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Abstract

A dynamic multi-level factor model with stationary or nonstationary global
and regional factors is proposed. In the model, persistence in global and
regional common factors as well as innovations allows for the study of frac-
tional cointegrating relationships. Estimation of global and regional common
factors is performed in two steps employing canonical correlation analysis
and a sequential least-squares algorithm. Selection of the number of global
and regional factors is discussed. The small sample properties of our method-
ology are investigated by some Monte Carlo simulations. The method is then
applied to the Nord Pool power market for the analysis of price comovements
among different regions within the power grid. We find that the global factor
can be interpreted as the system price of the power grid as well as a fractional
cointegration relationship between prices and the global factor.

Keywords: Multi-level factor; long memory; fractional cointegration; elec-
tricity prices.
JEL Classification: C12, C22.

1 Introduction

Dynamic factor models are extensively used as a dimension reduction tool in the
analysis of large economic data sets. For estimation and inference theory under
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different setups, see e.g. Stock and Watson (2002), Bai and Ng (2002) Bai (2003),
Bai and Ng (2004), and Bai et al. (2008). While there is a vast literature for es-
timation of the number of common factors and the factors themselves when both
cross-section and time-series dimensions are large, available methodologies rely
on the existence of only pervasive factors. More recently there has been some in-
terest in decomposing common factor structures into different levels. Wang (2010)
considers a stationary I(0) multi-level factor model for which identification is dis-
cussed and inference theory is developed. Moench et al. (2013) and Diebold et al.
(2008) have proposed an alternative multi-level factor model with a hierarchical
structure.

In this paper, we consider a dynamic multi-level factor model that allows for
both pervasive (or global) and nonpervasive (e.g. regional) common factors. These
common factors are allowed to exhibit fractional long-range dependence without
restrictions of being either stationary I(0) or nonstationary I(1) processes as is
commonplace in the literature. Model innovations are also allowed to be fraction-
ally integrated. This way, the model can be used for the analysis of fractional
cointegrating relationships in a wide range of economic applications.

The estimation method is similar in spirit to that of Breitung and Eickmeier
(2016) who use a sequential least-squares algorithm for the estimation of global
and regional common factors. Based on plug-in estimates, we use a conditional-
sum-of-squares criterion to estimate the residual fractional integration parameter
while those of the factors are estimated using an exact local Whittle approach.
We establish the asymptotic behavior of the factor structure estimates as well as
that of the residual fractional integration parameter and show that these are to be
consistent and asymptotically normally distributed with standard parametric rates.
We also discuss selection of the number of global and regional common factors by
using the usual information criteria of Bai and Ng (2002) and simple tools from
set theory. Monte Carlo simulations show that the methodology works well even
in relatively small panels. We then apply the method to model the relationship
between hourly prices in the bidding areas of the Nord Pool power market.

The paper is organized as follows. Next section introduces the model along
with the model assumptions and contains the estimation strategy and the relevant
estimation and inference theory. Section 3 discusses the selection of the number
of global and regional factors. Section 4 presents a finite sample study based on
Monte Carlo simulations. Section 5 provides an empirical application to the Nord
Pool energy market, and finally Section 6 concludes the paper.

Throughout the paper, ‖A‖ = (trace(A′A))1/2 for a matrix A, xn =
Op(yn) states that the vector of random variables, xn, is at most of order yn in
probability, and xn = op(yn) is of smaller order in probability than yn, →p de-
notes convergence in probability, and→d denotes convergence in distribution, and
(N,T )j denotes the joint cross-section and time-series asymptotics. All mathe-
matical proofs are collected in an appendix at the end of the paper.
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2 The two-level factor model with long-range dependence

2.1 The model

In this section, we introduce a multi-level factor model that allows for fractional
long memory both in the factors and innovations. The baseline model considered is
a two-level factor model whose factors can be interpreted as unobserved common
shocks and are classified in two types: the first factor type is the global or common
factor, which is a pervasive top-level factor that affects all economic sectors or
regions; the second factor type is the regional or sector-specific factor, which is the
nonpervasive sub-level factor and affects only a particular sector or region. Many
macroeconomic applications prefer to label these types of factors as global and
regional factors. In this paper, we use the terms global/pervasive/common factor
and regional/nonpervasive/sector-specific factor interchangeable.

Let yr,it be the observation on the region r, the ith cross-section unit at time
t for r = 1, . . . , R; i = 1, . . . , Nr; t = 1, . . . , T and suppose that is generated
according to the following model:

yr,it = µ′r,i(L)Gt + λ′r,i(L)Fr,t + εr,it, (1)

Note that the total number of observations across all regions N = N1 + N2 +
· · ·+NR. We assume the number of regionsR to be fixed because, in practice, it is
generally enough to study a complex system and it allows for a much more tractable
asymptotic analysis. The rG × 1 vector Gt = (g1,t, . . . , grG,t)

′ contains the rG
unobservable global or common factors and the rF×1 vector Fr,t consists of the rF
unobservable regional or sector-specific factors in the region r. µr,i(L) and λr,i(L)
are rG- and rF -dimensional polynomials in the lag operator L, respectively, for
instance, µr,i(L) = µr,0i + µr,1iL+ · · ·+ µr,siL

s.
In the model specified by (1),

Gt = ∆−δ0t wt,

Fr,t = ∆
−ϑr,0
t vr,t, and

εr,it = ∆
−dr,i0
t ur,it,

where wt, vr,t, and, ur,it are zero-mean unobservable white noise sequences and
the truncated fractional differencing filter ∆−ζt is described as follows. With ∆ =
1− L, ∆−ζ has the expansion

∆−ζ =

∞∑
j=0

πj(−ζ)Lj , where πj(−ζ) =
Γ(j + ζ)

Γ(j + 1)Γ(ζ)
,

for ζ > 0 with Γ(τ) = ∞ for τ = 0,−1, . . . , but Γ(0)/Γ(0) = 1. ∆−ζt truncates
the latter expansion to ∆−ζt =

∑t
j=0 πj(−ζ)Lj . This truncation allows for the

study of both the stationary case (ζ < 1/2) and the nonstationary case (ζ ≥ 1/2),
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unlike the untruncated filter that does not converge when ζ ≥ 1/2, see Davidson
and Hashimzade (2009).

There is a problem with multi-level factor models which concerns identifi-
cation and we will discuss this later in the paper. Our model imposes a block of
zero restrictions on the matrix of factor loadings so that the system of all R regions
can be represented as

 y1,·t
...

yR,·t

 =


Γ1 Λ1 0 · · · 0
Γ2 0 Λ2 · · · 0
...

. . .
...

ΓR 0 0 · · · ΛR




Gt
F1,t

F2,t
...

FR,t

 +

 u1,·t
...

uR,·t

 ,

or
yt = Λ∗ F ∗t + ut, (2)

where F ∗t =
(
G′t, F

′
1,t, . . . , F

′
R,t

)′
. Model (2) is the so-called static representation

of the original dynamic factor model.
The intuition behind these models is that each process yr,it is the sum of a

global common component, a regional common component, and an idiosyncratic
component. Common components of region r are driven by the respective rG and
rF vectors of common factors (global and regional), which are loaded with possi-
bly different coefficients and lags as we discussed above. For practical purposes,
there may be an interest in measuring certain comovements between countries em-
ploying multi-level factors. In that case, the global component would capture com-
mon movements in all groups of countries, and the regional component would cap-
ture common movements with the country’s neighbors whereas the specific country
component would capture movements that are unique to that specific country. Co-
movements between countries as captured by these multi-level factors can then be
used to measure the connectivity of the countries analyzed. For instance, if the
regional component of a specific country weighs more than the global component,
the country would seem to be more connected with its neighbors than with all the
countries as a whole.

Model (1) can be rewritten as

∆
dr,i0
t yr,it = µr,i(L)

′
∆
dr,i0
t Gt + λr,i(L)

′
∆
dr,i0
t Fr,t + ur,it,

which would then be comparable to the standard two-level factor model proposed
by Wang (2010). The main difference is that model (1) covers a wide range of
persistence levels in each of its time-varying components. Furthermore, fractional
integration parameters quantifying persistence in model 1 are also allowed to be
heterogeneous, which is desired in obtaining unit-specific inference.

Let maxi dr,i0 = dr,max and let M denote a generic positive constant to
indicate finiteness. We make the following assumptions to study the model (1).
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Assumption A. Fractional integration parameters: dr,i0 ∈ C = [dr,i, dr,i] ⊆ [0, 1]

for each i = 1, . . . , Nr and r = 1, . . . , R, ϑr,0 ∈ D = [ϑr, ϑr] ⊆ [0, 1],
δ0 ∈ E = [δ, δ] ⊆ [0, 1], dr,max ≤ max {δ0, ϑr,0} and max {δ0, ϑr,0, dr,max} −
min

{
δ, ϑr, dr,i

}
< 1/2.

Some of the next assumptions are extensions of Bai (2003) and are based on
those provided by Wang (2010).

Assumption B. Factors:

B1 Gt = ∆−δ0t wt, where wt ∼ iid (0,Σw) with Σw positive definite and
E||wt||4 ≤M .

B2 Fr,t = ∆
−ϑr,0
t vr,t, where vr,t ∼ iid (0,Σvr) with Σvr positive definite and

E||vr,t||4 ≤M for all r = 1, . . . , R.

B3 Define Ht =
[
G0′
t , F

0′
r,t

]′
. For a fixed r, assume that T−1

∑T
t=1HtH

′
t

p→∑
H for some positive-definite matrix

∑
H with rank rG + r1 + · · ·+ rR.

Assumption C. Factor loadings:

C1 λ0
r,i is either deterministic such that ||λ0

r,i|| ≤ M < ∞, or it is stochastic

such that E||λ0
r,i||4 ≤ M < ∞. In the latter case, N−1

r Λ0′
r Λ0

r
p→ ΣΛr > 0

for an rF × rF non-random matrix ΣΛr for all r = 1, . . . , R.

C2 µ0
r,i is either deterministic such that ||µ0

r,i|| ≤ M , or it is stochastic such

that E||µ0
r,i||4 ≤ M < ∞ with N−1

r µ0′
r µ

0
r

p→ Σµr > 0 for an rG × rG
non-random matrix Σµr for all r = 1, . . . , R.

C3 Rank ([ΓrΛr]) = rr + r.

Assumption D. Idiosyncratic shocks:

D1 ur,it ∼ iid
(

0, σ2
r,i

)
, E|ur,it|8 ≤M .

D2 E (ur1,itur2,jt) = τr1,r2,ij,t, with |τr1,r2,ij,t| ≤ |τr1,r2,ij | for some τr1,r2,ij ≥
0 and for all t. In addition, N−1

∑R
r1=1

∑R
r2=1

∑Nr1
i=1

∑Nr2
j=1 τr1,r2,ij ≤M .

D3 E (ur1,itur2,js) = τr1,r2,ij,ts and
(NT )−1

∑R
r1=1

∑R
r2=1

∑Nr1
i=1

∑Nr2
j=1

∑T
t=1

∑T
s=1 |τr1,r2,ij,ts| ≤M .

D4 For every (t, s) , E
∣∣∣N1/2

∑R
r1=1

∑Nr1
i=1 (ur1,isur1,it − E (ur1,isur1,it))

∣∣∣4 ≤
M .

Assumption E. Processes {ur,it}, {vr,t}, {wt}, {λr,i}, and {µr,i} are mutually
independent groups.
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Assumption F. Identification:

F1 F
′
rFr/T = IrF and Λ

′
rΛr diagonal (Within region identification).

F2 G
′
G/T = IrG and Γ

′
Γ diagonal (Between region identification).

F3 Factors have zero mean, and
∑T

t=1GtF
′
r,t = 0 for r = 1, . . . , R.

Assumption A imposes standard restrictions on the range of allowed values
for memory parameters but greatly relaxes the I(0)− I(1) restrictions imposed in
the factor literature. The model in (1) simultaneously admits combination of persis-
tence levels in factors as well as in the idiosyncratic terms. Hence, Assumption A
permits extensive fractional cointegrating restrictions on the model and can be use-
ful in understanding the behavior of co-persistent economic and financial variables
involved in a complex system dynamics. Our model features a fractional cointe-
grating relationship in the multi-level factor model when dr,max < max {δ0, ϑr}
for some r but we do not impose this a priori. The condition max{δ0−δ, ϑr,0−ϑr}
< 1/2 allows for the use of standard techniques in establishing consistency of the
factor structure estimates, cf. Bai and Ng (2004) for example, together with the
condition dr,max ≤ max {δ0, ϑr} . The requirement dr,i0 − d < 1/2 for all i, is
needed for a uniform treatment of the residual memory estimate. Finally, the cross
requirements between the memory parameters are due to the interplay between
the model parameters and ensure that the factor estimation errors employed in the
estimation of the residual memory parameter are asymptotically negligible.

Assumptions B1 and B2 describe the structures of the global and regional
factors defined earlier and impose standard moment conditions on their distur-
bances. These assumptions are more general than those of classical factor analysis
in which factors are assumed to be iid, and those of multi-level factor analysis pro-
posed by Wang (2010) who imposes I(0) stationarity in both factors. Even with
lagged factors on Gt or Fr,t, the dynamic model in (1) can be reformulated as a
static factor model, see Bai et al. (2008). Many econometric methods are devel-
oped under the static framework because it is easily estimated using time domain
methods in comparison with the dynamic framework that employs a frequency-
domain approach. In this paper, we focus on the static factor model even if the
derived properties still hold for our dynamic model. The rank condition in As-
sumptionB3 implies that different factors are not perfectly correlated. Assumption
C1 ensures that the global factor Gmt has nontrivial contribution to the variance of
yt, m = 1, . . . , r while assumption C2 ensures that each regional factor Fr,jt has a
nontrivial contribution to the variance of yr,t, j = 1, . . . , rF . The latter means that
Gt pervades all variables whereas the regional factor Fr,jt pervades only within
region r. The rank condition in Assumption C3 guarantees enough heterogeneity
among individual variables within region r when responding to both factors. Such
a rank condition is useful in separating identification of global and regional factors.
Assumptions D1-D4 allow for limited time-series and cross-section dependence in
the idiosyncratic components. Heteroskedasticity in both time and cross-section
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dimensions is also allowed. Correlation in the idiosyncratic components allows
the model to have an approximate factor structure. Finally, Assumption E implies
that the global or regional factors can be serially correlated, the factor loadings
(λr,i, µr,i) can be correlated over i in each region r, and the idiosyncratic shocks
can have serial and cross-sectional correlations. Although factors, factor loadings,
and the idiosyncratic shocks are assumed to be independent of each other, regional
factors from different regions can still be correlated.

For estimation purposes, we assume the number of factors rG and rF to be
known and fixed at this step. Formal tests or information criteria for such num-
ber of factors are, to our knowledge, not yet available even discarding long-range
dependence in the factors. Notwithstanding, the number of factors does not affect
asymptotic results for the common component, see Bai (2003).

We need the three restrictions given in Assumption F to identify the factors.
Assumptions F1 and F2 are standard in factor analysis and allow the model to be
uniquely identified under such normalizations. Assumption F3 rules out any possi-
bility of correlation between the global and regional factors, which is the same as
saying that the global factors do not contain information about regional factors and
vice versa. This assumption enables us to separately identify regional factors and
global factors. Wang (2010) discusses restrictions involved in both assumptions.

Following Breitung and Eickmeier (2016) and Proposition 1 in Wang (2010),
the factor loadings for the model 2 are identified up to a linear transformation of
the loading matrix that preserves the same zero restrictions of the model given by
Λ∗Q with

Q =


Q00 0 0 · · · 0
Q10 Q11 0 · · · 0

...
. . . 0

QR0 0 0 · · · QRR

 , (3)

where orthonormal global and regional factors within each of the R+ 1 blocks are

given by Q00 =
(
T−1

∑T
t=1GtG

′
t

)−1/2
and Qrr =

(
T−1

∑T
t=1 Fr,tF

′
r,t

)−1/2

for all r. Matrix 3 imposes that the R blocks of regional factors are uncorrelated
with the blocks of global factors.

2.2 Estimation

We adopt the estimation procedure proposed by Breitung and Eickmeier (2016) to
estimate the global and regional common factors. A similar procedure related to
the sequential PC approach is proposed in Wang (2010) but that of Breitung and
Eickmeier (2016) proves to be computationally simpler. We then use an equation-
by-equation conditional-sum-of-squares (CSS) estimation based on the regression
residuals to estimate the memory parameters dr,i0.

7



Let d̂r,i denote the estimate of the unknown true fractional integration pa-
rameter dr,i0, that is given by

d̂r,i = argmin
dr,i∈D

L∗r,i,T (dr,i) ,

where

L∗r,i,T (dr,i) =
1

T

T∑
t=1

(
∆
dr,i
t ε̂r,it

)2
,

and for r = 1, . . . , R, i = 1, . . . , Nr and t = 1, . . . , T ,

ε̂r,it = yr,it − γ̂′r,iĜt − λ̂′r,iF̂r,t, (4)

where Γ̂∗ and F̂ ∗t in the system representation of (4) are obtained by sequential least
squares (SLS) that is proposed by Breitung and Eickmeier (2016), which produces
estimates asymptotically equivalent to the maximum likelihood estimates under the
assumption that ur,it in (2) are iid across i, t and r. We outline the steps of such an
algorithm in which the main goal is to minimize the residual sum of squares (RSS)
function

S (F ∗,Λ∗) =
∑T

t=1 (yt − Λ∗F ∗t )′ (yt − Λ∗F ∗t )

=
∑R

r=1

∑Nr
i=1

∑T
t=1

(
yr,it − γ

′
r,iGt − λ

′
r,iFr,t

)2 (5)

by a sequence of two least-squares regressions until RSS achieves a minimum. The
algorithm is easily executed as follows:

1. The algorithm is initialized by using initial estimators of the global and re-

gional factors, Ĝ(0) =
(
Ĝ

(0)
1 , . . . , Ĝ

(0)
T

)′
and F̂ (0)

r =
(
F̂

(0)
r,1 , . . . , F̂

(0)
r,T

)′
.

Such estimators can be obtained by canonical correlation analysis (CCA).

2. Once initial estimators are obtained, the corresponding factor loadings at the
initial step are estimated from the time-series regression yr,it = µ

′
r,iĜ

(0)
t +

λ
′
r,iF

(0)
r,t + ε̃r,it that construct the factor loadings matrix, Γ̂∗(0), in Equation

(2).

3. The global and regional factors in the next step, Ĝ(1) and F̂
(1)
r,1 , are up-

dated from the least-squares regression of yt on Γ̂∗(0) to obtain F
∗(1)
t =(

Γ̂∗(0)′Γ̂∗(0)
)−1

Γ̂∗(0)′yt.

4. Next, the updated factors F ∗(1)
t are used to get the associated factor loading

matrix, Γ̂∗(1), as in step 2.

5. Steps 3 and 4 are repeated until RSS converges to a minimum from which
F̂ ∗ and Λ̂∗ are collected.
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CCA is a standard tool in multivariate statistics and is a way of measuring the linear
relationship between two multidimensional variables. Such an analysis finds two
sets of basis vectors, one for each variable, such that the correlations between the
projections of the variables onto these bases are mutually maximized. Breitung
and Eickmeier (2016) propose CCA to get the initial estimates of the global and
regional factors to ensure that the procedure listed above starts in a suitable vicinity
of the global minimum. CCA is carried out in 2 steps. At the first step, in each
region, r = rG + rF principal components are estimated obtaining R consistent
factor spaces of the form F̂+

r,t for r = 1, . . . , R which will eventually share a
common component yielding the initial global factor after the second step. Let

Ht =
(
F̂+
r,t, F̂

+
s,t

)′
with c0Ht denoting the canonical variables, the CCA (at the

second step of the procedure) solves the following maximization problem:

max
{
c0Σ01c

1/
[
c0Σ00c

0 · c1Σ11c
1
]1/2}

s.t. c0Σ00c
0 = 1, and c1Σ11c

1 = 1,

where Σ00 = var (Ht) , Σ11 = var (Ht−1) and, Σ01 = cov (Ht,Ht−1).
The resulting linear combination with the largest canonical correlation will

be the estimate of the global factor, Ĝ(0). Subsequently, we regress original prin-
cipal components of the region r, F̂+

r,t, on the estimated global factors in order to

find F̂ (0)
r for all r = 1, . . . , R.
As pointed out earlier, Λ∗0 and F ∗0t are not separately identifiable. In or-

der to identify the common component ξ∗t = Λ∗F ∗t we choose the nonsingular
matrix Q in (3) to preserve identification of the factors. We use the standard nor-
malizations in PC analysis given in Assumption F. Note that even when global
and regional factors are orthogonal to each other, the correlation between regional
factors from different regions are allowed. We follow the steps proposed by Bre-
itung and Eickmeier (2016) to adapt to the normalization. Such steps consist first
of regressing the regional factors F̂r,t on Ĝt in order to get the orthogonalized re-
gional factors, and second, extracting the normalized global and regional factors
after running PC analysis of the respective common component.

2.3 Asymptotic inference

We establish the asymptotic behavior of the factor structure and residual fractional
integration parameter estimates. Let us define the vector that collects the first-
differenced global and regional factors as

f∗ := ∆F ∗.

The next theorem presents the consistency of first-differenced factor esti-
mates.
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Theorem 2.1 (Consistency of the common components). Under Assumptions A-F
and if Λ∗Λ∗

′
is diagonal with distinct entries, with R fixed,

min
{√

N,T
}(

f̂∗ − f∗
)

= Op(1).

This result basically shows that under the range of allowed memory values in
Assumption A, first differencing will produce consistent estimates for both global
and regional common factors up to a rotation at the standard parametric rates given
that the number of regions R is fixed, see a similar discussion on this in Wang
(2010). A similar result has been established by Bai (2003) who considers only an
I(0) setup and by Bai and Ng (2004) in the I(1) case. The additional condition that
imposes Λ∗Λ∗

′
to be diagonal with distinct entries ensures that the factor estimates

are asymptotically exactly identified, not just their rotations, see Bai and Ng (2013).
Noting that first differencing removes persistence under our setup together with the
distinct-entries condition on the diagonal loadings matrix, the result can be directly
established from the results provided by Bai (2003) and Bai and Ng (2004), and
Bai and Ng (2013) as we show in the appendix.

In the next theorem, we establish asymptotic results for residual memory
estimates.

Theorem 2.2 (Asymptotic behavior of residual memory estimates). Under condi-
tions of Theorem 2.1, as (N,T )j →∞, for a fixed r,

T 1/2
(
d̂r,i − dr,i0

)
d→ N

(
0, 6/π2

)
.

This result is based on the consistent factor estimates whose behavior is
established in Theorem 2.1. It states that the residual memory parameters are

√
T -

consistent, asymptotically normal and efficient. Though factor structure estimates
are used cf. equation (4), estimation errors that are due to the use of plug-in factor
estimates vanish under Assumption A and as N → ∞. This then allows the use
of factors as if they were observable in establishing the asymptotics of residual
memory estimate, as we show in the appendix.

3 Determining the number of regional and global factors

The model in (1) assumes that the number of factors in each region and the number
of global factors is fixed and known. Although a crucial step in the identification
of the model is to accurately estimate the numbers of such factors, most of the
empirical literature fixes the number of regional and global factors to be one or
analyze directly some alternative models considering more factors without using
formal information criteria.

Although there are many methodologies to estimate the number of the static
factors in one-level factor models, see e.g. Bai and Ng (2002), Alessi et al. (2010),
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Onatski (2010), Kapetanios (2010) and Ahn and Horenstein (2013), a formal method-
ology to estimate the number of static factors in a multi-level factor model is not yet
available to the best of our knowledge. The only exception is the proposal of Hallin
and Liška (2011) who allow for identifying and estimating joint and block-specific
common factors in the context of dynamic factor models.

Inspired by the methodology of Hallin and Liška (2011) and using the well
known information criteria of Bai and Ng (2002), we propose a new procedure
for identifying the number of regional and global factors under our setup. We
retain Assumptions A-F imposed to study the model in (1). Our assumptions are
in line with those of Bai and Ng (2002) but we have extra conditions pertaining to
the long-range dependence of factors and the idiosyncratic terms as well as to the
multi-level factor structure we have.

Bai and Ng (2002) consider an approximate static factor model and suggest
a penalty criteria function of the form

PC(k) = V
(
k, F̂ k

)
+ k g(N,T ), (6)

where V
(
k, F̂ k

)
is the sum of squared residuals when k factors are estimated. The

essence of the criteria is to find penalty functions, g(N,T ), which can consistently
estimate the number of static factors. Assuming that there exists a bounded and
positive integer kmax number of static factors such that r ≤ kmax, Theorem 2
and Corollary 1 in Bai and Ng (2002) provide necessary conditions to consistently
estimate the number of static factors r. Bai and Ng (2002) provide six choices for
the penalty function and indicate the corresponding criteria as PC1, PC2, PC3, IC1,
IC2, and IC3. Criteria IC1 and IC2 are more often used in empirical applications
in the literature.

Because there is no available literature regarding the estimation of the num-
ber of factors in presence of long memory, we first focus on a type-II fractionally
integrated single-level factor model to discuss how to estimate the number of fac-
tors, s, in a static factor model with long memory by using the same information
criteria provided by Bai and Ng (2002). Consider the model (1) with R = 1, that
is

yit = λ
′
iFt + εit,

where Ft = ∆−ϑ0t vt, and εit = ∆−di0t ur,it as before. Let ςi0 ≡ max (ϑ0, di0),
then fractional differencing each yi by ςi0 we can consistently apply information
criteria of Bai and Ng (2002) regardless of the values of ϑ0 or di0, otherwise the
estimation of r will be dramatically affected when di0 > 0. The latter is implied by
Assumption C in Bai and Ng (2002). Once fractional differencing is applied, the
consistency proof in Theorem 2 by Bai and Ng (2002) is still valid.1 When ς0 ≤ 1,
taking first differences would be enough to ensure the consistency of number of
factors estimate. Nevertheless, we suggest estimating first ς by using the Extended

1As a matter of fact, it would be only necessary to fractionally difference by di0 to consistently
estimate r. However di0 remains unknown until after the model is estimated.
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Local Whittle method (ELW) of Abadir et al. (2007), which covers the stationary
and nonstationary regions even beyond the unit root, in order to get ς̂ and later,
fractional differencing each yi by ς̂ .

Table 1 reports a small Monte Carlo simulation to illustrate this methodol-
ogy. As can be seen, case 1 exemplifies that when the residual fractional memory is
stationary (di = 0.4), the information criteria IC1-IC3 and PC1-PC3 perform well
regardless if we neglect the memory or if we take the first difference in yit or if
we fractional differencing by ς = 0.4 in contrast with the case 2 where di = 1. In
such a case, information criteria are not useful anymore when neglecting memory
but carry on working well when taking first difference in observables. Cases 3 and
4 are two examples where we do not have a cointegration relationship between yit
and Ft. Even in absence of cointegration, information criteria perform well when
fractional differencing by ς . Naturally it is enough to take only the first difference
in the case 3 since ς < 1.

Table 1: Number of static factors under negligence of long memory, first differenc-
ing, and fractional differencing (N = 40, T = 300, s = 3 and kmax = 10).

Neglected First Diff. Neglected First Diff.
memory Diff. by ς memory Diff. by ς

Case 1. di = 0.4 ∀i ϑ = 0.8 Case 2. di = 1 ∀i ϑ = 1.5
IC1 3 3 3 10 3 3
IC2 3 3 3 10 3 3
IC3 3 3 3 10 3 3
PC1 5 3 3 10 3 3
PC2 5 3 3 10 3 3
PC3 6 3 3 10 3 3

Case 3. di = 0.8 ∀i ϑ = 0.4 Case 4. di = 1.5 ∀i ϑ = 1
IC1 10 3 3 10 6 3
IC2 10 3 3 10 5 3
IC3 10 3 3 10 8 3
PC1 10 3 3 10 8 3
PC2 10 3 3 10 8 3
PC3 10 3 3 10 8 3

We now extend the aforementioned methodology to allow for more than one-
level in a factor model. Our methodology to estimate the number of static regional
and global factors adopts the method of Hallin and Liška (2011) which identifies
and estimates joint and block-specific common factors by using the identification
method of Hallin and Liška (2007) in the nature of dynamic factor models. In the
case of Hallin and Liška (2011), their joint common factors may be interpreted as
a global or pervasive top-level factor in our case whereas the block-specific factor
would be the regional or non-pervasive sub-level factor.
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For the sake of simplicity, consider only two regions or blocks (Bx, By) in
model 1 and only one regional factor in each region and one global factor. We
can now divide our data into three different factor spaces. Call the marginal factor
spaces as those two different spaces spanned by the individual blocks of data Bx
and By and call the joint factor space as that spanned by the complete block Bx∪y.
In these spaces, we see that sBx = 2, sBy = 2, and sBx∪y = 3 given that we
have only one regional factor in each region and only one global factor. The latter
means that both marginal factor spaces consist of two static factors whereas the
joint factor space consists of three static factors. The number of factors in each
one of these three factor spaces is consistently estimated by using the information
criteria in Bai and Ng (2002) after fractional differencing by ς̂ as discussed before.
Theorem 2 in Bai and Ng (2002) is still valid after fractional differencing. The
simple Venn diagram 1 displays this information. Green sector represents the part
of the factor space which is shared by both regions and consists of one static factor
(the global factor). The marginal factor space Bx is represented by blue + green
sectors having two static factors whereas the marginal factor spaceBy is the yellow
+ green sectors and also has two factors. Naturally, the number of regional static
factors is directly obtained after computing the number of global factor by the
inclusion-exclusion principle, i.e. sBx∪By = sBx + sBy − sBx∩By , from which we
would get sBx∩By = 1 (the global factor).

Figure 1: Representation of the three factor spaces spanned by two regions or
blocks of data.

The complexity of this methodology increases in the number of regions.
Clearly, when we have R regions, the number of blocks to be analyzed will be
the power set minus one, 2R − 1. Furthermore, we should compute the number
of global factors by using each one of the number of factors (cardinalities) esti-
mated in the individual, pairwise, triple-wise, etc. sets by the inclusion-exclusion
principle. The number of regional factors in regionR would be determined by sub-
tracting the number of factors previously estimated in each one of the intersections
where region R interacts with the number of factors previously estimated only in
the region R.

As an example, consider now three regions, we have the following blocks:
Bx, By, Bz , Bx∪y, Bx∪z , By∪z , and Bx∪y∪z from which after fractional differenc-
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ing all the variables in the data set, we compute the number of factors which span
each one of the seven blocks. The number of factors in pair-wise blocks will be
given by sBx∩y = sBx + sBy − sBx∪y , for instance. The global factor will be given
by sBx∩y∩z = sBx∪y∪z−sBx−sBy−sBz +sBx∩y +sBx∩z +sBy∩z and the number
of regional factors of the region x by sBx − sBx∩y∩z − sBx∩y − sBx∩z , for instance.

Naturally, with this methodology it is possible to specify not only the number
of factors corresponding to the global and regional levels but also the number of
factors in each one of the three pairwise blocks of regions.

4 Finite sample properties

In this section we study the finite-sample properties of the sequential least squares
(SLS) procedure to investigate the performance of the model in (1) and the method-
ology proposed to estimate the number of global and regional factors.2

4.1 Two-level factor model

We first present four Monte Carlo studies to study the performance of our model.
In our simulation studies we are generating a fractional cointegration relationship
between yr,it and the global factor (Gt) since we believe such a relationship is
likely in several empirical studies.

In the first Monte Carlo study, whose results are presented in Tables 2, 3,
and 4, we analyze the performance of our model with R = 2, Nr ∈ {20, 80}, and
different sample sizes with T = {150, 1000, 5000}, respectively. One global factor
and one regional factor in each region are considered for simplicity although more
factors are allowed. The global, both regional factors, and all the idiosyncratic
terms are independently generated by ARFIMA(1,d*,0) processes where d* corre-
sponds to δ, ϑr or di,r as appropriate. Autoregressive parameters are 0.5 for the
unobservable factors and 0.1 for the idiosyncratic errors, following Breitung and
Eickmeier (2016). Working ur,it

iid∼ N (0, 2φ) with φ controlling the signal-to-
noise-ratio with φ = {5, 2, 0.5}, corresponding to low, medium, and high signal-

to-noise-ratios. wt
iid∼ N (0, σw) and vr,t

iid∼ N (0, σvr) controlling the ratio σvr
σw

to study the relative impact of the factors to each other. Furthermore, all factor
loadings are generated as N(1, 1), following Boivin and Ng (2006). All results are
based on 1000 replications of the model.

For each experiment, after collecting the estimated regional and global fac-
tors, we estimate the memory parameters ϑ̂r, δ̂ using the Extended Local Whittle
procedure. We also regress the actual factors (global or regional) on the estimated
ones in order to study the reliability of the procedure by computing coefficient of
determinations of the global and regional factors, denoted as R2

G and R2
Rr

, respec-
tively. Both coefficients can be considered as a measure of consistency for all t, see

2We are deeply grateful to Sandra Eickmeier for sharing with us her Matlab code, which allowed
to make much more efficient our previous code.
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Bai (2003). Finally, ¯̂
dRr denotes the average of the estimated residual integration

orders in the region r by the CSS procedure as proposed.
Memory estimates of the global and regional factors as well as those of the

residuals are accurately estimated no matter the sample size or the persistence lev-
els in dr,i0. Changes in the level of the signal-to-noise-ratios do not affect the
estimated residual integration orders. On the other hand, even when dr,i0 = 0, the
global and regional factors are consistently estimated and as long as dr,i0 < 0.5,
the accuracy of the global and regional factors is not significantly distorted. This
suggests that practitioners can estimate the model in (1) without taking fractional
differences or first differences in the variables and if d̂r,i < 0.5 their global and
regional factors will indeed be accurately estimated. Cases for d̂r,i ≥ 0.5, are dis-
cussed in the fourth Monte Carlo simulation. Finally, a low signal-to-noise-ratio
makes the regional factors less precisely estimated. Note that such ratios do not
affect the accuracy of the estimated global factor. Our findings indicate that it is
possible that the use of the canonical correlation procedures is sufficiently robust
for specifying the global factor. Using CCA to estimate the number of dynamic fac-
tors, Breitung and Pigorsch (2013) point out that CCA is useful for a wide range of
stationary or mixing processes and particularly works better than usual PC methods
if the variances of the factors are very different.

In the second Monte Carlo study, for which the results are presented in Table
5, we find that the performance of the model is not affected by increasing the
number of regions or varying the persistence of the regional factors. Factors, the
idiosyncratic terms, and loading factors are generated as before. We now study four
regions (R = 4) with different persistence levels. We only consider 20 variables
(Nr = 20) in each region r. All the standard deviations are simpler (0.5,1, and 2).
Conclusions are similar to those in the first simulation study.

Conclusions from Tables 2-5 do not change by increasing Nr and reducing
T . The latter configuration can be more related with some macroeconomic appli-
cations. In this light, we simulate one replication of the model 1 with R = 2,
Nr = 300, T = 150, with the medium signal-to-noise ratio and ϑr0 = 0.6,
δ0 = 1, and dr,i0 = 0.25. Following Wang (2010), once we get Ĝ,F̂ ,Γ̂, and
Λ̂, we project the true factors on the estimated factors to find the rotation matrix,

Q̂G =
(
Ĝ
′
Ĝ
)−1

Ĝ
′
Ĝ. Then we use

(
Q̂G

)−1
to rotate factor loadings. Figure 2

displays the precision of the projected estimators with the true ones.
The fourth simulation study, Table 6, presents two simple Monte Carlo ex-

periments to show two specific points to be taken into account in our methodology.
First, when the memory of the residuals dr,i is in the nonstationary region, the ac-
curacy of the model in (1) to identify the regional factor decreases considerably
when dr,i increases. However, it is still possible to extract the global factor as
well as its memory level and the memory levels of the residuals reasonably well3.

3Note that the initial values of the global factor are based on CCA but those of regional factors on
PCA. In this sense, our findings seem to indicate that CCA may play a key role here in comparison
to PCA, although this claim requires further justification and is left for future research.
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Figure 2: The dashed lines are the estimators for factors projected onto the true
ones (solid lines). Global factor in panel a), Regional factors are in panel b) and c).

Second, when there is no fractional cointegration, neither the factors nor the mem-
ory level of the global and regional factors can be precisely estimated but we can
consistently estimate the memory of the residuals. Since we are able to estimate
the memory of residuals even in the absence of fractional cointegration, we can still
analyze whether d̂r,i > max

(
ϑ̂r, δ̂

)
in order to be sure that global and regional

factors are accurately estimated.

4.2 The number of regional and global factors

We now present a Monte Carlo experiment to show the reliability of the method-
ology proposed to estimate the number of regional and global factors in relation
to the presentation in Section 3. We design our simulation study using the same
framework as before.

Tables 7-9 show that in general, the information criteria IC1, IC2, and IC3
perform better than PC1, PC2, and PC3. Furthermore, the number of factors using
IC1, IC2, and IC3 is always consistently estimated when variables are fractionally
differenced by ςi = max (δ0, ϑr,i0). Only in cases when dr,i0 ≤ 1, the number
of factor is accurately estimated taking the first differences of the variables. The
original variables can be used only in the specific case when dr,i0 = 0 although the
performance of the number of factors does not diminish considerably in cases when
dr,i0 < 0.5. Since Tables 7 and 8 consider two regions, we have three different
blocks of data, BR1∪R2 , BR1 , and BR2 as explained before. Table 7 includes the
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Table 6: Monte Carlo simulation results with Nr = 20, T = 5000, R = 2.

ϑr δ d ϑ̂1 ϑ̂2 δ̂ R2
G R2

R1 R2
R2

¯̂
dR1

¯̂
dR2

Experiment: Nonstationary dri

0.7 0.8 0.6 0.71 0.71 0.81 0.99 0.80 0.81 0.6 0.6
1 1.2 0.8 1.01 1.01 1.20 0.99 0.66 0.66 0.82 0.82

1.3 1.5 1 1.31 1.31 1.50 1.00 0.48 0.50 1.03 1.03
1.5 1.5 1 1.5 1.5 1.5 1.00 0.02 0.17 1.06 1.06

Experiment: Non-fractional cointegration

0.3 0.5 0.6 0.39 0.39 0.50 0.82 0.60 0.61 0.66 0.66
0.5 0.7 1 0.85 0.85 0.85 0.18 0.07 0.07 0.98 0.98

Notes: The DGP is the same as that of Table 2. All experiments are based on 1000 replications.

case of only one global factor and one regional factor in each region, consequently
the actual number of static factors in each block are sBR1∪R2

= 3, sBR1
= 2, and

sBR2
= 2 as represented in Figure 1. Table 8 considers the case of two global

factors and two regional factors, then sBR1∪R2
= 6, sBR1

= 4, and sBR2
= 4.

When considering three regions in Table 9 with one global factor and one regional
factor in each region, we have seven different blocks with the number of static
factors as follows sBR1∪R2∪R3

= 4, sBR1
= 2, sBR2

= 2, sBR3
= 2, sBR1∪R2

= 3,
sBR1∪R2

= 3, and sBR2∪R3
= 3. Finally, the number of global and the regional

factors can be obtained by the inclusion-exclusion principle.

5 Application

In this section, we provide an application of our methodology to study price co-
movements in the Nord Pool power spot market.

Over the past few decades, a liberalization of power markets has emerged.
Power companies produce electricity power from many different sources (hydro,
thermal, nuclear, wind, and solar systems) in order to provide competitive prices
and ensure production efficiency. From an economic perspective, electricity mar-
kets seek to match the supply and demand in order to find a market clearing price.
Moreover, spot prices exhibit seasonality at daily and weekly levels by daily activ-
ities either on working or non-working days, and at a yearly level due to changing
weather conditions throughout the year. Such prices also present irregular cyclical
factors which are associated with cyclical movements in the economy or long-term
climate trends whereas several spikes are caused by some anticipated special dates
(Christmas, national holidays, etc.) and unanticipated days intrinsically originated
in the market. Weron (2007) reports these stylized facts as well as an overview of
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Table 7: Number of Common Factors. 2 regions. 3 blocks of data. (N = 40, T =
500 and kmax = 10). 1 Global factor and 1 regional factor in each region.

Neglected First Fractional
memory Difference Differencing using δ0

sBR1∪R2
sBR1

sBR2
sBR1∪R2

sBR1
sBR2

sBR1∪R2
sBR1

sBR2

dr,i0 = 1.5, δ0 = 2, and ϑr0 = 1.8.

IC1 10 10 10 6.7 5.5 5.5 3.0 2.0 2.0
IC2 10 10 10 6.6 5.2 5.3 3.0 2.0 2.0
IC3 10 10 10 7.4 6.2 6.2 3.0 2.0 2.0
PC1 10 10 10 8.4 9.7 9.8 3.0 6.4 6.4
PC2 10 10 10 8.3 9.7 9.7 3.0 6.1 6.2
PC3 10 10 10 8.8 9.9 9.9 3.0 6.9 6.9

dr,i0 = 0.4, δ0 = 1, and ϑr0 = 0.7.

IC1 3.31 2.25 2.23 3.00 2.00 2.00 3.00 2.00 2.00
IC2 3.27 2.23 2.21 3.00 2.00 2.00 3.00 2.00 2.00
IC3 3.43 2.29 2.26 3.00 2.00 2.00 3.00 2.00 2.00
PC1 4.65 7.47 7.45 3.00 4.40 4.40 3.00 5.48 5.49
PC2 4.53 7.27 7.28 3.00 4.11 4.10 3.00 5.21 5.20
PC3 4.97 7.84 7.84 3.00 4.95 4.96 3.00 6.06 6.03

dr,i0 = 0.6, δ0 = 1, and ϑr0 = 0.8.

IC1 6.75 5.51 5.57 3.00 2.00 2.00 3.00 2.00 2.00
IC2 6.56 5.22 5.27 3.00 2.00 2.00 3.00 2.00 2.00
IC3 7.37 6.20 6.15 3.00 2.00 2.00 3.00 2.00 2.00
PC1 8.42 9.77 9.73 3.00 3.96 3.94 3.00 5.35 5.35
PC2 8.28 9.69 9.64 3.00 3.70 3.67 3.00 5.07 5.10
PC3 8.85 9.89 9.87 3.00 4.54 4.53 3.00 5.91 5.90

Notes: The DGP is the same as that of Table 2. sBR1∪R2
, sBR1

, and sBR2
are the averages of the number of

factors estimated in each block by the inclusion-exclusion principle. We compare three cases: i) when memory
is neglected, ii) taking the first difference on yr,it, and iii) fractional differencing yr,it with
δ0 = max(δ0, ϑr0). IC1, IC2, IC3, PC1, PC2, and PC3 are the information criteria of Bai and Ng (2002). All
experiments are based on 1000 replications.
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Table 8: Number of Common Factors. 2 regions. 3 blocks of data. (N = 40, T =
500 and kmax = 10). 2 Global factors and 2 regional factors in each region.

Neglected First Fractional
memory Difference Differencing using δ0

sBR1∪R2
sBR1

sBR2
sBR1∪R2

sBR1
sBR2

sBR1∪R2
sBR1

sBR2

dr,i0 = 1.5, δ0 = 2, and ϑr0 = 1.8.

IC1 10.00 10.00 10.00 6.78 4.83 4.80 6.00 4.00 4.00
IC2 10.00 10.00 10.00 6.68 4.77 4.75 6.00 4.00 4.00
IC3 10.00 10.00 10.00 7.06 4.99 4.98 6.00 4.00 4.00
PC1 10.00 10.00 10.00 7.84 9.12 9.11 6.00 6.95 6.99
PC2 10.00 10.00 10.00 7.73 8.99 8.98 6.00 6.74 6.75
PC3 10.00 10.00 10.00 8.15 9.40 9.39 6.00 7.40 7.45

dr,i0 = 0.4, δ0 = 1, and ϑr0 = 0.7.

IC1 6.05 4.08 4.08 6.00 4.00 4.00 6.00 4.00 4.00
IC2 6.04 4.07 4.07 6.00 4.00 4.00 6.00 4.00 4.00
IC3 6.08 4.10 4.10 6.00 4.00 4.00 6.00 4.00 4.00
PC1 6.47 7.90 7.92 6.00 5.21 5.22 6.00 6.13 6.12
PC2 6.40 7.73 7.73 6.00 4.98 5.00 6.00 5.89 5.87
PC3 6.66 8.22 8.21 6.00 5.68 5.68 6.00 6.60 6.61

dr,i0 = 0.6, δ0 = 1, and ϑr0 = 0.8.

IC1 8.77 7.74 7.73 6.00 4.00 4.00 6.00 4.00 4.00
IC2 8.59 7.39 7.37 6.00 4.00 4.00 6.00 4.00 4.00
IC3 9.24 8.41 8.53 6.00 4.00 4.00 6.00 4.00 4.00
PC1 9.38 9.89 9.89 6.00 4.88 4.90 6.00 5.98 6.01
PC2 9.27 9.84 9.85 6.00 4.67 4.69 6.00 5.74 5.79
PC3 9.68 9.95 9.96 6.00 5.33 5.35 6.00 6.45 6.49

Notes: The DGP is the same as that of Table 7. All experiments are based on 1000 replications.
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Table 9: Number of Common Factors. 3 regions. 7 blocks of data. (N = 40, T = 500
and kmax = 10). 1 Global factor and 1 regional factor in each region. Estimation is
performed in first differences. dr,i0 = 0.6, δ0 = 1, and ϑr0 = 0.8.

sBR1∪R2∪R3
sBR1

sBR2
sBR3

sBR1∪R2
sBR1∪R2

sBR2∪R3

IC1 4.00 2.00 2.00 2.00 3.00 3.00 3.00
IC2 4.00 2.00 2.00 2.00 3.00 3.00 3.00
IC3 4.00 2.00 2.00 2.00 3.00 3.00 3.00
PC1 4.00 5.38 5.35 5.32 3.00 3.00 3.00
PC2 4.00 5.09 5.09 5.07 3.00 3.00 3.00
PC3 4.00 5.92 5.88 5.90 3.00 3.00 3.00

Notes: The DGP is the same as that of Table 7. All experiments are based on 1000 replications.

statistical methods used in the literature.

Another feature that has received considerable attention is the presence of
a hyperbolic decay of the autocovariances of electricity prices. In this light, Hal-
drup and Nielsen (2006) use Phillips-Perron and KPSS tests to suggest that neither
an I(0) nor I(1) process is appropriate for electricity prices. They point out that
Nord Pool prices are characterized by a high degree of long memory. Along this
line, Koopman et al. (2007) consider general seasonal periodic regressions with
ARFIMA-GARCH disturbances to analyze daily spot prices.

Although daily average prices are widely studied in the literature due to the
role played in the so-called day-ahead market, it would also be of interest to dis-
aggregate electricity prices in order to strengthen the respective prediction as Ra-
manathan et al. (1997) stress. In this regard, Raviv et al. (2015) also point out that
the daily average of the disaggregate hourly forecasts contain useful information to
study the daily average price in the Nord Pool market. In addition, it is habitually
overlooked when modeling the hourly prices that the vector of 24 hourly prices
is determined simultaneously in the day-ahead market. The latter means that a
proper form of the data set would be a panel of prices with a natural ordering in the
cross section dimension instead of a single time series since consecutive prices are
determined simultaneously.

Examining in detail the hourly electricity prices implies the study of a com-
plex dependence structure in the market, which has not been extensively consid-
ered in the literature. A natural way to take into account such dependence is with a
Vector Autoregressive (VAR) approach, however, that would lead to the so-called
’curse of dimensionality’ problem and hence it is also of interest to reduce dimen-
sionality. Panel data and factor models are standard tools to analyze high dimen-
sional data and have been recently used in electricity markets (see e.g. Alonso et al.
(2011), Dordonnat et al. (2012) and Raviv et al. (2015)).

The ’Panel Analysis of Nonstationarity in Idiosyncratic and Common com-
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ponents’ (PANIC) is an alternative way to study the complexity of electricity prices.
In this regard, Ergemen et al. (2015) very recently model the complex dynamics
of Nord Pool electricity prices in the Elspot market by considering the models
proposed by Ergemen and Velasco (2015) and Ergemen (2016) which allow for
fractionally integrated panels with fixed effects and cross-section dependence. We
may say in a sense that the application of this paper is in line with one of the find-
ings in Ergemen et al. (2015) that suggests a fractional cointegrating relationship in
the panel of electricity prices and their main unobservable common factor although
they do not consider an energy market divided by some regions but instead work
with a reference price for the whole energy system, i.e. the system price.

A possible limitation of the aforementioned study is the use of these system
prices which are the unconstrained equilibrium price for the entire Nordic region
disregarding the available transmission capacity between the bidding areas. How-
ever, the Elspot market is divided into several bidding areas due to system prices
not clearing all regions within the Nordic market.

Another possible drawback when analyzing the entire Nordic market is that
empirical studies, which include factor models in their analysis, assume that the
common factors affect all regions of the system without taking into account some
region-specific characteristics. In principle it is natural to extract common factors
of each specific bidding area of the Nord Pool market and analyze them separately.
However it is not clear whether there exist global common factors affecting all
areas in such a case which provoke severe loss of efficiency when trying to identify
common factors. Hence our interest in studying the hourly prices dynamics by
considering each bidding area of the Nord Pool market.

In the present paper, the data set under consideration are R = 12 balanced
panels consisting of Nr = 24 hourly prices for each day for the period January 1,
2012, to December 31, 2014, and thus yielding a total of T = 1096 daily obser-
vations in each panel. We consider 12 panels since we analyze 12 bidding areas:
five Norwegian bidding areas (NO1-NO5), Western Denmark (DK1), Eastern Den-
mark (DK2), four Swedish bidding areas (SE1-SE4), and Finland (FI). All bidding
areas are connected. The series are downloaded from the Nord Pool ftp server.
The prices are denominated in euros per Mwh of load. Following Ergemen et al.
(2015), the series are prefiltered by

yit = αi0+αi1 t+αi2 Dt+B′tAi+αi3 cos(
2πt

365
)+αi4 cos(

2πt

7
)+αi5 cos(

2πt

3.5
)+y∗it, (7)

where Bt is a vector of shift dummies, which captures level changes caused by
structural breaks. Dt is a dummy variable for holidays that takes the value of 1
if any of the countries participating in the Nord Pool system suspends or reduces
normal business activities by custom or law, and 0 otherwise. The data for non-
working days in each of the countries of the Nord Pool System is extracted from
Bloomberg, which is then incorporated into the analysis due to the strong effect of
holidays in the electricity market, see Ergemen et al. (2015) for more details.
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As explained in Section 3, the number of different blocks from the regional
data considerably increases with the number of regions. In our case, since the
number of bidding areas to be analyzed are 12, we would have 212 − 1 = 4, 095
different blocks. To avoid such complexity, we take advantage of the correlation
showed by the daily regional prices to establish only four regions as follows: Re-
gion 1 = (DK1, DK2), Region 2 = (NO1, NO2, NO5), Region 3 = (NO3, NO4,
SE1, SE2, SE3, SE4), and Region 4 = FI. Table 10 shows the correlation matrix of
the daily prices whereas Figure 3 displays the map of the Nord Pool market with
these four regions. Note that each region consists of neighboring bidding areas.
The bidding area corresponding to Finland presents much more spikes than any
other area and may decrease such correlations.

Table 10: Correlation matrix of the daily prices in each bidding area of Nord Pool
power market.

DK1 DK2 NO1 NO2 NO3 NO4 NO5 SE1 SE2 SE3 SE4 FI

DK1 1.00
DK2 0.93 1.00
NO1 0.57 0.61 1.00
NO2 0.56 0.57 0.98 1.00
NO3 0.68 0.73 0.87 0.84 1.00
NO4 0.66 0.72 0.88 0.85 0.99 1.00
NO5 0.54 0.57 0.99 0.99 0.85 0.85 1.00
SE1 0.72 0.77 0.84 0.81 0.98 0.97 0.82 1.00
SE2 0.72 0.77 0.84 0.81 0.98 0.97 0.82 1.00 1.00
SE3 0.74 0.79 0.83 0.80 0.96 0.96 0.80 0.99 0.99 1.00
SE4 0.79 0.86 0.79 0.75 0.91 0.90 0.76 0.93 0.93 0.95 1.00
FI 0.66 0.70 0.66 0.63 0.81 0.80 0.63 0.83 0.83 0.85 0.78 1.00

For each of the four regions we compute the hourly regional prices by taking
the simple average of hourly prices corresponding to the bidding areas that define
the region. Naturally, we still have 24 hourly prices. It is possible to consider a
weighted average of the prices by considering the available transmission capacity
but we work with the simplest average to focus on the main ideas.
We estimate the memory, εr,i, of each one of the hourly regional prices with the
Extended Local Whittle procedure. Each hourly regional price is fractionally dif-
ferenced by its respective estimated memory, ε̂r,i, so that the number of global and
regional static factors can be estimated as described in Section 3.

To estimate the number of regional and global factors, we use the procedure
proposed by Alessi et al. (2010). This procedure improves the penalization in
the criteria IC1 and IC2 of Bai and Ng (2002) introducing a tuning multiplicative
constant in the penalty function under the same set of assumptions that lead to
heteroskedasticity-robust inference. Theorem 2 in Bai and Ng (2002) is still valid
and consequently our methodology can also be applied with the information criteria
of Alessi et al. (2010).
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Figure 3: Nord Pool power market divided by the new regions.

Table 11 presents the number of factors estimated in each one of the 15
blocks. Furthermore, using the inclusion-exclusion principle, we get the number
of global and regional factors. Note that for computing the number of regional
static factors, we need to compute the number of static factors in each one of the
blocks of regions. Edward’s diagram in Figure 4 displays how the static factors
are accommodated in each block. Particularly, such a diagram shows that we find
one global factor and two regional factors in each one of the regions. Note that the
sum of all the static factors identified in the Edward’s diagram corresponds to the
number of static factors estimated in the quadruple-wise block BR1∪R2∪R3∪R4 .

Table 11: Number of static factors in the 15 blocks formed.

Individual blocks Pairwise blocks Triple-wise blocks Quadruple-wise block

sR1 7 sBR1
∪BR2

11 sBR1
∪BR2

∪BR3
14 sBR1

∪BR2
∪BR3

∪BR4
16

sR2 7 sBR1
∪BR3

12 sBR1
∪BR3

∪BR4
14

sR3 7 sBR1
∪BR4

11 sBR1
∪BR2

∪BR4
14

sR4 7 sBR2
∪BR3

11 sBR2
∪BR3

∪BR4
14

sBR2
∪BR4

11
sBR3

∪BR4
11
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Figure 4: Number of factors in the 15 blocks.

Now we estimate the model specified in (1) by the methodology proposed in
Section 2.2. We fix the number of global factors to be one and the regional factors
to be two in all four regions. Figure 5 shows the global factor and its loadings
for each region. The first panel in Figure 5 also displays the filtered system daily
prices by the same filtering model (7) as before.

As seen from Figure 5, the global factor tends to be highly persistent. The
global factor loadings show a regular behavior among bidding areas. Loadings are
positive and larger overnight indicating that the global factor plays a key role from
12 a.m.-7 a.m. and from 10 p.m.-12 p.m. Levels of the loadings are similar across
regions. Figure 5 shows that the global factor fits well to the filtered system prices.
Furthermore, the correlation between the global factor and the filtered system price
is around 0.85. The estimated memory of the filtered system prices is 0.77 whereas
the estimated memory of the global factor is 0.82. Our findings indicate that the
global factor may be interpreted as the system price even when we have reduced
from 12 to only 4 bidding regions.
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Figure 5: Global common component of Nord Pool bidding areas.

Figures 6 and 7 present the regional loadings and both regional factors of
each region. Figure 6 indicates that the regional factors play a key role during
working hours explaining much more of the variability, mainly the second regional
factors. Consequently, for each hourly price, the commonality of the regional factor
implies a small subtraction over the commonality of this hour considering only
the global factor. On the other hand, during working hours, the commonality of
regional factors explains more of the variability than the global factor which only
represents a small correction. Furthermore, it is apparent that regional factors also
seem to be highly persistent. Table 12 shows the correlation among first regional
factor as well as second regional factors. All correlations are low indicating that
regional factors differ region by region.
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Figure 6: Loadings of the regional factors.
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Figure 7: Regional factors.
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Table 12: Correlation among regional factors.

First regional factors

Region 1 Region 2 Region 3 Region 4
Region 1 1
Region 2 0.13 1
Region 3 0.35 0.01 1
Region 4 0.01 0.06 0.02 1

Second regional factors

Region 1 Region 2 Region 3 Region 4
Region 1 1
Region 2 0.33 1
Region 3 0.63 0.60 1
Region 4 0.50 0.32 0.66 1

We study whether a fractional cointegration relationship exists in our anal-
ysis, which ensures that the memory of the residuals stay in the stationary region
to verify that our model is consistently estimated. We collect the global and re-
gional factors (Ĝt, F̂r,t) and estimate the fractional memory parameters with the
Extended Local Whittle procedure. Figure 8 displays that the global factor is more
persistent than regional factors. Regional factors of Region 2 are more persistent
than the other regions while the Danish region, Region 1, shows less persistence in
both regional factors.

GLOBAL FACTOR 1 FACTOR 2 FACTOR 1 FACTOR 2 FACTOR 1 FACTOR 2 FACTOR 1 FACTOR 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

REGION 1 REGION 4REGION 3REGION 2

Figure 8: Memory estimates of the global and regional factors. The number of Fourier
frequencies used is m = T 0.7 with T = 1096 corresponding to m = 134. The standard error
of the univariate estimates is 0.043.
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Fractional cointegration relationship is confirmed given that for each region
and each hour of the day d̂r,i ≤ δ̂. Figure 9 shows that persistence levels of the
residuals of model in (1) have decreased once we have taken into account the strong
dependence of the hourly electricity prices analyzed with the global and regional
factors estimated.
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0.6

0.8

1

R1
4 8 12 16 20 24

0

0.2

0.4

0.6

0.8

1

R2

4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

R3
4 8 12 16 20 24

0

0.2

0.4

0.6

0.8

1

R4

Figure 9: Comparative of the residual integration order estimates (bars) with the
memory estimates of the filtered regional prices for each region (red line).

For practical purposes, let us assume that an analyst is interested in studying
the block of panels in our application. Practitioners would estimate a number of
common factors but neglecting a multi-level structure as we proposed in this pa-
per. As we have already discussed before, that common factor could be mixed up
with the regional ones provoking that the estimation of the actual pervasive factor
may be hampered. For comparison, we estimate a common factor but neglecting a
multi-level structure. We estimate a common factor by principal component after
taking the first differences in all the 24 prices of the 4 regions. Then, we give back
the persistence level to the factor estimate. Figure 10 displays such a comparison.
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Figure 10: Comparative of a global factor and a common factor neglecting a multi-
level structure.

To conclude, the number of factors in each one of the blocks represented in
Figure 4 can be used to extend the model in (1). For instance, consider the case of
the three first bidding regions of the Nord Pool power market, R1, R2, and R3. We
may extend our model as

 yR1,·t
yR2,·t
yR3,·t

=

 Γ1 Λ1 0 0 κ1,12 0 κ1,13
Γ2 0 Λ2 0 κ2,12 κ2,23 0
Γ3 0 0 Λ3 0 κ3,23 κ3,13




G123,t

F1,t

F2,t

F3,t

F12,t

F23,t

F13,t


+

 u1,·t
u2,·t
u3,·t

 ,

where we would add to model specified in (1), the common factors, F12,t, F23,t,
and F13,t, corresponding to blocks BR1∩R2 , BR2∩R3 , and BR1∩R3 , respectively.
The third block in the loading matrix, κ’s, would be the respective blocks’ loading
factors. In future research, we plan to focus on estimating this kind of extended
models in order to analyze in depth the interaction among blocks of regions in a
multi-level factor model. In principle, the methodology proposed in this paper can
be used to estimate the new model after incorporating more steps in the procedure,
however it would be also necessary to add more restrictions and assumptions in
order to identify the model.
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6 Concluding remarks

In this paper we have considered a dynamic multi-level factor model, which allows
for both pervasive and nonpervasive common factors. The factors are allowed
to exhibit fractional long-range dependence without restrictions that can be either
stationary I(0) or nonstationary I(1) processes. Model innovations are also allowed
to be fractionally integrated. Our model can be used for an extensive fractional
cointegrating analysis in a wide range of applications.

We have suggested a methodology that consists in two steps: i) to use se-
quential least squares to minimize the total of sum of squared residuals in order to
get the global and regional common components, and ii) minimize the conditional
sum-of-squares in order to estimate the residual memory estimates of the model.
We have established asymptotic results for both steps.

Based on the model, we have also suggested a simple methodology to esti-
mate the number of regional and global factors by using the popular information
criteria of Bai and Ng (2002). This methodology consists of designing all com-
binations of data blocks to estimate the number of factors which span each of the
respective factor spaces. Then, the inclusion-exclusion principle is used to deter-
mine the number of regional and global factors.

In the empirical application of the paper, we study the complex dynamics
of Nord Pool electricity prices in a large panel of hourly observations. We have
reduced 12 bidding areas of the Nord Pool power market to 4 regions in order to
apply our methodologies. We have found that there exists only one global factor
in the Nord Pool power market and two regional factors in each one of the re-
gions. Our findings suggest a fractional cointegration relationship between hourly
regional prices of Nord Pool and the global factor. Furthermore, we find that the
global factor can be interpreted as the so-called system price. The latter finding is
relevant for some applications. It is possible to analyze the specific features of a re-
gion in the market after defactoring the global factor. Furthermore, the forecasting
of regional prices can be improved by using the regional factors and the system
price as covariate.
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7 Appendix

7.1 Proof of Theorem (2.2)

Note that first differencing leads the series yit to become asymptotically stationary
under Assumption A because ∆xit ∼ I(max {δ0, ϑr,0, dr,i0} − 1), with dmax ≤
max {δ0, ϑr,0} and max {δ0 − δ, ϑr,0 − ϑ, dr,i0 − d} < 1/2 so that

1

N

1

T − 1

N∑
i=1

T∑
t=2

(∆yit)
2 →p σ

2
y > 0,

which implies that standard techniques that consider I(0) setups can be borrowed
from Wang (2010) and Bai and Ng (2004).

For notational simplicity, let us drop the dependence on asterisks and denote
f∗t by ft. The result that

min
{√

N,T
}

(f̂t − ftHf ) = Op(1), for a fixed t,

with

H ′f = V̂ −1(f̂
′
f/(T − 1))(Λ′Λ/NR), V̂ = Λ̂′Λ̂/NR,

can be shown proceeding the same way as in the proof of Lemma 2 by Bai and
Ng (2004), which follows the steps in Bai (2003) whose Assumptions A-G are
satisfied since the number of regions, R, is assumed fixed, also see Wang (2010)
for an extended discussion.

Next, we want to establish, adopting Bai and Ng (2013), that

Hf = Ir +Op(ς
−2
NT ) (8)

with ςNT = min
{√

N,
√
T
}

if Λ′Λ is diagonal with distinct entries. We first
check that

f̂
′
f

T − 1
=

(f̂ − fHf )
′
f

T − 1
+
H
′
ff
′
f

T − 1

=
H
′
ff
′
f

T − 1
+Op(ς

−2
NT ) (9)

since (f̂ − fHf )
′
f/(T − 1) = Op(ς

−2
NT ) by Lemma B.2 of Bai (2003). Right-

multiplying both sides of (9) by Hf gives

f̂
′
fHf

T − 1
=
H
′
ff
′
fHf

T − 1
+Op(ς

−2
NT ). (10)

Then,

f̂
′
fHf

T − 1
=
f̂
′
(fHf − f̂ + f̂)

T − 1
= Op(ς

−2
NT ) + Ir (11)
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because f̂
′
(fHf − f̂)/(T − 1) = Op(ς

−2
NT ) as above and f̂

′
f̂/(T − 1) = Ir under

the identifying restriction.
Equating 10 and 11,

Ir = H
′
f

=Ir︷ ︸︸ ︷
f
′
f

T − 1
Hf +Op(ς

−2
NT )

= H
′
fHf +Op(ς

−2
NT ),

so asymptotically Hf is an orthogonal matrix with eigenvalues equal to 1 or -1.
Next, we show that Hf is diagonal. From (9) and using f

′
f/(T − 1) = Ir,

we have that

H ′f = V̂ −1(f̂
′
f/(T − 1))(Λ′Λ/NR),

= V̂ −1H
′
f (Λ′Λ/NR) +Op(ς

−2
NT ). (12)

Multiply (12) on both sides by V̂ and transpose to get

(Λ′Λ/NR)Hf = Hf V̂ +Op(ς
−2
NT ), (13)

which shows that asymptotically Hf is a matrix containing the eigenvectors of
(Λ′Λ/N) that is diagonal with distinct eigenvalues by assumption. So then, each
eigenvalue is associated with a unique unitary eigenvector, and this establishes
that Hf is asymptotically diagonal. Without loss of generality, we can assume the
eigenvalues of Hf are 1’s and in that case, (8) is shown. Furthermore, from (13),

(Λ′Λ/NR) = V̂ +Op(ς
−2
NT ).

2

7.2 Proof of Theorem (2.1)

The CSS criterion based on (4) can be written as

Lr,iT (d) =
1

T

T∑
t=1

(
∆d−1
t

(
Λft − Λ̂f̂t

)
+ ∆

d−dr,i0
t ur,it

)2
(14)

We argue that the squared estimation-error term in (14),

1

T

T∑
t=1

(
∆d−1
t

(
Λft − Λ̂f̂t

))2

is negligible as (N,T )j → ∞ because under Assumption E, Assumption D is
necessary and sufficient for the conditions imposed in Lemma A.1 of Bai and Ng
(2004). So the results in Lemma A.2 of Bai and Ng (2004) hold under Assumption
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A, see similar arguments used in the proofs of Theorems 4 and 5 of Ergemen and
Velasco (2015). Therefore,

max
1≤k≤T

1

T

∥∥∥∥∥
k∑
t=1

(
∆d−1
t

(
Λft − Λ̂f̂t

))∥∥∥∥∥ = Op

(
T dr,max−dr,i−1/2

)
= op(1)

under Assumption A.
Then the

√
T−consistency and asymptotic normality of the memory esti-

mate can be established, for fixed r, from

1

T

T∑
t=1

(
∆
d−dr,i0
t ur,it

)2

adopting the disjoint sets approach, allowing even for d ≤ dr,i0 − 1/2 (though
ruled out by Assumption A) as employed in the proof of Theorems 2.1 and 2.2, in
Hualde et al. (2011).

Finally the cross-term in (14) is bounded and of smaller size by Cauchy-
Schwarz inequality, and the proof is then complete. 2
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