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Abstract

In this paper, we propose a new way to measure and test the presence of time-varying
volatility in a discretely sampled jump-diffusion process that is contaminated by microstructure
noise. We use the concept of pre-averaged truncated bipower variation to construct our t-
statistic, which diverges in the presence of a heteroscedastic volatility term (and has a standard
normal distribution otherwise). The test is inspected in a general Monte Carlo simulation
setting, where we note that in finite samples the asymptotic theory is severely distorted by
infinite-activity price jumps. To improve inference, we suggest a bootstrap approach to test
the null of homoscedasticity. We prove the first-order validity of this procedure, while in
simulations the bootstrap leads to almost correctly sized tests. As an illustration, we apply
the bootstrapped version of our t-statistic to a large cross-section of equity high-frequency
data. We document the importance of jump-robustness, when measuring heteroscedasticity in
practice. We also find that a large fraction of variation in intraday volatility is accounted for
by seasonality. This suggests that, once we control for jumps and deflate asset returns by a
non-parametric estimate of the conventional U-shaped diurnality profile, the variance of the
rescaled return series is often close to constant within the day.
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1 Introduction

Asset return volatility is central to many aspects of financial economics with numerous applications

including the construction of optimal portfolios, risk management, hedging and pricing of options

(see, e.g., Black and Scholes, 1973; Markowitz, 1952, among many others). Therefore accurate spec-

ification of the volatility dynamics and good estimates of this quantity are of particular importance

in finance. For example, the pricing of European call options (as well as other types of options)

is crucially dependent of the functional form of the volatility (e.g., Black and Scholes, 1973; Duffie

and Harrison, 1993). In the literature, the specification of the parametric form of volatility tends

to vary widely (see, e.g., Vasicek, 1977; Cox, Ingersoll, and Ross, 1985; Constantinides, 1992; Duffie

and Kan, 1996, among others). Hence researchers and practitioners have to rely on goodness-of-fit

tests to check the postulated model (see, e.g., Aı̈t-Sahalia, 1996; Corradi and White, 1999; Corradi

and Distaso, 2006; Dette, Podolskij, and Vetter, 2006; Dette and Podolskij, 2008; Vetter and Dette,

2012). Although, it is widely documented that high frequency time series of returns are charac-

terized by time varying stochastic volatility, and intraday seasonality in volatility is a well-known

stylized feature of high-frequency data, see Wood, McInish, and Ord (1985); Harris (1986), and

also Andersen and Bollerslev (1997, 1998), it might be still useful to test whether the volatility is

constant. Our main motivation, apart from the importance of the correct specification of the dy-

namic of volatility discusses above is that in practice, the volatility of asset returns has components

which are highly persistent, especially over a daily horizon. Thus the volatility could be at least

locally nearly constant. In particular, after returns series has been corrected for diurnal variation

in volatility.

A visual inspection of most such time series in practice does not provide clear evidence for either

the presence or the absence of homoscedasticity over a short horizon. Since in concrete applications

the problem is complicated by the existence of market microstructure noise as well as the impact of

jumps, i.e. the possible occurrence of discontinuous movements in prices. The so-called noise is due

to the presence of bid-ask bounce effects, rounding errors, etc., which contribute to a discrepancy

between the latent efficient price process and the price observed by the econometrician. Hence, it

is important to have statistical methods that can shed some light on such issue. Recent papers

dealing with the separation of the diffusion component from the jump part include Aı̈t-Sahalia

(2004); Barndorff-Nielsen and Shephard (2004, 2006); Huang and Tauchen (2005); Mancini (2009);

Todorov and Bollerslev (2010), while the issue of the effect of microstructure noise on estimators

of volatility has been analyzed by, for example, Zhang, Mykland, and Aı̈t-Sahalia (2005); Zhang

(2006); Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008); Jacod, Li, Mykland, Podolskij,

and Vetter (2009); Xiu (2010), while related work for the construction of jump- and noise-robust

estimates of volatility or jump hypothesis testing include Podolskij and Vetter (2009a); Christensen,

Oomen, and Podolskij (2010); Aı̈t-Sahalia, Jacod, and Li (2012); Lee and Mykland (2012); Jing,

Liu, and Kong (2014). In the literature, several tests for homoscedasticity in the context of financial
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high-frequency data have been proposed, based on different estimation methods, e.g., Corradi and

White (1999); Dette, Podolskij, and Vetter (2006); Dette and Podolskij (2008); Vetter and Dette

(2012). To the best of our knowledge, none of the existing tests of homoscedasticity allow for joint

effect of jumps and market microstructure noise in a completely non-parametric setting.

Our main contribution is to provide an easy-to-compute statistical procedure to measure the

strength and test the presence of time-varying volatility (based on bootstrapping approach) in a

general framework. More specifically, we consider discretely observed data from an arbitrage free Itô

semimartingale process (which does not necessarily have continuous paths) on a fixed time interval,

say [0, 1], with mesh of observation grid shrinking to zero, that is contaminated by microstructure

noise.

First, we use the concept of pre-averaged truncated bipower variation to construct our t-statistic,

which diverges in the presence of a heteroscedastic volatility term (and has a standard normal dis-

tribution otherwise). Second, we assess by Monte Carlo simulation the accuracy of the proposed

test, where we note that in finite samples the asymptotic theory is severely distorted by infinite-

activity price jumps. Third, to improve inference, we suggest a bootstrap approach to test the

null of homoscedasticity. Our proposed bootstrap method is new and is of independent interest.

It can be viewed as the overlapping version of the wild blocks of blocks bootstrap studied recently

by Hounyo, Gonçalves, and Meddahi (2015). We name this method: the overlapping wild blocks

of blocks bootstrap. Our heteroscedasticity test statistics depends on the product of truncated

bipower pre-averaged returns to which we apply the proposed overlapping wild blocks of blocks

bootstrap. As in Hounyo, Gonçalves, and Meddahi (2015), our resampling method combines the

wild bootstrap with the blocks of blocks bootstrap and then is able to capture elegantly the depen-

dence and heterogeneity properties of the product of truncated bipower pre-averaged returns. We

prove the first-order validity of this procedure, while in simulations the bootstrap leads to almost

correctly sized tests. Finally, we complement the theory and Monte Carlo simulations results by

conducting an empirical application. In particular, we apply bootstrapped version of our test of

heteroscedasticity to a large cross-sectional panel of US equity data. It includes the 30 stocks of

the Dow Jones Industrial Average index. We show that it is important to control for the jump

part in such assessment, as otherwise researchers may often conclude by error that the volatility is

heteroscedastic, whereas in reality it could not be necessarily the case over a short period horizon.

We also find that a large fraction of variation in intraday volatility is accounted for by seasonality.

This suggests that, once we control for jumps and deflate asset returns by a non-parametric estimate

of the conventional U-shaped diurnality pattern, the volatility of the rescaled return series is often

close to constant within the day.

The remainder of the paper is organized as follows. The next section briefly introduces the

theoretical framework, and the main assumptions. We also review the existing asymptotic theory

of the pre-averaged bipower-type estimator and state new results; in particular, we construct a jump-

and noise-robust test for absence of heteroscedasticity. In Section 3, we introduce the bootstrap
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method and show its consistency when testing homoscedasticity in noisy jump-diffusion setting. In

Section 4, we present the Monte Carlo results, while an empirical illustration is conducted in Section

5. Section 6 concludes. All proofs and some auxiliary results are relegated to the Appendix.

2 Theoretical setup

Let X denote the latent efficient log-price defined on a probability space
(
Ω,F , P

)
equipped with

a filtration
(
Ft
)
t≥0

. We model X as an Itô semimartingale process defined by the equation

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs +
(
δ1{|δ|≤1}

)
?
(
µ
t
− νt

)
+
(
δ1{|δ|>1}

)
? µ

t
, (1)

where (at)t≥0 is a predictable, locally bounded drift process, (σt)t≥0 is an adapted, càdlàg (i.e., a

right-continuous process with limits from the left) volatility process, while (Wt)t≥0 is a Brownian

motion. Also, µ is a Poisson random measure on R+ × R and ν is a predictable compensator of µ,

such that ν(ds, dx) = ds⊗ λ(dx), where λ is a σ-finite measure.

We further assume that:

Assumption (J): There exists a sequence of stopping times (τ̃n)∞n=1 increasing to ∞ and a

deterministic nonnegative function γ̃n such that
∫
R γ̃n(x)βλ(dx) <∞ and ||δ(ω, t, x)|| ∧ 1 ≤ γ̃n(x),

for all (ω, t, x) with t ≤ τ̃n(ω), where β ∈ [0, 2].

In Assumption (J), β captures the activity of the jump process. As β approaches two, the small

jumps are more frequent and, as explained by Todorov and Bollerslev (2010), the harder they are

to distinguish from the diffusive part of X, rendering the decomposition meaningless. Below, we

impose Assumption (J) to hold for any β ∈ [0, 1), restricting attention to jump processes with

sample paths of finite variation.

We rule out jumps in σt via the following assumption:

Assumption (V): σt is of the form:

σt = σ0 +

∫ t

0

ãsds+

∫ t

0

σ̃sdWs +

∫ t

0

ṽsdBs, (2)

where (ãt)t≥0, (σ̃t)t≥0 and (ṽt)t≥0 are adapted, càdlàg stochastic processes, while (Bt)t≥0 is a stan-

dard Brownian motion that is independent of W .

Assumption (V) is common in the realized volatility literature (see, e.g., Equation (3) in Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2008); Assumption 2 in Mykland and Zhang (2009), or

Equation (3) in Gonçalves and Meddahi (2009)). It can be relaxed (see, for example, Assumption

H1 in Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2006) for a weaker set of

assumptions, which allow for jumps in σt).

In some of our results, we also assume that the volatility is bounded away from zero. In partic-
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ular, we adopt the following condition:

Assumption (V’): σt > 0, for all t ≥ 0.

2.1 Microstructure noise

The presence of market frictions (such as price discreteness, rounding errors, bid-ask spreads, grad-

ual response of prices to block trades and so forth), prevent us from observing the true, efficient

log-price process Xt. Instead, we observe a noisy version Yt, which we assume is given by

Yt = Xt + εt, (3)

where εt is a noise term that collects the market microstructure effects. In this paper, we assume

that εt is i.i.d. and independent of Xt, such that

E(εt) = 0 and E
(
ε2t
)

= ω2, (4)

for any t, where Yt is observed.1 Here, we follow Podolskij and Vetter (2009a) and assume that

Assumption (A): (i) ε is distributed symmetrically around zero, and (ii) for any 0 > a > −1,

it holds that E(|ε|a) <∞.

Assumption (A’): Cramer’s condition is fulfilled, that is lim supt→∞ χ(t) < 1, where χ denotes

the characteristic function of ε.

2.2 Test of heteroscedasticity

As stated above, in this paper we develop a test of the “no heteroscedasticity” assumption. To

achieve this, we partition the sample space Ω into the following two subsets:

ΩH0 = {ω : σt is constant for t ≥ 0}, (5)

and ΩHa = Ω{H0
. The null hypothesis can then formally be defined as H0 : ω ∈ ΩH0 , whereas the

alternative is Ha : ω ∈ ΩHa .

Our goal is to find a test with a prescribed asymptotic significance level and with power going

to one to test the hypothesis that ω belongs to ΩH0 . The key challenge we address is how to

construct such a test, when X—apart from being driven by a Brownian component—is observed

with measurement error and potentially discontinuous. The solution is based on computing a set of

estimators, which reveal information about the presence of time-variation in the volatility process.

1In some places, we can assume that the conditional variance of εt, i.e. ω2
t = E

(
ε2t | X

)
is càdlàg with a moment

condition, as in Jacod, Podolskij, and Vetter (2010). Please refer to Remark 2.
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In particular, we study the quadratic variation of X, which is defined by:

[X]t =

∫ t

0

σ2
sds+

∑
s≤t

|∆Xs|2, (6)

where
∫ t

0
σ2
sds—also known as the integrated variance—is the quadratic variation of the continuous

part of X (i.e., when X follows (80)), while
∑

s≤t |∆Xs|2 is the sum of the squared jumps, where

∆Xs = Xs −Xs−.

We note that if volatility is a constant, say σ, (1) reduces to

Xt = X0 +

∫ t

0

asds+ σ
(
Wt −W0

)
+
(
δ1{|δ|≤1}

)
?
(
µ
t
− νt

)
+
(
δ1{|δ|>1}

)
? µ

t
, (7)

while

[X]t = σ2t+
∑
s≤t

|∆Xs|2. (8)

The construction of the t-statistic now progresses in two steps. Firstly, we account for mi-

crostructure noise by doing local pre-averaging of Y . Secondly, we tease out the continuous part of

the quadratic variation by suitable removal of the jump component.

2.3 The pre-averaging approach

In the rest of this paper, without loss of generality, we confine the clock to the unit interval t ∈ [0, 1].

We assume that the noisy log-price Yt is observed at the regular time points ti = i/n, for i = 0, . . . , n.

Then, the intraday log-returns (at frequency n) can be computed as:

∆n
i Y ≡ Yi/n − Y(i−1)/n, i = 1, . . . , n. (9)

As Yt = Xt + εt, we can split ∆n
i Y into

∆n
i Y = ∆n

iX + ∆n
i ε, (10)

where ∆n
iX = Xi/n−X(i−1)/n denotes the n-frequency return of the efficient log-price, while ∆n

i ε =

εi/n − ε(i−1)/n is the change in the microstructure component.

To lessen the noise, we adopt the pre-averaging approach of Jacod, Li, Mykland, Podolskij, and

Vetter (2009); Podolskij and Vetter (2009a,b). To describe it, we let kn be a sequence of positive

integers and g a real-valued function. kn represents the length of a pre-averaging window, while g

assigns a weight to those noisy log-returns that are inside it. g is defined on [0, 1], such that g(0) =

g(1) = 0 and
∫ 1

0
g(s)2ds > 0. We assume g is continuous and piecewise continuously differentiable

with a piecewise Lipschitz derivative g′. A canonical function that fulfills these restrictions is

g(x) = min(x, 1− x).

We introduce the notation:

φ1(s) =

∫ 1

s

g′(u)g′(u− s)du and φ2(s) =

∫ 1

s

g(u)g(u− s)du, (11)
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and for i = 1, 2, we let ψi = φi(0). For instance, if g(x) = min(x, 1− x), it follows that ψ1 = 1 and

ψ2 = 1/12.

The pre-averaged return, say ∆n
i Ȳ , is then found by computing a weighted sum of consecutive

n-frequency observed log-returns over a block of size kn:

∆n
i Ȳ =

kn−1∑
j=1

g

(
j

kn

)
∆n
i+j−1Y, i = 1, . . . , n− kn + 2. (12)

As readily seen, pre-averaging entails a slight “loss” of summands compared to n. Thus, while the

original sample size is n, there are only n − kn + 2 elements in (∆n
i Ȳ )n−kn+2

i=1 . It follows from the

decomposition in (10) that ∆n
i Ȳ = ∆n

i X̄ + ∆n
i ε̄ and, as shown by Vetter (2008),

∆n
i X̄ = Op

(√
kn
n

)
and ∆n

i ε̄ = Op

(
1√
kn

)
. (13)

Thus, the noise is dampened, thereby reducing its influence on ∆n
i Ȳ . As an outcome, we retrieve

a basically noise-free estimate, which can substitute the efficient log-return ∆n
iX in subsequent

computations, taking proper account of the dependence introduced in (∆n
i Ȳ )n−kn+2

i=1 .2 The reduction

increases with larger kn, but too much pre-averaging also impedes the accuracy of estimators of

the quadratic variation, yielding a trade-off in selecting kn. To strike a balance and get an efficient

n−1/4 rate of convergence, Jacod, Li, Mykland, Podolskij, and Vetter (2009) propose to set:

kn = θ
√
n+ o

(
n−1/2

)
, (14)

for some θ ∈ (0,∞). With this choice, the orders of the two terms ∆n
i X̄ and ∆n

i ε̄ are balanced and

equal to Op

(
n−1/4

)
. An example of (14) used throughout this paper is kn =

[
θ
√
n
]
.

2.3.1 The pre-averaged bipower variation

With the pre-averaged return series, (∆n
i Ȳ )n−kn+2

i=1 , available, Podolskij and Vetter (2009a) propose

the following pre-averaged bipower variation statistic:

BV (Y, l, r)n = n
l+r
4
−1 1

µlµr

Nn∑
i=1

y(Y, l, r)ni , (15)

where l, r ≥ 0, y(Y, l, r)ni = |∆n
i−1Ȳ |l|∆n

i−1+kn
Ȳ |r, Nn = n− 2kn + 2 and µp = E(|N(0, 1)|p).3 In the

following, if we write BV (l, r)n and y(l, r)ni , we assume that they are implicitly defined with respect

to Y . Podolskij and Vetter (2009a) show that under suitable regularity conditions, in particular

2If kn is even, it follows with the above definition of g(x) = min(x, 1−x) that the pre-averaged returns in (12) can

be rewritten as ∆n
i Ȳ = 1

kn

∑kn/2
j=1 Y i+kn/2+j

n
− 1

kn

∑kn/2
j=1 Y i+j

n
. Thus, the sequence (2∆n

i Ȳ )n−kn+2
i=1 can be interpreted

as a constituting a new set of increments from a price process that is constructed by simple averaging of the noisy log-
price series, (Yi/n)ni=1, in a neighbourhood of i/n, thus making the use of the term pre-averaging and the associated
notation transparent.

3In order to avoid a finite sample bias in the construction of BV (l, r)n, we only divide it by Nn (the number of
summands in the estimator) in our simulations and empirical work. We stick with n in the theoretical parts of the
paper, as it involves less notation.
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that X is a continuous Itô semimartingale (i.e., X follows (80)), then as n→∞

BV (l, r)n
p→ BV (l, r) =

∫ 1

0

(
θψ2σ

2
s +

1

θ
ψ1ω

2

) l+r
2

ds, (16)

and

n1/4

(
BV (l1, r1)n −BV (l1, r1)

BV (l2, r2)n −BV (l2, r2)

)
st→MN

(
0,Σ

)
, (17)

with l1, r1, l2, r2 ≥ 0, where “
st→” denotes stable convergence in law, and Σ =

(
Σl1,r1,l2,r2
ij

)
1≤i,j≤2

is

the conditional covariance matrix of the limiting process n1/4
(
BV (l1, r1)n, BV (l2, r2)n

)′
.4

2.3.2 A truncated pre-averaged bipower variation

The estimator in (15) can also be made jump-robust in both the stochastic limit and its asymptotic

distribution, but—as explained by Podolskij and Vetter (2009a)—this puts strong restrictions on l

and r. Firstly, the central limit theory in (17) is not valid for the popular choice l = r = 1. Indeed,

Vetter (2010) shows that this estimator is not even mixed Gaussian, which severely constrains our

ability to draw inference. Secondly, the version with l = r = 2 as implemented below, does not

converge to the limit in (16), if X jumps, and while that is true for the pre-averaged (1,1)-bipower

variation, asymptotically, it is well-known that the latter typically has a pronounced upward bias

in finite samples (e.g., Christensen, Oomen, and Podolskij, 2014). Thus, to achieve a better jump-

robustness and enlarge the feasible set of powers for which we can do hypothesis testing, we follow

Corsi, Pirino, and Renò (2010) in the no-noise and finite-activity jump setting by combining the

bipower idea with the truncation approach of Mancini (2009); Jacod and Protter (2012); Jing, Liu,

and Kong (2014).

To introduce our t-statistic for the homoscedasticity test, we therefore start by deriving a result

as above for a truncated pre-averaged bipower variation, which verifies that the probability limit

and asymptotic distribution of this new estimator are identical to those given by (16) and (17) in

the general setting, where X follows the Itô semimartingale in (1). Thus, we propose to set:

B̌V (l, r)n = n
l+r
4
−1 1

µlµr

Nn∑
i=1

y̌(l, r)ni , (18)

where y̌(l, r)ni = |∆n
i−1Ȳ |l1{|∆n

i−1Ȳ |<υn}|∆
n
i−1+kn

Ȳ |r1{|∆n
i−1+kn

Ȳ |<υn} and 1{·} is the indicator function,

which discards pre-averaged log-returns that exceed a predetermined level

υn = αu$n , for α > 0 and $ ∈ (0, 1/2), (19)

such that un = kn/n.

Theorem 2.1 Let l1, r1, l2 and r2 be four positive real numbers and X be given by (1). Suppose

that Assumption (J) holds for some β ∈ [0, 1) and that
(

l1+r1−1
2(l1+r1−β)

∨ l2+r2−1
2(l2+r2−β)

)
≤ $ < 1/2.

4The formal definition of Σ is given in Appendix A.
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Furthermore, we assume (V), (A), and impose the moment condition E(|εt|s) < ∞, for some

s > (3 ∧ 2(r1 + l1) ∧ 2(r2 + l2)). If any li or ri is in (0, 1], we postulate (V′), otherwise either (V′)

or (A′). In addition, suppose that kn →∞ as n→∞ such that (14) holds. Then, as n→∞,

n1/4

(
B̌V (l1, r1)n −BV (l1, r1)

B̌V (l2, r2)n −BV (l2, r2)

)
st→MN

(
0,Σ). (20)

Theorem 2.1 shows that (18) is robust to the jump part in its limiting distribution. Note that Σ

is identical to the matrix in (17). To our knowledge, the result is new with the main innovations

being the statistic is (18) and the underlying process is a general Itô semimartingale given by (1).

It extends Theorem 3 of Podolskij and Vetter (2009a) to discontinuous X by establishing a joint

asymptotic distribution, as in (17), for the class of truncated pre-averaged bipower variation. In pre-

vious work, Jing, Liu, and Kong (2014) prove—under some regularity conditions—the consistency

and CLT for the truncated pre-averaged realized variance, i.e. the statistic of the form B̌V (2, 0)n,

when X follows (1). Our paper generalizes the latter article to the bipower setting with—subject

to the above constraint—arbitrary powers.

This enables extraction of an essentially noise-free and jump-robust estimate of the continuous

piece of the quadratic variation in (6) and thus facilitates the construction of a test for the presence

of time-variation in σt. An implication of (20) is that for any l1, r1, l2, r2 ≥ 0, which adhere to the

conditions of Theorem 2.1 and such that l1 + r1 6= l2 + r2, as n→∞,

B̌V (l1, r1)n − (B̌V (l2, r2)n)
l1+r1
l2+r2

p→ BV (l1, r1)− (BV (l2, r2))
l1+r1
l2+r2

=

∫ 1

0

(
θψ2σ

2
s +

1

θ
ψ1ω

2

) l1+r1
2

ds−

[∫ 1

0

(
θψ2σ

2
s +

1

θ
ψ1ω

2

) l2+r2
2

ds

] l1+r1
l2+r2

≥ 0,

(21)

with equality if and only if σt is constant. We thus build a test of H0 via the infeasible t-statistic:

T ninf. =
n1/4

(
B̌V (l1, r1)n − (B̌V (l2, r2)n)

l1+r1
l2+r2

)
√
V

d→ N(0, 1), (22)

where

V = Σ11 − 2

(
l1 + r1

l2 + r2

)(
B̌V (l2, r2)n

) l1+r1
l2+r2

−1
Σ12 +

(
l1 + r1

l2 + r2

)2

(B̌V (l2, r2)n)
2
(
l1+r1
l2+r2

−1
)
Σ22. (23)

Note that the convergence in (22) holds only under H0, while under Ha it follows from (21) that

n1/4
(
B̌V (l1, r1)n − (B̌V (l2, r2)n)

l1+r1
l2+r2

)
→ ∞. This way we can determine if X has homoscedastic

or heteroscedastic volatility with asymptotically correct size and power tending to one, as n→∞.

To render the test feasible in practice, we propose a consistent estimator of Σ below, which can be

plugged into (23). It is both inherently robust to heteroscedasticity and positive semi-definite.
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3 The bootstrap

In this section, we improve the quality of inference in our test of heteroscedasticity in the noisy jump-

diffusion setting by relying on the bootstrap, when computing critical values for the t-statistic. This

is warranted by the Monte Carlo in Section 4, which reveals that in small samples, the feasible version

of (22) (cf. (47)) is poorly approximated by the standard normal. Next, we propose a bootstrap

estimator of the conditional covariance matrix of the limiting process n1/4
(
B̌V (l1, r1)n, B̌V (l2, r2)n)′,

i.e. Σ. As the bootstrap estimator is positive semi-definite by construction, it renders our test

implementable.

We build on a series of papers in the high-frequency volatility area. The first to utilize bootstrap-

ping in this setting were Gonçalves and Meddahi (2009), who propose the wild bootstrap for realized

variance, in a framework where the asset price is observed without error. Gonçalves, Hounyo, and

Meddahi (2014) and Hounyo, Gonçalves, and Meddahi (2015) extend their work to accommodate

noise. The latter study the pre-averaged realized variance estimator—i.e., BV (2, 0)n—proposed by

Jacod, Li, Mykland, Podolskij, and Vetter (2009), where the pre-averaged returns are both over-

lapping and heteroscedastic due to stochastic volatility. In this context, a block bootstrap applied

to (∆n
i Ȳ )n−kn+2

i=1 appears natural.

Nevertheless, such a scheme is only consistent, if σt is constant. As shown by Hounyo, Gonçalves,

and Meddahi (2015), the problem is that |∆n
i Ȳ |2 are heterogeneously distributed under time-varying

volatility.5 In particular, their mean and variance are unequal. This creates a bias term in the blocks

of blocks bootstrap variance estimator. To cope with both dependence and heterogeneity of |∆n
i Ȳ |2,

they combine the wild bootstrap with the blocks of blocks bootstrap. The procedure exploits that

heteroscedasticity can be handled by the former, while the latter can replicate serial dependence in

the data. Hounyo (2015) generalizes Hounyo, Gonçalves, and Meddahi (2015) to a broad class of

covariation estimators in a general setting that accommodates jumps, microstructure noise, irregu-

larly spaced high-frequency data and non-synchronous trading. Also, Dovonon, Gonçalves, Hounyo,

and Meddahi (2014) develop a new local Gaussian bootstrap for high-frequency jump testing, but

market microstructure noise is supposed to be absent. Here, we allow for noise and concentrate on

heteroscedasticity.

The bootstrap version of B̌V (l, r)n is

B̌V (l, r)n∗ = n
l+r
4
−1 1

µlµr

Nn∑
i=1

y̌(l, r)n∗i , (24)

where (y̌(l, r)n∗i )Nni=1 is a bootstrap sample from (y̌(l, r)ni )Nni=1.

We apply a bootstrap to y̌(l, r)ni , which replicates their dependence and heterogeneity. As

suggested by Hounyo, Gonçalves, and Meddahi (2015), we merge the wild bootstrap with block-

based resampling. However, our bootstrap is new, and it can be viewed as an overlapping version

5This feature is highlighted by the asymptotic distribution of ∆n
i Ȳ in (71) below.
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of their algorithm. We name it “the overlapping wild blocks of blocks bootstrap.” We note that

the degree of overlap among the blocks to be bootstrapped plays a major role in efficiency: the

nonoverlapping block-based approach is less efficient than a partial or full-overlap block (e.g., Dudek,

Leśkow, Paparoditis, and Politis, 2014).

To describe this approach, let bn be a sequence of integers, which will denote the bootstrap block

size, such that for some δ1 ∈ (0, 1):

bn = O
(
nδ1
)
. (25)

We divide the available data into overlapping blocks of size bn, and the bootstrap is then based on

Nn − 2bn + 2 of these. In particular, we look at overlapping blocks of bn consecutive observations

within the set (y̌(l, r)ni )Nn−bni=1 (there is Jn = Nn− 2bn + 1 many such blocks) and the last block con-

taining the elements y̌(l, r)nNn−bn+1, . . . , y̌(l, r)nNn . The bootstrap sample is constructed by properly

combining the first Jn blocks.

Let u1, . . . , uJn+1 be i.i.d. random variables, whose distribution is independent of the original

sample. We denote by µ∗q = E∗
(
uqj
)

its qth order moments.6 Then,

B̄j =
1

bn

bn∑
i=1

y̌(l, r)ni−1+j, j = 1, . . . , Nn − bn + 1, (26)

is the average of the data in the jth block consisting of y̌(l, r)nj , . . . , y̌(l, r)nj+bn−1. Next, we generate

the overlapping wild blocks of blocks bootstrap observations by:

y̌(l, r)n∗m − ¯̄BNn =



1√
bn

∑m
j=1

(
y̌(l, r)nm − B̄bn+j

)
uj, if m ∈ In1 ,

1√
bn

∑bn
j=1

(
y̌(l, r)nm − B̄m+j

)
um+j−bn , if m ∈ In2 ,

1√
bn

∑Nn−bn+1−m
j=1

(
y̌(l, r)nm − B̄Jn+1−j+bn

)
uJn+1−j, if m ∈ In3 ,

1√
bn

(
y̌(l, r)nm − B̄Nn−bn+1

)
uJn+1, if m ∈ In4 ,

(27)

where

¯̄BNn =
1

Nn

Nn∑
i=1

y̌(l, r)ni , (28)

and

In1 = {1, . . . , bn − 1}, In2 = {bn, . . . , Jn},

In3 = {Jn + 1, . . . , Nn − bn}, In4 = {Nn − bn + 1, . . . , Nn}.
(29)

It is interesting to note that if we were to center y̌(l, r)nm around the grand mean ¯̄BNn , instead of

6As usual in the bootstrap literature, P ∗ (E∗ and var∗) denotes the probability measure (expected value and
variance) induced by the resampling, conditional on a realization of the original time series. In addition, for a

sequence of bootstrap statistics Z∗n, we write (i) Z∗n = op∗(1) or Z∗n
p∗

→ 0, as n → ∞, if for any ε > 0, δ > 0,
limn→∞ P [P ∗(|Z∗n| > δ) > ε] = 0, (ii) Z∗n = Op∗(1) as n → ∞, if for all ε > 0 there exists an Mε < ∞ such that

limn→∞ P [P ∗(|Z∗n| > Mε) > ε] = 0, and (iii) Z∗n
d∗

→ Z as n → ∞, if conditional on the sample Z∗n converges weakly
to Z under P ∗, for all samples contained in a set with probability P converging to one.
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the localized block average B̄j+m, it would yield a bootstrap observation

y̌(l, r)n∗m − ¯̄BNn =
(
y̌(l, r)nm − ¯̄BNn

)
ηm, (30)

for m ∈ In2 (the main set), where ηm = 1√
bn

∑bn
j=1 um+j−bn . Therefore, under the assumption

that E(uj) = 0 and var(uj) = 1, we find that E(ηm) = 0, var(ηm) = 1, and cov(ηm, ηm−k) =(
1− k

bn

)
1{k≤bn}. Thus, our approach is related to the dependent wild bootstrap of Shao (2010) (see

also, e.g., Hounyo (2014)), who extends the traditional wild bootstrap of Wu (1986); Liu (1988) to

the time series setting, and it is the special case, where the kernel function is assumed to be Bartlett

(see Assumption 2.1 in Shao, 2010).

The idea of the new centering B̄j+m is to deal with the mean heterogeneity of y̌(l, r)nm. As

shown by Hounyo, Gonçalves, and Meddahi (2015), for the case of squared pre-averaged returns

y(2, 0)nm, centering the non-overlapping wild blocks of blocks bootstrap around the corresponding

grand mean N−1
n

∑Nn
i=1 y(2, 0)ni does not work, when σt is time-varying. In this paper, we show that

generating the bootstrap observations as in (27) does yield an asymptotically valid bootstrap for

(B̌V (l1, r1)n, B̌V (l2, r2)n)′, even if σt is not constant.

As in Shao (2010) and Hounyo (2014), the dependence between neighboring observations y̌(l, r)nm

and y̌(l, r)nm′ is not only preserved, if m and m′ belong to a particular block, as typical in block-based

resampling. Indeed, if |m−m′| < bn, y̌(l, r)n∗m and y̌(l, r)n∗m′ are conditionally dependent (except for

the last bn data).

A common feature of the block-based bootstrap, in particular the non-overlapping wild blocks

of blocks approach of Hounyo, Gonçalves, and Meddahi (2015), is that if the sample size Nn is not

a multiple of bn, then one has to either take a shorter bootstrap sample or use a fraction of the last

resampled block. This leads to some inaccuracy, when bn is large relative to Nn. In contrast, for

the overlapping version proposed in this paper, the size of the bootstrap sample is always equal to

the original sample size.

Write

¯̄BNn∗ =
1

Nn

Nn∑
i=1

y̌(l, r)n∗i , (31)

as the average value of the bootstrap observations. A closer inspection of ¯̄BNn∗ suggests that we

can rewrite the centered bootstrap sample mean ¯̄BNn∗ − ¯̄BNn as follows

Nn

(
¯̄BNn∗ − ¯̄BNn

)
=

1√
bn

Jn∑
j=1

bn
(
B̄j − B̄j+bn

)
uj. (32)
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Thus,

B̌V (l, r)n∗ = B̌V (l, r)n + n
l+r
4
−1 1

µlµr

1√
bn

Jn∑
j=1

bn
(
B̄j − B̄j+bn

)
uj

= B̌V (l, r)n − 1√
bn

Jn∑
j=1

∆̌B(l, r)nj uj,

(33)

where

∆̌B(l, r)nj = B̌(l, r)nj+bn − B̌(l, r)nj , (34)

such that

B̌(l, r)nj = n
l+r
4
−1 1

µlµr

bn∑
i=1

y̌(l, r)ni−1+j. (35)

We can now derive the first and second bootstrap moment of n1/4

(
B̌V (l1, r1)n∗

B̌V (l2, r2)n∗

)
. The following

Lemma states the formulas.

Lemma 3.1 Assume that y̌(l, r)n∗m are generated as in (27). Then, it follows that

E∗
(
B̌V (l, r)n∗

)
= B̌V (l, r)n − 1√

bn

Jn∑
j=1

∆̌B(l, r)njE
∗(uj), (36)

Also, for 1 ≤ i, j ≤ 2,

cov∗
(
n1/4B̌V (li, ri)

n∗, n1/4B̌V (lj, rj)
n∗) =

√
n

bn

Jn∑
k=1

∆̌B(li, ri)
n
k∆̌B(lj, rj)

n
kvar∗(uk). (37)

Equation (36) of Lemma 3.1 implies that with E∗(uj) = 0, B̌V (l, r)n∗ is an unbiased estimator of

B̌V (l, r)n, i.e. E∗
(
B̌V (l, r)n∗

)
= B̌V (l, r)n. The second part shows that the bootstrap covariance

of n1/4B̌V (li, ri)
n∗ and n1/4B̌V (lj, rj)

n∗ depends on the variance of u. In particular, if we select

var∗(u) = 1/2 as in Hounyo, Gonçalves, and Meddahi (2015):

var∗

(
n1/4

(
B̌V (l1, r1)n∗

B̌V (l2, r2)n∗

))
= Σ̌n, (38)

where Σ̌n =
(
Σ̌l1,r1,l2,r2,n
ij

)
1≤i,j≤2

and

Σ̌
li,ri,lj ,rj ,n
ij =

√
n

2bn

Jn∑
k=1

∆̌B(li, ri)
n
k∆̌B(lj, rj)

n
k . (39)

Note that based on (39), we can rewrite Σ̌n as

Σ̌n =

√
n

2bn

Jn∑
j=1

ξ̌j ξ̌
′
j, (40)
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where ξ̌j ≡
(

∆̌B(l1, r1)nj , ∆̌B(l2, r2)nj

)′
. It follows that if the external random variable u is selected

as above, the overlapping wild blocks of blocks bootstrap variance estimator is consistent for the

asymptotic variance of n1/4
(
B̌V (l1, r1)n, B̌V (l2, r2)n

)′
provided Σ̌n is a consistent estimator of Σ,

as proved in Theorem 3.1 below. Note that Σ̌n is related to recent work on asymptotic variance

estimation by Mykland and Zhang (2014); see also, e.g., Christensen, Podolskij, Thamrongrat, and

Veliyev (2016); Jacod and Todorov (2009); Mancini and Gobbi (2012).

Remark 1 Note that from (40), we can also rewrite Σ̌n as follows:

Σ̌n =
1

bn

bn∑
m=1

Σ̌n
m, (41)

where

Σ̌n
m =

√
n

2

bNn/bnc−2∑
j=0

ξ̌jbn+mξ̌
′
jbn+m =

(
Σ̌l1,r1,l2,r2,n
ij,m

)
1≤i,j≤2

. (42)

We deduce that the diagonal elements of Σ̌n
m, i.e. Σ̌l1,r1,l2,r2,n

11,m and Σ̌l1,r1,l2,r2,n
22,m are nothing else

than the consistent bootstrap variance estimators of the asymptotic variance of n1/4B̌V (l1, r1)n and

n1/4B̌V (l2, r2)n, as proposed by Hounyo (2015).

The next result shows that under some regularity conditions, the estimator Σ̌n converges in

probability to Σ in a general Itô semimartingale context.

Theorem 3.1 Assume that X fulfills Assumption (J) for some β ∈ [0, 2]. Furthermore, suppose

that the conditions of Theorem B.1 in Appendix B hold true, when X is continuous (i.e., X follows

(80)), and also if X has jumps (i.e., X follows (1)) with either

l1 + r1 + l2 + r2 ≤ 4(1− δ1), 0 ≤ β < 4(1− δ1), (43)

or

l1 + r1 + l2 + r2 > 4(1− δ1), 0 ≤ β < 4(1− δ1),
l1 + r1 + l2 + r2 − 4(1− δ1)

2(l1 + r1 + l2 + r2 − β)
≤ $ <

1

2
. (44)

Then, as n→∞, it holds that

Σ̌n p→ Σ, (45)

where Σ is defined in Appendix A.

In our Monte Carlo studies and empirical application, we take l1 = r1 = 2 and l2 = r2 = 1. Here,

(44) holds provided β < 4(1− δ1). As 1/2 < δ1 < 2/3 by assumption (i.e, 4/3 < 4(1− δ1) < 2), it

is therefore sufficient that β ∈ [0, 4/3).

Theorem 3.1 implies that in finite samples, we get a consistent and nonnegative estimator of V :

V̌ n = Σ̌n
11 − 2

(
l1 + r1

l2 + r2

)(
B̌V (l2, r2)n

) l1+r1
l2+r2

−1
Σ̌n

12 +

(
l1 + r1

l2 + r2

)2(
B̌V (l2, r2)n

)2
(
l1+r1
l2+r2

−1
)
Σ̌n

22. (46)
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Corollary 3.1 Assume that the conditions from Theorem 3.1 hold true. If X is given by (7),

such that Assumption (J) holds for some β ∈ [0, 1) and
(

1
2(2−β)

∨ 3
2(4−β)

)
≤ $ < 1/2. Then, if

l1 + r1 6= l2 + r2 and as n→∞,

T n ≡
n1/4

(
B̌V (l1, r1)n −

(
B̌V (l2, r2)n

) l1+r1
l2+r2

)
√
V̌ n

d→ N(0, 1). (47)

Corollary 3.1 delivers the asymptotic normality of the studentized statistic T n; the feasible

version of (22). Note that under the alternative presence of heteroscedasticity, B̌V (l1, r1)n −(
B̌V (l2, r2)n

) l1+r1
l2+r2 converges to a strictly positive random variable. Moreover, as V̌ n was shown

to be a robust estimator of V even in presence of jumps and noise, we can conclude that the statis-

tic T n → ∞, if the realization of X has a heteroscedastic volatility path. Therefore, appealing to

the properties of stable convergence, we deduce that

lim
n→∞

P
(
T n > z1−α | ΩH0

)
= α, (48)

lim
n→∞

P
(
T n > z1−α | ΩHa

)
= 1 (49)

where zα is the α-quantile of a standard normal distribution. The implication is that we reject H0,

if T n is significantly positive. While the alternative inference procedure based on (47) does not

require any resampling, it possesses inferior finite sample properties, as shown in Section 4.

Remark 2 The results from Jacod, Podolskij, and Vetter (2010) and Podolskij and Vetter (2009a)

indicate that some assumptions can be relaxed. In particular, in Corollary 3.1, if all the powers are

even numbers (e.g., l1 = 4, r1 = 0, l2 = 2 and r2 = 0), we can prove the results in the general setting

of Jacod, Podolskij, and Vetter (2010) with heteroscedastic noise. Here, the null is modified as

H0 : ω ∈ ΩH0 ∩
{
ω : t 7−→ ω2

t = E
(
ε2t | X

)
is constant on [0, 1]

}
. (50)

The null hypothesis is therefore a joint statement about the constancy of both diffusive and noise

variance. Although such information should be useful in practice, because it delivers knowledge about

the presence of heteroscedasticity irrespective of its origin, Figure 1 shows that for our empirical

high-frequency data the pre-averaged truncated bipower variation is almost exclusively induced by

diffusive volatility, so that very little residual noise is left in the data after pre-averaging. This

suggests that any rejection of the null is probably due to genuine time-variation in σt.

Corollary 3.2 Assume that the conditions of Theorem 3.1 hold true and the external random

variable is chosen as uj
i.i.d.∼

(
E∗(uj), var∗(uj)

)
, such that var∗(uj) = 1/2. Then, as n→∞,

var∗

(
n1/4

(
B̌V (l1, r1)n∗

B̌V (l2, r2)n∗

))
= Σ̌n p→ Σ, (51)

both in model (80) and (1), where Σ is defined in Appendix A.
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Figure 1: Amount of microstructure noise left in B̌V (1, 1)n.
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Note. We plot the proportion of B̌V (1, 1)n that is due to residual variation (after pre-averaging) in the microstructure noise process.

We rescale B̌V (1, 1)n by θψkn2 to provide an estimate of the integrated variance up to a bias term of order ψkn1 ω2/(θ2ψkn2 ), see
(16) and Theorem 2.1. The figure shows the ratio of this bias to the total variance estimate over time for the ticker symbols that
are included in our empirical analysis. ω2 is replaced by a consistent estimator ω̂2, due to Oomen (2006).

Given the consistency of the bootstrap variance estimator, we now prove the associated convergence

of the bootstrap distribution of n1/4
(
B̌V (l1, r1)n∗, B̌V (l2, r2)n∗

)′
.

Theorem 3.2 Assume that all conditions from Corollary 3.2 hold true and that for any δ > 0,

E∗
(
|uj|
)2+δ

<∞. Then, as n→∞,

(
Σ̌n
)−1/2

n1/4

(
B̌V (l1, r1)n∗ − E∗

(
B̌V (l1, r1)n∗

)
B̌V (l2, r2)n∗ − E∗

(
B̌V (l2, r2)n∗

) ) d∗→ N(0, I2), (52)

in probability-P , both in model (80) and (1). Moreover, let

Sn∗ =

n1/4

[
B̌V (l1, r1)n∗ −

(
B̌V (l2, r2)n∗

) l1+r1
l2+r2 −

(
E∗
(
B̌V (l1, r1)n∗

)
−
(
E∗
(
B̌V (l2, r2)n∗

)) l1+r1l2+r2

)]
√
V

,

(53)

where l1 + r1 6= l2 + r2. It holds that

V n∗ ≡ var∗
[
n1/4

(
B̌V (l1, r1)n∗ −

(
B̌V (l2, r2)n∗

) l1+r1
l2+r2

)]
p→ V, (54)

and

Sn∗
d∗→ N(0, 1), (55)

in probability-P , both in model (7) and (1).

Theorem 3.2 shows that the normalized statistic Sn∗ is asymptotically normal both in model (7)

and (1). This implies, independently of whether H0 or Ha is true, Sn∗
d∗→ N(0, 1), in probability-P .

This ensures that the following bootstrap test both controls the size and is consistent under the
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alternative. Let

Zn∗ ≡ n1/4
[
B̌V (l1, r1)n∗−

(
BV (l2, r2)n∗

) l1+r1
l2+r2−

(
E∗
(
BV (l1, r1)n∗

)
−
(
E∗(BV (l2, r2)n∗)

) l1+r1
l2+r2

)]
(56)

and

Zn ≡ n1/4

(
B̌V (l1, r1)n −

(
B̌V (l2, r2)n

) l1+r1
l2+r2

)
. (57)

Remark 3 We reject H0 at level α, if Zn > p∗1−α, where p∗1−α is the (1 − α)-percentile of the

bootstrap distribution of Zn∗. Under the conditions of Theorem 3.2, the statistic Zn∗ d∗→ N(0, V ), in

probability-P . Note that as Zn st→ N(0, V ) on ΩH0, the fact that Zn∗ d∗→ N(0, V ), in probability-P ,

ensures that the test has correct size, as n→∞. On the other hand, under the alternative (i.e. on

ΩHa), as Zn diverges at rate n1/4, but we still have that Zn∗ d∗→ N(0, V ) = Op∗(1), the test has unit

power asymptotically.

The above bootstrap test is convenient, as it does not require estimation of the asymptotic

variance-covariance matrix Σ, but it may not lead to asymptotic refinements. In order to achieve

such improvement, we should bootstrap an asymptotically pivotal t-statistic. To this end, we

propose a consistent bootstrap estimator of Σ̌n = var∗
(
n1/4

(
B̌V (l1, r1)n∗, B̌V (l2, r2)n∗

)′)
. We look

at the following adjusted bootstrap version of Σ̌n given by Σ̌n∗ =
(

Σ̌l1,r1,l2,r2,n∗
ij

)
1≤i,j≤2

, where the

individual entries of Σ̌n∗ are

Σ̌
li,ri,lj ,rj ,n∗
ij =

√
n

bn

var∗(u)

E∗(u2)

Jn∑
k=1

∆̌B(li, ri)
n∗
k ∆̌B

∗
(lj, rj)

n
k , (58)

with

∆̌B(l, r)n∗j = ∆̌B(l, r)nj uj, (59)

where ∆̌B(l, r)nj is from (34) and (uj)
Jn
j=1 are the external random variables used to generate the

bootstrap observations in (27). We can also write

Σ̌n∗ =

√
n

bn

var∗(u)

E∗(u2)

Jn∑
j=1

ξ̌∗j ξ̌
∗′
j , (60)

where ξ̌∗j ≡ uj

(
∆̌B(l1, r1)nj , ∆̌B(l2, r2)nj

)′
. We can show that Σ̌n∗ consistently estimates Σ̌n for any

choice of external random variable u with E∗
(
|uj|4

)
< ∞. Next, based on Σ̌n∗ we construct a

bootstrap studentized variant of (47):

T n∗ ≡ Zn∗√
V̌ n∗

, (61)

where

V̌ n∗ = Σ̌n∗
11 − 2

(
l1 + r1

l2 + r2

)(
B̌V (l2, r2)n

) l1+r1
l2+r2

−1
Σ̌n∗

12 +

(
l1 + r1

l2 + r2

)2(
B̌V (l2, r2)n

)2
(
l1+r1
l2+r2

−1
)
Σ̌n∗

22 . (62)
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Theorem 3.3 Assume that the conditions of Corollary 3.2 are true and the external random vari-

able is chosen as uj
i.i.d.∼

(
E∗(uj), var∗(uj)

)
, such that for any δ > 0, E∗

(
|uj|4+δ

)
< ∞. Then, as

n→∞, (
Σ̌n∗)−1/2

n1/4

(
B̌V (l1, r1)n∗ − E∗

(
B̌V (l1, r1)n∗

)
B̌V (l2, r2)n∗ − E∗

(
B̌V (l2, r2)n∗

) ) d∗→ N(0, I2), (63)

in probability-P , both in model (80) and (1). Also,

T n∗
d∗→ N(0, 1), (64)

in probability-P , both in model (7) and (1).

Theorem 3.3 shows the asymptotic normality of the studentized statistic T n∗. An implication

of results in Theorem 3.3 is that we reject H0 at significance level α, if T n > q∗1−α, where q∗1−α is

the (1− α)-percentile of the bootstrap distribution of T n∗.

4 Monte Carlo analysis

We here assess the properties of the non-parametric noise- and jump-robust test of heteroscedasticity

in the diffusive volatility coefficient that was proposed in Section 2. We also highlight the refinements

that can potentially be offered by the bootstrap, as outlined in Section 3, in sample sizes that

resemble those, we tend to encounter in practice. We do so via detailed and realistic Monte Carlo

simulations, and we start by describing the design of the study.

To simulate the efficient log-price Xt, we adopt the model:

dXt = atdt+ σtdWt + dJt, (65)

where X0 = 0, at = 0.03 (per annum) and the other components are defined below.

We model diffusive volatility as σt = σsv,tσu,t, where σsv,t and σu,t represent two distinct features

of time-varying volatility.

The first term, σsv,t, denotes a stochastic process, which allows for randomness in the evolution

of σt over time. As commonly done in the literature, we assume that σsv,t can be described by a

stochastic volatility two-factor structure (SV2F):7

σsv,t = s-exp (β0 + β1τ1,t + β2τ2,t) , (66)

where

dτ1,t = α1τ1,tdt+ dB1,t, dτ2,t = α2τ2,tdt+ (1 + φτ2,t)dB2,t. (67)

Here, B1,t and B1,t are two independent standard Brownian motions with E (dWtdB1,t) = ρ1dt and

E (dWtdB2,t) = ρ2dt.

7The s-exp function is used to denote the exponential function that has been spliced with a polynomial of linear
growth at high values of its argument, i.e. s-exp(x) = ex if x ≤ x0 and s-exp(x) = ex0√

x0−x2
0+x2

, if x > x0. As

advocated by Chernov, Gallant, Ghysels, and Tauchen (2003), we set x0 = ln(1.5).
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We follow Huang and Tauchen (2005) and use the parameters β0 = −1.2, β1 = 0.04, β2 = 1.5,

α1 = −0.00137, α2 = −1.386, φ = 0.25 and ρ1 = ρ2 = −0.3.8 This means that the first factor

becomes a slowly-moving component, which generates persistence in volatility, while the second is

a fast mean-reverting process that allows for a sufficient amount of volatility-of-volatility. At the

start of each simulation, we initialize τ1 at random from its stationary distribution, i.e. τ1,0 ∼
N
(
0, [2α1]−1

)
. Meanwhile, τ2 is started at τ2,0 = 0 (e.g., Barndorff-Nielsen, Hansen, Lunde, and

Shephard, 2008).

The second term, σu,t, is a deterministic trend that represents the diurnality pattern that has

been reported to be an important determinant of intraday volatility in many financial return series

(e.g., Andersen and Bollerslev, 1997). We follow earlier work of Hasbrouck (1999) and Andersen,

Dobrev, and Schaumburg (2012) by using the specification:

σu,t = C + Ae−a1t +Be−a2(1−t). (68)

We set A = 0.75, B = 0.25, C = 0.88929198 and a1 = a2 = 10, which produces a pronounced,

asymmetric reverse J-shaped curvature in σ2
u,t with an average value of about 3 (1.5) times higher at

the start (end) of each simulation compared to the observations in the middle.9 This is indeed also

a good description of the actual intraday volatility pattern observed in our empirical high-frequency

data (see Figure 5 below).

In absence of heteroscedasticity, i.e. under the null hypothesis of constant volatility, we set the

variance equal to E(σ2
t ), where E(σ2

t ) denotes the unconditional expectation of σ2
t implied by the

above SV2F model.

Jt is the jump component, which we model as a symmetric tempered stable process with Lévy

measure given by:

ν(dx) = c
e−λx

x1+β
dx, (69)

where c > 0, λ > 0, and β ∈ [0, 2) measures the degree of jump activity (i.e. β is the Blumenthal-

Getoor index). We assume that λ = 3 and β = 0.5. The choice of β produces an infinite-activity,

finite-variation process dominated by infinitely many, but absolutely summable, small jumps and

finitely many large jumps. The idea is to subdue the price process to a stream of small jumps that,

in contrast to the large ones, are typically difficult to filter via truncation, and which—set against a

null hypothesis of constant volatility—can be confused by the t-statistic with time-varying diffusive

volatility. We therefore anticipate that this setup introduces some size distortions in the test. To

limit the proportion of the total quadratic variation due to jumps, we calibrate c so that jumps

account for 20% of the overall return variation. This parameterization is consistent with extant

papers (e.g., Aı̈t-Sahalia, Jacod, and Li, 2012; Aı̈t-Sahalia and Xiu, 2015; Huang and Tauchen,

2005; Todorov and Tauchen, 2010).

We approximate the continuous time representation of σt using an Euler scheme, while Jt is

8Note that these parameters are annualized. We assume there are 250 trading days in a year.
9The calibration of C ensures that

∫ 1

0
σ2
u,tdt = 1, leaving the average integrated variance unchanged.
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generated as the difference between two spectrally positive tempered stable processes, which are

simulated using the acceptance-rejection algorithm of Baeumer and Meerschaert (2010), as described

in Todorov, Tauchen, and Grynkiv (2014).10 Note that the latter is exact, if β < 1, as is the case

here.

We then simulate data for t ∈ [0, 1] (this is thought of as corresponding to a trading session on

a US stock exchange, which spans 6.5 hours), where the discretization step is ∆t = 1/23, 400 (i.e.,

time runs on a one second grid).

A total of T = 1, 000 Monte Carlo replica of this model is generated. In each simulation, we

pollute the efficient price with an additive noise term by setting Yi/n = Xi/n + εi/n. To capture the

well-known negative serial correlation in log-returns induced by bid-ask bounce in transaction prices

and potential second-order effects, we follow Kalnina (2011) and model εi/n (for a given observation

frequency n) as the realization of an MA(1) process:

εi/n = ε′i/n + ϕε′(i−1)/n, where ε′i/n | (σt)t∈[0,1]
i.i.d.∼ N

(
0,

ω2

1 + ϕ2

)
, (70)

so that var(ε) = ω2.

To gauge how the strength of autocorrelation in ε affects our results, we consider ϕ = 0, −0.3,

−0.5, and −0.9. Of course, the first value corresponds to the i.i.d. noise case. To model the

magnitude of ε, we set ω2 = ξ2

√∫ 1

0
σ4
t dt, such that the variance of the market microstructure

component scales with volatility (e.g., Bandi and Russell, 2006; Kalnina and Linton, 2008). As in

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), we fix ξ2 = 0.0001, 0.001 and 0.01, as

motivated by the empirical work of Hansen and Lunde (2006), who find these to be typical sizes

of noise contamination for the 30 stocks in the Dow Jones Industrial Average index (see also, e.g.,

Aı̈t-Sahalia and Yu, 2009).

With the observed price process Y available, we construct noisy returns at sampling frequency

n as ∆n
i Y ≡ Yi/n − Y(i−1)/n. We take n = 390, 780, 1560, 4680, 7800, 11700 and 23400, thereby

varying the sample size across a broad range of selections. With the above interpretation of a time

unit, the smallest (largest) value of n corresponds to observing a new price every minute (second).

Such a number of trade arrivals is not unrealistic compared to real high-frequency data, as reported

in Section 5.

In Figure 2, we provide an illustrative example of a realization from the model for a specific

choice of parameters.

We pre-average the sequence of simulated noisy high-frequency data using (12), which we do

locally on a window of size kn = [θ
√
n], where [x] is nearest integer function and we settle on θ = 1/3

and θ = 1 (as also done in, e.g., Christensen, Kinnebrock, and Podolskij, 2010).11 As standard in

the literature, the weight function is g(x) = min(x, 1− x).

10We thank Viktor Todorov for sharing Matlab code to simulate a tempered stable process.
11As this introduces a small rounding effect in the relation between θ and kn, we therefore reset θ = kn/

√
n

following the determination of kn. We apply this “effective” θ in all the subsequent computations, as also advocated
in Jacod, Li, Mykland, Podolskij, and Vetter (2009).
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Figure 2: Illustration of a simulation.

Panel A: log-price Panel B: log-returns
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Note. The figure shows the sample path of the various ingredients in the noisy jump-diffusion model (the first of 10,000 replica
in total). In Panel A – B, the sample size is n = 390, while the noise is based on ξ2 = 0.01 and ϕ = −0.5 (large noise with
medium negative first-order autocorrelation). In Panel C, the variance is measured relative to its unconditional average. The
tempered stable jump process in Panel D has many small increments that are close, but not equal, to zero.

As stated above, we do inference by comparison of B̌V (l, r)n in (18) with l1 = r1 = 2 and

l2 = r2 = 1. To apply truncation, we implement a threshold vn = cu$n with un = kn/n in (19),

which is adapted to an estimate of the local level of volatility. As in, e.g., Li, Todorov, and Tauchen

(2013, 2015), we choose a fixed “rate” parameter of $ = 0.49, while we determine the “scale”

dynamically in each simulation as c = Φ(0.999)
√
BV (1, 1)n, where Φ(0.999) is the 99.9%-quantile

from the standard normal distribution and BV (1, 1)n is the non-truncated estimator in (13). The

intuition behind this construction is as follows. Assume that there are no jumps in the interval

[i/n, (i+ kn)/n]. Then, under mild regularity conditions, the asymptotic distribution of the pre-

averaged return ∆n
i Ȳ in (12) is:

n1/4∆n
i Ȳ

a∼ N

(
0, θψ2σ

2
i/n +

1

θ
ψ1ω

2

)
. (71)
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It follows from (16) that BV (1, 1)n
p→
∫ 1

0

(
θψ2σ

2
s+ 1

θ
ψ1ω

2
)
ds, so that

√
BV (1, 1)n is a (jump-robust)

measure of the average dispersion (i.e., standard deviation) of the sequence ∆n
i Ȳ , while Φ(·) controls

how far out in the tails of the distribution truncation is enforced.12 On the other hand, while ∆n
i Ȳ

is of order Op

(
n−1/4

)
, $ ∈ (0, 1/2) implies that u$n shrinks at a slower pace than ∆n

i Ȳ . Therefore,

purely “continuous” returns fall within the boundary of the threshold asymptotically. In contrast, if

there are jumps in [i/n, (i+ kn)/n], ∆n
i Ȳ usually has order Op(1), and such “discontinuous” returns

are, eventually, discarded.

The bootstrap inference is done as follows. We resample the pre-averaged high-frequency data

B = 999 times for each Monte Carlo replication. Application of our bootstrap also requires the

selection of the external random variable u. This is an important choice in practice, and consistent

with previous work (e.g., Hounyo, 2015; Hounyo, Gonçalves, and Meddahi, 2015) we examine the

robustness of our approach by adopting two candidate distributions:13

(1.) uj ∼ N(0, 1/2).

(2.)

uj =


1√
2

(
1−
√

5

2

)
, with probability p =

√
5 + 1

2
√

5

1√
2

(
1 +
√

5

2

)
, with probability 1− p =

√
5− 1

2
√

5
.

(72)

In both cases, E∗(uj) = 0 and var∗(uj) = 1/2, so these are asymptotically valid choices of uj

for the purpose of constructing a bootstrap test based on studentized and unstudentized statistics.

The two-point distribution in (2.) was originally proposed by Mammen (1993), and here we just

scale it such that its variance is a half.

Estimation of the asymptotic variance-covariance matrix Σ depends on the block size bn =

O(nδ) with 1/2 < δ < 2/3. Of course, this means nothing other than eventually bn = cnδ, for

some constant c. There is no available theory, which can help us find optimal choices of c and δ

(e.g., via a MSE criterion). Moreover, in finite samples any fixed block size bn can be achieved

from many combinations of c and δ. Set against this upshot, we propose the following. We fix

δ = 2/3 at the upper bound (the constraint is only binding in the limit). We set bmin
n = [2nδ] and

bmax
n = [min(3nδ, Nn/2)]. The first choice is motivated, since we need at least bn ≥ 2kn for the

estimator to capture the dependence in (y̌(l, r)ni )Nni=1, while the latter amounts to saying bn should

also not be too large compared to Nn. We then partition [bmin
n , bmax

n ] into 30 equidistant subintervals

and loop bn over the integers that are closest to the endpoints. We select an “optimal” value of

12While the pre-averaged (1,1)-bipower variation is robust to the presence of jumps in the p-lim, as n → ∞, in
practice it tends to be slightly upward biased for a finite value of n, because the jumps are not completely eliminated,
see, for example, Christensen, Oomen, and Podolskij (2014).

13We also experimented with a third external random variable using an alternative formulation of the two-point
distribution, where uj = ±1 with probability p = 1− p = 1/2. The outcome was more or less identical to the results
we report based on (2.), so we decided to exclude these results to save space.
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bn by using the minimum variance criterion of Politis, Romano, and Wolf (1999) with a two-sided

averaging window of length d = 2.

In Table 1 – 2, we report the rejection rates—averaged across simulations—of the above jump-

and noise-robust test of H0 at the 5% level of significance. The critical value in each test is found

either via the 95% quantile of the standard normal distribution function (labeled CLT), as motivated

by the asymptotic theory in Corollary 3.1, or with the help of the bootstrap-based percentile and

percentile-t approach—with the respective headings zwb· and twb·—for the two external random

variates u introduced above.

Throughout, we highlight the setting with ϕ = −0.5, while noting the simulated size and power

for other values of ϕ are generally within ±1%-point of the numbers reported here (the latter are

omitted, but available at request). This is also true for the noise variance parameter, ξ, which

changes the results in a limited way, if at all, as gauged by inspection of Panel A – C in each table.

As such, neither of the parameters associated to noise has a material effect on the outcome of the

t-statistic, illustrating its robustness to market frictions. On the other hand, by comparing Table 1

with Table 2, we note the pre-averaging window itself, via θ, has a more significant impact on the

test, though mostly in small samples. We comment further on that below. Also, as expected, the

block size bn increases monotonically with n.

Turning to the analysis of the rejection rates under H0 of constant volatility (size), the tables

show the test is oversized. In particular, the CLT-based approach has a pronounced distortion in

finite samples, starting at about 31.5% (22.5%) for θ = 1/3 (θ = 1). This is more than six (four)

times larger than the nominal level. These rates improve and decline towards 5% as n increases,

but remain elevated even in fairly large samples. In contrast, the bootstrap-based approaches are

much less biased relative to inference with the asymptotic critical value. The refinement brought

about by bootstrapping is often substantial, when the sample size is limited, and the rejection rates

are closer to the significance level across the board, albeit they are also mildly inflated initially. The

percentile approach appears to possess better size properties compared to the percentile-t, and it

settles around 5% fast. As noted above, the former procedure has the added advantage that is does

not require the user to input a—potentially imprecise—estimate of Σ. This also helps to make it

slightly less computationally intensive, so as a practical choice we advocate the percentile approach.

It is interesting to see that the difference between the two external random variables, in terms of

controlling size, is negligible, perhaps with a weak preference for the one based on the discrete

two-point distribution. In the empirical application below, we therefore base our investigation on

zwb2.

Next, we look at the simulation results underHa with time-varying volatility (power). The power

exhibited by the various tests is not overwhelming for small n, but it improves steadily towards

100% as n grows large. Still, it stays somewhat less than unity even for n = 23, 400. It appears

the CLT-based test has good power, but this is largely due to the sheer amount of Type I errors

committed with this statistic. We observe a drop in the rejection rates from Table 1 (with θ = 1/3)
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Figure 3: Properties of H-index and t-statistic.

Panel A: assessment of power. Panel B: value of the H-index.
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Note. We report the H-index and the outcome of the t-statistic (based on zwb2) for testing H0. H-index from (73) is a measure

of heteroscedasticity in σt, while its empirical counterpart Ĥ-index is defined in (74). In Panel A, we create an indicator variable
I, which tracks whether the t-statistic is significant (I=1) or not (I=0) at the 5% nominal level. We plot I against the H-index.
The crosses are local averages of I around the H-index, while the curve is based on a logistic regression of between the two.
The latter can be interpreted as the power of the test conditional on the amount of heteroscedasticity. In Panel B, we regress
Ĥ-index on H-index. The fit is Ĥ-index = 0.0198 + 0.6582·H-index. The 45-degree line offers a reference point for an unbiased
estimator. Throughout, the graphs are based on the setting with n = 23, 400, ξ2 = 0.01, ϕ = −0.5 and θ = 1.

vis-à-vis Table 2 (with θ = 1). This is because the increased amount of smoothing diminishes the

ability to uncover heteroscedastic volatility, and it highlights a crucial trade-off in practice, as higher

values of θ generally render our testing procedures more resilient to the effects of microstructure

noise.

This suggests our test is not always powerful enough to pick up variation in σt. There are several

possible explanations of this finding. First, the problem is not trivial. It may just be hard to detect

fluctuations in σt from noisy high-frequency data, leaving the jump distortion aside. Second, even if

σt is time-varying, its sample path—which differ between simulations—can move so little it appears

virtually homoscedastic, making it impossible to separate Ha from natural sampling variation, at

least for the sample sizes simulated here.

To shed light on this, we compute an H-index:

H-index = 1−
( ∫ 1

0
σ2
sds
)2∫ 1

0
σ4
sds

. (73)

The H-index in (73) compares the square of integrated variance to the integrated quarticity. It has

the intuitive interpretation that it describes how much σt deviates from H0 of constant volatility (in

percent), see, e.g., Podolskij and Wasmuth (2013).14 We note that H-index ∈ [0, 1] by construction,

where H-index = 0 if and only if σt is constant, while values greater than zero imply σt is to

14This statistic has indeed been used in earlier work to test for the parametric form of volatility (e.g., Dette,
Podolskij, and Vetter, 2006; Vetter and Dette, 2012). In contrast to our paper, the former operate with continuous
X. Moreover, the ratio also appears in a slightly different form and context in the jump-testing literature (e.g.,
Barndorff-Nielsen and Shephard, 2006; Kolokolov and Renò, 2016).
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some extent time-varying. The H-index is therefore a natural measure of heteroscedasticity in our

framework. The average value of the H-index for the two-factor stochastic volatility model with

diurnality used in this paper is about 0.25. It falls below 0.10 only 4% of the time, while it is never

smaller than 0.05.

In Panel A of Figure 3, we report the outcome of the t-statistic for the set of experiments with

time-varying volatility. We define an indicator variable I, which takes the value one, if H0 was

rejected (on the basis of zwb2), and zero otherwise. The figure is a scatter plot of I versus H-index.

The fitted line originates from a logit regression of I on H-index, which can be interpreted as the

power of the test, conditional on the H-index. As expected, the propensity to discard H0 is an

increasing function of the H-index. When the deviation from the null is about 0.15, the t-statistic

is significant about half of the times, while an H-index above 0.3 – 0.4 implies it more or less always

lies in the rejection region.

In practice, we estimate the H-index with an empirical counterpart based on the truncated

pre-averaged bipower variation:

Ĥ-index = 1−
(
B̌V (1, 1)n

)2

B̌V (2, 2)n
. (74)

In Panel B of Figure 3, we plot the Ĥ-index against the H-index. We note that Ĥ-index is a consistent

estimator of the H-index (up to a bias term, which can be made arbitrarily small with large choices

of θ and appears negligible in practice, if θ = 1, please revisit Figure 1). As apparent, Ĥ-index is

also downward biased, leading to an understatement of the true level of heteroscedasticity in the

diffusive process. The slope coefficient in a regression between the two is about two-thirds, and this

in part helps to explain, why it requires a fairly high reading of the H-index to confidently reject

H0 in our simulations.

Overall, our noise- and jump-robust test of heteroscedasticity in diffusive volatility implemented

via the bootstrap percentile-approach has good properties. In contrast to the CLT-based version

of the test, it is almost unbiased, also for very small values of n, while it has decent—albeit not

perfect—power under the presence of stochastic volatility.

5 Empirical application

In this section, we apply our test of heteroscedasticity to a large cross-sectional panel of US equity

high-frequency data. It includes the 30 stocks of the Dow Jones Industrial Average index—following

the update of its constituent list on March 18, 2015—and the SPDR S&P 500 trust. The latter

is an ETF with a price of about 1/10 the cash market value of the S&P 500 index. Our data are

extracted from the TAQ database and comprise a complete transaction record for the ticker symbols

associated with these stocks. The sample period is January 4, 2010 through December 31, 2013 for

a total of 1,006 official exchange trading days. We cleaned the high-frequency data according the

filter developed by Christensen, Oomen, and Podolskij (2014), building on earlier work of Brownless
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and Gallo (2006); Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009). It is a standard way

of preparing high-frequency data for analysis in the volatility literature. In the left-hand part of

Table 3, we provide a list of the companies included, along with a few summary statistics of their

associated transaction data.

In the right-hand side of Table 3, we report the rejection rate of H0 and average H-index

measurement across the sample for each stock. As above, we base our investigation on B̌V (2, 2)n

and B̌V (1, 1)n and apply the bootstrap percentile approach to evaluate our t-statistic, i.e. zwb2. H0

is discarded often, most of the time is excess of 50% – 60%. Moreover, the H-index is far away from

zero and typically exceeds 20%, so that the deviation from H0 is material. This suggests there is a

lot of variation in σt. These findings are supported by Figure 4, where we plot the cross-sectional

distribution of the H-index measure across stocks and over time. The “no truncation” curve is

a kernel smoothed density estimate of the H-index based on the non-truncated estimator in (13),

which is not sufficiently jump-robust, as detailed above, or has a large finite sample distortion. The

“+ truncation” adds the truncation approach, implemented as advocated in the simulation section.

In comparison, the density estimate of the H-index of the non-truncated estimator is shifted much

farther to the right. Taken together, this forcefully suggests intraday volatility varies in ways that

cannot be ascribed to sampling variation and therefore is not compatible with a constant diffusive

coefficient. This is not too surprising, of course, given the vast literature on time-varying volatility.

Still, our results show it is important to control for the jump part in this assessment, as otherwise

the degree of heteroscedasticity in σt is severely overstated.

Figure 4: Cross-sectional distribution of the empirical H-index.
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Note. We report a kernel smoothed estimate of the cross-sectional distribution of the H-index: “no truncation” is for the non-
truncated estimator, “+truncation” adds jump-truncation, while “+diurnal correction” is based on a jump-robust version of our
statistic after the return series has been deflated with a non-parametric jump-robust estimate of intraday diurnality, cf. Figure 5.
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5.1 Heteroscedasticity and intraday periodicity

It has been noticed that changes in intraday financial volatility is largely predictable, reflecting a

natural periodicity in the trading environment (e.g., Andersen and Bollerslev, 1997, 1998). In the

equity market, for instance, time-of-day volatility resembles a reverse J-shape with high volatility

in the morning, as overnight information gets incorporated into prices, followed by a cooling down

around noon, and then rising volatility prior to the close of the exchange as traders adjust their

holdings. In this light, we can ask whether the rejection of H0 is driven mostly by the (more or

less) deterministic variation of σt due to intraday periodicity?

Our procedure enables such an assessment and can help to shed light on this question. We there-

fore apply our test and the H-index measure to a modified log-return series that has been deflated

by a non-parametric jump-robust measure of diurnal variation in σt. We follow Boudt, Croux, and

Laurent (2011), who propose a time-of-the-day volatility factor as a jump-robust weighted standard

deviation (WSD) estimator. We first compute a previous-tick interpolated 5-minute log-return se-

ries across trading days. The WSD measure is then computed stock-by-stock as advocated in their

paper. The corresponding estimate is reported in Figure 5. The shape aligns with that found in the

previous work cited above, as noticed by the good correspondence with the setting in the simulation

section, which is inserted as a reference point.

Figure 5: Intraday variance factor in equity high-frequency data.
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Note. The figure presents the relative variation in the intraday returns of our TAQ high-frequency equity data. We construct a
series of 5-minute returns for each stock and then estimate the variance factors with the non-parametric jump-robust weighted
standard deviation estimator in Boudt, Croux, and Laurent (2011). The average value across the 31 companies we analyze is
reported, along with the highest and smallest estimate. As a comparison, we also plot the curve used in our simulations.

In Table 3, we recompute the t-statistic and H-index measure on the diurnal-corrected log-

return series. The two columns related to these numbers are highlighted by a superscript d. As

seen, the rejection of H0 drops substantially and now fails on average only about every fourth day.

The H-index often hovers around 0.1, which suggests that large portion of the time-variation is

sourced from the diurnal component, although residual volatility is still not completely constant.

The implication is that most of the days, but not always, if we get a good measure of the initial
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level of σt, for example via a kernel-based estimate, we can largely predict the intraday sample

path for volatility on a majority of days. This is corroborated by Figure 4, where we include the

cross-sectional distribution of the H-index measure after the diurnal correction has been switched

on (the “+ diurnal correction” curve). As evident, the distribution is less skewed to the right and

more concentrated around zero, although some deviation from H0 remains.

6 Conclusion

The main contribution of this paper is to propose an easy-to-compute statistical procedure to

measure the strength and test the presence of time-varying volatility in a discretely sampled jump-

diffusion process that is contaminated by microstructure noise. We use the concept of truncated

pre-averaged bipower variation to determine whether there is a presence of heteroscedasticity in

a discretely sampled process or not in noisy jump-diffusion models. The test statistic diverges to

infinity if heteroscedasticity are present and have a normal distribution otherwise. To improve infer-

ence, we suggest a bootstrap approach, and theoretically justify the use of the proposing bootstrap

method for testing the null hypothesis of “absence of heteroscedasticity” in noisy high frequency

data. Our Monte Carlo simulations show that the bootstrap improves the finite sample properties

of the asymptotic theory based test in presence of infinite-activity price jumps. To complement the

theory and Monte Carlo simulations results, we conduct an empirical application, which documents

the importance of jump-robustness, when measuring heteroscedasticity in practice. We also find

that a large fraction of variation in intraday volatility is accounted for by seasonality. This sug-

gests that, once we control for jumps and deflate asset returns by a non-parametric estimate of the

conventional U-shaped diurnality profile, the variance of the rescaled return series is often close to

constant within the day.
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Appendix

A The explicit form of Σ

In Section 2, we show that our proposed estimator Σ̌n is consistent for the asymptotic covariance

matrix of n1/4
(
BV (Y, l1, r1)n, BV (Y, l2, r2)n

)′
, i.e. Σ appearing in (17), Theorem B.1 and Theorem

3.1. We also prove a corresponding result for the bootstrap version, Σ̌n∗, in Section 3. In this short

appendix, we derive an explicit expression for Σ, which was not put in the main text. We follow

Podolskij and Vetter (2009a) by first defining:

hij(a, b, c) = cov
(
|H1|li |H2|ri , |H3|lj |H4|rj

)
,

where a is a real number, b and c are a two- and four-dimensional vector. Moreover, (H1, . . . , H4)

follows a multivariate normal distribution with:

1. E(Hl) = 0 and var(Hl) = b1a
2 + b2ω

2,

2. H1 ⊥ H2, H1 ⊥ H4, and H3 ⊥ H4,

3. cov(H1, H3) = cov(H2, H4) = c1a
2 + c2ω

2 and cov(H2, H3) = c3a
2 + c3ω

2.

We set t =

(
1

θ
ψ1, θψ2

)
and define:

f1(s) =
1

θ
φ1(s), f2(s) = θφ2(s), f3(s) = θφ3(s), f4(s) =

1

θ
φ4(s),

for s ∈ [0, 2], where

φ1(s) =

∫ 1−s

0

g′(u)g′(u+ s)du, φ2(s) =

∫ 1−s

0

g(u)g(u+ s)du,

φ3(s) =

∫ 2−s

0

g′(u)g′(u+ s− 1)du and φ4(s) =

∫ 2−s

0

g(u)g(u+ s− 1)du.

We note that both f1 and f2 are 0 for s ∈ [1, 2], according to the assumptions imposed on g. We

next let f(s) =
(
f1(s), f2(s), f3(s), f4(s)

)′
. At last, we get that

Σ =
(

Σl1,r1,l2,r2
ij

)
1≤i,j≤2

=

∫ 1

0

(
wl1,r1,l2,r211 wl1,r1,l2,r212

wl1,r1,l2,r221 wl1,r1,l2,r222

)
(σu)du,

where

wl1,r1,l2,r2ij (σu) = 2θ

∫ 2

0

hij
(
σu, t, f(s)

)
ds.
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B Proofs

In the appendix, K denotes a generic constant, which changes from line to line. Also, as in Jacod

and Protter (2012), we assume that a, σ, δ and X are bounded. As Jacod, Podolskij, and Vetter

(2010) explain, this follows by a standard localization procedure, described in Jacod (2008), and

does not lose generality. Formally, we derive our results under the assumption:

Assumption (G): X follows (1) with a and σ are adapted, càdlàg processes such that a, σ, δ

and X are bounded, so that for some constant K and nonnegative deterministic function γ̃:

‖at(ω)‖ ≤ K, ‖σt(ω)‖ ≤ K, ‖Xt(ω)‖ ≤ K, ‖δ(ω, t, x)‖ ≤ γ̃(x) ≤ K,

∫
R
γ̃(x)βλ(dx) ≤ K.

Throughout the appendix, it will be convenient to define the continuous part of X by X ′ and the

discontinuous martingale part by X ′′, i.e.

X ′t = X0 +

∫ t

0

a′sds+

∫ t

0

σsdWs, X ′′t = Xt −X ′t, (75)

where, according to the value of β, we set

a′s =

{
as −

(
δ1{|δ|≤1}

)
? νt, if β ≤ 1

as +
(
δ1{|δ|>1}

)
? νt, if β > 1

.

Then, we can write

Yt = Y ′t + Y ′′t , (76)

where Y ′t = X ′t + εt and Y ′′t = X ′′t . As in the main text, if we write BV (l, r)n, B̌V (l, r)n, B(l, r)ni ,

∆B(l, r)ni , y̌(l, r)ni , B̌(l, r)ni or ∆̌B(l, r)ni , we assume they are defined with respect to Y .

Proof of Theorem 2.1. Here, we more or less follow the techniques applied in the proof of Theo-

rem 4.1 in Hounyo (2015). Under the stated assumptions, the definitions of B̌V (Y, l, r)n, B̌V (Y ′, l, r)n,

and the central limit theorem in Theorem 3 of Podolskij and Vetter (2009a), it holds that, as n→∞,

n1/4

(
B̌V (Y ′, l1, r1)n −BV (l1, r1)

B̌V (Y ′, l2, r2)n −BV (l2, r2)

)
st→MN(0,Σ).

Thus, it suffices to prove that for any l, r > 0,

n1/4
(
B̌V (Y, l, r)n − B̌V (Y ′, l, r)n

) p→ 0. (77)

To show (77), we let Fu(x) = F (x)1{|x1|<u}1{|x2|<u}, for some u > 0, where F (x) = |x1|l|x2|r with

x =
(
x1 x2

)′
. As in the line of thought on page 385 in Jacod and Protter (2012), we can show

that for wn = υn/
√
un with un = kn/n:

|Fwn(x+ y)− Fwn(x)| ≤ w
− 2

1−2ω
n ‖x‖l+r+

2
1−2ω +

((
1 + ‖x‖l+r

)(
‖y‖ ∧ 1 + ‖y‖l+r ∧ wl+rn

))
.

Next, let x =
(
∆n
i−1Ȳ ∆n

i−1+kn
Ȳ
)′
/
√
un and y =

(
∆n
i−1Ȳ

′′ ∆n
i−1+kn

Ȳ ′′
)′
/
√
un. According to
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(16.4.9) in Jacod and Protter (2012) in conjunction with results in part 3 in the proof of Lemma

16.4.5 in that book, for some l + r > 0:

E
(
‖x‖l+r

)
≤ K, E

(
‖y‖ ∧ 1

)
≤ Ku1−β/2

n φn and E
(
‖y‖2 ∧ w2

n

)
≤ Kuω(2−β)

n φn, (78)

where φn → 0 as n→ 0. In addition, from (78) and the inequality (‖y‖∧wn)p ≤ wp−mn (‖y‖∧wn)m,

for 0 < m < p, it is found that

E
(
‖y‖l+r ∧ wl+rn

)
≤ Kwl+r−2

n E
(
‖y‖ ∧ wn

)2 ≤ Ku
ω(l+r−β)− 1

2
(l+r−2)

n φn, (79)

where again φn → 0 as n→ 0. Thus, from the above inequalities together with the definition

n1/4
(
B̌V (Y, l, r)n − B̌V (Y ′, l, r)n

)
=
n
l+r−3

4

µlµr

n−2kn+2∑
i=1

(
|∆n

i−1Ȳ |l|∆n
i−1+knȲ |

r − |∆n
i−1Ȳ

′|l|∆n
i−1+knȲ

′|r
)

1{|∆n
i−1Ȳ |<υn}1{|∆n

i−1+kn
Ȳ |<υn},

it follows that

n
l+r−3

4
1

µlµr

n−2kn+2∑
i=1

E

(∣∣∣(|∆n
i−1Ȳ |l|∆n

i−1+knȲ |
r − |∆n

i−1Ȳ
′|l|∆n

i−1+knȲ
′|r
)

1{|∆n
i−1Ȳ |<υn}1{|∆n

i−1+kn
Ȳ |<υn}

∣∣∣)
≤ Kn

l+r−3
4 n · u

l+r
2
n

(
un + u1−r/2

n φn + u
ω(l+r−β)− 1

2
(l+r−2)

n φn

)
≤ Kn

1
4

(
n−1/2 + n

β−2
4 φn + n

(l+r−2)−2ω(l+r−β)
4 φn

)
≤ K

(
n−1/4 + n

(β−1)
4 φn + n

(l+r−1)−2ω(l+r−β)
4 φn

)
.

Thus, if β < 1 and l+r−1
2(l+r−β)

≤ $ < 1/2, then E
(
|n1/4(B̌V (Y, l, r)n − B̌V (Y ′, l, r)n)|

)
→ 0 and

therefore n1/4(B̌V (Y, l, r)n − B̌V (Y ′, l, r)n)
p→ 0. This completes the proof of Theorem 2.1. �

Next, we establish the following result (under no jumps) since it will be useful later in the proof

of Theorem 3.1.

Theorem B.1 Let l1, r1, l2 and r2 be four positive real numbers and X given by

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs. (80)

We define:

Σ̂n =

√
n

2bn

Nn−2bn+1∑
i=1

ξiξ
′
i, (81)

where ξi ≡ (∆B(l1, r1)ni ,∆B(l2, r2)ni )′, such that

∆B(l, r)nj = B(Y, l, r)nj+bn −B(Y, l, r)nj , (82)

with

B(l, r)nj = n
l+r
4
−1 1

µlµr

bn∑
i=1

y(l, r)ni−1+j. (83)
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Furthermore, we assume (V), (A), and impose the moment condition E(|εt|s) < ∞, for some

s > (3 ∧ 2(r1 + l1) ∧ 2(r2 + l2)). If any li or ri is in (0, 1], we postulate (V′), otherwise either (V′)

or (A′). In addition, suppose that kn → ∞ as n → ∞ such that (14) holds, and the block size bn

fulfills (25) for some 1/2 < δ1 < 2/3. Then, as n→∞,

Σ̂n p→ Σ, (84)

where Σ is defined in Appendix A.

Proof of Theorem B.1. Here, recall that X follows (80) and note that given (81), we can rewrite

Σ̂n as follows:

Σ̂n =
1

bn

bn∑
m=1

Σ̂n
m, (85)

where

Σ̂n
m =

√
n

2

bNnbn c−2∑
k=0

ξkbn+mξ
′
kbn+m =

(
Σ̂l1,r1,l2,r2,n
ij,m

)
1≤i,j≤2

. (86)

Thus, it suffices to show that Σ̂n
m

p→ Σ, uniformly in m. Thus, the proof is reduced to show that

p-lim
n→∞

Σ̂l1,r1,l2,r2,n
ij,m = Σl1,r1,l2,r2

ij , 1 ≤ i, j ≤ 2, (87)

uniformly in m. Note that we can rewrite Σ̂l1,r1,l2,r2,n
ij,m as

Σ̂l1,r1,l2,r2,n
ij,m =

√
n

2

bNnbn c−2∑
k=0

∆B(Y, li, ri)
n
kbn+m∆B(Y, lj, rj)

n
kbn+m.

Then, given the definition of ∆B(Y, l, r)nm given in (82), by adding and subtracting appropriately,

it follows that

Σ̂l1,r1,l2,r2,n
ij,m =

√
n

2

bNnbn c−2∑
k=0

2B(Y, li, ri)
n
(k+1)bn+mB(Y, lj, rj)

n
(k+1)bn+m

−B(Y, li, ri)
n
(k+1)bn+mB(Y, lj, rj)

n
kbn+m

−B(Y, li, ri)
n
kbn+mB(Y, lj, rj)

n
(k+1)bn+m



+

√
n

2


B(Y, li, ri)

n
mB(Y, lj, rj)

n
m

+B(Y, li, ri)
n

(bNnbn c−1)bn+m
B(Y, lj, rj)

n

(bNnbn c−1)bn+m

−B(Y, li, ri)
n

(bNnbn c−2)bn+m
B(Y, lj, rj)

n

(bNnbn c−1)bn+m

−B(Y, li, ri)
n

(bNnbn c−1)bn+m
B(Y, lj, rj)

n

(bNnbn c−2)bn+m


= M l1,r1,l2,r2,n

ij,m (Y ) +Rl1,r1,l2,r2,n
ij,m (Y ),

where the remainder term is

Rl1,r1,l2,r2,n
ij,m (Y ) = Op

(
n−

3
2 b2
n

)
= op(1),

uniformly in m, so long as δ1 < 3/4, where we apply the definition of B(Y, l, r)nm in (83), the

Cauchy-Schwartz inequality, and the fact that E
(
|∆n

i Ȳ |l
)
≤ Kn−l/4 (cf., Lemma 1 of Podolskij

34



and Vetter, 2010). Next, we show the main term is such that

p-lim
n→∞

M l1,r1,l2,r2,n
ij,m (Y ) = Σij, 1 ≤ i, j ≤ 2, (88)

uniformly in m. We prove the result for the following unsymmetrized estimator:

M̃ l1,r1,l2,r2,n
ij,m (Y ) =

√
n

bNnbn c−1∑
k=1

(
B(Y, li, ri)

n
kbn+mB(Y, lj, rj)

n
kbn+m

−B(Y, li, ri)
n
kbn+mB(Y, lj, rj)

n
(k−1)bn+m

)
. (89)

We introduce two approximations of B(Y, l, r)njbn+m:

B̃(Y, l, r)njbn+m = n
l+r
4
−1 1

µlµr

bn∑
i=1

ỹ(l, r)ni−1+jbn+m,

B̄(Y, l, r)njbn+m = n
l+r
4
−1 1

µlµr

bn∑
i=1

ỹ(l, r)ni−1+(j−1)bn+m,

where ỹ(Y, l, r)i =
∣∣∆n

i−1Ỹ
∣∣l∣∣∆n

i−1+kn
Ỹ
∣∣r with ∆n

i Ỹ = ∆n
i ε̄+σ jbn

Nn

∆n
i W̄ , for jbn+m ≤ i ≤ (j+1)bn+

m− 1. We then show that the error due to replacing ∆n
i Ȳ by ∆n

i Ỹ is small enough to be ignored

and, hence, does not affect our theoretical results. This is true, because σ is assumed to be an Itô

semimartingale itself, so that

E
(∣∣∆n

i Ȳ −∆n
i Ỹ
∣∣) = E

(∣∣∣ kn∑
j=1

g

(
j

kn

)∫ i+j
n

i+j−1
n

asds+
kn∑
j=1

g

(
j

kn

)∫ i+j
n

i+j−1
n

(
σs − σ jbn

Nn

)
dWs

∣∣∣)

≤ K

kn
n

+

(
kn∑
j=1

g2

(
j

kn

)
E

(∣∣∣ ∫ i+j
n

i+j−1
n

(
σs − σ jbn

Nn

)
dWs

∣∣∣)2)1/2


≤ K

(
kn
n

+

(
kn
n

bn
n

)1/2
)
≤ K

(knbn)1/2

n
.

Note that E
(
|B(Y, l, r)nm|

)
≤ K bn

n
uniformly in m, and so

E
(∣∣B(Y, l, r)njbn+m − B̃(Y, l, r)njbn+m

∣∣) ≤ Kbn

(
(knbn)1/2

n

(
1√
kn

) (l+r)
4
−1
)

≤ K

(
bn
n

)3/2

.

Likewise for B̄ (Y, l, r)njbn+m, we find that E
(∣∣B(Y, l, r)njbn+m − B̄(Y, l, r)njbn+m

∣∣) ≤ K
(
bn
n

)3/2

. And

because δ < 2/3, we deduce that M̃ l1,r1,l2,r2,n
ij,m (Y )− M̄ l1,r1,l2,r2,n

ij,m (Y ) = op(1), uniformly in m, where

M̄ l1,r1,l2,r2,n
ij,m (Y ) =

√
n

bNnbn c−1∑
k=1

(
Bnkbn+m − B̂nkbn+m

)
,
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such that

Bnkbn+m = B̄(Y, l1, r1)nkbn+mB̄(Y, l2, r2)nkbn+m and B̂nkbn+m = B̄(Y, l1, r1)nkbn+mB̃(Y, l2, r2)n(k−1)bn+m.

Then,

√
n

∣∣∣∣∣
bNnbn c−1∑
k=1

E

(
Bnkbn+m − E

(
Bnkbn+m | Fn(k−1)bn+m

Nn

))∣∣∣∣∣ ≤ K
b

3/2
n

n
,

√
n

∣∣∣∣∣
bNnbn c−1∑
k=1

E

(
B̂nkbn+m − E

(
B̂nkbn+m | Fn(k−1)bn+m

Nn

))∣∣∣∣∣ ≤ K
b

3/2
n

n
,

by conditional independence, and now we are left with

M̄ l1,r1,l2,r2,n
ij,m (Y ) =

√
n

bNnbn c−1∑
k=1

E
(
Bnkbn+m − B̂nkbn+m | Fn(k−1)bn+m

Nn

)
+ op(1),

uniformly in m. As in Podolskij and Vetter (2010) and using δ > 1/2, we note that

√
nE
(
Bnkbn+m − B̂nkbn+m | Fn(k−1)bn+m

Nn

)
= 2θ

∫ kbn
Nn

(k−1)bn
Nn

∫ 2

0

hij
(
σu, t, f(s)

)
dsdu+ o

(
bn
Nn

)
,

uniformly in k and m, and thus

M̄ l1,r1,l2,r2,n
ij,m (Y ) = 2θ

∫ 1

0

∫ 2

0

hij
(
σu, t, f(s)

)
dsdu+ op(1)

=

∫ 1

0

wl1,r1,l2,r2ij

(
σu
)
du+ op(1),

uniformly in m, and the proof is complete. �

Proof of Theorem 3.1. We prove (45) solely in model (1), which is enough, as it is the most

general and nests (80). Now, under the stated assumptions, the definitions of Σ̌l1,r1,l2,r2,n
ij (Y ),

Σ̌l1,r1,l2,r2,n
ij (Y ′), and the limiting result in Theorem B.1, we deduce that, as n→∞,

p-lim
n→∞

Σ̂l1,r1,l2,r2,n
ij,m (Y ′) = Σl1,r1,l2,r2

ij , for 1 ≤ i, j ≤ 2,

uniformly in m. Thus, to get the desired result, it suffices to show that

p-lim
n→∞

(
Σ̌l1,r1,l2,r2,n
ij,m (Y )− Σ̌l1,r1,l2,r2,n

ij,m (Y ′)
)

= 0, for 1 ≤ i, j ≤ 2, (90)
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uniformly in m. Inserting the definition of Σ̌l1,r1,l2,r2,n
ij (Y ) and Σ̌l1,r1,l2,r2,n

ij (Y ′), it holds that

2√
n

(
Σ̌l1,r1,l2,r2,n
ij,m (Y )− Σ̌l1,r1,l2,r2,n

ij,m (Y ′)
)

=

bNnbn c−2∑
k=0

(
∆̌B(Y, li, ri)

n
kbn+m∆̌B(Y, lj, rj)

n
kbn+m − ∆̌B(Y ′, li, ri)

n
kbn+m∆̌B(Y ′, lj, rj)

n
kbn+m

)

=

bNnbn c−2∑
k=0

((
B̌(Y, li, ri)

n
(k+1)bn+mB̌(Y, lj, rj)

n
(k+1)bn+m − B̌(Y ′, li, ri)

n
(k+1)bn+mB̌(Y ′, lj, rj)

n
(k+1)bn+m

)
−
(
B̌(Y, li, ri)

n
(k+1)bn+mB̌(Y, lj, rj)

n
kbn+m − B̌(Y ′, li, ri)

n
(k+1)bn+mB̌(Y ′, lj, rj)

n
kbn+m

)
−
(
B̌(Y, li, ri)

n
kbn+mB̌(Y, lj, rj)

n
(k+1)bn+m − B̌(Y ′, li, ri)

n
kbn+mB̌(Y ′, lj, rj)

n
(k+1)bn+m

)
+
(
B̌(Y, li, ri)

n
kbn+mB̌(Y, lj, rj)

n
kbn+m − B̌(Y ′, li, ri)

n
kbn+mB̌(Y ′, lj, rj)

n
kbn+m

))
(91)

where

B̌(Y, l, r)nj = n
l+r
4
−1 1

µlµr

bn∑
i=1

y̌(Y, l, r)ni−1+j.

In the following, we define:

πl1,r1,l2,r2,nk,k′ (Y, Y ′) = y̌(Y, li, ri)
n
k y̌(Y, lj, rj)

n
k′ − y̌(Y ′, li, ri)

n
k y̌(Y ′, lj, rj)

n
k′

=
(
|∆n

k−1Ȳ |l1|∆n
k−1+knȲ |

r1|∆n
k′−1Ȳ |l2|∆n

k′−1+knȲ |
r2

− |∆n
k−1Ȳ

′|l1 |∆n
k−1+knȲ

′|r1|∆n
k′−1Ȳ

′|l2|∆n
k′−1+knȲ

′|r2
)

1Ck,k′ ,

where Ck,k′ =
{
|∆n

k−1Ȳ | < υn
}
∩
{
|∆n

k−1+kn
Ȳ | < υn

}
∩
{
|∆n

k′−1Ȳ
′| < υn

}
∩
{
|∆n

k′−1+kn
Ȳ ′| < υn

}
.

Then, from (91) it follows that

Σ̌l1,r1,l2,r2,n
ij,m (Y )− Σ̌l1,r1,l2,r2,n

ij,m (Y ′)

=
n
l1+r1+l2+r2−6

4

2µl1µr1µl1µr2

bNnbn c−2∑
j=0

bn∑
k=1

bn∑
k′=1

(
πl1,r1,l2,r2,nk−1+(j+1)bn+m,k′−1+(j+1)bn+m(Y, Y ′)− πl1,r1,l2,r2,nk−1+(j+1)bn+m,k′−1+jbn+m(Y, Y ′)

− πl1,r1,l2,r2,nk−1+jbn+m,k′−1+(j+1)bn+m(Y, Y ′) + πl1,r1,l2,r2,nk−1+jbn+m,k′−1+jbn+m(Y, Y ′)
)

≡ Σ̌
(1),l1,r1,l2,r2,n
ij,m (Y, Y ′)− Σ̌

(2),l1,r1,l2,r2,n
ij,m (Y, Y ′)− Σ̌

(3),l1,r1,l2,r2,n
ij,m (Y, Y ′) + Σ̌

(4),l1,r1,l2,r2,n
ij,m (Y, Y ′).

The statement in (90) is therefore reduced to show that

Σ̌
(k),l1,r1,l2,r2,n
ij,m (Y, Y ′)

p→ 0, (92)

for k = 1, . . . , 4. The convergence in probability to zero of the four terms is proven with identical

techniques. It is therefore sufficient to show it for a single k, so we do it with k = 1. To this end, let

Fu(x) = F (x)1{|x1|<u}1{|x2|<u}1{|x3|<u}1{|x4|<u}, for u > 0, where F (x) = |x1|l1|x2|r1|x3|l2|x4|r2 with
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x =
(
x1 x2 x3 x4

)′
. Following the line of thought used also in the proof of Theorem 2.1, we can

show that for wn = υn/
√
un with un = kn/n:

|Fwn(x+ y)− Fwn(x)| ≤ w
−2

1−2ω
n ‖x‖p+

2
1−2ω +

(
(1 + ‖x‖p)

(
‖y‖ ∧ 1 + (‖y‖ ∧ wn)p

))
,

where p = l1 + r1 + l2 + r2. Next, set x =
(
∆n
k−1Ȳ ∆n

k−1+kn
Ȳ ∆n

k′−1Ȳ ∆n
k′−1+kn

Ȳ
)′
/
√
un,

y =
(
∆n
k−1Ȳ

′′ ∆n
k−1+kn

Ȳ ′′ ∆n
k′−1Ȳ

′′ ∆n
k′−1+kn

Ȳ ′′
)′
/
√
un. As in (78) — (79), it holds true that

E
(
‖x‖p

)
≤ K, E

(
‖y‖ ∧ 1

)
≤ Ku1−β/2

n φn and E
(
(‖y‖ ∧ wn)p

)
≤ Ku

ω(p−β)− (p−2)
2

n φn, (93)

where φn → 0 as n→ 0. Therefore,

n
l1+r1+l2+r2−6

4

2µl1µr1µl1µr2

bNnbn c−2∑
j=0

bn∑
k=1

bn∑
k′=1

E
(∣∣πl1,r1,l2,r2,nk−1+(j+1)bn+m,k′−1+(j+1)bn+m(Y, Y ′)

∣∣)︸ ︷︷ ︸
=O

(
u

l1+r1+l2+r2
2

n

(
un+u

1−r/2
n φn+u

ω(4−r)−1
n φn

))

≤ Kn
4δ1−2

4

(
n−

1
2 + n

β−2
4 φn + n

l1+r1+l2+r2−2−2ω(l1+r1+l2+r2−β)
4 φn

)
≤ K

(
nδ1−1 + n

4δ1−4+β
4 φn + n

4δ1−4+l1+r1+l2+r2−2ω(l1+r1+l2+r2−β)
4 φn

)
→ 0,

which concludes the proof of (90) and, hence, Theorem 3.1. �

Proof of Lemma 3.1. The linearity of the expectation operator implies that

E∗
(
B̌V (l, r)n∗

)
= E∗

[
B̌V (l, r)n − 1√

bn

Jn∑
j=1

∆̌B(l, r)nj uj

]

= B̌V (l, r)n − 1√
bn

Jn∑
j=1

∆̌B(l, r)njE
∗(uj).

Then, if E∗(uj) = 0, it follows that E∗
(
B̌V (l, r)n∗

)
= B̌V (l, r)n. The second part of the lemma

follows from (27) and (33), as for 1 ≤ i, j ≤ 2,

cov∗
(
n1/4B̌V (li, ri

)n∗
, n1/4B̌V (lj, rj)

n∗)
=
√
n cov∗

(
B̌V (li, ri)

n − 1√
bn

Jn∑
k=1

∆̌B(li, ri)
n
kuk, B̌V (lj, rj)

n − 1√
bn

Jn∑
k=1

∆̌B(lj, rj)
n
kuk

)

=

√
n

bn

Jn∑
k=1

∆̌B(li, ri)
n
k∆̌B(lj, rj)

n
kvar∗(uk).

Thus, if var∗(uk) = 1/2, we find that

cov∗
(
n1/4B̌V (li, ri

)n∗
, n1/4B̌V (lj, rj)

n∗) = Σ̌l1,r1,l2,r2,n
ij ,
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where

Σ̌l1,r1,l2,r2,n
ij =

√
n

2bn

Jn∑
k=1

∆̌B(li, ri)
n
k∆̌B(lj, rj)

n
k .

�

Proof of Corollary 3.1. Given (20), (22), and (46) the results follows from the properties of

stable convergence. �

Proof of Corollary 3.2. The result follows directly given (38) and the consistency result of Σ̌l1,r1,l2,r2

in Theorem 3.1. �

Proof of Theorem 3.2. We again prove the theorem in model (1) only, noting that this is enough,

as it nests both (80) and (7). Write

Zn∗ =
(
Σ̌n
)−1/2

n1/4

Jn∑
j=1

Dje
∗
j ≡ n1/4

Jn∑
j=1

z∗j ,

with z∗j ≡
(
Σ̌n
)−1/2

Dje
∗
j ,

Dj =

(
∆̌B(l1, r1)nj 0

0 ∆̌B(l2, r2)nj ,

)
and e∗j =

(
uj − E∗(uj)
uj − E∗(uj)

)
where uj are i.i.d. with var∗(uj) = 1/2. Note that e∗j is an i.i.d. zero mean vector. We follow Pauly

(2011) and use a modified Cramer-Wold device to establish the bootstrap CLT. Let D = {λk : k ∈
N} be a countable dense subset of the unit circle on R2. The proof follows by showing that for any

λ ∈ D,λ′Z∗n
d∗→ N(0, 1), in probability-P , as n→∞. We note that

λ′Z∗n = n1/4

Jn∑
j=1

λ′z∗j .

It follows from Lemma 3.1 and Corollary 3.2 that E∗(λ′Z∗n) = 0 and var∗(λ′Z∗n) = 1 for all n. To

conclude, it thus remains to prove that λ′Z∗n is asymptotically normally distributed, conditionally

on the original sample and with probability P approaching one. As (z∗j )
Jn
j=1 forms an independent

array—conditionally on the sample—by the Berry-Esseen bound (e.g., Katz (1963)), for some small

ε > 0 and a constant K > 0, supx∈R

∣∣∣P ∗(∑Jn
j=1 n

1/4λ′z∗j ≤ x
)
− Φ(x)

∣∣∣ ≤ K
∑Jn

j=1 E
∗
∣∣n1/4λ′z∗j

∣∣2+ε
.

Next, we show that
∑Jn

j=1E
∗
∣∣n1/4λ′z∗j

∣∣2+ε
= op(1). First, for a constant K independent of n (note

that the moments of e∗j do not depend on n) and any 1 ≤ j ≤ Jn by the cr-inequality:∣∣λ′z∗j ∣∣2+ε ≤ ‖λ‖2+ε
∥∥∥(Σ̌n

)−1/2
∥∥∥2+ε

‖Dj‖2+ε‖e∗j‖2+ε.

Thus,

E∗
(
|λ′z∗j |2+ε

)
≤ ‖λ‖2+ε

∥∥∥(Σ̌n
)−1/2

∥∥∥2+ε

‖Dj‖2+εE∗
(
‖e∗j‖2+ε

)
≤ K

∥∥∥(Σ̌n
)−1/2

∥∥∥2+ε
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implying that

Jn∑
j=1

E∗|n1/4λ′z∗j |2+ε ≤ Kn
2+ε
4

∥∥∥(Σ̌n
)−1/2
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Jn∑
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≤ Kn
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)

≤ Kn
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4
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Jn∑
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(
B̌(l1, r1)nj+bn − B̌(l1, r1)nj
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+Kn
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j=1

((
B̌(l1, r1)nj
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B̌(l2, r2)nj
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, (94)

where the second inequality is due to that, for any j, ‖Dj‖2 =
(
∆̌B(l1, r1)nj

)2
+
(
∆̌B(l2, r2)nj

)2
,

while the third is by expression of ∆̌B(l, r)nj . Next, note that by definition of B̌(l, r)nj :

Jn∑
j=1

(
B̌(l, r)nj

)2+ε
=

Jn∑
j=1

(
n
l+r
4
−1 1

µlµr

bn∑
i=1

y̌(l, r)ni−1+j

)2+ε

≤ Kn( l+r4 −1)(2+ε)b1+ε
n

Jn∑
j=1

bn∑
i=1

(
y̌(l, r)ni−1+j

)2+ε

= Op

(
n(δ1−1)(1+ε)

)
.

We can therefore write (94) as follows:

Jn∑
j=1

E∗
(
|n1/4λ′z∗j |2+ε

)
= Op

(
n

2+ε
4 n(δ1−1)(1+ε)

)
= op(1),

where the last equality follows as for ε > 2, so long as 1/2 < δ1 < 2/3, (δ1 − 1)(1 + ε) + 2+ε
4
< 0.

This completes the proof of (52). The last results then follow by application of the delta rule. �

Proof of Theorem 3.3. First, we define:

Hn∗ =
(
Σ̌n∗)−1/2

n1/4

(
B̌V (l1, r1)n∗ − E∗

(
B̌V (l1, r1)n∗

)
B̌V (l2, r2)n∗ − E∗

(
B̌V (l2, r2)n∗

) )

≡
(
Σ̌n∗)−1/2(

Σ̌n
)1/2
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where

Zn∗ =
(
Σ̌n
)−1/2

n1/4

(
B̌V (l1, r1)n∗ − E∗

(
B̌V (l1, r1)n∗

)
B̌V (l2, r2)n∗ − E∗

(
B̌V (l2, r2)n∗

) ).
It follows from Theorem 3.2 that Zn∗ d∗→ N(0, I2). Thus, the central limit theory for Hn∗ is

established, if we can show that
(
Σ̌n∗)−1

Σ̌n =
(
Σ̌n
)−1

Σ̌n∗ p∗→ I2. To do this, we prove that

E∗
[(

Σ̌n
)−1

Σ̌n∗
]
p∗→ I2 and var∗

[(
Σ̌n
)−1

Σ̌n∗
]
p∗→ 0. (95)

The first equation in (95) holds by the definition of Σ̌n and Σ̌n∗. Next, again by definition:
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.

As in the proof of Theorem 4.2 in Hounyo (2015):

E

(∥∥∥∥ nb2
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where the last inequality follows, because
l + r − 1

2(l + r − β)
≤ $ < 1/2 means that

√
E
(∣∣B̌(l, r)nj

∣∣4) ≤
K
b2
n

n2
. As Jn = O(n) and bn = O

(
nδ1
)

such that 1/2 < δ1 < 2/3 from (25), it follows that

var∗
[(

Σ̌n
)−1

Σ̌n∗
]
p∗→ 0.

This finishes the proof of the first part Theorem 3.3. The last result again follows by a direct

application of the delta rule. �
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