Pesaran (2006) and Bai (2009) but

I extent the analysis to large panels, which can be composed of several blocks of
data. In this sense, I consider cross-sectional dependence in the panel not only
to be due to unobservable common factors that affect to all cross section units at
the same time, but also by some block-specific factors that drive a cross-sectional
dependence only in that specific block without affecting the remaining blocks.
Hence, as special cases, the model simplifies to that proposed by Pesaran (2006)
and Bai (2009): i) When there is only one block (R = 1), i.e. only one coun-
try or only one economic sector. ii) When there are no block-specific factors, i.e.
when

∑R
r=1 rFr = 0. In these cases, a pervasive top-level common factor would

completely drive the cross-sectional dependence in the panel even if the panel data
is composed by blocks of data. Naturally, the present framework also renders a
variety of panel data models as special cases as discussed in Pesaran (2006).

The main interest lies more on the estimation of βr,i than the estimation of
the common component specified by (3) as in the case of Bai (2009) and Green-
away McGrevy et al. (2012). With M denoting a generic positive constant to indi-
cate finiteness, the assumptions of the model are as follows:

Assumption A. Observed Common Effects:
TheR ·N×1 vector of observed common effects dr,t is covariance stationary with
absolute summable autocovariances, distributed independently of the individual-
specific errors εr,it and vr,it. Each dr is orthogonal to G.

Assumption B. Unobserved Common Factors:

B1 Block-specific factors Fr,t are covariance stationary such that
E||Fr,t||4 ≤ M < ∞ with T−1

∑T
t=1 Fr,tF

′
r,t

p→ ΣFr for some rF × rF
positive definite matrix ΣFr ∀r = 1, . . . , R.
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B2 The pervasive top-level factor Gt is covariance stationary such that
E||Gt||4 ≤M <∞with T−1

∑T
t=1GtG

′
t
p→ ΣG for some rG×rG positive

definite matrix ΣG.

B3 Define Ht =
[
G
′
t, F

′
r,t

]′
. For a fixed r, assume that T−1

∑T
t=1HtH

′

t
p→
∑
H

for some positive-definite matrix
∑

H with rank rG + r1 + · · ·+ rR.

B4 Factors have zero mean, and
∑T

t=1GtF
′
r,t = 0 for r = 1, . . . , R.

Assumption C. Individual-Specific Errors:

C1 The idiosyncratic shocks, εr,it, r = 1, . . . , R, i = 1, . . . , N , t = 1 . . . , T ,
are independently across r, i, and t with zero mean and variance σ2

i , and
have a finite fourth-moment.

C2 The idiosyncratic shocks, vr,it, r = 1, . . . , R, i = 1, . . . , N , t = 1 . . . , T ,
are independently across r, i, and t with zero mean and variance Σi > 0,
and supr,itE||vr,it||4 <∞.

C3 Furthermore, εr,it as well as vr,jt′ are distributed independently for all r, i, j, t,
and t′. For each r and i, εr,it and vr,it could follow linear stationary pro-
cesses with absolute summable autocovariances.

Assumption D. Factor loadings:
The unobserved factor loadings λr,i, µr,i, Λr,i, and Mr,i are independently and
identically distributed across r, i, and of the individual specific errors εr,it and vr,jt,
the common observable factors dr,t and the unobserved common factors (Gr, Fr,t)
for all r, i, j, and t with fixed means λ, µ, Λ, and M , and finite variances. In
particular,

D1 λr,i is either deterministic such that ||λr,i|| ≤ M < ∞, or it is stochastic
such that E||λr,i||4 ≤ M < ∞. In the latter case, N−1

r Λ
′
rΛr

p→ ΣΛr > 0
for an rF × rF non-random matrix ΣΛr for all r = 1, . . . , R with a generic
positive constant M.

D2 µr,i is either deterministic such that ||µr,i|| ≤ M , or it is stochastic such
that E||µr,i||4 ≤ M < ∞ with N−1

r µ
′
rµr

p→ Σµr > 0 for an rG × rG
non-random matrix Σµr for all r = 1, . . . , R.

Assumption E. Random Slope Coefficients:
The slope coefficients βr,i follow the random coefficient model

βr,i = β + νr,i ∼ IID (0,Ωv) , for i = 1, 2, . . . , N and r = 1, 2, . . . , R,

where ||β|| < K, ||Ωv|| < K, Ωv is k×k symmetric nonnegative definite matrix,
and the random deviations vr,i are distributed independently of λr,j , µr,j , Λr,j ,
Mr,j , εr,jt, νr,jt, dr,t, Fr,t, and Gt for all r, i, j, and t.
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Assumption F. Identification of βr,i :
Identification of the slope coefficients are given by a two-step procedure of cross-
sectional averages. In the first step, consider the cross-sectional averages of the
individual-specific variables zr,it in each one of R blocks separately. Define by
z̄r,it = 1

N

∑N
j=1 zr,jt, and let

Wr = IT −Hr

(
H
′
rHr

)−
H
′
r, (5)

and

WFr = IT − Fr
(
F′rFr

)− F′r, (6)

where Hr =
(
Dr,Zr

)
, with Dr = (dr,1, . . . ,dr,T )′ a T ×N matrix on observed

common factors, and Zr = (zr,1, . . . , zr,T )′ is the T × (k + 1) matrix of time
observations on the cross-sectional averages for each region r and Fr = (Dr, Fr)
where Fr = (Fr,1, Fr,2, . . . , Fr,t)

′ is T × rFr data matrices on unobserved block-
specific factors, respectively.

For the second step,

Z∗︸︷︷︸
(k+1)·R·N×T

= [ (Z1︸︷︷︸
(k+1)·N×T

W1︸︷︷︸
T×T

)′,
(
Z2W2

)′
, . . . ,

(
ZRWR

)′ ]′ (7)

and consider the cross-sectional average of the complete panel and let

W
∗

= IT −H
∗
(
H
∗′
H
∗
)−

H
∗′
, (8)

WG = IT −G
(
G
′
G
)−

G
′
, (9)

whereH∗ = Z∗, with Z∗ = (z∗1, . . . , z
∗
T )′ is the T ×(k+1) matrix of observations

on the cross-sectional averages. To simplify notation, I denote Wr,tG
′
t as G∗t , then

G∗ = (G∗1,G
∗
2, . . . ,G

∗
T )′ is T × rG data matrix on unobserved top-level factors.

F1 Identification of βr,i:

The k × k matrix Ψ̂r,iT =

(
X∗
′
r,iW

∗
X∗r,i

T

)
and Ψ̂r,iG =

(
X∗
′
r,iWGX

∗
r,i

T

)
are

nonsingular, and Ψ̂r,iT Ψ̂r,iG have finite second-order moments for all r and
i.

Most of the assumptions are based on those provided by Pesaran (2006)
and Wang (2010). Assumption A describes the structure of the observed common
factors. Different observed common effects, dr,t, are allowed for each block r
in (4) making this approach suitable to consider some specific characteristics for
each block involved in the system. Although it is possible to include deterministic
trends in dr,t, appropriate scaling should need to be considered in the variables,
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see Pesaran (2006). For the sake of simplicity, global observed factors are not
considered, however these can be included in some empirical studies.

The AssumptionsB1-B2 describe the structure of the unobservable common
factors Fr,t andGt defined earlier and impose standard moment conditions. At this
point, I follow Wang (2010) and Choi et al. (2016) to impose an I(0) stationarity
assumption in both levels of unobservable common factors. I will relax this re-
strictive assumption in Section (5) by allowing for I(d) processes in Fr,t and Gt
following ideas proposed in Ergemen and Rodríguez-Caballero (2016). The rank
condition in Assumption B3 implies that different factors are not perfectly corre-
lated. AssumptionB4 rules out any possibility of correlation between the pervasive
and block-specific factors meaning that factors at different levels among blocks do
not contain information of each other. Note that the usual normalization conditions
to identify such factors are discarded because we do not need to estimate them.
Identification conditions following assumptions in Bai (2003), extended by Wang
(2010) and Choi et al. (2016) for the multi-level case, can be considered in the
framework discussed in Bai (2009). This possibility deviates too much from the
main target of this paper and is left for future research.

The usual structure for the individual-specific errors is provided in Assump-
tion C. AssumptionD1 ensures that each block-specific factor Fr,jt has a nontrivial
contribution to the variance of yr,t, j = 1, . . . , rF whereas AssumptionD2 ensures
that Gm,t has nontrivial contribution to the variance of yt, m = 1, . . . , r. The
latter means that Gt pervades all variables whereas Fr,jt only act as an impact
within region r. Assumption D indicates that factor loadings are independent to
each other. Westerlund and Urbain (2013) show inconsistency in the pool version
of CCE when the factor loadings are correlated.

Assumption E is also standard and extends Assumption 4 in Pesaran (2006)
only by including blocks. It is worth mentioning that Assumption E can be easily
relaxed allowing for βr,i = βr + νr,i ∼ IID (0,Ωv) implying that the slope β can
freely vary among regions but being the same within the specific block r.

Assumption F details the identification strategy of the slope coefficients.
Identification is carried out by an extension of the methodology discussed in Pe-
saran (2006). I detail the strategy in the next section. I consider simple averages
to simplify the exposition, nevertheless cross-section weighted averages satisfying
some regular granularity conditions can be considered instead, see e.g. Bailey et al.
(2015), and Chudik and Pesaran (2015).

3 Strategy to control the impact of the cross-sectional multi-
level dependence

Pesaran (2006) suggests the Common Correlated Effects (CCE) estimation proce-
dure that consists of filtering out the cross-sectional dependence in

yit = x′itβ + b′ift + uit, (10)
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by using the cross section averages of yit and xit as suitable proxies for the unob-
served factors leading to

b̄′ft ≈ ȳt − x̄′tβ.

This means that β can be consistently estimated by augmenting the pooled regres-
sion of yit on xit and their cross section averages.

The main difference between the proposed setup in this paper and that of
Pesaran (2006) relies on the factor structure suggested in this paper in (3) in con-
trast to the standard in the literature as in (10). Pesaran’s CCE approach may not
be enough to filter out the full factor space and the consistency of conventional es-
timators can be affected since the extent of cross-sectional dependence may still be
correlated with the regressors. To see why, consider applying Pesaran’s CCE ap-
proach for the full panel z in (4). Intuitively z̄ could proxy the top-level factor Gt
or a type of mixing-factor structure but it would not be able to filter out the block-
specific cross section dependence introduced by Fr,t, which would still affect the
estimation of βr,i. Therefore, a simple cross-sectional average of z may not be
a good proxy for the cross-sectional dependence under the setup proposed in this
paper. Alternatively, another strategy could be to use only the block-specific cross-
sectional averages separately, i.e. block-by-block averages. However, since Gt is
driving the cross section dependence between blocks, the latter strategy would not
be capturing the top-level dependence.

I propose an extended CCE procedure to filter out the full factor space in-
volved in a model whose cross-sectional dependence is driven by a multi-level
factor structure as in (4). I shall refer to such methodology as the Multi-Level
Common Correlated Effect Estimators (MLCCE) and it consists of two steps in
the case of the baseline model.

In the first step, consider separately each of the zr,it vectors belonging to
each block r = 1, . . . , R. Note that the cross-sectional dependence in block r is
only driven by the block-specific observable common factors, dr,t as well as the
unobservable common factors Fr,t. The pervasive common factors Gt do not play
a role hitherto since none of the remaining blocks are considered. In this sense,
µr,i = 0 and Mr,i = 0 lead to Cr,i = 0 for all i = 1, . . . , N . Then, to simplify
notation, (4) is re-written as

zr,it = B′r,idr,t + D′r,iFr,t + ur,it. (11)

Here I follow Pesaran (2006) to discuss why the cross-sectional averages
of the observables of the respective block r, z̄r,it, can work as a proxy variable for
these block-specific factors. Consider the cross section averages on (11), and recall
that r only denotes the specific block,

z̄r,t = B̄′rdr,t + D̄′rFr,t + ūr,t. (12)

Assuming
rk
(
D̄
)

= rFr < k + 1 ∀N, (13)

11



then
Fr,t =

(
D̄D̄′

)−1
D̄
(
z̄r,t − B̄′rd̄r,t − ūr,t

)
.

Lemma 1 in Pesaran (2006) shows that ūr,t
q.m.→ 0 as N → ∞, for each t,

which implies

Fr,t −
(
DD′

)−1
D
(
z̄r,t − B̄′rd̄r,t

) q.m.→ 0, as N →∞,

where

D = lim
N→∞

(
D̄
)

= Λ̃

(
1 0
βr,i Ik

)
,

with Λ̃ = E (λr,i,Λr,i) = (λr,i,Λr,i) , and βr = E (βr,i).
Therefore, the block-specific factors, Fr,t, can be approximated separately

by a linear combination in the respective block r of observed common factors,
dr, the cross-sectional averages of the dependent variable, ȳr,t, and those of the
individual-specific regressors, x̄r,t. Then, let Z∗ as in (7),

G∗ =
(
G Wr

)′
, (14)

and U∗ =
[(

U1W1

)′
, . . . ,

(
URWR

)′]′, where Wr is defined by (5), then

z∗it = C′iG
∗
t + u∗it, (15)

after partialing out the effects of the block-specific factors from all the blocks r =
1, . . . , R by using the orthogonal projection matrix Wr in each block separately.
The cross-section averages of 15 will be useful to obtain some asymptotic results,
and they are given by

z̄∗t = C̄′G∗t + ū∗t . (16)

In the second step, the same reasoning suggests that H∗ = Z∗ is an observ-
able proxy for the pervasive top-level unobserved factor Gt.

Under the rank condition in (13) and Assumptions A-C the following rele-
vant result for the asymptotic analysis can be obtained

WrFr ≈WFrFr = 0. (17)

Such a property means that both projection matrices can be used interchangeably
to partialing out the block-specific factor in the asymptotics. A similar argument
can be followed in the case of the top-level factor Gt after removing the sub-level
factors and as long as the assumption

rk
(
C̄
)

= rG < k + 1 ∀N, (18)

is satisfied as well. Note that the current setup is already considering observable
common factors for each block separately. In principle, one could consider that this
setup is more suitable for practical purposes, however one can include observed
global factors as well in the covariates and should be filtering out in the second
step of the methodology by enlarging W

∗ defined by (8) with the cross-sectional
averages of such observed global factors.
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4 Estimation and asymptotic inference

Estimates of βr,i can be obtained running standard factor-augmented panel regres-
sions with these cross-sectional averages depending on the assumption regarding
the slope homogeneity. These estimators can be obtained from the mean group and
pooled versions of Pesaran (2006). For the sake of brevity, I only discuss the mean
group estimators although the analysis can be easily extended to pooled estimators.

The Common Correlated Effects Mean Group (CCEMG) is a simple average
of the individual MLCCE estimators, β̂r,i,

β̂CCEMG = R−1N−1
R∑
r=1

N∑
i=1

β̂r,i, (19)

where
β̂r,i =

(
X∗
′
r,iW

∗
X∗r,i

)−1
X∗
′
r,iW

∗
y∗r,i, (20)

with
X∗r,i =

(
xr,i1W r,1,xr,i2W r,2, . . . ,xr,iTW r,T ,

)
,

yr,i =
(
yr,i1W r,1, yr,i2W r,2, . . . , yr,iTW r,T

)
,

(21)

Wr and W
∗ defined according to (5) and (8), respectively.

The next theorems present the consistency and the associated asymptotic
normality of β̂r,i and those of β̂CCEMG.

Theorem 4.1. Under Assumptions A-C, and F1, as (N,T )j → ∞ and the rank
conditions (13)-(18), then β̂r,i is a consistent estimator of βr,i. Furthermore, as-
suming

√
T
N → 0 as (N,T )j →∞ in the block r, then

√
T
(
β̂r,i − βr,i

)
d→ N

(
0,Σβr,i

)
,

where Σβr,i = σ2
r,iΣ

−1
r,iv(0)Σ−1

r,iv(0).

As discussed above, the CCEMG estimator is defined as the average of the
individual β̂r,i. Note that it is possible to consider a CCEMG estimator either for
the specific block r or for the full panel. I focus on the more general setting.

Theorem 4.2. Under Assumptions A-E, and F1, then β̂CCEMG is asymptotically
unbiased for β for fixed R, and T and as N →∞. Furthermore, as (N,T )j →∞
with R fixed, √

RN
(
β̂CCEMG − β

)
d→ N (0,ΣCCEMG) ,

where ΣCCEMG can be consistently estimated non-parametrically by

ΣCCEMG =
1

R− 1

1

N − 1

R∑
r=1

N∑
i=1

(
β̂r,i − β̂CCEMG

)(
β̂r,i − β̂CCEMG

)′
. (22)
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Note that the block-specific and global rank conditions, (13) and (18) re-
spectively, are necessary in the Theorem (4.1) but not in (4.2).

It is well-known that in situations of slope homogeneity, βr,i = β for all r
and i, pooled estimators would help to gain efficiency. Pesaran (2006) proposes the
Common Correlated Effects Pooled Estimators (CCEP). Similar asymptotic anal-
ysis can be done in this regard under this setup with further regularity conditions.
I avoid these details to focus only on the heterogeneity assumption which seems to
be more appropriate in macroeconomics and financial applications.

5 The model with long-range dependence

There are some studies on dealing with panel data with cross-sectional dependence
under Pesaran’s framework where both of observable and unobservable common
factors can be nonstationary. Kapetanios et al. (2011) consider the case when unob-
servable factors follow a unit-root process whereas the regression errors stay as I(0)
processes. And very recently, Ergemen and Velasco (2015) consider a fractionally
integrated framework.

In this section, I explore how the model specified by (1-2) behaves when the
factor structure that drives the cross-sectional dependence and shocks exhibit long-
range dependence. In this sense, the approach is more flexible because it is not
restricted only to the I(0) or I(1) cases. This fractional approach could be helpful
to study the relationships found in a complex system and can be applied to panel
data that consist of blocks of data of typical economic time series that have been
shown to exhibit long-range dependence such as aggregate ouput, real exchange
rates, realized volatility, and electricity prices, to mention a few. In this section, I
propose to extent the model discussed in the Section (2) to panels where observable
and unobservable factors may follow I(d) processes.

The model I consider is a type-II fractionally integrated panel data model
with a multi-level cross-sectional dependence and is given by

yr,it = β′r,ixr,it + µ′r,iGt + λ′r,iFr,t + ∆
−dr,i0
t εr,it,

xr,it = M ′r,iGt + Λ′r,iFr,t + ∆
−δr,i0
t vr,it,

(23)

where r = 1, . . . , R, i = 1, . . . , N , t = 1, . . . , T as before. xr,it, Gt, and Fr,t de-
fine the observed individual-specific regressors, the unobserved top-level common
effects, and the unobserved block-specific common effects, respectively. R, k, rG ,
rFr are assumed to be fixed as before.

In (23), in contrast to the stationary setup previously proposed, long mem-
ory in both idiosyncratic terms as well as in both levels of factors are allowed by
assuming that

Gt = ∆
−%0
t ωt, Fr,t = ∆

−ϑr,0
t νr,t, (24)

where ωt, νr,t, εr,it, and,vr,it are zero-mean unobservable white noise sequences
and the truncated fractional differencing filter ∆−ζt allows for the study of both the
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stationary case (ζ < 1/2) and the nonstationary case (ζ ≥ 1/2) unlike the untrun-
cated filter that does not converge when ζ ≥ 1/2, see Davidson and Hashimzade
(2009). ∆−ζt is described as follows. With ∆ = 1− L, ∆−ζ has the expansion

∆−ζ =

∞∑
j=0

πj(−ζ)Lj , where πj(−ζ) =
Γ(j + ζ)

Γ(j + 1)Γ(ζ)
,

for ζ > 0 with Γ(τ) = ∞ for τ = 0,−1, . . . , but Γ(0)/Γ(0) = 1. ∆−ζt truncates
the latter expansion to ∆−ζt =

∑t
j=0 πj(−ζ)Lj .

Note that (23) does not incorporate fixed or observed common effects, dr,t,
as in (1-2) to focus only on the main difference with respect to the stationary setup.
The framework of the fractional integrated model is in nature the same as that
proposed by Ergemen and Velasco (2015), however the present approach is slightly
different in two aspects. First, I extend the analysis considering R blocks of panels
and not only one. Second, I consider that the cross-sectional dependence in the
R blocks is introduced by the multi-level structure specified by (3) extending their
approach that considers only pervasive common factors.

The Assumptions (A-F) are maintained in the fractional setup. The pervasive
and block-specific factors in (24) still have finite fourth-order moments and positive
definite covariance matrices and are orthogonal to each other. Assumptions (C-D)
are held identical. Identification provided by Assumption (F) is held after fractional
differencing as discussed later. Nevertheless, it is necessary to add some conditions
regarding the fractional memory parameters in (23) to extend the previous analysis.
Such conditions are

Assumption G. Fractional integration parameters:

G1 Idiosyncratic shocks (εr,it): dr,i0 takes values on the compact set
D = [dr,i0, dr,i0] with 0 ≤ dr,i0 < dr,i0 < 3/2.

G2 Idiosyncratic shocks (vr,it): maxr,i δr,i0 < 3/2.

G3 Top-level factor: %0 < 3/2.

G4 Block-specific factor: ϑr,0 < 3/2.

Furthermore the following conditions are required. Let dmax = maxr,i dr,i0,
ϑmax = maxr,i ϑr,i0, and δmax = maxr,i δr,i0, then

G5 max {dmax, δmax, ϑmax, %} − d < 1/2, and

G6 max {dmax, δmax} < 5/4.

Assumptions (G1-G4) are based on those provided by Ergemen and Velasco
(2015) and impose standard restrictions in fractional integration on the range of
allowed values for memory parameters relaxing the usual I(0) and I(1) restric-
tions imposed commonly in the literature. Although the range of the fractional
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parameters covers slightly beyond the unit-root, for most of the applications it is
frequently enough to consider the fractional memory until the d ≤ 1. The resid-
ual memory estimates (d̂r,i) are only implicitly defined and entail optimization
over Θ = D × Ξ, where Ξ is a compact subset of <p and D = [dr,i0, dr,i0] with
0 < dr,i0 < dr,i0 < 3/2. Even if a large range of values of d ∈ D are covered, there
are some necessary requirements on the interplay between the fractional memories
of the unobservable common factors and the idiosyncratic shocks (Assumptions
(G5 and G6)). These assumptions are necessary for the asymptotic analysis of
CSS estimates as I show in detail later.

In this setup, the persistence in the observed yr,it is absorbed by several
channels and can be set by max (dr,i0, δr,i0, %0 , ϑr,0) in each r and i. The model
guarantees a fractionally cointegrating relationship in the cross section unit iwithin
the region r when max(δr,i0, %0 , ϑr,0) > dr,i0. It will be desirable that such a
cointegration relationship may be given by cases where δr,i0 > dr,i0, being a con-
sequence of δr,i0 > max (%0 , ϑr,0). This is because the underlying idea in the
methodology is to filter out the factor structure that is driving the cross-sectional
dependence in yr,it in order to establish causal relationships between yr,it and
xr,it. So, even if one is able to project out the factor structure in cases when
δr,i0 < max (%0 , ϑr,0), the cointegration analysis will be cumbersome since that
would indicate that there exists a cointegration relationship between yr,it and Gt,
for instance. For practical economic purposes or for forecasting for instance, what
would be desirable is that covariates exhibit more persistence than unobservable
common factors in order to ensure cointegration among observable variables.

As pointed out before, the main interest is not the identification of the multi-
level structure but on the estimation of βr,i. Note that in the setups proposed in
this paper, the factor structure in (23) only controls for the cross-sectional depen-
dence in contrast to Ergemen and Rodríguez-Caballero (2016) who focus on the
identification of global and regional unobservable factors allowing for fractional
cointegration between yr,it and Gt or Fr,t, however their setup do not consider
explanatory variables as in the present paper.

I follow the estimation methodology of Ergemen and Velasco (2015) for
each βr,i. The underlying reasoning is to estimate (23) after fractional differencing
by a fractional memory parameter denoted by d∗r,i approximately at the level of
dr,i0. In other words, when differencing by d∗r,i one gets

∆
d∗r,i
t yr,it = β′r,i∆

d∗r,i
t xr,it +µ′r,i∆

d∗r,i
t Gt +λ′r,i∆

d∗r,i
t Fr,t + ∆

d∗r,i
t ∆

−dr,i0
t εr,it, (25)

and naturally ∆
d∗r,i−dr,i0
t εr,it ≈ I(0) when d∗r,i is well calibrated (d∗r,i ≈ dr,i0).

The full factor structure is filtered out by using (5) and (8) with the fraction-
ally differenced cross-sectional averages following the methodology explained in
Section(3). Define the projection matrices (5) and (8) as

Wr

(
d∗r,i
)

= IT −Hr

(
d∗r,i
) (
H
′
r

(
d∗r,i
)
Hr

(
d∗r,i
))−

H
′
r

(
d∗r,i
)
, (26)
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W
∗ (
d∗r,i
)

= IT −H
∗ (
d∗r,i
) (
H
∗′ (

d∗r,i
)
H
∗ (
d∗r,i
))−

H
∗′ (

d∗r,i
)
, (27)

where

Hr(d
∗
r,i) = Z(d∗r,i) with Z(d∗r,i) = 1

N

∑N
i=1 ∆

d∗r,i
t Z(d∗r,i), and

H
∗
(d∗r,i) = Z

∗
(d∗r,i) with Z

∗
(d∗r,i) = 1

R
1
N

∑R
r=1

∑N
i=1 ∆

d∗r,i
t Z∗(d∗r,i).

As before, the projection matrices (26) and (27) can be used to partial out
both the block-specific differenced factor, firstly, and the global differenced factor,
secondly, in the asymptotics as discussed before.

The CCEMG estimator is then defined as

β̂CCEMG
(
d∗r,i
)

= R−1N−1
R∑
r=1

N∑
i=1

β̂r,i
(
d∗r,i
)
, (28)

with
β̂r,i

(
d∗r,i
)

=
(
X∗
′
r,iW

∗ (
d∗r,i
)
X∗r,i

)−1
X∗
′
r,iW

∗ (
d∗r,i
)

y∗r,i, (29)

where X∗r,i = ∆
d∗r,i
t X ∗

′
r,i, and y∗r,i = ∆

d∗r,i
t y∗

′
r,i with X∗r,i, and y∗r,i defined as before in

(21).
Consistency of β̂r,i(d∗r,i) depends on the selection of d∗r,i. The idea behind

the estimation procedure is that all the variables in (25) are asymptotically sta-
tionary. Consequently, taking d∗r,i = 1 would be enough in cases when all these
variables are close to the unit root as in the PANIC model of Bai and Ng (2004).
Furthermore, all detrended variables will be asymptotically stationary when taking
d∗r,i ≥ 1 whereas δr,i + dr,i0 − 2d∗r,i < 1 no matter the values on δr,i or dr,i0.

Ergemen and Velasco (2015) use the latter condition to achieve the consis-
tency of β̂r,i(d∗r,i) no matter the divergence rates of N or T . Following them, it is
also possible to guarantee asymptotic normality through d∗r,i ≥ 1 and the following
assumption

Assumption H. Restriction of fractional integration parameters for asymptotic
normality:

H1 δr,i + dr,i0 − 2d∗r,i < 1/2,

H2 max(δmax, dmax) < 11/8, and

H3 max(max(ϑr, %) + δmax,max(ϑr, %) + dmax, δmax + dmax) < 11/4.

The next theorem summarizes this discussion.
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Theorem 5.1. Define the pervasive and block-specific factors as in (24) with frac-
tional parameters as in G3 and G4, respectively, and ωt and νr,t are white noise
processes with finite fourth-moments. Orthogonality between both factors still ap-
plies, Assumptions (B3-B4). The idiosyncratic shocks are defined in the Assump-
tionsC1-C3 with fractional parameters defined by the Assumptions (G1,G2). Then
choosing d∗r,i ≥ 1 and under the rank conditions (13)-(18), as (N,T )j →∞,

β̂r,i(d
∗
r,i)

p→ βr,i. (30)

Furthermore, assuming
√
T
N → 0 as (N,T )j → ∞ in the block r, and

Assumption H and d∗r,i ≥ 1, then

√
T
(
β̂r,i(d

∗
r,i)− βr,i

)
d→ N

(
0,Σβr,i

)
, (31)

and with R fixed,
√
RN

(
β̂CCEMG(d∗r,i)− β

)
d→ N (0,ΣCCEMG) , (32)

where Σβr,i = σ2
r,iΣ

−1
r,iv(0)Σ−1

r,iv(0), and ΣCCEMG can be consistently estimated
non-parametrically by (22) as before.

To estimate the fractional memory parameters dr,i, a conditional-sum-of-
square (CSS) estimation based on the regression residuals is adopted. Let d̂r,i
denote the estimate of the unknown true fractional integration parameter dr,i0 and
is given by

d̂r,i = argmin
dr,i∈D

L∗r,i,T (dr,i) , (33)

where D = [dr,i0, dr,i0] ⊆ (0, 3/2), and

L∗r,i,T (dr,i) =
1

T

T∑
t=1

(
∆
dr,i
t ε̂r,it

)2
, (34)

with
ε̂r,it = ỹr,it(d

∗
r,i)− β̂′r,i(d∗r,i)X̃r,i(d

∗
r,i),

where ỹr,it(d∗r,i) = y∗r,iW
∗
(
d∗r,i

)
, X̃r,i(d

∗
r,i) = X∗r,iW

∗
(
d∗r,i

)
with y∗r,i,X

∗
r,i, and

W
∗
(d∗r,i) defined as before, and β̂′r,i(d

∗
r,i) is given by (29).

In the next theorem the asymptotic results for residual memory estimates are
established.

Theorem 5.2. Under conditions of Theorem (5.1) and Assumptions (G5 and G6),
dr,i ∈ Int(D) as (N,T )j →∞, d̂r,i

p→ dr,i0, and

T 1/2
(
d̂r,i − dr,i0

)
d→ N

(
0, 6/π2

)
.

Note that the
√
T -consistency of the memory estimate is also guaranteed

under the conditions of Theorem (5.2).

18



6 Monte Carlo analysis

In this section I examine the finite-sample properties of the proposed procedure
to investigate the performance of the models specified by (1-2), and (23). In the
first set of Monte Carlo studies, (Experiments 1-4), I compare the performance
of the CCEMG estimator given by (19) and that proposed in Pesaran (2006). I
also include a couple of robustness checks to analyze the performance of the I(0)
model in cases when i) ranks conditions (13 and 18) are violated (Experiment 3),
and ii) cases when there are structural breaks in the means of the top-level and
block-specific factors (Experiment 4). In the second set, (Experiments 5-8), I in-
vestigate the CCEMG estimator given by (28) and the performance of the residual
memories estimators d̂r,i under several cases including fractional cointegration and
non-cointegration schemes. I compare the present methodology with that proposed
by Ergemen and Velasco (2015). In both sets of Monte Carlo simulations I include
the CCEP estimator and cases when βr,i = β or βr,i 6= β ∀ r = 1, . . . , R and i =
1, . . . , N . I report summaries of the estimators in terms of averages biases and root
mean square errors in all cases. All results are based on 1000 replications.

6.1 Designs for I(0) cases

6.1.1 Experiment 1

For this Monte Carlo design I use the following data-generating process (DGP):

yr,it = β′r,ixr,it + µy
′
r,iGt + λy

′
r,iFr,t + εr,it,

xr,it = µx
′
r,iGt + λx

′
r,iFr,t + vr,it,

(35)

for r = 1, 2, i = 1, . . . , N and t = 1, . . . , T with (N,T )∈{20, 50, 100, 500, 2000}.
One top-level factor is taken to characterize the cross-sectional dependence be-
tween blocks and one block-specific factor in each block. Gt, F1,t, and F2,t are
generated as independent stationary AR(1) processes with zero means and unit
variances. Autoregression coefficients in all the factors are fixed at 0.5. Top-level
and block-specifics loadings are generated as N(1, 1). (εr,it, vr,it) ∼ IIDN(0,Σ)
with the covariance matrix Σ equals to the identity matrix. I consider slope ho-
mogeneity and slope heterogeneity by fixing βr,i = 1 and βr,i = 1 + wr,i with
wr,i ∼ N(0, 0.5), respectively. I also consider the CCEP estimator after filtering
out the full structure following the procedure proposed in this paper as in the case
of CCEMG estimator. I include the CCEMG and CCEP estimators following the
methodology of Pesaran (2006) only for the case of slope homogeneity. The results
are reported in Table 1.
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6.1.2 Experiment 2

In this experiment I modify the DGP (35). Now I consider the case of four blocks,
r = 1, . . . , 4, two top-level and two block-specific factors in each block. I also add
another co-variate in the model, zr,it. Factors G1t , G2t , Fr1,t, Fr2,t, loading factors
and idiosyncratic shocks εr,it, vr,itx , vr,itz are generated according to Experiment
1. In this experiment, slope homogeneity and slope heterogeneity are examined
in both co-variates by fixing βxr,i = 1 and βxr,i = 1 + wxr,i with wxr,i ∼ N(0, 0.5)
for xr,i and βzr,i = 10 + wzr,i with wzr,i ∼ N(0, 0.5) for zr,i. Note that both rank
conditions (13 and 18) are still satisfied. Only CCEMG estimators are reported.
The results are reported in Table 2.

Table 2: Small-sample properties of CCEMG in the case of experiment 2 (Full
ranks + two regressors). Bias and RMSE are multiplied by 100 in the report.

Slope homogeneity Slope heterogeneity

βxCCEMG βzCCEMG βxCCEMG βzCCEMG

N T Bias RMSE Bias RMSE Bias RMSE Bias RMSE

20

20 0.23 4.16 -0.05 4.22 0.13 6.72 -0.13 6.71
50 -0.23 3.54 -0.10 3.60 0.01 5.72 0.35 5.73

100 0.33 3.49 0.08 3.58 -0.01 5.64 -0.06 5.69
500 0.03 3.47 -0.21 3.43 0.04 5.61 -0.21 5.46

50

20 -0.08 2.67 0.09 2.56 0.01 4.31 -0.01 4.07
50 0.11 2.38 0.04 2.34 0.08 3.84 0.02 3.72

100 0.02 2.26 0.05 2.16 0.05 3.65 0.05 3.44
500 0.09 2.12 0.06 2.14 -0.08 3.42 -0.03 3.40

100

20 -0.12 1.84 0.00 1.87 0.12 2.97 0.10 2.97
50 0.09 1.65 0.02 1.61 0.09 2.67 0.04 2.56

100 -0.10 1.54 0.02 1.56 0.12 2.49 0.05 2.48
500 0.09 1.48 0.01 1.57 0.12 2.39 0.03 2.50

500

20 -0.01 0.81 0.04 0.85 -0.01 1.31 -0.01 1.35
50 0.04 0.74 0.00 0.70 0.07 1.20 -0.02 1.11

100 -0.08 0.69 -0.03 0.71 -0.02 1.11 0.02 1.13
500 -0.02 0.68 0.03 0.66 0.00 1.10 -0.01 1.05

Notes: The DGP is the same as that of Table 1, except that now r = 1, . . . , 4 blocks are considered.

Two top-level and two block-specific factors in each blocks are included. In this experiment the slope

heterogeneity for the regressor xr,it is the same than before but that of zr,it is defined as βzr,i = 10 +wzr,i with

wzr,i ∼ N(0, 0.5). Rank conditions (13) and (18) are fulfilled. All experiments are based on 1000 replications.
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6.1.3 Experiment 3

I provide evidence of the effects of violations in both rank conditions (13 and 18)
from Experiment 1. I consider DGP (35), but an extra top-level common com-
ponent µ2y′r,iGt2 and an extra block-specific common components λ2y′r,iFr,t2 are
added to the right-hand side of the model. The new common components follow
the same characteristic of those in the Experiment 1. In this experiment, note that
for the block r = 1, 2, Rank

(
D̄
)

= rFr = j > 2 and Rank
(
C̄
)

= rG = j > 2
with j = (3, 4) violating the rank conditions (13) and (18), respectively. The re-
sults are reported in Table 3.

Table 3: Small-sample properties of CCEMG in the case of Experiment 3 (Number
of factors m=(3,4) exceed the number of regressors and regressand (k=2)). Bias and
RMSE of CCEMG estimators are multiplied by 100 in the report.

Slope homogeneity Slope heterogeneity

rG = rFr = 3 rG = rFr = 4 rG = rFr = 3 rG = rFr = 4

N T Bias RMSE Bias RMSE Bias RMSE Bias RMSE

20

20 0.10 6.79 0.11 4.85 -0.05 7.05 -0.25 6.82
50 -0.42 6.10 -0.28 4.36 -0.14 6.33 0.09 6.12

100 0.52 5.68 0.27 4.06 0.12 5.89 0.29 5.70
500 0.04 5.32 -0.01 3.80 0.16 5.52 0.18 5.34

50

20 0.11 4.14 0.11 2.96 -0.22 4.30 -0.12 4.16
50 0.11 3.65 -0.17 2.61 -0.09 3.79 -0.08 3.66

100 0.01 3.61 0.07 2.58 -0.01 3.75 -0.12 3.62
500 0.32 3.48 -0.16 2.49 -0.31 3.61 -0.22 3.49

100

20 -0.27 2.94 0.02 2.10 -0.01 3.05 -0.03 2.95
50 -0.01 2.73 0.07 1.95 -0.08 2.83 0.12 2.74

100 -0.02 2.66 0.00 1.90 0.18 2.76 0.03 2.67
500 0.06 2.53 0.08 1.81 -0.09 2.63 0.06 2.54

500

20 0.10 1.36 -0.08 0.97 0.03 1.41 -0.03 1.37
50 -0.02 1.15 -0.02 0.82 -0.01 1.19 -0.06 1.15

100 0.00 1.16 0.07 0.83 -0.03 1.20 0.02 1.16
500 -0.10 1.13 0.01 0.81 0.03 1.17 -0.06 1.13

Notes: The DGP is the same as that of Table 2, except that now extra block-specific and top-level factors are

included to violate rank conditions (13) and (18). These new common factors follow the same DGP as that of

Table 1. All experiments are based on 1000 replications.
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6.1.4 Experiment 4

Following Stock and Watson (2009a) who suggest that structural breaks in the
means of the common factors do not hamper the consistency of the CCE type
estimators, I analyze the performance of the model (35) in presence of structural
breaks in the means of i) block-specific factors, ii) pervasive top-level factors, and
iii) in both. I consider the DGP (35), but now I generate the top-level and block-
specific factors as follows:

1. Fr,t generated as Experiment 1. With Gt generated as Gt in Experiment 1,
I define the top-level factor as Gt = Gt for t < [T/2] and Gt = 5 + Gt for
t ≥ [T/2].

2. Gt generated as Experiment 1. With Fr,t generated as Fr,t in Experiment
1, I define the block-specific factors as Fr,t = Fr,t for t < [3T/4] and
Fr,t = 10 + Fr,t for t ≥ [3T/4] for r = 1, 2.

3. With Gt, and Fr,t generated as above and Gt, and Fr,t as in Experiment 1.

Only CCEMG estimators are reported. The results are reported in Table 4.

6.2 Designs for I(d) cases

For this set of Monte Carlo simulations I use the following DGP:

yr,it = β′r,ixr,it + µ′r,iGt + λ′r,iFr,t + ∆
−dr,i0
t εr,it,

xr,it = µ′r,iGt + λ′r,iFr,t + ∆
−δr,i0
t vr,it,

(36)

for r = 1, 2, i = 1, . . . , N ∈ {20, 100, 200} and t = 1, . . . , T ∈ {150, 500, 2500}.
One pervasive top-level factor and one block-specific factor in each region are con-
sidered for simplicity although more factors are possible as in the first sets of ex-
periments (6.1). Both levels of factors and all the idiosyncratic terms are inde-
pendently generated by ARFIMA(1,d*,0) processes where d* corresponds to dr,i,

δr,i, ϑr or % as appropriate. Autoregressive parameters are 0.5 in all cases. εr,it
iid∼

N (0, 2φ) and vr,it
iid∼ N (0, 2φ) are generated independently with φ controlling

the signal-to-noise-ratio with φ = {5, 2, 0.5}, corresponding to low, medium, and
high signal-to-noise-ratios. All factor loadings are generated as N(1, 1). I only
consider slope homogeneity by fixing βr,i = 1 but slope heterogeneity can be also
investigated as before. I also consider the CCEP estimator after filtering out the full
structure following the procedure proposed in this paper as in the case of CCEMG
estimator. I include the CCEMG and CCEP estimators following the methodology
of Ergemen and Velasco (2015) for comparison. I also present the average of the
estimated residual integration orders by the CSS procedure as proposed before. For
projection of estimated pervasive and block-specific factors based on prewhitened
cross-sectional averages, I take d∗ = 1. All results are based on 1000 replica-
tions of the model. The experiments focus mainly on the performance of model
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(36) when fractional parameters allow for cointegrating (Experiments 5A−D) and
non-cointegrating relationships (Experiment 6A). Note that in all experiments the
multi-level factor structure that drives the cross-sectional dependence in the ob-
servables has long-range dependence. Experiments are summarized as follows:

1. Experiment 5A. Both levels of common factors are stationary. The pervasive
top-level factor is slightly more persistent (% = 0.4) than the block-specific
factors (ϑ = 0.2). vr,it follows a driftless I(1) process while the memory
of the residuals of model (36) are dr,it < 0.75. Fractional cointegration is
guaranteed since dr,it < δr,it.

2. Experiment 5B. The only difference to the Experiment 5A is that the top-
level factor is now non-stationary with (% = 0.6) but the block-specific fac-
tors are still stationary with (ϑ = 0.4).

3. Experiment 5C. Persistences of Gt and vr,it are now more similar with
% = 0.6 and δr,it = 0.8. The main difference with respect to the last two
experiments is that the residual integration orders are now stationary with
dr,it = 0.4. Note that dr,it < δr,it as well as dr,it < %t.

4. Experiment 5D. The residual integration orders (dr,it = 0.2) are now smaller
whereas the persistence of the top-level factor is the greater with % = 0.6.

5. Experiment 6A. The impact of non-cointegration in model (36) is analyzed
assuming that dr,it = 1 is greater than δr,it = 0.7, %t = 0.6, and ϑr,it = 0.4.

The results are reported in Table 5.

6.2.1 Results

The results of Experiments 1-4 are reported in Tables 1-4, respectively. As can be
seen from Table 1, the CCEMG and CCEP estimators of Pesaran (2006) are sub-
stantially biased, performing very poorly even when the cross section dimension
increases considerably. In contrast, the CCEMG (and CCEP) estimators provided
by (19) perform well with biases practically equal to zero in all cases indepen-
dently of size distortions between N and T . The RMSE falls steadily as N and/or
T increase. The proposed methodology performs well, in both homogeneous and
heterogeneous slope cases. These conclusions also apply when the number of re-
gressors are increased as seen from Table 2. The performance of βxCCEMG and
βzCCEMG is practically identical. The biases of the CCEMG estimators are gener-
ally higher than those in Table 1 but with smaller RMSE.

Tables 3 and 4 report the results of the Monte Carlo simulation carried out as
robustness checks. The CCEMG estimators perform well irrespective of whether
rank conditions (13 and 18) are satisfied as can be seen from Table 3. Despite
the number of block-specific factors or the number of top-level factors exceeds
the number of regressors and regressand, the RMSEs of the CCEMG estimators

25
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decrease as N or T increases confirming consistency in rank-deficient case. These
results are in line with those in Kapetanios et al. (2011) who discuss the same
experiment considering I(1) processes in the common factors. For the sake of
brevity I do not incorporate a rank-deficient case in the second set of simulations
but the conclusions are the same.

In presence of rank-deficiency, the CCEMG estimators have slightly larger
RMSEs than those in the experiments where rank conditions are satisfied (See
Tables 1 and 2). A surprising finding is that the RMSEs with rG = rFr = 3
are in general larger than those with rG = rFr = 4 even when the number of
regressors (k) is the same. Table 4 shows the performance of model 35 when the
block-specific factors or/and the top-level factor are subject to mean shifts. It is
clear that even if bias and RMSEs of ECMG estimators are larger than those of
Table 1, they vanish as N and/or T increases. The findings are still consistent with
those of Stock and Watson (2009a) even when I consider breaks in the multi-level
factor structure. Finally, there is not a clear conclusion if the break in the mean of
Gt impacts more in the estimation of ECMG than the break in the mean of Fr,t,
however it seems that in cases when both levels of common factors present a break
in the respective means, the impact over ECMG estimators are larger than those
cases with individual breaks.

The second set of experiments focuses on the model with long-range depen-
dence (36) and results are reported in Table 5. In the designs I consider that the
top-level factor is more persistent than the block-specific factors. For the sake of
brevity I do not study the case where ϑr,i0 > %0 but the results do not differ much.
As can be seen from both tables, the CCEMG and CCEP estimators when apply-
ing the procedure of Ergemen and Velasco (2015) are substantially biased. Such
biases are considerably reduced only when the noise dominates the signal (rows
with φ = 5) and do not change as N and/or T increase. The CCEMG estimators
provided by (28) (and the respective CCEP) perform very well. I find the same
effect in the RMSEs in the signal-to-noise ratio analysis. These conclusions are
basically identical in Experiments 5A − 5D. As seen from Table 6A, β̂r,i can be
estimated consistently even in the absence of cointegration which is in line with
the findings in Ergemen and Velasco (2015) and using a similar approach as in
Kapetanios et al. (2011). Note that Theorem 5.1 does not require cointegration for
the consistency of β̂r,i.

The estimated residual integration orders by the CSS procedure following
the steps proposed in this paper are slightly less biased than the counterparts of
Ergemen and Velasco (2015) in Experiment 5A and considerably less biased in
Experiments 5B and 5C. Furthermore, the higher the signal-to-noise ratio, the
larger the biases of the estimated residual integration orders regardless of the ex-
periment in question. These impacts are slightly more pronounced using Ergemen
and Velasco (2015) than in the methodology proposed in this paper. Furthermore,
the smaller the distance between dr,i0 and %0 , and between %0 and δr,i0, the larger
the biases in the estimated residual integration orders. This result is most pro-
nounced in Experiment 5D where dr,i0 is much smaller than the other fractional
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parameters. Finally, in case of no cointegration (Experiment 6A), the estimated
residual integration orders perform well.

Evidence with respect to model (36) suggests that the factor structure should
be much less persistent than the regressors and the regressand in order to improve
the estimation of d̂r,it via CSS, although such a condition does not impact the
consistency of β̂r,i via CCEMG or CCEP.

7 Concluding remarks

This paper provides a simple procedure for estimation of a couple of large panel
data models, which are composed of several but fixed blocks of data. Both mod-
els are subject to cross-sectional error dependence that is driven by top-level and
block-specific factors. In the first setup, I study the case where observables, factors,
and regression errors are I(0) processes. In the second setup, I extend the study to
include long-range dependence in the observables, factors, and disturbances with-
out restrictions that can be either stationary or non-stationary processes.

I have proposed a simple methodology to completely filter out the cross-
sectional dependence involved in the panel data models considered. This method-
ology is carried out in two steps. The first uses sample means of data separately
in each block whereas the second uses the complete sample means of the new
projected variables. In the fractional integrated setup, the methodology proposed
follows the same steps but considers fractionally differenced data instead.

The focus of this paper is the estimation of βr,i for which I use the so-
called Common Correlated Effect methods. Furthermore, only in the setup with
long-range dependence, the memory estimation is also relevant and consists of
conditional-sum-of-squares of defactored (fractionally differenced) variables. I
have established asymptotic results of the estimation methods.

From an extensive Monte Carlo study, I illustrate that the methodology pro-
posed works well in relatively small sample sizes even when considering some
variations in the proposed specification.

The methodology proposed can be extended at least in the following direc-
tions. i) Fixed effects and deterministic trends can be easily incorporated in the
fractional integrated model. The properties of estimators in such models have al-
ready been studied in the literature. ii) It might be interesting to analyze if further
point of views regarding the multi-level factor structure can be useful in panel data
models to control a different kind of cross-sectional dependence. iii) A possible ex-
tension of this paper is to study panel data sets whose cross-sectional dependence
can be composed of more than two-levels. iv) A direct extension of the paper is
to relax the assumption of independence between the idiosyncratic shocks in the
models proposed.
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Appendix

A Proof of Theorem (4.1)

First, note that both observable and unobservable block-specific factors are filtered
out from (1 and 2) using the block-specific projection matrix Wr as explained
before in (17) as long as the rank condition (13) is satisfied. Second, by Frisch-
Waugh-Lovell Theorem, β̂r,i is consistently estimated from

Wr,t yr,it = β′r,iWr,t xr,it + µ′r,iWr,t Gt + Wr,t εr,it,

Wr,t xr,it = M ′r,iWr,t Gt + Wr,t vr,it.

To simplify notation, I write the last expressions as

y∗r,it = β′r,i x∗r,it + µ′r,i G
∗
t + ε∗r,it, (37)

x∗r,it = M ′r,i G
∗
t + v∗r,it. (38)

To clarify the exposition of the proof, recall that r and i denote the specific
block and cross-section unit treated. y∗r,it and x∗r,it are R N × 1 and R N × k
observable data matrices. I conduct the asymptotic analysis for a separate block r,
but naturally it is valid for each r = 1, . . . , R. Moreover, recall that Fr,t denotes
the block-specific factor of the region r whose loadings are null in the remaining
blocks while the loading of Gt, the top-level factor, are non null regardless of the
block treated. Then, taking in mind that r denotes the specific block treated, and
for each i and t = 1, 2, . . . , T , write (37) in matrix notation as

y∗r,i = X∗r,iβr,i + G∗µr,i + ε∗r,i, (39)

where ε∗r,i =
(
ε∗r,i1, ε

∗
r,i2, . . . , ε

∗
r,iT

)′
and G∗ = (G∗1,G

∗
2, . . . ,G

∗
T )′, with G∗t de-

fined in (14 ).
The main interest relies on β̂r,i which was defined previously in (20), recall-

ing

β̂r,i =
(
X∗
′
r,iW

∗
X∗r,i

)−1
X∗
′
r,iW

∗
y∗r,i.

Then, combining (20) and (39)

β̂r,i − βr,i =

(
X∗
′
r,iW

∗
X∗r,i

T

)−1(
X∗
′
r,iW

∗
G∗

T

)
µr,i

+

(
X∗
′
r,iW

∗
X∗r,i

T

)−1(
X∗
′
r,iW

∗
ε∗r,i

T

)
, (40)

which implies that β̂r,i depends on the top-level factor G∗ as well as the cross-
sectional averages computed in the first step of the procedure through W

∗ defined
in (8).
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I first analyze the component
X∗
′
r,iW

∗
G∗

T in (40). See that

X∗
′
r,iW

∗
G∗

T
=

X∗
′
r,i

[
IT −H

∗
(
H
∗′
H
∗
)−

H
∗′
]

G∗

T
, (41)

from which the analysis can now separate in four components,
X∗
′
r,iG

∗

T ,
X∗
′
r,iH

∗

T ,
H
∗′
H
∗

T , and H
∗′
G∗

T .

In the component
X∗
′
r,iG

∗

T , first note that from (7 and 14) and due to Wr is
idempotent, so

X∗
′
r,iG

∗

T
=

X
′
r,iWrG

T
=

X
′
r,i

[
IT −Hr

(
H
′
rHr

)−
H
′
r

]
G

T
. (42)

Recall now that Hr =
(
Dr,Zr

)
. I write (12) in a matrix notation and note that

Hr = FrP̄r + Ū+
r , (43)

where

Fr = (Dr,Fr) , P̄r =

(
IN B̄r

0 D̄r

)
, Ū+ =

(
0, Ūr

)
,

with Dr = (dr,1, . . . ,dr,T )
′
, Fr = (Fr,1, . . . ,Fr,T )

′
, and Ūr = (ūr,1, . . . , ūr,T )

′
.

Then1,

H
′
rG = Op

(
1√
NT

)
= op(1) (44)

due to the top-level factor is orthogonal to the observable and unobservable block-
specific factors and, reasoning as in Pesaran (2006), since

G′Ūr

T
= Op

(
1√
NT

)
, (45)

from which one gets

X∗
′
r,iG

∗

T
=

X
′
r,iG

T
= Op(1). (46)

To examine the component
X∗
′
r,iH

∗

T , note that from (15) in matrix notation,

X∗r,i = G∗Mr,i + V∗r,i, (47)

H
∗

= G∗C̄ + Ū∗, (48)
1Proofs of convergence rates presented here are proved in Appendix A in Pesaran (2006).

31



where Ū∗ = (ū∗1, . . . , ū
∗
T ) and V∗r,i = (vr,i1, . . . ,vr,it). Then

X∗
′
r,iH

∗
= X∗

′
r,iG

∗C̄ + X∗
′
r,iŪ

∗
(r)

= X
′
r,iWrGC̄ + X

′
r,iWrŪr, (49)

with Ū∗(r) indicating Ū∗ in the specific block r..
I now analyze both terms of the right-hand side of (49). First, from (46), I

have that
X∗
′
r,iG

∗C̄

T
=

X
′
r,iG

T
C̄ = Op(1).

Second,

X
′
r,iWrŪr

T
=

X
′
r,i

[
IT −Hr

(
H
′
rHr

)−
H
′
r

]
Ūr

T
,

from which, reasoning as in Pesaran (2006),

X
′
r,iŪr

T
= Op

(
1

N

)
+Op

(
1√
NT

)
, (50)

X
′
r,iH̄r

T
=

(
X
′
r,iFr
T

)
P̄r +Op

(
1

N

)
+Op

(
1√
NT

)
, (51)

H̄
′
rH̄r

T
= P̄

′
r

(
F′rFr
T

)
P̄r +Op

(
1

N

)
+Op

(
1√
NT

)
, (52)

H̄
′
rŪr

T
= Op

(
1√
NT

)
+Op

(
1

N

)
. (53)

(53) is obtained immediately considering (43) and Assumptions (A and B1)
regarding that Fr,t, dr,t and ūt are independently distributed covariance stationary
processes. Ū(r) indicates Ū in the specific block r. Then,

X
′
r,iWrŪr

T
= Op

(
1

N

)
+Op

(
1√
NT

)
.

Hence, it is obtained that

X∗
′
r,iH

∗

T
=

X
′
r,iG

T
C̄ +Op

(
1

N

)
+Op

(
1√
NT

)
. (54)

Now I focus on the component H
∗′
H
∗

T . Using (48), it can be separated in
G∗
′
G∗

T , G∗
′
Ū∗

T , and Ū∗
′
Ū∗

T . Re-expressing these terms as before and using (44),
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(52), and (53), it is easily seen that

G∗
′
G∗

T
=

G
′
WrG

T
=

G
′
G

T
+Op

(
1√
NT

)
, (55)

G∗
′
Ū∗

T
=

G
′
WrŪ

T
= Op

(
1√
NT

)
, (56)

Ū∗
′
Ū∗

T
=

Ū
′
WrŪ

T
= Op

(
1

N2

)
+Op

(
1

N
3
2T

1
2

)
+Op

(
1

NT

)
, (57)

from which,

H
∗′
H
∗

T
= C̄

′

(
G
′
G

T

)
C̄ +Op

(
1√
NT

)
+Op

(
1

N2

)
. (58)

And the last component, H
∗′
G∗

T , is directly obtained using (55) and (56),

H
∗′

G∗

T
= C̄

′

(
G
′
G

T

)
+Op

(
1√
NT

)
. (59)

Finally, using (46), (54), (58), (59), from (41) and following Pesaran (2006),
it is easy to see that

X∗
′
r,iW

∗
G∗

T
=

X
′
r,iWG G

T
+Op

(
1

N

)
+Op

(
1√
NT

)
,

and, since WG G = 0,

X∗
′
r,iW

∗
G∗

T
= Op

(
1

N

)
+Op

(
1√
NT

)
. (60)

Furthermore, the same steps would lead to get

X∗
′
r,iW

∗
X∗r,i

T
=

X∗
′
r,iWG X∗r,i

T
+Op

(
1

N

)
+Op

(
1√
NT

)
, (61)

X∗
′
r,iW

∗
ε∗r,i

T
=

X∗
′
r,iWG ε

∗
r,i

T
+Op

(
1

N

)
+Op

(
1√
NT

)
. (62)

Using the results (60-62) in 40, then

β̂r,i−βr,i =

(
X∗
′

r,iWG X∗r,i
T

)−1(
X∗
′

r,iWG ε
∗
r,i

T

)
+Op

(
1

N

)
+Op

(
1√
NT

)
, (63)

where T−1
(
X∗
′
r,iWG X∗r,i

)
= Op(1) and converge in probability to a positive

definite matrix, Σβr,i , under Assumption (F1). Since ε∗r,i is independently dis-

tributed of X∗r,i, G and Fr, then T−1
(
X∗
′
r,iWG ε

∗
r,i

)
p→ 0. From which, the de-

sired property
β̂r,i − βr,i = op(1)
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is obtained.
Furthermore, multiplying (63) by

√
T and assuming that

√
T
N → 0, it is

obtained that

√
T
(
β̂r,i − βr,i

)
d→ N

(
0,Σβr,i

)
,

B Proof of Theorem (4.2)

Reasoning as in Pesaran (2006), under Assumption E and using (40), it can be
easily obtained that

√
RN

(
β̂CCEMG − β

)
=

1√
R

1√
N

R∑
r=1

N∑
i=1

νr,i + op(1),

then, as (N,T )→∞ with R fixed (R < N )
√
RN

(
β̂CCEMG − β

)
d→ N (0,ΣCCEMG) ,

C Proof of Theorem (5.1)
Considering Assumptions (G1-G4), take d∗r,i ≥ 1 in order to establish stationarity
in all the components involved in (23). Then, following the same strategy as in
the proof of Theorem (4.1), under rank condition (18), the unobservable block-
specific factors are filtered from (23) by using the projection matrix W

∗
(
d∗r,i

)
.

From which, I get

β̂r,i
(
d∗r,i
)
− βr,i =

(
X∗
′

r,i W
∗(
d∗r,i
)
X∗r,i

T

)−1
︸ ︷︷ ︸

H1

(
X∗
′

r,iW
∗(
d∗r,i
)
G∗

T

)
µr,i︸ ︷︷ ︸

H2

+

(
X∗
′

r,iW
∗(
d∗r,i
)
X∗r,i

T

)−1X∗
′

r,iW
∗(
d∗r,i
)

∆
d∗r,i
t ε∗r,i

T


︸ ︷︷ ︸

H3

. (64)

First, to examine the component H1, first see that from 23,

X∗r,i = M ′r,i ∆
d∗r,i
t G∗t + ∆

d∗r,i−δr,i0
t v∗r,it,

after filtering the block-specific factors. Hence, it can be addressed a similar rea-
soning as in (61) to get

X∗r,iW
∗(
d∗r,i
)
X∗
′
r,i = X∗r,iWG

(
d∗r,i
)
X∗
′
r,i + op(1),
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from which T−1X∗r,iWG

(
d∗r,i

)
X∗
′
r,i

p→ Σβr,i . Note that

T−1
(

∆
d∗r,i−δr,i0
t vr,it ∆

d∗r,i−δr,i0
t v

′
r,it

)
p→ Σr,iv.

Second, the proof that H2 = op(1) is similar to that proof of Theorem 4 in
Ergemen and Velasco (2015) following the same strategy it is used to get (60). In
short,

X∗
′
r,iW

∗
(
d∗r,i

)
G∗

T
=

X∗
′
r,i

[
IT −H

∗ (
H
∗′
H
∗)−

H
∗′
]
G∗

T
, (65)

then, it can be separated into four components which are examined as before.
For the component, X∗

′
r,iG

∗/T , it can be easily obtained that

X∗
′
r,iG

∗

T
=

X
′
r,iG

T
+ op(1),

following the steps of a fractionally differenced version of 42. Note that G
(
d∗r,i

)
is orthogonal to F

(
d∗r,i

)
and, adjusting Ergemen and Velasco (2015), it is obtained

that G
′
Ūr = Op

(
1√
NT

)
as in (45).

To prove that the approximation of the remaining components in (65),

X∗
′
r,iH

∗
/T, H

∗′
H
∗
/T, H

∗
G∗/T,

are negligible, it is necessary to apply the same strategy discussed to get (54),
(58), and (59), respectively, but using appropriated convergence rates obtained in
Ergemen and Velasco (2015). Therefore, since W

∗
G

(
d∗r,i

)
G∗ = 0,

H2 = Op

(
1

N

)
+Op

(
1√
NT

)
= op(1).

Finally, since W
∗
GX
∗
r,i = ∆

d∗r,i−δr,i0
t v∗r,it and due to the independence of

v∗r,it and ε∗r,i, then H3
p→ 0. Consequently,

β̂r,i
(
d∗r,i
)
− βr,i = Op

(
1

N

)
+Op

(
1√
NT

)
, (66)

and the proof of consistency in (30) is now complete.
As discussed, the asymptotic distribution (31) is directly obtained assuming√

T
N → 0 as (N,T )j →∞while the asymptotic distribution (32) needs the random

coefficient model of Assumption E.

D Proof of Theorem (5.2)

I closely follow Ergemen and Velasco (2015) to prove the consistency of the frac-
tional integration parameter estimate. Note that observable variables can be written
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as

ỹr,i(d
∗
r,i) = ∆

d∗r,i
t y∗r,iW

∗ (
d∗r,i
)

= ∆
d∗r,i
t yr,iWr

(
d∗r,i
)
W
∗ (
d∗r,i
)

= ∆
d∗r,i
t yr,iWr

(
d∗r,i
)
W
∗ (
d∗r,i
)
,

= ∆
d∗r,i
t yr,i

[
IT −Hr

(
H
′

rHr

)−
H
′

r

] [
IT −H

∗ (
H
∗′
H
∗)−

H
∗′
]
,

= ∆
d∗r,i
t yr,i −∆

d∗r,i
t yr,i

[
Hr

(
H
′

rHr

)−
H
′

r + H
∗ (

H
∗′
H
∗)−

H
∗′
]
,

+∆
d∗r,i
t yr,i

[
Hr

(
H
′

rHr

)−
H
′

r

] [
H
∗ (

H
∗′
H
∗)−

H
∗′
]
.

Now, when prefiltering both variables by ∆
dr,i−d∗r,i
t , it is obtained that

∆
dr,i−d∗r,i
t ỹr,i(d

∗
r,i) = ∆

dr,i
t yr,i −∆

d∗r,i
t yr,i

[
H

+

r

(
H
′

rHr

)−
H
′

r + H
+∗ (

H
∗′
H
∗)−

H
∗′
]
,

∆
d∗r,i
t yr,i

[
H

+

r

(
H
′

rHr

)−
H
′

r

] [
H

+∗ (
H
∗′
H
∗)−

H
∗′
]
,

H
+
r = ∆

dr,i−d∗r,i
t Hr and H

∗+
= ∆

dr,i−d∗r,i
t H

∗
.

Let WFr = Fr

(
F
′
rFr

)−
F+′
r and WG = G

(
G
′
G
)−

G+′ , where Fr =

∆
d∗r,i
t Fr , G = ∆

d∗r,i
t G , F+

r = ∆
dr,i−d∗r,i
t Fr, and G+ = ∆

dr,i−d∗r,i
t G . Moreover,

denote H∗ = H
∗ (

H
∗′
H
∗)−

H
∗+′

and Hr = Hr

(
H
′

rHr

)−
H

+′

r . Then,

∆
dr,i−d∗r,i
t ỹr,i(d

∗
r,i) = ∆

dr,i
t yr,i −∆

d∗r,i
t yr,i [WFr

+ WG] + ∆
d∗r,i
t yr,i [WFr

+ WG

−
[
H∗ + Hr

]]
+ ∆

d∗r,i
t yr,i

[
H∗
′

Hr
]
.

The same for x̃r,i(d∗r,i) replacing yr,i by xr,i everywhere. Now, with the
corresponding terms,

∆
dr,i−d∗r,i
t ỹr,i(d

∗
r,i) = ∆

dr,i−dr,i0
t εr,i + β

′

r,i0∆
dr,i−δr,i
t vr,i

−
[
∆
d∗r,i−dr,i0
t εr,i + β

′

r,i0∆
d∗r,i−δr,i
t vr,i

]
[WFr

+ WG]

+
[
∆
d∗r,i−dr,i0
t εr,i + β

′

r,i0∆
d∗r,i−δr,i
t vr,i +

(
β
′

r,i0M
′

r,i + µ
′

r,i

)
G

+
(
β
′

r,i0Λ
′

r,i + λ
′

r,i

)
Fr

] [
WFr

+ WG −
[
H∗ + Hr

]]
+
[
∆
d∗r,i−dr,i0
t εr,i + β

′

r,i0∆
d∗r,i−δr,i
t vr,i

] [
H∗
′

Hr
]
,
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and

∆
dr,i−d∗r,i
t x̃r,i(d

∗
r,i) = ∆

dr,i−δr,i
t vr,i −

[
∆
d∗r,i−δr,i
t vr,i

]
[WFr

+ WG]

+
[
∆
d∗r,i−δr,i
t vr,i +

(
M
′

r,iG + Λ
′

r,iFr

)]
[WFr

+ WG

−
[
H∗ + Hr

]]
+
[
∆
d∗r,i−δr,i
t vr,i

] [
H∗
′

Hr
]
.

Hence, when appropriately accommodating the terms presented above, it is
possible to write the residuals in the CSS (34) as

∆
dr,i−d∗r,i
t

[
ỹr,it(d

∗
r,i)− β̂′r,i(d∗r,i)X̃r,i(d

∗
r,i)
]

= ε1i (d
∗
r,i)+ε

2
i (d
∗
r,i)+ε

3
i (d
∗
r,i)+ε

4
i (d
∗
r,i),

where

ε1i (d
∗
r,i) = ∆

dr,i−dr,i0
t εr,i −∆

d∗r,i−dr,i0
t εr,i [WFr

+ WG] ,

ε2i (d
∗
r,i) = −

(
βr,i0 − β̂r,i(d∗r,i)

)′ [
∆
dr,i−δr,i
t vr,i + ∆

d∗r,i−δr,i
t vr,i (WFr

+ WG)
]
,

ε3i (d
∗
r,i) =

{(
βr,i0−β̂r,i(d∗r,i)

)′
∆
d∗r,i−δr,i
t vr,i +

[(
βr,i0−β̂r,i(d∗r,i)

)′
M
′

r,i + µ
′

r,i

]
G

+

[(
βr,i0 − β̂r,i(d∗r,i)

)′
Λ
′

r,i + λ
′

r,i

]
Fr + ∆

d∗r,i−dr,i0
t εr,i

}
×
{
WFr + WG −H∗ −Hr

}
,

ε4i (d
∗
r,i) = H∗

′

Hr
[
∆
d∗r,i−dr,i0
t εr,i +

(
βr,i0 − β̂r,i(d∗r,i)

)′
vr,i

]
.

Now it is necessary to study the contribution of each product εji (d
∗
r,i)ε

k
i (d
∗
r,i)
′
,

j, k = 1, 2, 3, 4 to fully examine the properties of the CSS (34).

1

T
ε1i (d

∗
r,i)ε

1
i (d
∗
r,i)
′

=
1

T

[
∆
dr,i−dr,i0
t εr,i∆

dr,i−dr,i0
t ε

′
r,i

]
︸ ︷︷ ︸

P1

+
1

T

[(
∆
d∗r,i−dr,i0
t εr,i [WFr + WG]

)(
∆
d∗r,i−dr,i0
t εr,i [WFr + WG]

)′]
︸ ︷︷ ︸

P2

− 2

T

[
∆
dr,i−dr,i0
t εr,i

(
∆
d∗r,i−dr,i0
t εr,i [WFr + WG]

)′]
︸ ︷︷ ︸

P3

Theorem 1 in Ergemen and Velasco (2015) proves that the P1 converges
uniformly in D and is minimized for dr,i = dr,i0. Similar treatment for a general
case can be found in the Theorem 2.1 in Hualde and Robinson (2011).
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Since the fractionally differenced top-level and block-specific factors are
orthogonal to each other, P2 can be re-written as

1

T

[
∆
d∗r,i−dr,i0
t εr,iWFrW

′

Fr
∆
d∗r,i−dr,i0
t ε

′

r,i

]
+

1

T

[
∆
d∗r,i−dr,i0
t εr,iWGW

′

G∆
d∗r,i−dr,i0
t ε

′

r,i

]
.

Then, inasmuch as max (%, ϑmax)− dr,i < 1/2, one has that

FrF
′
r

T

p→ ΣFr ,
GG
′

T

p→ ΣG,

F+
r F

+′
r

T
= Op

(
1 + T 2(ϑr−dr,i)−1

)
= Op(1),

G+G+′

T
= Op

(
1 + T 2(%−dr,i)−1

)
= Op(1).

Finally, since

∆
dr,i0−d∗r,i
t εr,iF

′
r

T
= Op

(
T−1/2 + T dr,i0+ϑr−2d∗r,i−1

)
= op(1),

∆
dr,i0−d∗r,i
t εr,iG

′

T
= Op

(
T−1/2 + T dr,i0+%−2d∗r,i−1

)
= op(1),

from which P2 = op(1). The same applies with P3.
Moreover, under the same assumption of orthogonality between both levels

of factors and following the last steps in Theorem 7 in Ergemen and Velasco (2015),
one has that

1

T
ε2i (d

∗
r,i)ε

2
i (d
∗
r,i)
′

= op(1),
1

T
ε3i (d

∗
r,i)ε

3
i (d
∗
r,i)
′

= op(1),

as well as the cross-terms εji (d
∗
r,i)ε

k
i (d
∗
r,i)
′
, j, k = 1, 2, 3, 4 with j 6= k are op(1).

Note that 1
T ε

4
i (d
∗
r,i)ε

4
i (d
∗
r,i)
′

= op(1) due to the properties of H∗
′

and Hr, which
are the same as in (44) and (53).

To proof the asymptotic normality of d̂r,i, the
√
T -normalized score evalu-

ated at the true value, dr,i0 is examined. It is given by
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√
T
∂L∗r,i,T (dr,i)

∂(dr,i)

∣∣∣∣
dr,i=dr,i0

=
2√
T

{
εr,i −∆

d∗r,i−dr,i0
t εr,i [WFr + WG]

−
(
βr,i0 − β̂r,i(d∗r,i)

)′ [
∆
dr,i0−δr,i
t vr,i + ∆

d∗r,i−δr,i
t vr,i (WFr + WG)

]
+

[(
βr,i0 − β̂r,i(d∗r,i)

)′
∆
d∗r,i−δr,i
t vr,i +

[(
βr,i0 − β̂r,i(d∗r,i)

)′
M
′
r,i + µ

′
r,i

]
G

+

[(
βr,i0 − β̂r,i(d∗r,i)

)′
Λ
′
r,i + λ

′
r,i

]
Fr + ∆

d∗r,i−dr,i0
t εr,i

] [
WFr + WG −H∗

−Hr

]
+H∗

′
Hr

[
∆
d∗r,i−dr,i0
t εr,i +

(
βr,i0 − β̂r,i(d∗r,i)

)′
vr,i

]}{
(log ∆t) εr,i

−∆
d∗r,i−dr,i0
t εr,i

[
ẆFr + ẆG

]
−
(
βr,i0 − β̂r,i(d∗r,i)

)′ [
∆
dr,i0−δr,i
t vr,i

+∆
d∗r,i−δr,i
t vr,i

(
ẆFr + ẆG

)]
+

[(
βr,i0 − β̂r,i(d∗r,i)

)′
∆
d∗r,i−δr,i
t vr,i

+

[(
βr,i0 − β̂r,i(d∗r,i)

)′
M
′
r,i + µ

′
r,i

]
G +

[(
βr,i0 − β̂r,i(d∗r,i)

)′
Λ
′
r,i + λ

′
r,i

]
Fr

+∆
d∗r,i−dr,i0
t εr,i

] [
ẆFr + ẆG − Ḣ

∗
− Ḣr

]
+ Ḣ

∗′
Ḣr

[
∆
d∗r,i−dr,i0
t εr,i

+
(
βr,i0 − β̂r,i(d∗r,i)

)′
vr,i

]}
,

where ẆFr = Fr

(
F
′
rFr

)−
Ḟ+′
r with Ḟ+′

r = (∂/∂(dr,i)) F
+
r .

ẆG, Ḣ, and Ḣr are defined similarly.

Taking, R=1 and N=1, as T →∞, when applying the central limit theorem
for martingale difference sequences, see Robinson and Velasco (2015), the term

2√
T
εr,i (log ∆t) ε

′
r,i

d→ N(0, 4σε).

Using the same assumption of orthogonality between both levels of factors
and following Ergemen and Velasco (2015), it can be easily shown that the re-
maining terms are negligible. Finally, using Theorem 2.2 in Hualde and Robinson
(2011), it is also possible to show that the hessian converges uniformly which ends
the proof.
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