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Abstract

This paper provides new evidence on bond risk premia by conditioning the classic
Campbell-Shiller regressions on the business cycle. In expansions, we �nd mostly posi-
tive intercepts and negative regression slopes, but the results are completely reversed in
recessions with negative intercepts and positive regression slopes. We reproduce these
coe¢ cients in a term structure model with business cycle dependent loadings in the mar-
ket price of risk. This model also predicts excess returns in the right direction during
expansions and recessions, whereas the Gaussian a¢ ne term structure model predicts
excess returns for medium- and long-term bonds with the wrong sign during recessions.
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1 Introduction

The expectations hypothesis of the term structure speci�es that any long-term interest rate is

given by the average of expected future short rates and that excess returns on any long-term bond

therefore are unpredictable. Despite its appealing intuition, the expectations hypothesis is often

rejected empirically, perhaps most forcefully in the seminal study of Campbell and Shiller (1991).

This paper provides new evidence on bond risk premia by conditioning the classic Campbell-Shiller

regressions on the business cycle through separate intercepts and slope coe¢ cients in expansions

and recessions. This extension is motivated by previous research showing that interest rates are

more persistent in expansions than in recessions and that two-state models describe interest rate

dynamics much better than single-state models, see Hamilton (1988), Gray (1996), Ang and Bekaert

(2002), Bansal and Zhou (2002), among others.

Our modi�ed Campbell-Shiller regressions reveal a unique business cycle dependent pattern in the

relation between the slope of the yield curve (i.e., the yield spread) and subsequent yield changes.

In expansions, we �nd mostly positive intercepts and negative regression slopes that decrease with

maturity, similar to what typically is reported for ordinary Campbell-Shiller regressions, i.e. without

conditioning on the business cycle (see, e.g., Bekaert, Hodrick and Marshall (1997) and Dai and

Singleton (2002)). By contrast, in recessions, we obtain negative intercepts and positive slope

coe¢ cients that generally increase with maturity. This switch in the regression coe¢ cients is

signi�cant using both asymptotic and bootstrapped Wald tests. Given that the slope coe¢ cients

are closer to the expectations hypothesis in recessions than in expansions, this novel result suggests

that bond risk premia, as measured by excess returns, are more predictable by the yield spread

during expansions than during recessions. We also show that the evidence of asymmetric return

predictability extends to other prominent yield-based predictors such as the forward spread (Fama

and Bliss (1987)) and the return forecasting factor introduced by Cochrane and Piazzesi (2005).1

To provide an explanation of these new empirical �ndings, we propose a dynamic term structure

model (DTSM) with business cycle dependent loadings in the market price of risk. Contrary

to previous DTSMs with regime switching, we discipline our model to have observed regimes of

either expansions or recessions but include time-varying physical transition probabilities between

1Hence, forecasting bond returns during recessions from macro variables as in Ludvigson and Ng (2009) seems more
promising, although Du¤ee (2013) and Bauer and Hamilton (2015) question the ability of macro variables to predict
bond returns beyond the information contained in the yield curve when accounting for small-sample distortions.
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regimes, which may depend on the business cycle and the current yield curve. To ensure fast and

reliable inference of our model, we extend the sequential regression (SR) approach of Andreasen

and Christensen (2015) to estimate all parameters in our regime-dependent market price of risk

in closed form by a modi�ed OLS regression. This implies that our regime-switching model can

be estimated in a few minutes with no additional computational costs compared to the Gaussian

ATSM.

The main results from estimating our regime-switching model with three pricing factors on monthly

U.S. data (1961:6 to 2013:12) are as follows. First, our model is able to match the empirical inter-

cepts and slope coe¢ cients in ordinary Campbell-Shiller regressions and in our modi�ed Campbell-

Shiller regressions conditioning on the business cycle. As a consequence, model-implied expected

excess returns correlate positively with realized excess returns during both expansions and reces-

sions. In contrast, the inability of the Gaussian ATSM to match the switch in the Campbell-Shiller

regression slopes implies that this model predicts excess returns for medium- and long-term bonds

with the wrong sign during recessions. Second, our model also replicates the observed asymmetry

in return predictability, i.e. that the yield spread, the forward spread, and the Cochrane-Piazzesi

factor have strong predictive power in expansions but not in recessions. Third, to account for these

asymmetric patterns in the yield curve across the business cycle, our model generates a negative

relation between the short rate and excess returns in expansions (as in the Gaussian ATSM), but a

positive relation in recessions. This means that our model displays a tendency for expected excess

returns to peak at the start of a recession and then mean-revert during the middle and last part of

a recession when the Federal Reserve starts to lower its policy rate. Thus, our model suggests that

the Federal Reserve is able to remove some of the risks attached to recessions, as accommodating

monetary policy reduces the required risk compensation in the bond market. This e¤ect of mon-

etary policy is not present in the Gaussian ATSM, which generally predicts that expected excess

returns increase throughout the entire recession. We �nally show that our fully �exible regime-

switching model is robust to accounting for the zero lower bound and may be simpli�ed to only

have two parameters in the market price of risk that switch between expansions and recessions.

The rest of the paper is organized as follows. Section 2 presents new empirical evidence on bond risk

premia from modi�ed Campbell-Shiller and return regressions. We then introduce a new DTSM

with regime-switching in Section 3 and explain how to estimate this model by the SR approach.

Section 4 explores the ability of this model to replicate the empirical �ndings from Section 2, while
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Section 5 examines the robustness of our model and relates it to the existing literature. Section 6

concludes, while Appendix A contains some econometric details related to our analysis.2

2 New Empirical Evidence on Bond Risk Premia

This section presents new evidence on the business cycle properties of bond risk premia. We present

our main empirical �nding in Sections 2.1 and 2.2 and explore its robustness in Section 2.3. The

main implication of our new empirical results for DTSMs are discussed in Section 2.4.

2.1 Modi�ed Campbell-Shiller Regressions

To motivate our new empirical �nding, consider the ordinary Campbell and Shiller (1991) regression

yt+m;k�m � yt;k = �k + �k
m

k �m (yt;k � yt;m) + ut+m;k; (1)

where yt;k refers to the k-period bond yield in period t. As is common in the literature, we set

one period equal to one month and implement (1) by running the regressions with m = 3 for

k = 6; 9; 12; :::; 120, implying a total of 39 regressions. That is, yt;m in (1) corresponds to the three

month interest rate. The upper part of Figure 1 shows the results of estimating (1) from 1961:6 to

2013:12, with intercepts on the left and slope estimates on the right. The full and dashed lines are

based on Fama and Bliss (1987) and Gürkaynak, Sack and Wright (2007) bond yields, respectively.3

According to the expectations hypothesis yEHt;k = 1
k

Pk�1
i=0 Et [yt+i;1] + ck, we should see �k = 1 for

all k. However, as in Campbell and Shiller (1991), the slope estimates are negative and decreasing

with maturity, constituting a clear violation of the expectations hypothesis.

Now consider what happens when conditioning on the state of business cycle. That is, we run the

Campbell-Shiller regressions interacted with business cycle dummies, i.e.

yt+m;k�m � yt;k = �EXPk 1fzt�cg + �
EXP
k

m

k �m1fzt�cg (yt;k � yt;m) (2)

+�RECk

�
1� 1fzt�cg

�
+ �RECk

m

k �m
�
1� 1fzt�cg

�
(yt;k � yt;m) + ~ut+m;k;

2 In addition, detailed data descriptions, robustness checks, and all model derivations are provided in an Online
Appendix, which is available from the authors�homepages or upon request.

3See Appendix A.1 for further details on the data.
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where 1fzt�cg is the indicator function with a value of one for expansions when zt � c and zero

otherwise. We measure recessions by letting zt refer to the Purchasing Managers� Index (PMI)

and use the threshold value c = 44:5 from Berge and Jordà (2011) to identify recessions and

expansions. The PMI is a widely watched indicator of business cycle activity and has the advantage

of being available in real time without publication lags or subsequent data revisions. Furthermore,

Christiansen, Eriksen and Møller (2014) provide empirical evidence that the PMI is the single best

recession indicator among a large panel of economic variables. As shown below, our results are

robust to using standard NBER recession dates, although they are subject to publication lags and

therefore not our preferred recession indicator.

The lower part of Figure 1 summarizes the results of estimating (2). In expansions, the estimated

slopes �EXPk and intercepts �EXPk are broadly similar to those obtained in the ordinary Campbell-

Shiller regressions. In recessions, however, the slope coe¢ cients �RECk are positive and mostly

increasing with maturity. At long maturities they are even above one. In addition, the intercepts

�RECk are negative at all maturities which under the expectations hypothesis is consistent with

an upward sloping yield curve.4 Hence, in recessions the slope of the yield curve predicts future

long-term bond yields in the direction implied by the expectations hypothesis, whereas the opposite

holds during expansions.

Although recessions typically are short lived, allowing for the sign switch has a large e¤ect on the

goodness-of-�t in the Campbell-Shiller regressions. This is illustrated in Figure 2, which shows that

the R2 statistic increases from around 3% in the ordinary Campbell-Shiller regressions to between

5% and 6% when conditioning on the business cycle.

Having outlined economically interesting di¤erences in the Campbell-Shiller loadings across re-

cessions and expansions, a natural next step is to test whether these di¤erences are statistically

signi�cant. Table 1 shows Wald statistics that test for joint equality between expansion and reces-

sion coe¢ cients across maturities. We report both asymptotic and bootstrap p-values. Appendices

A.2 to A.4 describe the construction of the Wald test and the bootstrap procedure. To also explore

robustness, we report results for the full sample and two subsamples: 1973:1-2013:12 (the panel

of bond yields is balanced starting from 1973:1) and 1983:1-2013:12 (the post-Volcker period). To

4The derivation is provided in the Online Appendix. The pure version of the expectations hypothesis, i.e.
ypure EHt;k = 1

k

Pk�1
i=0 Et [yt+i;1], also restricts the intercept to zero, so that expected bond returns across all ma-

turities are equal, i.e. �k = 0 for all k. However, the literature typically only focuses on whether bond risk premia
are constant over time, i.e. whether �k = 1 for all k.
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identify recessions and expansions, we consider both the PMI and the NBER recession dates. The

results of the Wald tests are clear-cut. The null hypothesis that expansion and recession slopes co-

e¢ cients are equal, i.e. �RECk = �EXPk for all k, is strongly rejected at any conventional signi�cance

level. Similarly, a Wald test also rejects the null that �RECk = �EXPk for all k. Hence, the observed

change in the intercepts and the slope coe¢ cients across expansions and recessions are statistically

signi�cant. The Online Appendix also provides Wald tests of the expectations hypothesis, which is

rejected in both regimes.5

2.2 Modi�ed Return Regressions

Our modi�ed Campbell-Shiller regressions in (2) show that the slope coe¢ cients during recessions

generally are closer to the expectations hypothesis than the corresponding loadings in expansions.

As excess returns are unpredictable under the expectations hypothesis, we therefore �nd higher

return predictability by the yield spread during expansions than in recessions.6 But does this

pattern also hold for other classic yield-based predictors of bond returns such as the forward spread

(Fama (1976); Fama and Bliss (1987)) and the Cochrane and Piazzesi (2005) (CP) return forecasting

factor?

We address this question by running standard univariate return regressions for three-months ahead

excess returns

xhprt+m;k = �k + �kxt;k + et+m;k; (3)

and its modi�ed version conditioning on the business cycle, i.e.

xhprt+m;k = �EXPk 1fzt�cg + �
EXP
k 1fzt�cgxt;k (4)

+�RECk

�
1� 1fzt�cg

�
+ �RECk

�
1� 1fzt�cg

�
xt;k + ~et+m;k:

Here, xhprt+m;k � hprt+m;k � m
12yt;m and the holding period return hprt+m;n � �k�m

12 yt+m;k�m +

k
12yt;k, whereas xt;k may either refer to the yield spread yt;k � yt;m, the forward spread, or the CP

factor.7

5Althought the slope coe¢ cients are positive and closer to one in recessions, their values are substantially larger
than one at long maturities and this explains why the expectations hypothesis also is rejected in recessions.

6Here, we exploit the one-to-one relation between Campbell-Shiller regressions and regressing excess returns on
the yield spread. The exact expression for this relation is provided in our Online Appendix.

7The forward spread is f (k�m;k)t � m
12
yt;m, where f

(k�m;k)
t � k

12
yt;k� k�m

12
yt;k�m is the forward rate between time

t + k �m and t + k. The CP factor is given by cpt = b
0Ft, where Ft � h
1; yt;12; f

(12;24)
t ; f

(24;36)
t ; f

(36;48)
t ; f

(48;60)
t

i0
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The upper panel of Figure 3 uses the yield spread in (3) and (4) and shows the expected pattern in

bond return predictability across the business cycle. That is, �EXPk is positive in expansions and

generally increases with maturity, whereas �RECk is negative in recessions and generally decreases

with maturity. The middle and lower part of Figure 3 show that the forward spread and the

CP factor, respectively, also imply di¤erent degrees of predictability for bond returns across the

business cycle, with regression slopes mostly having the �wrong�sign in recessions.

To summarize, the return regressions reveal a striking pattern in the slope coe¢ cients across the

business cycle. In expansions we �nd the typical pattern of positive slopes on the yield spread, the

forward spread, and the CP factor, while in recessions the slopes are either close to zero or even

negative.

2.3 Robustness

2.3.1 Extending the Sample and the Maturity Range

Since our empirical �ndings are new, we have done a wide range of robustness checks. First of all, we

extend the sample back to 1926:1 in the top part of Table 2 to increase the number of observations,

where the economy is in recession. The considered return series is for a 10-year government bond

provided by Global Financial Data. Regimes are here identi�ed from the NBER recessions dates, as

the PMI indicator is unavailable over this longer sample. For the period 1926:1-2013:12, yt;k � yt;m
is statistically signi�cant and explains 5:3% of the variation in excess bond returns. The R2 statistic

increases to 7:7% by allowing the regression coe¢ cients to change across expansions and recessions.

In expansions, the slope coe¢ cient is positive and strongly statistically signi�cant (t-statistic of

5:0), whereas the slope coe¢ cient in recessions is close to zero and insigni�cant. Results from

di¤erent subsamples con�rm a signi�cant positive relation between the slope of the yield curve and

subsequent excess bond returns in expansions, while in recessions the relation is insigni�cant.

Second, we next extend the maturity range to 20 years by using long-term government bond returns

from Ibbotson and a related measure of the 20-year yield spread. The second part of Table 2 reveals

the same pattern as above, with strong predictability in expansions but not in recessions. Hence, the

systematic di¤erence in bond predictability across the business cycle is not limited to the 10-year

maturity range, although this is the main focus of our paper.

and b
 is obtained by regressing one-year ahead excess bond returns on Ft, i.e. 1
4

P5
i=2 rxt+12;i12 = 


0
Ft + et+12.
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2.3.2 Speed of Transition, Out-of-Sample Evidence, and Small-Sample Biases

We have also investigated whether the switch in (2) and (4) between recessions and expansions

is best modeled using a smoothly changing function or the binary speci�cation based on dummy

variables used above. In smooth transition regressions with the logistic function, we �nd that the

transition is practically instant. In addition, out-of-sample regressions show that all three yield-

based predictors (i.e., the yield spread, the forward spread, and the CP factor) only imply signi�cant

bond return predictability in expansions. Finally, we have checked that our results are robust to

small-sample biases using a stationary bootstrap. The details of all these robustness checks are

delegated to our Online Appendix.

2.4 Implication for DTSMs

There is a strong conclusion to draw from the above empirical evidence: Bond market asymmetries

across the business cycle are substantial and economically important. In particular, the predictive

power of the yield spread for future bond yields and bond returns crucially depends on the state of

business cycle. To reproduce the negative regression loadings from the ordinary Campbell-Shiller

regressions in (1), most DTSMs require a negative correlation between the short rate and excess

returns according to Dai and Singleton (2002). Thus, to explain the sign switch in regression

loadings from our modi�ed Campbell-Shiller regressions in (2), a successful model should generate

a negative relation between the short rate and excess returns in expansions, but a positive relation

in recessions.

3 A DTSM with a Regime-Dependent Market Price of Risk

We next explore whether a DTSM can reproduce the documented asymmetries in the U.S. yield

curve across the business cycle, while at the same time matching properties of bond risk premia

unrelated to the business cycle as given by (1) and (3). Dai and Singleton (2002) show that the

Gaussian ATSM can reproduce loadings from ordinary Campbell-Shiller regressions, and this model

therefore serves as a natural starting point. We proceed by motivating our extension of the Gaussian

ATSM in Section 3.1, before formally presenting our proposed model in Section 3.2. Estimation of

this model by the SR approach is brie�y described in Section 3.3. We �nally relate our proposed
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DTSM to the existing literature in Section 3.4.

3.1 Motivation

This section explores whether a further generalization of the market price of risk in the Gaussian

ATSM has the potential to reproduce the documented asymmetries in the U.S. yield curve. To

introduce our notation for this model, the short rate is given by

rt = �+ �
0xt; (5)

where � is a scalar and � is an nx � 1 vector. The dynamics of the nx pricing factors under the

risk-neutral measure Q is speci�ed as

xt+1 = (I��)xt +�x"Qx;t+1 (6)

with "Qx;t+1 � NID (0; I).8 The P dynamics follow from an essential a¢ ne market price of risk as

in Du¤ee (2002), i.e. �t = ��1x (�0 + �xxt). In the absence of arbitrage, the price of a zero-coupon

bond in period t with maturity k is then given by Pt;k = exp fAk +B0kxtg, where the recursive

expressions for Ak and Bk are easily derived. Provided that the P distribution for xt is stationary,

the ordinary Campbell-Shiller coe¢ cients in the Gaussian ATSM are then given by (with m = 1):9

�k = 1 +

�
1
kB

0
k + �

0�V [xt]�0xBk�1�
1
kB

0
k + �

0�V [xt] � 1kBk + �� (7)

�k = � 1

k � 1Ak�1 +
1

k
Ak � �̂kE

�
yt;k � yt;1
k � 1

�
(8)

� 1

k � 1

�
B0k�1 (�0 + �xE [xt]) +

�
1

k
B0k + �

0
�
E [xt]

�
:

Now suppose the average U.S. bond investor re-prices risk across the business cycle in such a way

that �x has di¤erent values in expansions and recessions. According to (7), this modi�cation has

the potential to generate negative loadings of �̂k in expansions and positive loadings in recessions.

Equation (8) shows that a switch in �x between expansions and recessions also a¤ects the intercept

8The intercept in the Q distribution for xt is normalized to zero.
9The derivations are provided in our Online Appendix.
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�̂k even if �0 is constant. However, it may be necessary to also let �0 switch between recessions

and expansions to match the observed di¤erence in �̂RECk and �̂EXPk .

Thus, considering a regime-dependent market price of risk based on economic activity has the

potential to explain the observed asymmetries in our modi�ed Campbell-Shiller regressions or,

equivalently, the asymmetric behavior of bond risk premia across the business cycle.

3.2 Model Description

We next formally present a DTSM with a regime-dependent market price of risk based on economic

activity. As in the Gaussian ATSM, the dynamics of the short rate under Q is given by (5) and

(6), implying that zero-coupon bond prices and the yield curve have the same expression as in the

Gaussian ATSM, i.e.

yt;k = ~Ak + ~B
0
kxt; (9)

with ~Ak � �1
k Ak and

~Bk � �1
k Bk for k = 1; 2; :::;K.

We now deviate from the Gaussian ATSM by assuming that the market price of risk is piece-wise

a¢ ne in the price factors xt, with loadings depending on whether the economy is in expansion or

recession. That is, we let

�t = 1fzt�cg�
�1
x

�
�
(1)
0 + �

(1)
x xt

�
+
�
1� 1fzt�cg

�
��1x

�
�
(2)
0 + �

(2)
x xt

�
: (10)

To discipline our model, the regimes are taken to be observed, whereas previous work mainly

considers unobserved regimes. As in Section 2, zt refers to the PMI and recessions are identi�ed

when zt is below its threshold value of c = 44:5. Given that our model remains conditional Gaussian,

a simple change of measure gives the following P dynamics

xt+1 = 1fzt�cg�
(1)
0 +

�
1� 1fzt�cg

�
�
(2)
0 (11)

+
�
I��+ 1fzt�cg�

(1)
x +

�
1� 1fzt�cg

�
�
(2)
x

�
xt +�x�

P
x;t+1:

The model is closed by letting the P dynamics of zt evolve as

zt+1 = 
0 + 
zzt + 

0
xxt +�zz�

P
z;t+1; (12)
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where �Pz;t+1 � NID (0; 1) and is independent of �Px;t+1. That is, zt may depend on its own

lag if 
z 6= 0 and lagged values of the pricing factors if 
x 6= 0nx�1. The latter implies that

yield curve dynamics a¤ect economic activity and hence introduce a feedback e¤ect from �nancial

markets to the real economy. If 
x = ���, where � is some scalar, then (12) reduces to zt+1 =

(
0 � ��)+ 
zzt+�rt+�zz�Pz;t+1, implying that the short rate is a su¢ cient statistic for economic

activity, as assumed in the standard New Keynesian model, see Woodford (2003). In the general

case where 
x 6= 0nx�1, all yield curve dynamics as captured by the pricing factors xt may matter

for economic activity.10 For instance, changes in long-term bond yields may have an independent

e¤ect on economic activity beyond variation in the short rate, as considered in some of the recent

macroeconomic literature (see, for instance, Andrés, López-Salido and Nelson (2004) and Gerler

and Karadi (2013)). Finally, if 
x = 0nx�1, then yield curve dynamics do not a¤ect economic

activity as assumed in Ang and Piazzesi (2003).

We also note from (11) that the switch in �t between recessions and expansions generates an

instantaneous switch in the pricing factors and hence in the yield curve. This property of our model

is thus consistent with our modi�ed Campbell-Shiller and excess return regressions in Sections 2.1

and 2.2.

An interesting aspect of our model relates to the fact that zt does not enter in the Q distribution

of the short rate and hence as a pricing factor in (9). This means that zt is a �hidden�factor as

in Du¤ee (2011) and that our model displays unspanned macroeconomic risk similar to the work

of Joslin, Priebsch and Singleton (2014). Hence, our macro variable zt only a¤ects yield curve

dynamics indirectly by improving the forecast distribution of the pricing factors. Such improved

predictions may be useful when forecasting the yield curve but also when computing expected excess

returns or other measures of bond risk premia. Joslin, Priebsch and Singleton (2014) consider a

setup where the macro variables enter linearly in the law of motion for the pricing factors under

the P measure, implying that their model may be characterized as displaying �linear�unspanned

macroeconomic risk. Our setup di¤ers slightly from the one considered by Joslin, Priebsch and

Singleton (2014), because the macro variable zt in our model has a non-linear e¤ect on the P

distribution for the pricing factors, meaning that our model may be described as having �nonlinear�

unspanned macroeconomic risk.

Finally, given that the Q distribution of the short rate is identical to the one in the Gaussian

10A similar speci�cation is adopted in Diebold, Rudebusch and Aruoba (2006).
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ATSM, our model implies the same identifying assumptions as the Gaussian ATSM with latent

pricing factors. We require i) � = 1, ii) � to be diagonal with increasing eigenvalues, and iii)

�x to be triangular.11 This identi�cation scheme constrains the Q dynamics for the pricing factors

whereas the P dynamics are unrestricted to simplify estimation by the SR approach.

3.3 Model Estimation by the SR Approach

It is well known that DTSMs may be challenging to estimate, mainly because the parameters

describing the market prices of risk can be hard to identify with highly persistent pricing factors.

One may therefore encounter numerical instability and problems with local optima when estimating

DTSMs (see, for instance, Du¤ee (2002)). Compared to the Gaussian ATSM, our model has poten-

tially twice the number of parameters for the market prices of risk, suggesting that the proposed

model may be quite demanding to estimate. To overcome this limitation and avoid problems with

numerical instability, we draw on recent innovations in estimation methods for DTSMs, starting

with the pioneering work of Joslin, Singleton and Zhu (2011). More speci�cally, we extend the SR

approach of Andreasen and Christensen (2015) to estimate all parameters in our regime-dependent

market price of risk by a modi�ed OLS regression, even when allowing for measurement errors on

all bond yields, as recommended by Hamilton and Wu (2014). In other words, all parameters in

the market price of risk are obtained instantaneously within the SR approach, meaning that our

extension of the Gaussian ATSM comes at no additional computational costs.12

We next describe the SR approach when adopted to our proposed DTSM with a regime-dependent

market price of risk. In the interest of space, we only present the three steps in the SR approach

and refer to Andreasen and Christensen (2015) for technical details and how to obtain standard

errors.

Step 1: The �rst step of the SR approach estimates the latent pricing factors xt and the risk-neutral

coe¢ cients by a sequence of cross-section regressions. More formally, the risk-neutral coe¢ cients

are denoted by �1 �
h
�011 �012

i0
, where �11 �

h
� vec (�)0

i0
and �12 � vech (�x). Selecting

11There exist other normalization schemes, for instance the one recently suggested by Joslin, Singleton and Zhu
(2011).
12 If some linear combinations of bonds yields are assumed to be perfectly priced by the model, the linear regression

methods of Joslin, Singleton and Zhu (2011) and Hamilton and Wu (2012) may also be modi�ed to estimate our
regime-switching model with no additional computational costs compared to the Gaussian ATSM. However, we prefer
the adopted approach because it also enables us to estimate the shadow rate extension of our regime-switching model
considered below in Section 5.1, whereas the estimators of Joslin, Singleton and Zhu (2011) and Hamilton and Wu
(2012) do not apply to nonlinear DTSMs.
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ny maturities along the yield curve and accounting for measurement errors vt;k, we then express

(9) in stacked form as

yt = ~Ak (�1) + ~Bk (�1)xt + vt; (13)

where yt �
h
yt;1 yt;2 ::: yt;ny

i0
and similarly for ~Ak (�1), ~Bk (�1), and vt.

When ny is large relative to the number of pricing factors, the SR approach estimates xt by

minimizing the squared distance between observed and model-implied bond yields, i.e. by regressing

yt � ~Ak (�1) on ~Bk (�1). For our ATSM in (13), this implies

x̂t (�1) =
�
~Bk (�1)

0 ~Bk (�1)
��1

~Bk (�1)
0
�
yt � ~Ak (�1)

�
(14)

for t = 1; 2; :::; T . The estimated factors are denoted fx̂t (�1)gTt=1 because they are computed for a

given �1. We then estimate �1 by pooling all squared residuals from these cross-section regressions

and minimizing their sum with respect to �1, i.e.

�̂
step1
1 = arg min

�12�1

1

Tny

TX
t=1




yt � ~Ak (�1)� ~Bk (�1) x̂t (�1)



2 ;

where �1 denotes the feasible domain of �1 and kak �
qPn

i=1 a
2
i for any a 2 Rn.

Step 2: The second step estimates the P dynamics of zt and xt. To describe the procedure, let

�x2 �
h �

�
(1)
0

�0 �
�
(2)
0

�0
vec

�
�
(1)
x

�0
vec

�
�
(2)
x

�0
vech (�x)

0
i0

and �z2 �
h

0 
z 
 0x �zz

i0
contain all the parameters governing the P dynamics of xt and zt,

respectively. Replacing the unobserved xt in (11) by x̂t
�
�̂
step1
1

�
from the �rst step, we then esti-

mate �x2 by extending the SR approach of Andreasen and Christensen (2015) to P dynamics with

regime-switching. That is, we run a modi�ed regression based on (11) that accounts for estimation

uncertainty in x̂t
�
�̂
step1
1

�
, as described in Appendix A.5. The elements in �z2 are obtained in a

similar fashion based on (12) using the regression provided in Andreasen and Christensen (2015).

Importantly, both
�
�̂
x
2

�step2
and

�
�̂
z
2

�step2
are given in closed form, meaning that all of the para-

meters in the P distribution of zt and xt are obtained instantaneously, including all coe¢ cients in

the market price of risk.

To ensure stationarity of yt;k we require xt to be stationary under the P measure. This condition
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holds if the loading matrices on xt in (11) are stable in recessions and in expansions, i.e. if all

eigenvalues of the matrices I�� + �(i)x for i = f1; 2g are inside the unit circle.13 If one of these

conditions are not satis�ed, then we downscale I��+�(i)x by �i for i = f1; 2g using the data-driven

procedure of Andreasen and Meldrum (2014), which we describe in Appendix A.6.

Step 3: The matrix �x is estimated in both the �rst and second step. As noted by Andreasen and

Christensen (2015), �̂step1x is estimated very inaccurately compared to �̂step2x , which is therefore

the preferred estimate.14 Given this more e¢ cient estimate of �x, we then condition on the value

of �̂step2x and re-estimate �11, i.e.

�̂
step3
11 = arg min

�112�11

1

Tny

TX
t=1




yt � ~Ak

�
�11; �̂

step2
x

�
� ~Bk

�
�11; �̂

step2
x

�
x̂t (�11)




2 :
Given the estimated factors

n
x̂t

�
�̂
step3
11 ; �̂step2

�oT
t=1
, we �nally update our estimates of �x2 and �

z
2

by re-running step 2.

3.4 Comparing to Existing DTSMs with Regime-Switching

When formulating DTSMs with regime-switching there is an inherent trade-o¤between the richness

of a given model and the computational complexity related to bond pricing and estimation. We

have therefore chosen to consider the most parsimonious model capable of matching the asymmetric

properties of bond yields documented in Section 2. This implies that we omit regime-switching in�x

as in Ang, Bekaert and Wei (2008) or variation in �x within regimes as in Bansal and Zhou (2002),

because time-varying second moments are not required to reproduce the new properties of bond

risk premia provided in Section 2.15 We also restrict the �exibility of our model by having observed

regimes of either expansions or recessions, whereas most DTSMs with regime-switching consider

unobserved regimes, although their estimated values often are closely related to the business cycle

as in Bansal and Zhou (2002) and Dai, Singleton and Yang (2007). Similar to these two papers, the

market price of factor risk in our model is allowed to change freely across regimes, whereas Ang,

Bekaert and Wei (2008) consider a somewhat more restricted formulation. As in Dai, Singleton and

Yang (2007), we also accommodate time-varying transition probabilities between regimes under the

13A formal proof of this result is provided in Theorem 6.12 of Pötscher and Prucha (1997).
14See Andreasen and Christensen (2015) for how to combine the two estimates in an optimal way.
15Furthermore, a direct extension of our estimator for �x in (19) to accommodate regime-switching reveals only

minor changes in the estimated value of �x between recessions and expansions.
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P measure when 
z 6= 0 or 
x 6= 0, whereas these probabilities are constant in Bansal and Zhou

(2002) and Ang, Bekaert and Wei (2008).

4 Empirical Findings

This section estimates our DTSM with regime-switching in the case of three pricing factors (nx = 3),

given a total of four state variables when including zt. Here, we use the same Fama-Bliss dataset

as applied in Section 2. We �rst discuss the estimated coe¢ cients in Section 4.1, before studying

the ability of our regime-switching model to match the observed asymmetry in the U.S. yield curve

in Section 4.2. The implied estimates of excess returns and term premia from our regime switching

model and the Gaussian ATSM are �nally compared in Section 4.3.

4.1 Estimation Results

Our proposed ATSM with regime switching in the market price of risk is indexed byMATSM
�0;�x

, where

subscripts indicate whether �0 and/or �x are allowed to switch between expansions and recessions.

Table 3 shows that the �rst factor is very persistent under the Q measure with �(1; 1)�1:2�10�8 in

all models and may therefore be interpreted as a level factor. The low value of �(1; 1) implies that

the intercept in the short rate is unidenti�ed and we therefore let � = 0. The second and the third

factor display less persistence under Q in all considered models and may therefore be interpreted

as a slow and fast decaying factors. Unlike �̂, the estimates of �x are somewhat a¤ected by

regime switching in the market price of risk, although the sign of the o¤-diagonal elements in �̂x is

similar across all models. Table 3 also provides the estimated dynamics for economic activity, which

displays moderate persistence with 
z = 0:93 across all speci�cations of �t. We also �nd that each

of the pricing factors has a negative e¤ect on economic activity. Importantly, the null hypothesis

that 
x (1; 1) = 
x (2; 1) = 
x (3; 1) is clearly rejected using a Wald test with a p-value of 0:000 for

all models, implying that the policy rate is not a su¢ cient statistic for economic activity according

to our model.

< Table 3 about here >

The estimates of the market price of risk are provided in Table 4. For the Gaussian ATSMMATSM

all elements of �0 are signi�cantly di¤erent from zero, meaning that investors on average require
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compensation for exposure to each of the pricing factors. We also �nd the familiar result that

time-variation in level risk through �x (1; :), �x (2; 1), and �x (3; 1) is signi�cant and controls much

of the variability in the market price of risk and hence excess returns (see, for instance, Cochrane

and Piazzesi (2008)).

We next allow the constant �0 in the market price of risk to switch inMATSM
�0

. During recessions

�0 (2; 1) has a higher value than in expansions, whereas the opposite holds for �0 (3; 1). These

di¤erences are signi�cant as we reject the null hypothesis that �(1)0 = �
(2)
0 using a Wald test (p-

value of 0:0124). Suppose instead that only �x is allowed to switch in the market price of risk, i.e.

�0 is constant as in the Gaussian ATSM. For MATSM
�x

in Table 4 we �nd that time-variation in

the second factor through �x (2; 2) now carries a negative price, although most predominately in

recessions, whereas variation in this second factor is priced positively inMATSM andMATSM
�0

. We

also observe that �x (3; 2) and �x (3; 3) have opposite signs in recessions and expansions. Despite

the somewhat wide standard errors for �(2)x , the null hypothesis that �
(1)
x = �

(2)
x is clearly rejected

(p-value of 0:0000).

We �nally consider the full model MATSM
�0;�x

, where both �0 and �x are allowed to switch. We

once again �nd that the value of �0 (2; 1) changes between recessions and expansions, and that

time-variation in the second factor through �x (2; 2) carries a positive price in expansions but a

negative price in recessions. The latter implies that the pricing factors and hence interest rates

are more persistent in expansions than in recessions when measured by the largest eigenvalue of

I�� + �(i)x , which is 0:9957 in expansions and 0:9605 in recessions. This �nding is thus similar

to Bansal and Zhou (2002). However, most elements in �(2)0 and �(2)x for the recession regime are

estimated somewhat imprecisely, and we are therefore unable to reject the null hypothesis of no

regime switching in �t (p-value of 0:26), although we rejected it for both MATSM
�0

and MATSM
�x

.

This indicates that our general speci�cation for regime-switching in �0 and �x may be simpli�ed

without a¤ecting the model�s ability to �t the data. We return to this possibility below in Section

5.2.

< Table 4 about here >
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4.2 Explaining Asymmetries in the Yield Curve

We next examine whether the full model with switching in �0 and �x can match the asymmetries

in the yield curve from Section 2. The model-implied moments are here obtained by running the

regressions in (1) to (4) on a simulated sample of 100; 000 observations using the estimates of

MATSM
�0;�x

reported above.

The top part of Figure 4 shows that MATSM
�0�x

convincingly matches both intercepts and slope

coe¢ cients in ordinary Campbell-Shiller regressions and thus preserves the ability of the Gaussian

ATSM in matching these unconditional properties of bond risk premia. The next question is

whetherMATSM
�0�x

meets the challenge of replicating the switch in the Campbell-Shiller regressions

across expansions and recessions. The bottom part of Figure 4 shows thatMATSM
�0�x

reproduces the

negative slope estimates in expansions and the positive slope coe¢ cients in recessions, although

the latter are somewhat higher than the empirical moments. In addition,MATSM
�0�x

matches almost

perfectly the switch in intercepts.

We next explore whetherMATSM
�0�x

also replicates the predictability in bond returns implied by i)

the yield spread, ii) the forward spread, and iii) the CP factor. The left part of Figure 5 shows

that MATSM
�0�x

matches the slope coe¢ cients from ordinary return regressions using each of these

predictors. The ability of our model to reproduce the predictability of the CP factor suggests that

the behavior of this factor to a large extent is spanned by the three canonical pricing factors in

our model.16 The right part of Figure 5 further shows that MATSM
�0�x

also generates much of the

observed asymmetry in return predictability across business cycles for all three predictors. That is,

our model implies strong predictability of bond returns during expansions, whereas recessions are

characterized by weak predictability and often with the �wrong�sign.

< Figure 4 and 5 about here >

Combining the results from Figure 4 and 5, we conclude that our regime switching modelMATSM
�0�x

to a large extent is capable of explaining the asymmetric behavior of bond yields from Section 2.17

Thus, the switch in the Campbell-Shiller and return regressions across expansions and recessions
16A similar �nding is reported in Dai, Singleton and Yang (2004).
17We have also analyzed the ability of MATSM

�0
and MATSM

�x to match the observed asymmetric patterns in the
data. MATSM

�0
matches the sign switch in intercepts but not in the slope coe¢ cients of our modi�ed Campbell-Shiller

regression and it fails to generate low return predictability in recessions. MATSM
�x does not match neither intercepts

nor slope coe¢ cients in the modi�ed Campbell-Shiller regressions and it generates too high return predictability in
expansions.
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may be rationalized by a re-pricing of risk among bond investors when the U.S. economy enters

recessions.

4.3 Model-implied Excess Returns and Term Premia

The presence of regime-switching in the market price of risk has profound implications for bond

risk premia. Figure 6 therefore plots expected excess returns from MATSM
�0�x

and MATSM at the

10-year maturity, with NBER recessions indicated by the shaded regions. The two models provide

very similar dynamics for expected excess returns in expansions. However, before and at the start

of recessions, we generally �nd that expected excess returns in MATSM
�0�x

increase more than in

MATSM . The prime examples are the two recessions in the early 1980s. This e¤ect arises because

MATSM
�0�x

assigns an increasing fraction of the forecast distribution to the recession regime, where

all bond yields are predicted to be substantially lower than in expansions. This in turn raises bond

prices and hence expected excess returns. This �recession ampli�er�disappears towards the middle

and the end of recessions where excess returns fall, after which excess returns inMATSM
�0�x

approach

the level implied byMATSM .

< Figure 6 about here >

Any estimate of bond risk premia is model-dependent, and it may therefore in general be challenging

to argue in favor of one set of estimates compared to another. However, the regression evidence we

provide in Figures 4 and 5 clearly indicates that our regime-switching model matches important

properties of bond returns unlike the Gaussian ATSM, suggesting thatMATSM
�0�x

gives more accurate

estimates of bond risk premia compared to MATSM . Another way to illustrate this is to run

Mincer-Zarnowitz regressions of realized excess returns on model-implied expected excess returns

Et [xhprt+m;k]. Conditioning on the business cycle as in Section 2, we consider

xhprt+m;k = �EXP0;k

�
1� 1fNBERg

�
+ �EXP1;k

�
1� 1fNBERg

�
Et [xhprt+m;k] (15)

+�REC0;k 1fNBERg + �
REC
1;k 1fNBERgEt [xhprt+m;k] + ut;k;

with m = 3, where recessions and expansions are identi�ed using the NBER recessions dates

1fNBERg for comparability with Figure 6. The slope coe¢ cients �EXP1;k and �REC1;k are reported in

Table 5 when pooling excess returns in bins of two years along the maturity range. Consistent with
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the regression evidence in Figure 4 and 5, MATSM performs well in expansions with �EXP1;k close

to the desired value of one, but the model struggles during recessions, where �REC1;k is substantially

below one and even negative for bond yields with six or more years to maturity. That is, the

Gaussian ATSM predicts excess returns for medium- and long-term bonds in the wrong direction

during recessions. Our regime switching model largely alleviates this shortcoming with both �EXP1;k

and �REC1;k in the range of 0:75 to 0:54, meaning thatMATSM
�0�x

predicts excess returns of all bond

yields in the right direction during expansions and recessions.

< Table 5 about here >

The lower part of Figure 6 reports model-implied term premia, de�ned as TPt;k � yt;k� 1
k

Pk�1
i=0 Et [rt+i],

which is another commonly used measure of bond risk premia. In expansions, we �nd term premia

to be very similar forMATSM andMATSM
�0�x

, but substantial di¤erences appear before and at the

start of recessions, where term premia in MATSM
�0�x

tend to increase more than in MATSM . That

is, term premia is more counter-cyclical in our regime-switching model compared to the standard

Gaussian ATSM.

5 Additional Analysis

This section studies in greater detail the ability of regime-switching in the market price of risk to

explain the documented asymmetries in the U.S. yield curve from Section 2. We �rst consider the

implications of extending MATSM
�0�x

to enforce the zero lower bound (ZLB) in Section 5.1. Given

our �ndings in Section 4.1, we then present a simpli�ed version of MATSM
�0�x

in Section 5.2, which

we use to provide an economic explanation for the observed switch in the Campbell-Shiller and

return regressions across expansions and recessions. The ability of DTSMs with linear unspanned

and spanned macroeconomic risk to match loadings from our modi�ed Campbell-Shiller regressions

are �nally explored in Section 5.3.

5.1 Accounting for the Zero Lower Bound

An important feature of our regime-switching model is to generate a larger fall in expected bond

yields just before and during recessions than implied by the Gaussian ATSM. Given that short

rates typically are low during recessions and may be constrained by the ZLB, it seems natural to
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explore whether the better performance of our model is robust to enforcing the ZLB. We address

this question by presenting a shadow rate extension of our regime-switching model where the short

rate is given by rt = max
�
0; �+ �0xt

	
, but the model is otherwise identical to the one described

in Section 3.2. Hence, the proposed shadow rate model (SRM) has Gaussian pricing factors under

the Q measure and bond prices may therefore be computed by the second-order approximation

advocated in Priebsch (2013) when formulated in discrete time. This SRM with regime-switching

MSRM
�0�x

is estimated as described in Section 3.3, except (14) is replaced by nonlinear cross-section

regressions to extract the pricing factors. The estimates are provided in Tables 6 and 7.

Figure 7 shows that MSRM
�0�x

provides an extremely close �t to intercepts in ordinary Campbell-

Shiller regressions and even improves upon the slope coe¢ cients in these regressions for medium-

and long-term bond yields compared toMATSM
�0�x

. This improvement is further seen to carry over

to the slope coe¢ cients during expansions, whereas MSRM
�0�x

largely generates the same intercepts

and slope coe¢ cients for the recession regime as found forMATSM
�0�x

. Although not reported below,

we also �nd thatMSRM
�0�x

matches the return regressions just as well as seen forMATSM
�0�x

. Finally,

MSRM
�0�x

also forecasts realized excess returns in the correct direction during both expansions and

recessions, as shown in Table 5.

< Table 6-7, Figure 7 about here >

Thus, our proposed explanation for the documented asymmetries in the U.S. yield curve, i.e. that

investors re-price risk during recessions, is robust to accounting for the ZLB.

5.2 A Simpli�ed Regime-Switching Model

To provide a simpli�ed version ofMATSM
�0�x

with a clear economic interpretation, it seems bene�cial

to �rst impose more structure on the factor loadings than implied by our fully �exible regime-

switching model MATSM
�0�x

. We therefore �rst note that the null hypothesis of � (1; 1) = 0 and

� (2; 2) = � (3; 3) is not rejected using a Wald test (p-value of 0:6406). Given these restrictions, it

is straightforward to show that the factor loadings inMATSM
�0�x

simplify to those in the no-arbitrage

Nelson-Siegel (AFNS) model of Christensen, Diebold and Rudebusch (2011) when using its discrete-

time formulation in Fontaine and Garcia (2012). That is, we let � =
h
1 1�e�~�

~�
1�e�~�
~�

� e�~�
i0

and impose � (2; 2) = � (3; 3) = 1� e�~� with � (2; 3) = �~�e�~�, whereas all the remaining elements
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of � are zero. Given this speci�cation, the pricing factors now have the familiar interpretation as

representing the level, slope, and curvature of the yield curve.

The results from Section 4.1 indicate that not all elements in �0 and �x switch between expansions

and recessions, and we therefore search for the most parsimonious speci�cation of �t capable of

matching the switch in the Campbell-Shiller regressions across the business cycle. Inspired by the

return regressions with the yield spread in Section 2.2, the proposed model displays only switching

in �0 (2; 1) and �x (2; 2), both related to the slope factor at position two in our state vector. This

restricted model is denoted MAFNS
�0(2;1)�x(2;2)

and has only two additional coe¢ cients in the market

price of risk compared to the Gaussian ATSM. The top part of Figure 8 shows thatMAFNS
�0(2;1)�x(2;2)

captures the overall pattern in intercepts and slope coe¢ cients from ordinary Campbell-Shiller

regressions. More surprising, perhaps, is the ability of this very parsimonious regime-switching

speci�cation to also capture the switch in both intercepts and slope coe¢ cients in the Campbell-

Shiller regressions between expansions and recessions. Thus, simply allowing for regime-switching

in the dynamics of the slope factor is su¢ cient to reproduce the loadings in our modi�ed Campbell-

Shiller regressions.

To see what drives these results forMAFNS
�0(2;1)�x(2;2)

, we �rst note from Table 7 thatMAFNS
�0(2;1)�x(2;2)

has

a lower value of �0 (2; 1) in recessions than in expansions and that �x (2; 2) switches sign between

the two regimes. The latter arises because 1 �� (2; 2) + �(1)x (2; 2) = 0:97 in expansions, whereas

the corresponding estimate in recessions is 0:73. Given that � (2; 2) = 0:0381 in MAFNS
�0(2;1)�x(2;2)

,

this change in the persistence of the slope factor then generates a switch in the market price of

risk from a insigni�cant positive value of �(1)x (2; 2) = 0:0081 in expansions to a signi�cant negative

value of �(2)x (2; 2) = �0:2363 in recessions.

To analyze the e¤ects of these estimates for quarterly excess returns, as considered in our im-

plementation of the Campbell-Shiller regressions in (1) and (2), it is useful to �rst understand

their impact on monthly excess returns which are available in closed form and proportional to

B0k�1�t.
18 Given that Bk�1 (2; 1) < 0, a more negative value of �0 (2; 1) in recessions therefore

increases monthly excess returns, as investors require a larger compensation for slope risk in this

regime. On the other hand, a negative value of �(2)x (2; 2) in recessions has a positive e¤ect on �(2)x xt

with an upward sloping yield curve, because the slope factor with the AFNS loadings is de�ned as

the short rate minus the long rate (see Diebold and Li (2006)), meaning that �(2)x (2; 2) in total
18Here, we ignore a minor convexity term in the expression for monthly excess returns. The exact expression is

provided in our Online Appendix.
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has a negative impact on monthly excess returns when accounting for Bk�1 (2; 1) < 0. Figure 9

shows that these partial e¤ects carry over to the quarterly excess return for a 10-year bond which

we compute by Monte Carlo integration. Note also how fears of recessions on its own may a¤ect

expected quarterly excess returns (as in the mid 1990s). We �nally emphasize thatMAFNS
�0(2;1)�x(2;2)

predicts realized excess returns with the right sign during expansions and recessions according to

the Mincer-Zarnowitz regressions in Table 5, despite MAFNS
�0(2;1)�x(2;2)

only having two parameters

that switch between regimes.

Thus, the narrative implied by our model is as follows. When the U.S. economy enters a reces-

sion, bond investors immediately re-price the risks attached to economic activity with a switch in

�0 (2; 1) and therefore require a higher compensation for exposure to the slope of the yield curve.

At the start of a recession, this e¤ect generally dominates the one from a switch in �x (2; 2) ac-

cording to Figure 9, as the yield curve here tends to be fairly �at, and this increases expected

excess returns. However, as monetary policy becomes more accommodating during the course of

a recession, the lower short rate generates a steepening of the yield curve and reduces the risks

attached to low future economic activity. This in turn strengthens the e¤ect from the switch in

�x (2; 2), which generally has a negative impact on excess returns according to Figure 9. Thus, our

model suggests that the Federal Reserve is able to remove some of the risks attached to recessions,

as accommodating monetary policy reduces the required risk compensation in the bond market.

Importantly, the switch in �x (2; 2) from positive in expansions to negative in recessions implies

that excess returns and the short rate both fall during this phase of a recession and hence become

positively correlated, as required to match the positive slope coe¢ cients in the Campbell-Shiller

regressions during recessions. The Gaussian ATSM does not allow for a switch in �x (2; 2), meaning

that this model does not imply that accommodating monetary policy is able to remove some of the

risks in the bond market during recessions. As a result, excess returns tend to increase throughout

recessions in the Gaussian ATSM, as also seen in Figure 6. After a recession,MAFNS
�0(2;1)�x(2;2)

reverts

back to the familiar setting described in Dai and Singleton (2002), where excess returns fall when

the short rate increases, and vice versa. That is, excess returns and the short rate are once again

negatively correlated as required to match the negative slope in the Campbell-Shiller regressions

during expansions.

< Figure 8 about here >
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5.3 Models with Linear Unspanned and Spanned Macroeconomic Risk

Our proposed mechanism to explain the documented asymmetries in U.S. bond yields modi�es

the essentially a¢ ne speci�cation for the market price of risk such that it only holds locally for

expansions and recessions. Hence, �t depends nonlinearly on the business cycle, as captured by the

state variable zt for PMI. To explore whether this nonlinearity is necessary to match the switch in

the Campbell-Shiller regressions, we next follow Joslin, Priebsch and Singleton (2014) and brie�y

study the case where �t only depends linearly on zt. That is, we now let the market price of risk

be essentially a¢ ne in all four state variables. As above, zt remains unspanned by the current

yield curve, i.e. � (4; 1) = 0, given our speci�cation with zt appearing last in the state vector. The

estimates for this modelMLinear are provided in Tables 6 and 7.

Figure 10 shows that MLinear provides a very close �t to both intercepts and slope coe¢ cients

in ordinary Campbell-Shiller regressions. This is in line with previous �ndings in the literature,

as this model nests the standard three-factor Gaussian ATSM. The lower part of Figure 10 shows

thatMLinear also matches the regime-dependent intercepts in the Campbell-Shiller regressions but

only the negative slope coe¢ cients in expansions. That is,MLinear cannot generate positive slope

coe¢ cients during recessions. Table 5 further shows that MLinear only has predictive power for

realized excess returns in expansions but not in recessions. Hence, it must be the nonlinear e¤ect

of zt on the market price of risk that allows MATSM
�0�x

, MSRM
�0�x

, and MAFNS
�0(2;1)�x(2;2)

to match the

slope coe¢ cients in our modi�ed Campbell-Shiller regression and predict excess returns with the

right sign during expansions and recessions.

Following the work of Bauer and Rudebusch (2016), we �nally explore whether these results for

MLinear are robust to letting zt be spanned by the current yield curve. That is, we once again let

the market price of risk be essentially a¢ ne in all four state variables but omit the zero restriction

for � (4; 1). Figure 10 shows that this model MSpanned displays broadly the same performance

as MLinear in terms of matching intercepts and slope coe¢ cients from ordinary and modi�ed

Campbell-Shiller regressions. As a result, the Mincer-Zarnowitz regressions for excess returns in

Table 5 are also very similar for the two models. Hence, the spanning assumption of macroeconomic

risk, as measured by the PMI, does not seem essential for the aspects of U.S. bond yields studied

in this paper.
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6 Conclusion

By conditioning the classic Campbell-Shiller (1991) regressions on the business cycle, we identify

a strong asymmetric pattern in the relation between yield spreads and subsequent yield changes.

When the economy is expanding, we �nd the familiar pattern of mostly positive intercepts and

negative regression slopes that decrease with maturity. However, when the economy is contracting,

we observe negative intercepts and positive regression slopes that mostly increase with maturity, i.e.

the complete opposite pattern. We also show that this asymmetric e¤ect has profound implications

for bond return predictability, as the classic yield-based predictions have strong forecasting power

for excess returns in expansions but not in recessions.

To explain these new empirical �ndings, the Gaussian ATSM is extended with business cycle de-

pendent loadings in the market price of risk. We show that this model reproduces the empirical in-

tercepts and slope coe¢ cients from ordinary Campbell-Shiller regressions and, in addition, matches

evidence from our modi�ed Campbell-Shiller regressions conditioning on the business cycle. We

also show that our model predicts realized excess returns with the right sign during both expan-

sions and recessions unlike the Gaussian ATSM, which predicts excess returns for medium- and

long-term bonds in the wrong direction during recessions. Our model also replicates the observed

asymmetry in return predictability, i.e. that the classic yield-based predictors have strong forecast-

ing power in expansions but not in recessions. To account for these asymmetric patterns in the

yield curve across the business cycle, our model generates a negative relation between the short rate

and excess returns in expansions (as in the Gaussian ATSM), but a positive relation in recessions.

Thus, our model suggests that the Federal Reserve is able to remove some of the risks attached to

recessions, as accommodating monetary policy reduces the required risk compensation in the bond

market. This e¤ect of monetary policy is not present in the Gaussian ATSM, which therefore pro-

vides less accurate estimates of bond risk premia and expected future short rates compared to our

regime-switching model. Accordingly, our model suggests that the positive slope coe¢ cients in the

Campbell-Shiller regressions emerge because accommodating monetary policy is able to eleminate

some of the risks in the bond market during recessions.

Our simple, yet powerful, approach of conditioning the study of bond markets on the business

cycle obviously goes beyond what is covered in the present paper. Ongoing research by Andreasen,

Møller and Sander (2016) shows that bond markets in several other countries display a similar

24



switch in the Campell-Shiller regressions as found in the present paper, both when conditioning

on local recessions or U.S. recessions. Andreasen, Møller and Sander (2016) further show that

this �nding has important implications for exchange rate dynamics, as the slope coe¢ cients in

uncovered interest parity (UIP) regressions also switch between expansions and regressions. Thus,

recessions may not only have profound e¤ects for the local U.S. bond investor but also for other

bond markets and related exchange rate markets.
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A Appendix

A.1 Data

We use monthly bond yields from an unsmoothed Fama and Bliss (1987) dataset running from
1961:06-2013:12. We limit the analysis to maturities from m=12 to 10 years with m-month in-
crements where m = 3. A similar panel of yields is used in Adrian, Crump and Moench (2013)
to obtain their pricing factors. At the very long end of the yield curve, we do not observe all
increments and, hence, we interpolate between bond yields of the two nearest maturities.19 We
also report results for the Gürkaynak, Sack and Wright (2007) dataset, which is based on a static
Svensson model for computing smooth yield curves.

A.2 Wald Tests

We use Wald tests to examine whether the coe¢ cients in our modi�ed Campbell-Shiller regressions
in (2) change across expansions and recessions. In particular, we test the following joint hypotheses:

H0 : �
REC
k = �EXPk ; k = 6; 9; 12; :::; 120 (16)

H0 : �
REC
k = �EXPk ; k = 6; 9; 12; :::; 120 (17)

The tests are carried out by setting up the regressions in a GMM framework, where all parameters
are collected in

�
0
=
h
�
0
6; �

0
9; :::; �

0
120

i
;

with �
0
k =

�
�EXPk ; �EXPk ; �RECk ; �RECk

�
. The sample moments for the system of linear regressions

are
gT (�)

0
=
h
g
0
T;6;g

0
T;9; :::;g

0
T;120

i
;

where gT;k = 1
T

PT
t=1 ft;k, ft;k = ~ut+m;kzt;k, and

z
0
t;k =

�
1fzt�cg;

m

k �m1fzt�cg (yt;k � yt;m) ;
�
1� 1fzt�cg

�
;
m

k �m
�
1� 1fzt�cg

�
(yt;k � yt;m)

�
:

Expressing our null hypothesis as R� = c, a Wald test is then given by

W =
�
R b�� c�0 �R�D0

TS
�1
T DT

��1
R

0
=T

��1 �
R b�� c� � �2K ;

where DT is the Jacobian of the moment conditions and ST is the spectral density matrix obtained
by the Newey-West estimator using m+ 1 lags. For the hypothesis in (16), we have

R = IDK 
 [1; 0;�1; 0] ;

where IDK is the identity matrix with dimension K and c = 0. K is the number of maturities we

19Fama-Bliss forward rates are known to be somewhat rough for longer maturities. We therefore smooth them
using a 12-month equal-weighted window.
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examine and is equal to 39 for the full panel. For the hypothesis in (17), we have

R = IDK 
 [0; 1; 0;�1] ;

and c = 0.

A.3 Lynch-Wachter Estimator

Conducting the tests for the full sample period involves making some implementation choices as the
Fama-Bliss panel is unbalanced. We use the adjusted moments estimator of Lynch and Wachter
(2013), which is an e¢ cient way of exploiting the long sample. For simplicity we partition the
moments in two parts: One part where we have yields for full the period from 1961:06-2013:12 and
one part where we only have yields starting from 1971:11. The �rst group contains moments on
maturities up to 66 months, while the second group contains those with maturities from 69 to 120
months. In principle, we could make many partitions based on the available observations for each
moment, but this will heavily complicate the computations. We refer to Lynch and Wachter (2013)
and our Online Appendix for further details.

A.4 Bootstrap

We address potential small sample distortions in the inference by a non-parametric stationary
bootstrap procedure in order to account for possible time series dependencies and to preserve any
cross-sectional dependencies in the data. The bootstrap procedure resamples the data in blocks of
consecutive observations of the left and right hand side of the Campbell-Shiller regressions. We
determine the optimal average block size using the Politis and White (2004) approach. When
drawing the blocks, we make sure to preserve cross-sectional correlations by resampling from the
same time points for all maturities. For each of the 100; 000 bootstrap samples, we estimate the
coe¢ cients in the Campbell-Shiller regressions.20 Based on a matrix of the 100; 000 simulated
coe¢ cient estimates, we can then compute the variances and covariances of the estimates across
maturities.

A.5 Step 2 of the SR approach: Regime-Switching in the Time Series Regres-
sion

This subsection describes how to estimate (11) by GMM when accounting for measurement errors
in the estimated pricing factors. For notational convenience, we express (11) as

xt+1 = 1fzt�cgh
(1)
0 +

�
1� 1fzt�cg

�
h
(2)
0 + h

(1)
x x

(1)
t + h

(2)
x x

(2)
t +wt+1;

where h(i)0 � �(i)0 , h
(i)
x � I��+�(i)x , x(1)t � 1fzt�cgxt, x

(2)
t �

�
1� 1fzt�cg

�
xt, and wt+1 � �x�t+1

for i = f1; 2g. Using the same procedure as in Andreasen and Christensen (2015), we estimate �x2
20We require at least 15 recession observations in each simulated sample.
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based on 2666666664

E
�
ŵt+11fzt�cg

�
E
�
ŵt+1

�
1� 1fzt�cg

��
E

�
ŵt+1

�
x̂
(1)
t

�0�
E

�
ŵt+1

�
x̂
(2)
t

�0�
V ar (ŵt+1)

3777777775
=

26666664
0
0

Cov
�
u
(1)
t+1;u

(1)
t

�
� h(1)x V ar

�
u
(1)
t

�
Cov

�
u
(2)
t+1;u

(2)
t

�
� h(2)x V ar

�
u
(2)
t

�
V ar (wt+1) +
t+1

37777775 ; (18)

where


t+1 � V ar (ut+1) + h
(1)
x V ar

�
u
(1)
t

��
h
(1)
x

�0
+ h

(2)
x V ar

�
u
(2)
t

��
h
(2)
x

�0
�Cov

�
u
(1)
t+1;u

(1)
t

��
h
(1)
x

�0
� h(1)x Cov

�
u
(1)
t ;u

(1)
t+1

�
�Cov

�
u
(2)
t+1;u

(2)
t

��
h
(2)
x

�0
� h(2)x Cov

�
u
(2)
t ;u

(2)
t+1

�
:

Here, ut refers to the estimation uncertainty in the estimated pricing factors, i.e. x̂t = xt + ut,
where u(1)t � 1fzt�cgut and u

(2)
t �

�
1� 1fzt�cg

�
ut. As in Andreasen and Christensen (2015), all

required moments of ut follow from the �rst step of the SR approach. The solution to the �rst four
moments conditions in (18) is given in closed form by

h bh(1)0 bh(2)0 bh(1)x bh(2)x i
=

�
T�1P
t=1

x̂t+1a
0
t �

T�1P
t=1

Ât+1

��
T�1P
t=1

ata
0
t �

T�1P
t=1

dV ar (ua;t)��1 ;
where

at �

26664
1[zt�c]

1� 1[zt�c]
x̂
(1)
t

x̂
(2)
t

37775 ua;t �

26664
0
0

u
(1)
t

u
(2)
t

37775
and Ât+1 =

h
0 0 dCov �u(1)t+1;u(1)t � dCov �u(2)t+1;u(2)t � i. The solution to the last moment con-

dition in (18) is also given in closed form and implies the following estimator

dV ar (wt+1) = 1

T � 1� 2 (nx + 1)
T�1P
t=1

b̂wt+1 b̂w0t+1 � 1

T � 1
T�1P
t=1


̂t+1; (19)

where


̂t+1 = dV ar (ut+1) + ĥ(1)x dV ar �u(1)t ��ĥ(1)x �0 + ĥ(2)x dV ar �u(2)t ��ĥ(2)x �0
�dCov �u(1)t+1;u(1)t ��ĥ(1)x �0 � ĥ(1)x dCov �u(1)t ;u(1)t+1�
�dCov �u(2)t+1;u(2)t ��ĥ(2)x �0 � ĥ(2)x dCov �u(2)t ;u(2)t+1�

with b̂wt+1 � x̂t+1 � 1fzt�cgĥ
(1)
0 �

�
1� 1fzt�cg

�
ĥ
(2)
0 � ĥ(1)x x̂(1)t � ĥ(2)x x̂(2)t . Note that we adopt a

standard degree of freedom correction to the �rst term in (19) because we estimate 2 (nx + 1)
unknown parameters per equation in the model. The asymptotic distribution of �x2 for T �! 1
follows from Hansen (1982) when applied on the moment conditions in (18). The estimated loadings
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in the market prices of risk are then given by �̂
(i)
0 = ĥ

(i)
0 and �̂

(i)
x = ĥ

(i)
x �

�
I� �̂

�
for i = f1; 2g.

Finally, the standard errors for �̂
(i)
0 and �̂

(i)
x are identical to those for ĥ(i)0 and ĥ(i)x , respectively.

That is, we omit uncertainty about �̂, because this estimator uses Tny observations and therefore
tends faster to in�nity than �̂

x
2 when also ny �!1, as noted in Andreasen and Christensen (2015).

A.6 Step 2 of the SR Approach: Inducing Stationarity

If the stability condition for xt is not satis�ed, we then downscale I��+ �(i)x by �i for i = f1; 2g
if the eigenvalues of I�� + �(i)x are greater than or equal to one. The values of �1 and �2 are
determined as in Andreasen and Meldrum (2014), i.e. by

(�1; �2) = arg min
f�lower��i<1g2i=1

nxX
i=1

 
�2i;model (�1; �2)� �2i;sample

�2i;sample

!2
:

We follow Andreasen and Meldrum (2014) and estimate the unconditional variance of the ith pricing
factor in the sample from fx̂i;tgTi=1 using

�̂2i;sample =
1

T � 1
TP
t=1

�
x̂i;t � Ê [x̂i]

�2
� 1

T

TP
t=1

dV ar (ui;t) ;
where Ê [x̂i;t] = 1=T

PT
t=1 x̂i;t and dV ar (ui;t) refers to the estimated variance of x̂i;t. The value of

the unconditional variance of xi;t in the model is computed by simulation, using

xt+1 = 1[zt�c]�
(1)
0 +

�
1� 1[zt�c]

�
�
(2)
0

+
�
�11[zt�c]

n
I��+ �(1)x

o
+ �2

�
1� 1[zt�c]

�n
I��+ �(2)x

o�
xt +�x�

P
x;t+1

and (12).
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Table 1: Wald tests: Campbell-Shiller Regressions
The table reports asymptotic and bootstrap Wald statistics denoted Was and Wboot, respectively.
Asymptotic p-values are in parentheses and bootstrap p-values in brackets. The dataset is unsmoothed
Fama-Bliss interest rates. Panel A reports results for the full sample period from 1961:06 to 2013:12. Here
we use the Lynch and Wachter (2013) adjusted moments estimator as the panel of bond yields is
unbalanced. For the two subperiods in panels B and C, we have observations on all maturities and use
standard GMM estimation. For these subperiods, we both report results using a standard asymptotic
GMM covariance matrix (Newey-West) and a small sample covariance matrix. The small sample estimates
are based on a stationary bootstrap where we resample blocks of the left and right hand side of the
Campbell-Shiller regressions with optimal average block size using the Politis and White (2004) approach.
When drawing the blocks, we make sure to preserve cross-sectional correlations by resampling from the
same time points for all maturities. The covariance matrix is computed using a matrix of 100,000
simulated coe¢ cient estimates. Further details are provided in the Online Appendix.

PMI NBER
H0 Was Wboot Was Wboot

Panel A: 1961:06-2013:12

�
(k)
REC = �

(k)
EXP 389.6 (0.00) 202.7 (0.00)

�
(k)
REC = �

(k)
EXP 283.2 (0.00) 243.8 (0.00)

�
(k)
REC = �

(k)
EXP ; �

(k)
REC = �

(k)
EXP 1035.1 (0.00) 650.3 (0.00)

Panel B: 1973:01-2013:12

�
(k)
REC = �

(k)
EXP 344.1 (0.00) 156.2 [0.00] 269.3 (0.00) 110.8 [0.00]

�
(k)
REC = �

(k)
EXP 312.4 (0.00) 117.1 [0.00] 282.3 (0.00) 125.8 [0.00]

�
(k)
REC = �

(k)
EXP ; �

(k)
REC = �

(k)
EXP 1137.7 (0.00) 386.8 [0.00] 808.8 (0.00) 318.2 [0.00]

Panel C: 1983:01-2013:12

�
(k)
REC = �

(k)
EXP 784.2 (0.00) 277.4 [0.00] 492.8 (0.00) 109.8 [0.00]

�
(k)
REC = �

(k)
EXP 468.9 (0.00) 140.2 [0.00] 493.1 (0.00) 95.5 [0.00]

�
(k)
REC = �

(k)
EXP ; �

(k)
REC = �

(k)
EXP 3333.3 (0.00) 675.4 [0.00] 2544.9 (0.00) 349.5 [0.00]
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Table 2: Return Predictability by the Yield Spread: Robustness
Panel A shows the results of regressing excess returns on a 10-year Treasury bond from Global Financial
Data on the 10-year yield spread, whereas Panel B shows the results of regressing excess returns on a
20-year Treasury bond from Ibbotson on the 20-year yield spread obtained from the Goyal and Welch
dataset. Excess returns are in both panels computed for the next three months with recessions and
expansions identi�ed using the NBER recession dates. Newey-West standard errors with 4 lags are provided
in parentheses. T is the total number of observations and TREC is the number of recession months.

Sample period T No switch Recessions vs. expansions
(TREC) � � R2 �EXP �REC �EXP �REC R2

Panel A: 10-year bond returns
1926:1-2013:12 1053 -0.006 0.70 5.3% -0.010 0.012 0.83 0.05 7.7%

(199) (0.003) (0.16) (0.003) (0.008) (0.17) (0.56)

1926:1-1961:5 422 -0.002 0.37 4.5% -0.007 0.014 0.58 -0.24 14.5%
(116) (0.002) (0.14) (0.002) (0.004) (0.14) (0.29)

1961:6-2013:12 628 -0.007 0.83 5.8% -0.010 0.012 0.91 0.29 7.5%
(83) (0.004) (0.22) (0.004) (0.016) (0.22) (1.01)

Panel B: 20-year bond returns
1926:1-2013:12 1053 -0.007 0.73 5.0% -0.014 0.021 0.98 -0.42 9.2%

(199) (0.003) (0.18) (0.003) (0.009) (0.19) (0.50)

1926:1-1961:5 422 -0.001 0.36 2.3% -0.008 0.019 0.61 -0.36 11.8%
(116) (0.003) (0.19) (0.003) (0.005) (0.19) (0.37)

1961:6-2013:12 628 -0.009 0.85 5.8% -0.016 0.024 1.08 -0.45 9.2%
(83) (0.005) (0.23) (0.004) (0.016) (0.22) (0.76)
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Table 3: Estimation Results: Risk-Neutral Coe¢ cients and Dynamics of PMI
Given the low estimates of � (1; 1), the value of � is unidenti�ed and set to 0 for all models. Asymptotic
standard errors for �̂ in brackets are robust to the measurement errors vt;k displaying heteroskedasticity in
the time series dimension, cross-sectional correlation, and autocorrelation. We use wD = 5 and wT = 10 in
the provided estimator of Andreasen and Christensen (2015). The asymptotic standard errors for �̂x and
the parameters for PMI are computed as described in Appendix A.5 and reported in parentheses.
Signi�cance at the 10 and 5 percent level is denoted by * and **, respectively.

MATSM MATSM
�0

MATSM
�x

MATSM
�0�x

� (1; 1) 1:18� 10�8
(4:38�10�4)

1:54� 10�8
(4:37�10�4)

1:19� 10�8
(7:41�10�4)

1:28� 10�8
(4:37�10�4)

� (2; 2) 0:0352��
(0:0046)

0:0353��
(0:0046)

0:0309��
(0:0054)

0:0352��
(0:0046)

� (3; 3) 0:0416��
(0:0044)

0:0416��
(0:0044)

0:0350��
(0:0047)

0:0416��
(0:0044)

�x (1; 1) 3:64� 10�4��
(1:97�10�5)

3:64� 10�4��
(1:96�10�5)

5:39� 10�4��
(2:46�10�5)

3:65� 10�4��
(1:94�10�5)

�x (2; 1) �0:0034��
(3:61�10�4)

�0:0034��
(3:63�10�4)

�0:0049��
(5:32�10�4)

�0:0034��
(3:57�10�4)

�x (2; 2) 0:0042��
(1:69�10�4)

0:0042��
(1:71�10�4)

0:0068��
(2:51�10�4)

0:0041��
(1:68�10�4)

�x (3; 1) 0:0031��
(3:45�10�4)

0:0031��
(3:48�10�4)

0:0045��
(5:09�10�4)

0:0031��
(3:42�10�4)

�x (3; 2) �0:0041��
(1:71�10�4)

�0:0041��
(1:72�10�4)

�0:0066��
(2:49�10�4)

�0:0041��
(1:69�10�4)

�x (3; 3) 3:63� 10�4��
(4:05�10�5)

3:51� 10�4��
(3:66�10�5)

4:06� 10�4��
(1:98�10�5)

3:40� 10�4��
(2:24�10�5)

PMI

0 � 0:0094��

(0:0043)
0:0095��
(0:0044)

0:0094��
(0:0043)


z � 0:9338��
(0:0180)

0:9338��
(0:0180)

0:9338��
(0:0180)


x (1; 1) � �1:4022��
(0:6955)

�1:3459��
(0:6775)

�1:4023��
(0:6955)


x (2; 1) � �3:1301��
(0:6795)

�2:9007��
(0:6413)

�3:1288��
(0:6793)


x (3; 1) � �3:4533��
(0:7357)

�3:1354��
(0:6791)

�3:4552��
(0:7361)

�zz � 0:0222��
(8:87�10�4)

0:0222��
(8:87�10�4)

0:0222��
(8:87�10�4)
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Table 5: Slope Coe¢ cients in Modi�ed Mincer-Zarnowitz Regressions
This table reports the regression slopes of modi�ed Mincer-Zarnowitz regressions of realized three months
excess returns on a constant and model-implied expected excess returns when conditioning on the state of
the economy by using the NBER recession dates. Excess returns are pooled within bins of two years for
these regressions, given a total of eight excess returns per reported maturity range. Newey-West standard
errors with 6 lags are provided in parentheses.

Expansions Recessions
Maturity range in years: Maturity range in years:

0-2 2-4 4-6 6-8 8-10 0-2 2-4 4-6 6-8 8-10
MATSM 0:976

(0:115)
1:163
(0:094)

1:176
(0:098)

1:120
(0:106)

0:997
(0:100)

0:624
(0:775)

0:390
(0:565)

0:097
(0:526)

�0:093
(0:551)

�0:050
(0:487)

MATSM
�0�x

0:648
(0:090)

0:760
(0:069)

0:759
(0:073)

0:695
(0:078)

0:612
(0:076)

0:754
(0:103)

0:667
(0:074)

0:656
(0:085)

0:612
(0:100)

0:544
(0:102)

MSRM
�0�x

0:709
(0:099)

0:836
(0:074)

0:812
(0:075)

0:735
(0:079)

0:650
(0:078)

0:799
(0:109)

0:668
(0:081)

0:630
(0:092)

0:593
(0:105)

0:525
(0:104)

MAFNS
�0(2;1)�x(2;2)

0:775
(0:103)

0:860
(0:081)

0:812
(0:083)

0:682
(0:084)

0:578
(0:081)

0:710
(0:138)

0:707
(0:099)

0:737
(0:108)

0:731
(0:132)

0:732
(0:130)

MLinear 0:937
(0:088)

1:139
(0:082)

1:263
(0:090)

1:204
(0:099)

1:072
(0:093)

0:306
(0:404)

0:089
(0:389)

�0:063
(0:394)

�0:159
(0:428)

�0:159
(0:391)

MSpanned 0:927
(0:087)

1:145
(0:082)

1:275
(0:090)

1:222
(0:099)

1:118
(0:095)

0:326
(0:392)

0:109
(0:381)

�0:036
(0:387)

�0:119
(0:416)

�0:117
(0:380)
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Table 6: Additional Model Estimates: Risk-neutral Coe¢ cients and Dynamics of PMI
Given the low estimates of � (1; 1), the value of � is unidenti�ed and set to 0 for all models. Asymptotic
standard errors for �̂ in brackets are robust to the measurement errors vt;k displaying heteroskedasticity in
the time series dimension, cross-sectional correlation, and autocorrelation. We use wD = 5 and wT = 10 in
the provided estimator of Andreasen and Christensen (2015). The asymptotic standard errors for �̂x and
the parameters for PMI are computed as described in Appendix A.5 and reported in parentheses. For
MSpanned, we let � (4; 1) = � (4; i) = � (i; 4) = 0 for i = f1; 2; 3g as the �t of bond yields is completely
una¤ected by these coe¢ cients. Signi�cance at the 10 and 5 percent level is denoted by * and **,
respectively.

MSRM
�0�x

MAFNS
�0(2;1)�x(2;2)

MLinear MSpanned

� (4; 1) � � � 0:1283��
(0:0204)

~� � 0:0388��
(0:0021)

� �

� (1; 1) 1:00� 10�8
(3:64�10�4)

� 1:09� 10�8
(4:44�10�4)

1:11� 10�8
(6:92�10�4)

� (2; 2) 0:0351��
(0:0061)

� 0:0352��
(0:0046)

0:0430
(0:1243)

� (3; 3) 0:0536��
(0:0053)

� 0:0416��
(0:0044)

0:0447
(0:1281)

� (4; 4) � � � 0:0513��
(0:0171)

�x (1; 1) 3:44� 10�4��
(1:67�10�5)

3:67� 10�4��
(1:98�10�5)

3:65� 10�4��
(3:06�10�5)

3:16� 10�4��
(2:31�10�5)

�x (2; 1) �0:0012��
(1:36�10�4)

�0:0003��
(2:66�10�5)

�0:0034��
(5:38�10�4)

�0:0091��
(0:0018)

�x (2; 2) 0:0019��
(7:17�10�5)

3:56� 10�4��
(2:60�10�5)

0:0042��
(2:01�10�4)

0:0194��
(0:0010)

�x (3; 1) 9:68� 10�4��
(1:25�10�4)

�0:0006��
(6:06�10�5)

0:0031��
(5:12�10�4)

0:0088��
(0:0019)

�x (3; 2) �0:0018��
(7:55�10�5)

7:92� 10�5�
(4:34�10�5)

�0:0041��
(2:01�10�4)

�0:0210��
(0:0011)

�x (3; 3) 3:69� 10�4��
(2:19�10�5)

7:05� 10�4��
(2:97�10�5)

3:53� 10�4��
(6:19�10�5)

0:0023��
(1:07�10�4)

�x (4; 1) � � 6:62� 10�4
(9:02�10�4)

2:71� 10�4
(8:72�10�4)

�x (4; 2) � � 0:0040��
(0:0012)

0:0134��
(0:0013)

�x (4; 3) � � 0:0051��
(0:0019)

�0:0176��
(9:03�10�4)

�x (4; 4) � � 0:0213��
(9:81�10�4)

0:0027��
(4:51�10�4)

PMI

0 0:0101��

(0:0042)
0:0094��
(0:0042)

� �


z 0:9320��
(0:0180)

0:9338��
(0:0180)

� �


x (1; 1) �1:4882��
(0:6842)

�1:4000��
(0:6948)

� �


x (2; 1) �3:1238��
(0:6649)

�3:2161��
(0:6911)

� �


x (3; 1) �3:8735��
(0:8001)

1:8307��
(0:5536)

� �

�zz 0:0222��
(8:88�10�4)

0:0221��
(8:90�10�4)

� �
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Table 7: Additional Model Estimates: The Market Prices of Risk
The asymptotic standard errors are computed as described in Appendix A.5 and reported in parentheses.
Signi�cance at the 10 and 5 percent level is denoted by * and **, respectively.

MSRM
�0�x

MAFNS
�0(2;1)�x(2;2)

MLinear MSpanned

EXP REC EXP REC EXP REC EXP REC

Intercepts:
�0 (1; 1) 2:33� 10�4��

(5:23�10�5)
5:84� 10�4�
(3:40�10�4)

3:17� 10�4��
(5:84�10�5)

2:36� 10�4��
(7:24�10�5)

1:96� 10�4��
(6:43�10�5)

�0 (2; 1) �0:0012��
(3:50�10�4)

�0:0014
(0:0017)

�0:0002��
(7:56�10�5)

�0:0007��
(2:67�10�4)

�0:0030��
(0:0010)

�0:0064
(0:0040)

�0 (3; 1) 0:0011��
(3:41�10�4)

6:30� 10�4
(0:0016)

�0:0005��
(1:56�10�4)

0:0027��
(9:75�10�4)

0:0052
(0:0044)

�0 (4; 1) � � � � 0:0094��
(0:0044)

0:0070
(0:0047)

Slopes:
�x (1; 1) �0:0338��

(0:0093)
�0:0728�
(0:0408)

�0:0468��
(0:0097)

�0:0315��
(0:0113)

�0:0237��
(0:0099)

�x (1; 2) 0:0206��
(0:0085)

0:0376
(0:0457)

0:0200��
(0:0093)

0:0224��
(0:0098)

0:0230��
(0:0085)

�x (1; 3) 0:0156
(0:0103)

0:0183
(0:0414)

0:0214��
(0:0101)

0:0188�
(0:0105)

0:0224��
(0:0087)

�x (1; 4) � � � � 6:44� 10�6
(1:75�10�4)

0:0026��
(0:0012)

�x (2; 1) 0:2008��
(0:0666)

0:1186
(0:2103)

0:0326��
(0:0146)

0:4888��
(0:1479)

1:1312��
(0:5562)

�x (2; 2) 0:0889
(0:0723)

�0:2956
(0:2527)

0:0081
(0:0138)

�0:2363��
(0:1183)

0:0734
(0:1846)

�0:8757
(0:7308)

�x (2; 3) 0:1766��
(0:0854)

�0:2380
(0:2903)

�0:0404��
(0:0156)

0:1550
(0:1960)

�0:8365
(0:7401)

�x (2; 4) � � � � �0:0024
(0:0031)

�0:1060
(0:1024)

�x (3; 1) �0:1801��
(0:0674)

�0:0880
(0:1972)

0:0853��
(0:0279)

�0:4658��
(0:1452)

�0:9329
(0:6010)

�x (3; 2) �0:0821
(0:0722)

�0:0039
(0:2155)

0:0179
(0:0305)

�0:0731
(0:1781)

1:3262�
(0:7677)

�x (3; 3) �0:1516�
(0:0853)

�0:0769
(0:2431)

�0:0925��
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Figure 1: Ordinary and Modi�ed Campbell-Shiller Regressions
Estimation results from ordinary and modi�ed Campbell-Shiller regressions are provided in the upper and
lower part of the �gure, respectively, using monthly data from 1961:6 to 2013:12. The dataset is
unsmoothed Fama-Bliss (FB) interest rates or the data companying Gürkaynak, Sack and Wright (2007),
denoted GSW. Intercepts are multiplied by 100.
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Figure 2: Goodness-of-�t in Ordinary and Modi�ed Campbell-Shiller Regressions
The goodness of �t as measured by the R2 statistic (in percent) for the ordinary and modi�ed
Campbell-Shiller regressions using monthly data from 1973:1 to 2013:12. The dataset is unsmoothed
Fama-Bliss (FB) interest rates or the data companying Gürkaynak, Sack and Wright (2007), denoted GSW.
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Figure 3: Ordinary and Modi�ed Return Regressions
These charts report the slope coe¢ cients in return regressions where excess bond returns three months
ahead are regressed on either the yield spread, the forward spread, or the CP factor (with a constant) using
monthly data from 1961:6 to 2013:12. The dataset is unsmoothed Fama-Bliss (FB) interest rates or the
data companying Gürkaynak, Sack and Wright (2007), denoted GSW. Given the well-known reliance of the

CP factor on FB forward rates, the CP factor for the GSW dataset is computed as cpGSWt =
�

̂GSW

�0
Ft,

where Ft �
h
1; yt;12; f

(12;24)
t ; f

(24;36)
t ; f

(36;48)
t ; f

(48;60)
t

i0
are FB forward rates but 
̂GSW is obtained by

regressing GSW returns on FB forward rates.
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Figure 4: Model Evaluation: Ordinary and Modi�ed Campbell-Shiller Regressions
The empirical intercepts and slope coe¢ cients in ordinary and modi�ed Campbell-Shiller regressions are
computed based on monthly unsmoothed Fama-Bliss interest rates from 1961:6 to 2013:12. The
model-implied regression loadings are computed at the estimated parameters forMATSM

�0�x
using a

simulated sample path of 100,000 observations. Intercepts are multiplied by 100.
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Figure 5: Model Evaluation: Ordinary and Modi�ed return Regressions
The empirical slope coe¢ cients in ordinary and modi�ed return regressions are computed based on monthly
unsmoothed Fama-Bliss interest rates from 1961:6 to 2013:12. The model-implied regression loadings are
computed at the estimated parameters forMATSM

�0�x
using a simulated sample path of 100,000 observations.
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Figure 7: SRM with Regime-Switching: Ordinary and Modi�ed Campbell-Shiller Re-
gressions
The empirical intercepts and slope coe¢ cients in ordinary and modi�ed Campbell-Shiller regressions are
computed based on monthly unsmoothed Fama-Bliss interest rates from 1961:6 to 2013:12. The
model-implied regression loadings are computed at the estimated parameters forMSRM

�0�x
using a simulated

sample path of 100,000 observations. Intercepts are multiplied by 100.
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Figure 8: AFNS Model with Regime-Switching: Ordinary and Modi�ed Campbell-
Shiller Regressions
The empirical intercepts and slope coe¢ cients in ordinary and modi�ed Campbell-Shiller regressions are
computed based on monthly unsmoothed Fama-Bliss interest rates from 1961:6 to 2013:12. The
model-implied regression loadings are computed at the estimated parameters forMAFNS

�0(2;1)�x(2;2)
using a

simulated sample path of 100,000 observations. Intercepts are multiplied by 100.
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Figure 9: AFNS Model with Regime-Switching: Excess Returns
We report annualized quarterly excess return for the 10-year bond inMAFNS

�0(2;1)�x(2;2)
computed by the

Monte Carlo method using 10,000 draws. The corresponding excess return in the data is only available
from the start of the 1970s due to the availability of the 10-year bond yield. The partial e¤ect of a switch
in �0 (2; 1) is the di¤erence in excess returns betweenMAFNS

�0(2;1)
, where �(2)x (2; 2) = �(1)x (2; 2), andMAFNS ,

where �(2)0 (2; 1) = �
(1)
0 (2; 1) and �(2)x (2; 2) = �(1)x (2; 2), and similarly for the e¤ect of a switch in �x (2; 2).

All returns and interest rates are in percent. Shaded regions denote NBER recessions.
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Figure 10: Linear and Spanned Models: Ordinary and Modi�ed Campbell-Shiller
Regressions
The empirical intercepts and slope coe¢ cients in ordinary and modi�ed Campbell-Shiller regressions are
computed based on monthly unsmoothed Fama-Bliss interest rates from 1961:6 to 2013:12. The
model-implied regression loadings are computed at the estimated parameters forMLinear andMSpanned

using a simulated sample path of 100,000 observations. Intercepts are multiplied by 100.
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