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Abstract

Using theory on (conditionally) Gaussian processes with stationary increments developed in

Barndorff-Nielsen et al. (2009, 2011), this paper presents a general semiparametric approach to

conducting inference on the fractal index, α, of a time series. Our setup encompasses a large

class of Gaussian processes and we show how to extend it to a large class of non-Gaussian models

as well. It is proved that the asymptotic distribution of the estimator of α does not depend on

the specifics of the data generating process for the observations, but only on the value of α and

a “heteroskedasticity” factor. Using this, we propose a simulation-based approach to inference,

which is easily implemented and is valid more generally than asymptotic analysis. We detail

how the methods can be applied to test whether a stochastic process is a non-semimartingale.

Finally, the methods are illustrated in two empirical applications motivated from finance. We

study time series of log-prices and log-volatility from 29 individual US stocks; no evidence of

non-semimartingality in asset prices is found, but we do find evidence of non-semimartingality

in volatility. This confirms a recently proposed conjecture that stochastic volatility processes

of financial assets are rough (Gatheral et al., 2014).
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1 Introduction

This paper is concerned with conducting statistical inference on the so-called fractal index of a

time series. Formally, we consider (conditionally) Gaussian stochastic processes X, with stationary

increments satisfying

E[|Xt+h −Xt|p] ∼ Cp|h|(2α+1)p/2, h ↓ 0, (1.1)

for p > 0, Cp > 0, and α ∈
(
−1

2 ,
1
2

)
. The parameter α is termed the fractal index because it, under

mild assumptions, is related to the fractal dimension D = 3
2 −α of the sample paths of the process

X (Falconer, 1990; Gneiting et al., 2012). The parameter α is also called the roughness parameter

as it reflects itself in the pathwise properties of X, as will be made precise in Proposition 2.1 below.

Informally, α < 0 implies rough sample paths of X, while α > 0 implies smooth sample paths of

the process. After a log-transformation, the scaling relationship (1.1) suggests a straightforward

estimation procedure of α based on OLS regression. As we shall see, the OLS estimator, α̂, of α

comes with a central limit theorem (CLT) of the type

τn (α̂− α)
d→ Zp · Sp, n→∞, (1.2)

where n is the number of observations, τn is a rate sequence (e.g. τn =
√
n), and Zp is a random

variable. Sp > 0 is a heteroscedasticity factor, which is equal to one when X is Gaussian and

different from one otherwise. It is well known that the random variable Zp is Gaussian when

α ∈ (−1/2, 1/4] (e.g. Breuer and Major, 1983). However, when α > 1/4, Taqqu (1975) showed

that the distribution of Zp is given by the Rosenblatt distribution in a quite complicated way. What

is more, although the distribution of Zp is known in theory, it is generally infeasible to calculate it

explicitly when p 6= 2.

The contribution of this paper is to suggest bootstrap/Monte Carlo procedures to the prob-

lem of testing statistical hypotheses regarding the fractal index, as well as computing confidence

intervals around the estimated value. Specifically, we prove that (1.2) holds for a large class of

fractal processes, where the distribution of the random variable Zp is invariant to the actual data

generating process (DGP) of X. That is, the distribution of Zp depends only on the value of α, i.e.

of the roughness properties of the data. We suggest a simple estimator of Sp and then to approxi-

mate the distribution of Zp by Monte Carlo simulation. The key to the Monte Carlo approach is

the invariance of the distribution of Zp, enabling one to approximate it by any (Gaussian) fractal

process; the obvious choice for such an auxiliary process is the canonical fractal process, the frac-

tional Brownian motion (fBm, Mandelbrot and Van Ness, 1968). The upshot is that the methods

presented in this paper are valid for all p > 0 and α ∈ (−1/2, 1/2). Indeed, since the auxiliary

simulations directly approximate the distribution of Zp, it is not necessary to distinguish between

the Gaussian case (α ≤ 1/4) and the Rosenblatt case (α > 1/4), nor of taking into account the

actual convergence rate, τn.

Another advantage of the simulation-based approach, as compared to asymptotic analysis, is

that the OLS estimator of α requires a choice of bandwidth m ∈ N, denoting the number of data

points used in the regression. The distribution of Zp will in turn depend on this parameter and
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this distribution gets increasingly complicated with increasing m. Our approach trivially allows

for any m ≥ 2 and we will exploit this to give some guidelines on how to select m. In summary,

simulations show that choosing m slightly larger than 2 results in a good trade-off between small

bias (obtained by having m small) and low variance (obtained by larger m). We recommend setting

m = 3 and will do so in our applications. This is slightly at odds with conventional wisdom which

recommends m = 2 (e.g. Davies and Hall, 1999).

Most previous work on inference for the fractal index has been done assuming Gaussianity of

X; notable exceptions being Chan and Wood (2004) and Achard and Coeurjolly (2010). Indeed,

in a survey of the asymptotic theory, Gneiting et al. (2012) section 3.1., reports that “a general

non-Gaussian theory remains lacking”. Below, we will show how to extend the theory to a large

class of non-Gaussian processes obtained by volatility modulation of an otherwise Gaussian process.

WhenX is a so-called volatility modulated Brownian semistationary process (Barndorff-Nielsen and

Schmiegel, 2007, 2009) a CLT, which obeys (1.2), is derived in Theorem 4.1. When α ∈ (−1/2, 1/4),

Zp will be Gaussian with an asymptotic distribution that is feasible to calculate for p = 2. That

is, this CLT suffers from the same drawbacks as other asymptotic approaches, as discussed above.

The bootstrap approach of this paper is still valid generally, i.e. for all α ∈ (−1/2, 1/2) and p > 0,

however.

Two different versions of the bootstrap procedure are suggested. The first method is specifically

tailored to test null hypotheses such as H0 : α = α0 for α0 ∈ (−1/2, 1/2); of special interest is

α0 = 0 which means X has the same roughness as the Brownian motion and is thus, more or less,

a semimartingale. For this method the auxiliary fBms are generated with fractal index α0, i.e. the

fractal index that X has under the null. The second version is tailored to make confidence intervals

around the estimated value α̂: here α is first estimated from the observations of X, and then the

auxiliary fBms are generated such that they have fractal index equal to α̂.

In some respects, the simulation-based approach to inference of this paper is similar to the

semiparametric bootstrap method of Hall et al. (2000). Here the authors consider bootstrapping

the Hurst index H of a process using the classical rescaled/range (RS) estimator of Mandelbrot

and Van Ness (1968). It is well known that the fractal index of the fBm – and indeed of any

self-similar process – is related to the Hurst index of that process through the identity H = α+ 1
2

(e.g. Gneiting and Schlather, 2004). So, when the underlying DGP of X is self-similar (e.g. when

X is an fBm), the approach of Hall et al. (2000) can be used to estimate, and make inference

on, the fractal index α of X by exploiting the identity α = H − 1
2 . However, when X is not

self-similar, there is generally no simple relationship between H and α, and therefore RS will be

inadequate to estimate α. Evidently, in this important case, the approach of Hall et al. (2000) will

therefore not be applicable to perform inference on α, which is the goal in this paper. For other

bootstrap approaches related to the fractal index α or the Hurst index H, see Davies and Hall

(1999), Grau-Carles (2005), Kim and Nordman (2013), and Bennedsen et al. (2016).

This paper does not restrict attention to self-similar models. Indeed, most of the DGPs con-

sidered below will either be stationary or allowing α and H to vary independently of each other,

or both. Time series having these features are generically not self-similar and the methods of Hall

et al. (2000) do therefore not apply for such DGPs when performing inference on the fractal index
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for the reasons explained above. Note that especially the ’rough’ case α < 0 seems to be relevant

in empirical applications. For instance, the celebrated scaling laws of Kolmogorov (Kolmogorov,

1941) predict time series of the main velocity component of turbulence with α = −1/6, see e.g.

Corcuera et al. (2013). In finance, Barndorff-Nielsen et al. (2013) and Bennedsen (2015) model

electricity spot prices using fractal processes with α < 0, and recently estimates around α ≈ −0.40

have been found for time series of volatility (Gatheral et al., 2014; Bayer et al., 2015; Bennedsen

et al., 2016). Note that the DGPs underlying all these empirical examples are, besides fractal,

generally believed to be stationary and therefore not self-similar. For this reason, an inference

approach that can accomodate this – e.g. the one presented in this paper – is crucial for such

applications. Additionally, the time series underlying these examples are likely non-Gaussian as

well, and the present approach also allows for this, as discussed above and shown below.

The rest of the paper is structured as follows. Section 2 presents the mathematical setup and

assumptions and gives an example of the kind of processes we have in mind. Section 3 presents

the semiparametric estimator of the fractal index and then sets forth the two bootstrap methods.

Section 4 presents some extensions to the basic setup. Section 5 contains extensive simulation

evidence that the bootstrap methods work well for a wide range of DGPs, with and without the

presence of stochastic volatility. Finally, Section 6 presents some empirical applications motivated

from finance. Section 7 concludes. Proofs of technical results, some mathematical derivations, and

details about the DGPs from the simulation study are given in the Appendix.

2 Setup

Let (Ω,F ,P) be a probability space supporting X, a one-dimensional, zero-mean, stochastic process

with stationary increments. Define the p’th order variogram of X:

γp(h) := E[|Xt+h −Xt|p], h ∈ R.

As we intend to make use of the theory developed in Barndorff-Nielsen et al. (2009, 2011) we

adopt the assumptions of those papers. The assumptions are standard in the literature on fractal

processes and are as follows.

(A1) For some α ∈
(
−1

2 ,
1
2

)
,

γ2(x) = x2α+1L(x), x ∈ (0,∞), (2.1)

where L : (0,∞)→ [0,∞) is continuous. The function L is assumed to be slowly varying at

zero, in the sense that limx→0
L(tx)
L(x) = 1 for all t > 0.

(A2) d2

dx2
γ2(x) = x2α−1L2(x) for some slowly varying (at zero) function L2, which is continuous

on (0,∞).1

1Following Bennedsen et al. (2016) this assumption is replaced by the following in the case α = 0: (A2’) d2

dx2
γ2(x) =

f(x)L2(x), where L2 is as in (A2), and the function f is such that |f(x)| ≤ Cx−β for some constants C > 0 and

β > 1/2.
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(A3) There exists b ∈ (0, 1) with

lim sup
x→0

sup
y∈[x,xb]

∣∣∣∣L2(y)

L(x)

∣∣∣∣ <∞.
Remark 2.1. The technical assumption (A3) can be replaced by the weaker assumption∣∣∣∣γ2((j + 1)/n)− 2γ2(j/n) + γ2((j − 1)/n)

2γ2(1/n)

∣∣∣∣ ≤ r(j), 1

n

n∑
j=1

r(j)2 → 0, n→∞,

for some sequence r(j).

The parameter α ∈ (−1/2, 1/2) is called the fractal index or roughness index of X, since the

value of α reflects itself in the pathwise properties of X, as the following result formalizes.

Proposition 2.1. Let X be a Gaussian process with stationary increments satisfying (A1) with

fractal index α ∈ (−1/2, 1/2). Then there exists a modification of X which has Hölder continuous

trajectories of order φ for all φ ∈
(
0, α+ 1

2

)
.

Remark 2.2. Proposition 2.1, as well as most of the asymptotic theory developed in the statistical

literature on the fractal index, takes its departure point in (stationary) Gaussian processes. How-

ever, the theory, and also the bootstrap method in this paper, is valid more generally. For instance,

the scaling relationship (2.1) and its implications for the pathwise properties of X as expounded in

Proposition 2.1 is not only applicable to Gaussian processes, see Constantine and Hall (1994) and

the discussion in Davies and Hall (1999). We explicitly consider the extension to non-Gaussian

processes in Section 4.

Proposition 2.1 shows that α controls the degree of (Hölder) continuity of X. In particular,

negative values of α corresponds to X having very rough paths, while positive values of α corre-

sponds to smooth paths. It is well known that the Brownian motion has α = 0. Indeed, α = 0 is

a necesssary condition for X to be a semimartingale, as shown in Section 2.1. An example of the

kind of processes we have in mind is the Cauchy process.

Example 2.1 (Cauchy process, Gneiting and Schlather (2004)). Let X be the zero-mean, unit

variance, stationary Gaussian process with correlation function

ρ(h) =
(
1 + |h|2α+1

)− β
2α+1 , h ∈ R,

with α ∈ (−1/2, 1/2) and β > 0. We will call such a process the Cauchy process. As shown in

Barndorff-Nielsen et al. (2009) Example 3, the Cauchy process fulfills assumptions (A1)–(A3).

To get an intuitive understanding of how the trajectories of the fractal processes look, and in

particular how the value of α reflects itself in the roughness of the paths, Figure 1 plots three

simulated trajectories of the Cauchy process. It is evident how negative values of α correspond to

very rough paths, while the paths become smoother as α increases.
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Figure 1: Simulations of the unit-variance Cauchy process of Example 2.1 with β = 0.75, α as

indicated above the plots, and n = 500 observations on the unit interval. The same random

numbers were used for all three instances.

2.1 Testing for non-semimartingality

Fractal processes with α 6= 0 are not semimartingales, which implies that the null hypothesis

H0 : α = 0 can be used to test whether a process is a non-semimartingale. In Appendix A the

following basic fact is shown.

Proposition 2.2. Let X be a Gaussian process with stationary increments satisfying (A1) with

fractal index α ∈
(
−1

2 , 0
)
∪
(
0, 1

2

)
. Then, X is not a semimartingale.

Together with bootstrap procedure 1 presented below, this proposition will be the basis of our

test for non-semimartingality by testing null hypotheses of the form H0 : α = 0.

3 Semiparametric estimation and bootstrapping of the fractal in-

dex

Consider n equidistant observations X1/n, X2/n, . . . , X1 of the stochastic process X, observed over

a fixed time interval, which we without loss of generality take to be the unit interval, so that the

time between observations is ∆n := 1
n . As n→∞, this gives rise to the so-called in-fill asymptotics.

In what follows, suppose that the process X satisfies the assumptions (A1)–(A3).

When X is Gaussian, it holds, by standard properties on the (absolute) moments of the Gaus-

sian distribution and (2.1), that

γp(h) = Cp|h|(2α+1)p/2Lp(h), (3.1)

where Lp is slowly varying at zero and Cp > 0 is a constant. This motivates the regression

log γ̂p(h) = cp + a log |h|+ Uh + εh, h =
1

n
,

2

n
, . . . ,

m

n
, (3.2)

where p > 0, m ∈ N is a bandwidth parameter,

cp = logCp, a =
(2α+ 1)p

2
, Uh = log

(
γ̂p(h)

γp(h)

)
, and εh = logLp(h).
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The variogram γp is estimated straightforwardly as

γ̂p(k/n) :=
1

n− k

n−k∑
i=1

|X i+k
n
−X i

n
|p, k ≥ 1, (3.3)

and, given an estimate â of a from (3.2), the estimate of the fractal index is α̂ = â
p −

1
2 . This

estimator is well known and well tested in the literature, e.g. Gneiting and Schlather (2004);

Bennedsen (2015). The following proposition shows the consistency of the OLS estimator of α.

Proposition 3.1. Suppose X is Gaussian and satisfies assumptions (A1)–(A3) with fractal index

α ∈ (−1/2, 1/2). Fix p > 0, m ∈ N and let α̂ = α̂p,m be the OLS estimator of α from (3.2). Now,

as n→∞,

α̂
P→ α,

where “
P→” refers to convergence in P-probability.

A number of studies have considered the asymptotic properties of the OLS estimates coming

from the regression (3.2), e.g. Constantine and Hall (1994), Davies and Hall (1999), and Coeurjolly

(2001, 2008). For a brief summary of this literature, see Gneiting et al. (2012), Section 3.1. The

following theorem presents the details when X is a Gaussian process satisfying (A1)–(A3). It holds

for α ∈ (−1/2, 3/4) and the asymptotic variance is infeasible to calculate when p 6= 2.

Theorem 3.1. Suppose X is Gaussian and satisfies assumptions (A1)–(A3) with fractal index

α ∈ (−1/2, 1/4). Fix m ∈ N and let α̂ = α̂p,m be the OLS estimator of α from (3.2). Now, as

n→∞,

√
n(α̂− α)

d→ Zp, Zp ∼ N
(
0, σ2

m,p

)
,

where

σ2
m,p =

xTmΛpxm
(xTmxm)2p2

,

with “T” denoting the transpose of a vector and xm is the m× 1 vector

xm =
(
log 1− logm, log 2− logm, . . . , logm− logm

)T
, logm :=

1

m

m∑
k=1

log k,

and Λp = {λk,vp }mk,v=1 is a real-valued m×m matrix with entries

λk,vp = lim
n→∞

n · Cov
(
γ̂p(k/n;BH)

γp(k/n;BH)
,
γ̂p(v/n;BH)

γp(v/n;BH)

)
, k, v = 1, 2, . . . ,m, (3.4)

where γ̂·(·;BH) is given by (3.3) when the underlying process is a fractional Brownian motion with

Hurst parameter H = α+ 1
2 , and similarly for γp(·;BH).

Remark 3.1. The limit in (3.4) exists for k, v = 1, . . . ,m by Breuer and Major (1983), Theorem 1.

See also Remark 3.3. in Corcuera et al. (2013).
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Remark 3.2. As mentioned in the introduction, a result similar to Theorem 3.1 holds for α ≥ 1/4

but with a different convergence rate and limiting distribution. When α = 1/4, the convergence

rate is
√
n log n and Zp is zero-mean Gaussian with an asymptotic variance different from σ2

m,p.

When α > 1/4 the convergence rate is n1−2α and the distribution of Zp is of the Rosenblatt type,

see Taqqu (1979).

Remark 3.3. The most relevant setup for us when conducting asymptotic analysis is the case m = 2.

In this case we have

σ2
m,p =

λ11
p + λ22

p − 2λ12
p

p2 log(2)2
.

Further, for p = 2 we can calculate the matrix Λp = {λk,vp }2k,v=1 explicitly. The details are given in

Appendix B.

Perhaps surprisingly, Theorem 3.1 shows that the asymptotic distribution of the OLS estimator

does not depend on the precise structure of the DGP of X, but only on the value of the fractal index

α, through the correlation structure of the increments of an fBm with Hurst index H = α + 1/2.

The reason for this is that the small scale behavior of a process X fulfilling assumption (A1), will

have the same small scale behavior as increments of the fBm. To see this, write

rn(j) := Corr
(
X j+1

n
−X j

n
, X 1

n
−X0

)
=
γ2((j + 1)/n)− 2γ2(j/n) + γ2((j − 1)/n)

2γ2(1/n)

→ 1

2

(
|j + 1|2α+1 − 2|j|2α+1 + |j − 1|2α+1

)
, n→∞, (3.5)

by assumption (A1) and the properties of slowly varying functions. We recognize (3.5) as the

correlation function of the incremtents of an fBm with Hurst index H = α + 1/2. As shown in

the proof of Theorem 3.1, this will imply that the asymptotic variance of the estimator, σ2
m,p, is

the same for all Gaussian processes fulfilling assumptions (A1)–(A3), including the fBm. This fact

will be the basis of our Monte Carlo algorithm: we will approximate the asymptotic distribution of

Zp using a fractional Brownian motion and, by Theorem 3.1, this will allow us to conduct correct

inference, even though the DGP of X itself might be very different from the fBm.

Theorem 3.1, and the discussion preceeding it, alludes to some of the problems with asymp-

totic analysis for conducting inference on α in the general, semiparametric, setting (2.1). Some

advantages of a simulation-based approach, as compared to asymptotic analysis include:

1. Our methods trivially allow for any p > 0. In contrast, a general and feasible asymptotic

theory seems to be lacking in this case (although see Coeurjolly, 2001). For instance, the

calculation of Λp in Theorem 3.1, cf. (3.4), appears to be infeasible for p 6= 2. Having an

approach that allows for any p > 0 is desirable, as other values, e.g. p = 1/2 or p = 1,

has been shown to be preferable to use in some cases. In particular, Gneiting et al. (2012)

recommend using p = 1, as this choice is robust to outliers in the data, while Corcuera et al.

(2013) recommend using several values for p for checking the robustness of α̂.
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2. It is well known that the asymptotic distribution of the OLS estimator (3.2) of α is Gaussian

for α ∈ (−1/2, 1/4], but non-standard for α > 1/4. In the latter case, the distribution is

given by the Rosenblatt distribution, as outlined in Taqqu (1975). As explained in Remark

3.2, the convergence rate is also different depending on the true value of α. This is the reason

for assuming α ∈ (−1/2, 1/4) in Theorem 3.1. In contrast, we find that our Monte Carlo

approach works well for the whole range α ∈ (−1/2, 1/2). This is because this approach

directly approximates the distribution of α̂ − α, i.e. it automatically replicates any non-

Gaussianity in the limiting distribution, induced by values of α larger than 1/4, as well as

differing convergence rates.

3. The methods of this paper are applicable and easily implemented for any choice of bandwidth

parameter m ≥ 2. In particular, implementation is not encumbered by choosing m large. In

contrast, asymptotic theory is significantly more complex when m ≥ 3; this is illustrated in

Theorem 3.1, where the matrix Λp is an m × m matrix. This will allow us to investigate,

through simulations, which value of m is preferred to use in practice. In Section 5 simulations

will show that the root mean squared error of the OLS estimator of α is minimized for m ≥ 3;

also, when the sample size is moderate to large, choosing m = 3 or m = 4 will result in

hypothesis tests with better size and power properties. These findings are in contrast with

the conventional wisdom for asymptotic analysis, where it is usually recommended to let

m = 2.

4. As mentioned in Section 3.1. of Gneiting et al. (2012), a general asymptotic theory for non-

Gaussian X seems to be lacking. In Section 4.1, we will introduce non-Gaussianity of X,

through volatility modulation, and show how our bootstrap approach is valid for a large class

of non-Gaussian processes.

Two different bootstrap (or, more accurately, Monte Carlo) approaches, are detailed in the

following two subsections. The idea behind the procedures is to simulate an auxiliary fractional

process, an fBm, and estimate the fractal index of this process using (3.2) and then perform this

operation B ∈ N times to approximate the distribution of α̂ − α. By Theorem 3.1 this approach

will work no matter the actual DGP of X, as long as X is a Gaussian process satisfying (A1)–(A3).

In other words, when X is Gaussian, we can use auxiliary fBms to estimate the distribution of Zp

in (1.2), even though the DGP of X might be very different from the fBm.

It turns out, however, that whenX contains stochastic volatility (thus inducing non-Gaussianity

of X) α̂ will have a limiting distribution which is different from the one which were described in

Theorem 3.1. This is formalized in Theorem 4.1 below, where the volatility modulated Brownian

semistationary process is introduced. For such processes, it is generally the case that Sp 6= 1 in

(1.2) and the distribution of Zp thus needs to be corrected by this factor to obtain the correct

distribution of α̂. For this purpose we propose the following simple estimator of Sp:

Ŝp =

√
m−1

2p γ̂2p(1/n)

m−1
p γ̂p(1/n)

, ms := E[|U |s], U ∼ N(0, 1), s > 0, (3.6)
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where γ̂· is defined in (3.3). The Ŝp factor provides a “heteroskedasticity correction” and will be

rigorously motivated in Theorem 4.1 below. In Appendix A the following is shown.

Proposition 3.2. Suppose X is a Gaussian process satisfying (A1)–(A3). Let p > 0. Now,

Ŝp
P→ 1, n→∞.

Remark 3.4. The fBm fulfills the assumptions of Proposition 3.2.

Theorem 3.1 showed that when X does not contain heteroskedasticity, no correction by Sp is

needed. Proposition 3.2 tells us that in these cases correction by Ŝp is harmless asymptotically. We

will see in Section 5 that correction by Sp is crucial to obtain valid inference using the bootstrap

when the underlying DGP contains significant variability, e.g. because of the presence of stochastic

volatility. In practice, we therefore recommend to always correct with Ŝp. In the algorithms and

simulations below, bootstraps both without the correcting factor Ŝp (termed “S∗”) and with the

correcting factor Ŝp (termed “T ∗”) will be considered; we think of the latter as a studentized

version of the former.

3.1 Bootstrap procedure 1

To test the hypothesis H0 : α = α0 for some α0 ∈
(
−1

2 ,
1
2

)
consider the following bootstrap

approach:

1. Estimate α̂ using the OLS regression in (3.2).

2. Compute S = α̂− α0 and T = (α̂− α0)/Ŝp, where Ŝp is given by (3.6).

3. For b = 1, 2, . . . , B.

(a) Simulate n observations of an fBm with Hurst index H∗ = α0 + 1
2 .

(b) Estimate α̂∗b from the path of this fBm using the OLS regression in (3.2).

(c) Compute R∗b = α̂∗b − α0.

4. Compare S and T with the appropriate percentile of {R∗b}Bb=1. P-values can be obtained by

determining the relative position of S or T in the sorted version of {R∗b}Bb=1.

3.2 Bootstrap procedure 2

Instead of the above, consider the following bootstrap procedure which is more appropriate when

one wishes to compute confidence intervals for α̂.

1. Estimate α̂ using the OLS regression in (3.2).

2. Compute S = α̂− α0 and T = (α̂− α0)/Ŝp, where Ŝp is given by (3.6).

3. For b = 1, 2, . . . , B.

(a) Simulate n observations of an fBm with Hurst index H∗ = α̂+ 1
2 .
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(b) Estimate α̂∗b from the path of this fBm using the OLS regression in (3.2).

(c) Compute R∗b = α̂∗b − α̂.

4. Compare S and T with the appropriate percentiles of {R∗b}Bb=1. To obtain confidence intervals

at the level 1− δ, e.g. a 95% confidence interval for δ = 0.05, one computes

CIS1−δ/2 =
[
α̂−R∗(1−δ/2), α̂−R

∗
(δ/2)

]
,

or

CIT1−δ/2 =
[
α̂− Ŝp ·R∗(1−δ/2), α̂− Ŝp ·R

∗
(δ/2)

]
,

where R∗(x) is the x’th empirical percentiles of {R∗b}Bb=1, and where Ŝp were calculated in step

2.

Remark 3.5. In bootstrap procedure 1, the bootstrap auxiliary variables are generated under H0

by setting α = α0. This will minimize the probability of a Type I error, i.e. rejection of H0 when

H0 is true (Davidson and MacKinnon, 1999). We therefore expect this method to result in superior

size properties of the hypothesis test as compared to procedure 2.

4 Extensions

This section gives two extensions to the theory discussed above. First the case of non-Gaussianity,

through volatility modulation of X, is considered and then the case where the increments of X are

non-stationary.

4.1 Extension to stochastic volatility processes

A flexible way to introduce non-Gaussianity of processes for which the theory of the fractal index

continues to hold is through volatility modulation. A very convenient process for this purpose is

the Brownian semistationary process.

4.1.1 Brownian semistationary process

Let X be the (volatility modulated) Brownian semistationary (BSS) process (Barndorff-Nielsen

and Schmiegel, 2007, 2009),

Xt =

∫ t

−∞
g(t− s)σsdWs, t ≥ 0,

where W is a Brownian motion on R, σ = {σt}t∈R a stationary process, and g a Borel measurable

function such that
∫ t
−∞ g(t − s)2σ2

sds < ∞ a.s. See Appendix C.1 for details of the BSS process

and Appendix C.1.1 for the specifications of the stochastic volatility process σ considered in this

paper.
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When σ is a stochastic process, the marginal distribution of X will be non-Gaussian; indeed,

by conditioning on σ, it is seen that the marginal distribution of X is a normal mean-variance

mixture:

Xt|(σs, s ≤ t) ∼ N
(

0,

∫ ∞
0

g(x)2σ2
t−xdx

)
, t ≥ 0.

This is a convenient way of extending the theory of fractal processes beyond the Gaussian frame-

work, encompassing a large class of non-Gaussian models. For instance, Barndorff-Nielsen et al.

(2013) show that for a particular choice of kernel function g and stochastic volatility process σ, X

will have a marginal distribution of the ubiquitous Normal Inverse Gaussian type.

The kernel function gives the BSS framework great flexibility. A particularly useful kernel

function which have been applied in a number of studies, e.g. Barndorff-Nielsen et al. (2013) and

Bennedsen (2015), is the so-called gamma kernel.

Example 4.1 (Γ-BSS process). Let g be the gamma kernel, i.e. g(x) = xαe−λx for α ∈ (−1/2, 1/2)

and λ > 0. The resulting process

Xt =

∫ t

−∞
(t− s)αe−λ(t−s)σsdWs, t ≥ 0,

is called the (volatility modulated) Γ-BSS process. This process has fractal index α and, in

particular, the Matérn autocorrelation function (Matérn, 1960; Handcock and Stein, 1993). See

Barndorff-Nielsen (2012, 2016) for studies of the gamma kernel.

If the theory considered in this paper is to hold for BSS processes, some technical assumptions

on the kernel function g are required. These assumptions hold trivially for our main example, the

gamma kernel of Example 4.1, and are as follows.

(A4) It holds that

(a) g(x) = xαLg(x), where Lg is slowly varying at zero.

(b) g′(x) = xα−1Lg′(x), where Lg′ is slowly varying at zero, and, for any ε > 0, we have

g′ ∈ L2((ε,∞)). Also, for some a > 0, |g′| is non-increasing on the interval (a,∞).2

(c) For any t > 0,

Ft :=

∫ ∞
1
|g′(x)|2σ2

t−xdx <∞.

Another requirement is that the modulating process σ = {σt}t∈R not be “too rough”. As in

Corcuera et al. (2013), the following assumption is therefore introduced.

(A5) For any q > 0, it holds that

E[|σt − σs|q] ≤ Cq|t− s|γq, t, s ∈ R,

for some γ > 0 and Cq > 0. For a power parameter p > 0, cf. equation (3.1), we further

require that γ ·min{p, 1} > 1/2.

2Again following Bennedsen et al. (2016), in the case α = 0 an alternative assumption is adopted: (A5b’)

g′(x) = Lg′(x), where Lg′ is as in (A4b).
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Remark 4.1. In Bennedsen et al. (2015) it was shown that BSS processes satisfying (A1)–(A5)

will have the same fractal and continuity properties as their Gaussian counterparts. That is, for

such a BSS process Propositions 2.1 and 2.2 continues to hold. In other words, X will have a

modification with Hölder continuous trajectories of order φ for all φ ∈ (0, α + 1/2) and X will be

a non-semimartingale when α 6= 0.

Processes of the BSS type have been extensively studied recently. In particular, using theory

developed in Barndorff-Nielsen et al. (2009, 2011, 2013) and Corcuera et al. (2013) we can prove

the following BSS analogue to the Gaussianity-based CLT result in Theorem 3.1.3

Theorem 4.1. Suppose X is a BSS process satisfying (A1)–(A5). Fix p > 0, m ∈ N and let

α̂ = α̂p,m be the OLS estimator of α from (3.2). Now, as n→∞,

√
n(α̂− α)

st→ Zp · Sp, Zp ∼ N
(
0, σ2

m,p

)
,

where σ2
m,p is as in Theorem 3.1 and

Sp =

√∫ 1
0 σ

2p
s ds∫ 1

0 σ
p
sds

.

Here “st” denotes stable convergence (in law), see e.g. Rényi (1963).

Remark 4.2. Theorem 4.1 is similar to Theorem 3.1 except that the limiting distribution now has

a heteroskedasticity term, Sp. By Theorem 3.1. in Corcuera et al. (2013) it is not hard to deduce

that

Ŝp =

√
m−1

2p γ̂2p(1/n)

m−1
p γ̂p(1/n)

P→ Sp, n→∞,

where Ŝp is given by (3.6). This fact provides the theoretical justification for the choice of Ŝp in the

bootstrap algorithms in Section 3. Further, the stable convergence result of Theorem 4.1 allows us

to deduce that,

√
n

α̂− α

Ŝp
√
σ2
m,p

d→ N(0, 1), n→∞,

which will be the basis of the CLT used for comparison with our Monte Carlo approach in the

simulation study of Section 5. Recall that the factor σ2
m,p is only feasible to calculate when p = 2

and it gets increasingly cumbersome to calculate as m increases. We will therefore consider only

the case with p = 2 and m = 2 when implementing the CLT in the simulation exercise below. The

details were given in Remark 3.3.

3Similarly, in the BSS framework, one can derive a consistency result, analogous to Proposition 3.1, valid for the

whole range α ∈ (−1/2, 1/2). The proof is similar to the one from Proposition 3.1; we therefore skip the details.
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The BSS process introduced above is ideal for including stochastic volatility (SV) in the process.

However, it is also possible to include SV in processes based on other Gaussian processes, such as

the Cauchy process of Example 2.1. For instance, consider processes of the form

Xt = X0 +

∫ t

0
σsdGs, t ≥ 0, (4.1)

where σ is a SV process andG is a fractal Gaussian process with centered and stationary increments,

e.g. a Gaussian BSS process, an fBm, a Cauchy process, etc. The theory of Barndorff-Nielsen

et al. (2009), and therefore also the bootstrap methods of this paper, holds also for such processes.

4.2 Extension to processes with non-stationary increments

When the increments of X are non-stationary an approach similar to what was done in Bennedsen

et al. (2015) can be adopted as follows. Define the time-dependent variogram

γp(h, t) := E[|Xt+h −Xt|p], h, t ∈ R,

and, analogously to (2.1), assume that

γp(h, t) ∼ Cp,t|h|(2α+1)p/2L(h), t > 0, h ↓ 0, (4.2)

where again Cp,t > 0, α ∈
(
−1

2 ,
1
2

)
, and L is a slowly varying function at zero. The bootstrap

methods considered in this paper also apply to such processes. An example is the truncated

Brownian semistationary process.

Example 4.2 (Truncated BSS process, Bennedsen et al. (2015)). Let

Xt = X0 +

∫ t

0
g(t− s)σsdWs, t ≥ 0,

where X0 ∈ R, W is a Brownian motion, and σ a stochastic volatility process. Bennedsen et al.

(2015) call such a process a truncated BSS (T BSS) process. When X satisfies (A1)–(A5), Benned-

sen et al. (2015) show that α is indeed the fractal index of X, in the sense of γp(h, t) satisfying

(4.2).

5 Simulation study

This section presents the results of a Monte Carlo simulation study where the various approaches

to inference considered above are compared. Tables 1 and 2 contain results of the finite sample

properties of the size and power of the hypothesis test H0 : α = α0 against the double-sided

alternative H1 : α 6= α0. A number of different DGPs are considered: three Gaussian DGPs

satisfying (A1)–(A3) and three BSS processes satisfying (A1)–(A5). The Gaussian processes are

the fBm, the Cauchy process of Example 2.1, and the powered exponential process. The details

on the latter process is given in Appendix C.4, where it is also shown that it indeed satisfies

assumptions (A1)–(A3). The three versions of the BSS process are all with the gamma kernel, as
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given in Example 4.1, but encompassing three different stochastic volatility regimes: “NoSV” refers

to the process without stochastic volatility, while “SV1F” and “SV2F” refer to the BSS process

with one- and two-factor stochastic volatility, respectively. See also Appendix C.1.1. Especially

SV2F induces very strong kurtosis in the stochastic volatility process. Further details of all DGPs

considered in the Monte Carlo simulations are given in Appendix C.

When testing H0 five different approaches are considered: the asymptotics-based inference of

Theorem 4.1 (labeled CLT), un-studentized bootstrap inference (S∗1 and S∗2 for bootstrap method

1 and 2, respectively), and studentized bootstrap inference (T ∗1 and T ∗2 for bootstrap method 1

and 2, respectively). Table 1 contains size calculations, that is rejection rates of H0 when H0 is

true. Table 2 contains power calculations of the test; we test H0 : α = 0 but now simulate under

the alternative, with the true value of the fractal index α as indicated in the table. Here, the null

hypothesis H0 : α = 0 is chosen because it seems to be the most empirically relevant, as it can be

used to test for semimartingality, cf. Section 2.1.

The tables show that, generally, all methods perform well when p = 2 and α < 1/4. For small

sample sizes, the CLT has slight size distortions, while the bootstrap methods retain the nominal

size. This fact was also found for a different estimator and CLT in Bennedsen et al. (2016). When

SV is present, however, especially the two-factor SV process SV2F, the performance of the un-

studentized bootstraps (S∗ statistics) deteriorates. In contrast, both the CLT and the studentized

bootstrap approach (T ∗ statistics) work very well and we conclude that studentization is crucial

for accurate bootstrap inference, at least when stochastic volatility/heteroskedasticity is present in

the data.

We experimented with different values of the power parameter p; although the CLT is infeasible

for p 6= 2, the bootstrap methods work well for all values of p > 0. An illustration of this in the

case of p = 1 is shown in the tables. As discussed in Section 3, the fact that the bootstrap methods

provide accurate inference for all p > 0 is highly desirable, as different values of p can be used

for estimation that is outlier-robust (p = 1 in particular, see also Section 6) and for checking the

general robustness of an α estimate by considering several values for p.

The case where α > 1/4 is also investigated. In particular, the tables show results for α =

3/8 = 0.3750, where the limiting distribution is now non-Gaussian. In this case, the CLT is not

valid. Bootstrap method 1 works very well but Bootstrap method 2 suffers from size distortions;

this is likely because this latter method simulates the auxiliary bootstrap fBms with Hurst index

H∗ = α̂ + 0.5. When, by normal variation in the OLS estimator, α̂ ≤ 1/4 is estimated from

the observations of X, the asymptotic distribution of the auxiliary bootstrap estimator α̂∗b will

therefore be Gaussian and lead to wrong inference. We conclude, that one should be wary of using

bootstrap method 2, when the process under study is expected to be very smooth, i.e. when α is

large.

5.1 Optimal choice of bandwidth parameter

It is an open question how to choose the bandwidth, m, optimally. For this reason we conduct

a simulation experiment, shown in Figure 2, to shed some light on this. In (a) we plot the root

mean squared error (RMSE) of the OLS estimator of α coming from (3.2), as a function of m. It
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Table 1: Rejection rates under H0.
DGP: Gaussian processes (α = −0.1250; p = 2)

n fBm Cauchy (β = 0.75) Powered exp. (c = 0.5)

CLT S∗1 T ∗1 S∗2 T ∗2 CLT S∗1 T ∗1 S∗2 T ∗2 CLT S∗1 T ∗1 S∗2 T ∗2
20 0.087 0.051 0.078 0.083 0.108 0.118 0.055 0.082 0.072 0.098 0.100 0.052 0.078 0.082 0.110

40 0.071 0.056 0.068 0.089 0.098 0.074 0.056 0.071 0.083 0.096 0.068 0.049 0.065 0.081 0.097

80 0.061 0.052 0.058 0.068 0.075 0.072 0.056 0.060 0.069 0.074 0.067 0.051 0.057 0.066 0.071

160 0.055 0.051 0.052 0.059 0.062 0.058 0.050 0.053 0.055 0.058 0.054 0.046 0.053 0.053 0.060

320 0.050 0.050 0.049 0.053 0.054 0.058 0.053 0.054 0.055 0.059 0.053 0.052 0.057 0.059 0.060

640 0.049 0.048 0.048 0.049 0.049 0.053 0.046 0.048 0.048 0.049 0.050 0.046 0.048 0.046 0.047

DGP: Γ-BSS (α = −0.1250, λ = 1; p = 2)

n noSV SV1F SV2F

CLT S∗1 T ∗1 S∗2 T ∗2 CLT S∗1 T ∗1 S∗2 T ∗2 CLT S∗1 T ∗1 S∗2 T ∗2
20 0.099 0.052 0.076 0.086 0.114 0.091 0.047 0.070 0.074 0.095 0.103 0.102 0.079 0.133 0.110

40 0.067 0.051 0.065 0.081 0.099 0.075 0.055 0.065 0.085 0.099 0.077 0.120 0.068 0.152 0.099

80 0.067 0.052 0.057 0.066 0.071 0.056 0.048 0.053 0.063 0.069 0.068 0.154 0.065 0.175 0.087

160 0.054 0.044 0.051 0.055 0.061 0.056 0.053 0.057 0.063 0.064 0.051 0.162 0.052 0.174 0.065

320 0.054 0.053 0.054 0.059 0.061 0.049 0.045 0.048 0.048 0.050 0.055 0.168 0.050 0.177 0.058

640 0.050 0.047 0.050 0.047 0.049 0.055 0.051 0.050 0.054 0.053 0.052 0.177 0.054 0.182 0.061

DGP: Γ-BSS (α = 0, λ = 1; p = 2)

n noSV SV1F SV2F

CLT S1 T1 S2 T2 CLT S1 T1 S2 T2 CLT S1 T1 S2 T2
20 0.100 0.044 0.073 0.099 0.124 0.107 0.050 0.072 0.103 0.124 0.114 0.092 0.066 0.148 0.114

40 0.078 0.053 0.066 0.077 0.091 0.083 0.050 0.063 0.079 0.091 0.081 0.116 0.060 0.153 0.091

80 0.067 0.049 0.057 0.058 0.068 0.063 0.050 0.056 0.058 0.066 0.073 0.133 0.055 0.148 0.068

160 0.058 0.049 0.051 0.053 0.053 0.054 0.050 0.054 0.056 0.057 0.056 0.137 0.047 0.148 0.054

320 0.059 0.055 0.056 0.056 0.058 0.054 0.048 0.050 0.052 0.054 0.055 0.152 0.051 0.154 0.053

640 0.052 0.052 0.053 0.054 0.055 0.054 0.049 0.048 0.052 0.052 0.060 0.164 0.057 0.167 0.059

DGP: Γ-BSS (α = 0.3750, λ = 1; p = 2)

n noSV SV1F SV2F

CLT S∗1 T ∗1 S∗2 T ∗2 CLT S∗1 T ∗1 S∗2 T ∗2 CLT S∗1 T ∗1 S∗2 T ∗2
20 − 0.059 0.079 0.078 0.096 − 0.051 0.069 0.072 0.090 − 0.139 0.114 0.175 0.147

40 − 0.055 0.066 0.065 0.077 − 0.061 0.070 0.076 0.087 − 0.161 0.109 0.193 0.134

80 − 0.059 0.065 0.079 0.084 − 0.052 0.060 0.073 0.081 − 0.170 0.095 0.219 0.129

160 − 0.051 0.058 0.082 0.089 − 0.060 0.066 0.096 0.101 − 0.164 0.076 0.219 0.129

320 − 0.052 0.057 0.098 0.101 − 0.052 0.055 0.098 0.102 − 0.159 0.067 0.228 0.114

640 − 0.054 0.056 0.106 0.112 − 0.059 0.062 0.117 0.116 − 0.142 0.052 0.220 0.110

DGP: Γ-BSS (α = −0.1250, λ = 1; p = 1)

n noSV SV1F SV2F

CLT S∗1 T ∗1 S∗2 T ∗2 CLT S∗1 T ∗1 S∗2 T ∗2 CLT S∗1 T ∗1 S∗2 T ∗2
20 − 0.056 0.058 0.065 0.069 − 0.048 0.050 0.061 0.065 − 0.085 0.061 0.123 0.101

40 − 0.053 0.054 0.075 0.076 − 0.052 0.055 0.076 0.079 − 0.089 0.059 0.124 0.088

80 − 0.051 0.052 0.066 0.067 − 0.044 0.045 0.058 0.058 − 0.094 0.059 0.107 0.075

160 − 0.048 0.048 0.056 0.057 − 0.054 0.054 0.062 0.061 − 0.091 0.053 0.101 0.062

320 − 0.052 0.051 0.055 0.056 − 0.050 0.050 0.053 0.053 − 0.086 0.049 0.091 0.056

640 − 0.048 0.048 0.048 0.048 − 0.049 0.049 0.051 0.052 − 0.090 0.053 0.095 0.054

Finite sample size properties of the test H0 : α = α0 against H1 : α 6= α0 at a nominal size of 0.05. The underlying

DGP is simulated under H0, i.e. the numbers in the table are the ’size’ of the hypothesis test. The true parameter

values used for the DGP, as well as the value of the power index p used for estimation, is given above the respective

panels. For the CLT we choose the bandwidth m = 2, while the bootstrap methods set m = 3. 5 000 Monte Carlo

runs, each with B = 999 bootstrap replications, were conducted.
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Table 2: Rejection rates under H1.
DGP: Gaussian processes (α = −0.1250; p = 2)

n fBm Cauchy (β = 0.75) Powered exp. (c = 0.5)

CLT S∗1 T ∗1 S∗2 T ∗2 CLT S∗1 T ∗1 S∗2 T ∗2 CLT S∗1 T ∗1 S∗2 T ∗2
20 0.209 0.084 0.118 0.127 0.156 0.275 0.128 0.168 0.165 0.205 0.233 0.096 0.132 0.131 0.163

40 0.264 0.163 0.185 0.192 0.215 0.313 0.233 0.255 0.266 0.285 0.266 0.183 0.203 0.214 0.230

80 0.365 0.306 0.322 0.314 0.328 0.440 0.398 0.413 0.401 0.413 0.391 0.336 0.347 0.340 0.353

160 0.584 0.583 0.590 0.574 0.581 0.655 0.668 0.673 0.663 0.664 0.608 0.610 0.614 0.607 0.614

320 0.850 0.886 0.885 0.882 0.880 0.885 0.923 0.923 0.920 0.920 0.862 0.902 0.904 0.897 0.899

640 0.989 0.996 0.995 0.996 0.996 0.991 0.997 0.997 0.997 0.996 0.989 0.996 0.996 0.996 0.995

DGP: Γ-BSS (α = −0.1250, λ = 1; p = 2)

n noSV SV1F SV2F

CLT S∗1 T ∗1 S∗2 T ∗2 CLT S∗1 T ∗1 S∗2 T ∗2 CLT S∗1 T ∗1 S∗2 T ∗2
20 0.224 0.092 0.126 0.127 0.159 0.240 0.100 0.136 0.148 0.175 0.184 0.130 0.099 0.158 0.123

40 0.254 0.171 0.192 0.199 0.217 0.266 0.174 0.196 0.203 0.222 0.204 0.227 0.144 0.246 0.165

80 0.378 0.320 0.333 0.322 0.334 0.391 0.328 0.344 0.339 0.349 0.262 0.373 0.216 0.377 0.228

160 0.593 0.593 0.594 0.588 0.591 0.589 0.585 0.589 0.578 0.581 0.381 0.572 0.368 0.567 0.368

320 0.854 0.893 0.897 0.890 0.890 0.859 0.891 0.886 0.886 0.884 0.591 0.797 0.614 0.789 0.604

640 0.988 0.995 0.996 0.995 0.995 0.987 0.994 0.994 0.994 0.994 0.836 0.963 0.873 0.961 0.862

DGP: Γ-BSS (α = 0.3750, λ = 1; p = 2)

n noSV SV1F SV2F

CLT S∗1 T ∗1 S∗2 T ∗2 CLT S∗1 T ∗1 S∗2 T ∗2 CLT S∗1 T ∗1 S∗2 T ∗2
20 − 0.460 0.515 0.632 0.659 − 0.443 0.495 0.611 0.639 − 0.371 0.336 0.498 0.479

40 − 0.842 0.848 0.895 0.898 − 0.839 0.842 0.889 0.892 − 0.711 0.613 0.777 0.716

80 − 0.991 0.989 0.994 0.994 − 0.992 0.991 0.994 0.994 − 0.938 0.871 0.951 0.903

160 − 1.000 1.000 1.000 1.000 − 1.000 1.000 1.000 1.000 − 0.997 0.982 0.997 0.987

320 − 1.000 1.000 1.000 1.000 − 1.000 1.000 1.000 1.000 − 1.000 0.999 1.000 1.000

640 − 1.000 1.000 1.000 1.000 − 1.000 1.000 1.000 1.000 − 1.000 1.000 1.000 1.000

DGP: Γ-BSS (α = −0.1250, λ = 1; p = 1)

n noSV SV1F SV2F

CLT S∗1 T ∗1 S∗2 T ∗2 CLT S∗1 T ∗1 S∗2 T ∗2 CLT S∗1 T ∗1 S∗2 T ∗2
20 − 0.089 0.102 0.105 0.117 − 0.098 0.110 0.122 0.129 − 0.090 0.069 0.122 0.102

40 − 0.157 0.166 0.172 0.176 − 0.161 0.168 0.178 0.184 − 0.152 0.118 0.167 0.134

80 − 0.268 0.272 0.265 0.269 − 0.285 0.286 0.286 0.289 − 0.262 0.203 0.264 0.202

160 − 0.523 0.522 0.516 0.515 − 0.498 0.500 0.496 0.496 − 0.481 0.397 0.473 0.386

320 − 0.832 0.830 0.821 0.818 − 0.824 0.821 0.811 0.810 − 0.758 0.682 0.750 0.674

640 − 0.980 0.979 0.979 0.979 − 0.982 0.982 0.981 0.980 − 0.968 0.940 0.964 0.938

Finite sample size properties of the test H0 : α = α0 against H1 : α 6= α0 at a nominal size of 0.05. The underlying

DGP is simulated under the alternative, i.e. the numbers in the table are the ’power’ of the hypothesis test. The true

parameter values used for the DGP, as well as the value of the power index p used for estimation, is given above the

respective panels. For the CLT we choose the bandwidth m = 2, while the bootstrap methods set m = 3. 5 000 Monte

Carlo runs, each with B = 999 bootstrap replications, were conducted.
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seems that the RMSE is minimized for m = 4 or m = 5, depending on the number of observations,

although for m ∈ {3, 4, 5} there is not much difference in RMSE. Note, that m = 2 results in a

significantly higher RMSE, especially for the smaller sample sizes. In (b) we plot the standard

deviation of the random variable Zp, i.e. σm,p, for p = 2. This is computed from B = 999

simulations of an fBm: we simulate an fBm, estimate α by the OLS regression (3.2) and compute

the (numerical) standard deviation of α̂ over the B = 999 instances. This process is repeated

MC = 5 000 times and the numbers for σm,p used in the plot is the average over these MC values.

The same conclusions hold for the standard deviation of Zp as for RMSE. What is more, the

magnitude of σm,p is almost exactly equal to the corresponding RMSE, indicating that the bias

in the estimator is negligible. In (c) and (d) the finite sample properties of the hypothesis test

H0 : α = α0 as a function of m is explored. The power is maximized for m ∈ {3, 4, 5} but somewhat

lower for m = 2. Choosing m ≥ 3 will result in size distortions for the test, as compared to m = 2,

when the number of observations is small (n = 40, 80), but when there is a moderate number of

observations, n ≥ 100 say, choosing m ∈ {3, 4, 5} will result in a hypothesis test with more accurate

size, as compared to the case m = 2.

From these investigations we conclude that choosing a low value for the bandwidth m is prudent.

It seems, however, that there are gains from choosing m ≥ 3. This is definitely the case when

moderately many observations are available but likely true for a small number of observations as

well, cf. Figure 2 (a). In Figure 2 the DGP underlying the simulations is a BSS process, but

the conclusions hold for other DGPs as well. In particular, we confirmed the results using the

fBm (Appendix C.2), the Cauchy process (Appendix C.3) and the powered exponential process

(Appendix C.4), for all values of α ∈ (−1/2, 1/2). This is slightly at odds with Davies and Hall

(1999) where the authors found, in simulations, that the mean squared error of α̂ was minimized

for m = 2 when the DGP is the powered exponential process.

We recommend choosing m = 3 or m = 4, which seems to offer a good tradeoff between bias

and variance. Choosing m = 2 essentially amounts to estimating α by drawing a straight line

between only two points, log γ̂p(1/n) and log γ̂p(2/n), when running the OLS regression in (3.2).

While this is tempting from a bias viewpoint – the scaling relationship (2.1) is only assumed to

hold for small lag values – it seems to introduce more variance by relying on just two points.4

However, because the bias is very small, it makes sense to focus on reducing variance, which is

done by using more points to draw the line, i.e. choosing m ≥ 3.

6 Empirical application: testing the semimartingale assumption

on financial time series

This section studies price data from the Trades and Quote (TAQ) Database; in total, 29 different

U.S. stocks, which are identified by their ticker symbol in Table 3, are analyzed. The data is sampled

at a daily frequency: the log-price is the closing price on each day, while the volatility measure is

the daily Realized Kernel (RK, Barndorff-Nielsen et al., 2008), constructed from intraday, high-

frequency, returns. See Barndorff-Nielsen et al. (2009) for implementation of the RK. The data

4The point about bias being increasing in m was also made in Constantine and Hall (1994).
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Figure 2: Investigations of the impact of the bandwidth parameter m. (a): Root mean squared error

(RMSE) of the OLS estimator of α from (3.2). (b): The standard deviation of Zp, σm,p, obtained

by simulation of 999 replications of the fBm. (c): The size of the hypothesis test H0 : α = −0.1250

against the double sided H1 : α 6= −0.1250. (d): The power of the hypothesis test H0 : α = 0

against the double sided H1 : α 6= 0. The method for the tests is bootstrap procedure 1, using the T ∗

statistic with nominal size 0.05. We let α = −0.1250, p = 2, B = 999, and perform 5 000 Monte

Carlo replications. DGP: NoSV Γ-BSS with λ = 1 (see Appendix C.1).

runs from January 2, 1997, until December 31, 2013, excluding weekends and holidays. For some

assets, some days have been discarded due to limited trading during the day. All in all, we end up

with an average of 4166 daily observations per asset.

For all data series we estimate α using the OLS regression (3.2), calculate 95% confidence

intervals using bootstrap method 2, and calculate p-values for the null hypothesis H0 : α = 0 using

bootstrap method 1. For the bootstraps we use the (studentized) T ∗ statistic. For the log-prices

our alternative hypothesis is H1 : α 6= 0, while it for the log-volatility seems more relevant to

choose H1: α < 0, to assess whether volatility is rough as has been conjectured.

In Section 6.3, we will pick out a particular asset, JPM (JPMorgan Chase), and investigate it

in more depth, focusing in particular on the role of the power parameter p.
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6.1 Application to log-prices

The application of the bootstrap methods of this paper to log-prices of financial assets can be

motivated by the following stochastic volatility model. Let the stock price be denoted by S =

{St}t≥0, and suppose that its logarithm satisfies

logSt = logS0 +

∫ t

0
σsdGs +At, t ≥ 0, (6.1)

where σ = {σt}t≥0 is a stochastic volatility process, G = {Gt}t≥0 is a Gaussian process, such that

the integral exists, and A = {At}t≥0 is a smooth drift process, e.g. At = −1
2

∫ t
0 σ

2
sds. The most

well-known instance of this model is of course the (Black-Scholes-type) case where G = B is a

Brownian motion, and this model has been extensively studied and has proven useful in many

areas of economics and finance (see Shephard, 2005, for a book-length treatment). Although the

model (6.1) includes a drift term A, this will not influence the estimation of α, as long as the

process A is sufficiently smooth (see e.g. Lemma 3.5. of Corcuera et al., 2013).

Recall, that Proposition 2.2 showed that α 6= 0 implies that the underlying process is not a

semimartingale. Standard theory of asset prices states that log-prices which are not semimartin-

gales will imply arbitrage opportunities, theoretically at least (Delbaen and Schachermayer, 1994).

In what follows, we test the semimartingale null on log-prices using the approach outlined above.

The results are presented in Table 3. For all assets, the estimates of α are fairly close to 0,

as one would expect under a no-arbitrage assumption. However, when p = 2 (left-most columns)

there is huge variation in the estimator, as evidenced by the wide confidence intervals. Further,

the average p-value is found to be quite large (0.81). The reason for this is most likely that the

price data is not filtered for stock splits and mergers. Therefore, there may occasionally be large

jumps in the quoted prices. This is illustrated for a particular stock in Section 6.3 (Figure 3) below,

where we take a closer look at the JPM asset, but similar outliers are found in the time series of

the other assets producing wide confidence intervals (not shown).

Outliers will bias estimates of α downwards and possibly invalidate any inference. Therefore,

we also run the same exercise but with p = 1 (right-most columns of Table 3), which has been

found to be robust to outliers in the data. In contrast to the former case, the confidence intervals

are now fairly tight, indicating that the deteriorating effect of the stock splits and mergers are

mitigated by choosing p = 1. What is more, when setting p = 1, estimates of α goes from being

slightly negative to be scattered around zero, as seen in Table 3. Likewise, the average of the

bootstrapped p-values is now 0.36, much closer to 0.50 which is the mean of the p-value if H0 is

true. This allows for much more precise inference, even in the presence of outliers, by choosing

p = 1.5 Recall, that in this case there is no feasible asymptotic theory available, so a Monte Carlo

approach, such as presented in this paper, is the only viable option to the best of our knowledge.

Although H0 : α = 0 is rejected for 4 out of 29 assets (14%), these are likely false-positives

given the 5% testing level. Indeed, the values of α̂ are very close to zero for these assets as well. We

5Of course, in practice a better approach would be to clean the data for stock splits and mergers before estimating

α, but as our goal is to illustrate the advantages of using p = 1, we find that the experiment works best when these

events are included.
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conclude that there is no evidence of roughness/smoothness or non-semimartingality of the asset

prices studied here.

6.2 Application to log-volatility

In this section, application of the bootstrap methods can be motivated from mathematical models of

return volatility suggested previously in the finance/econometrics literature. In particular, consider

the following simple stochastic volatility (Black-Scholes) model for the stock price S:

dSt
St

= σtdBt, t ≥ 0, (6.2)

where σ = {σt}t≥0 is a stochastic volatility process and B = {Bt}t≥0 a Brownian motion. The

volatility process can be modeled as a log-fractal process, i.e.

σt = exp(Xt), t ≥ 0,

where X = {Xt}t≥0 is a stochastic process with fractal index α ∈ (−1/2, 1/2). Such a model

was proposed in Comte and Renault (1996, 1998), where it was suggested that X is a fractional

Brownian motion with fractal index α > 0 (to allow for long memory). Conversely, Gatheral et al.

(2014) suggested to model X by an fBm with α < 0 (to allow for roughness). Most recently,

Bennedsen et al. (2016) have proposed to model X by a BSS process with α < 0, as this process

can accommodate both roughness and long memory, in contrast to the fBm, which (by the self-

similarity property) has either roughness or long memory but never both. Although these models

have by now been much studied in the literature, so far little inference on α has been conducted.

The present section therefore tests the semimartingale null for log-volatility by testing whether

stochastic volatility is rough, i.e. running the hypothesis test H0 : α = 0 against the alternative

H1 : α < 0.

Similar to the case of the log-prices, α < 0 would imply, through Proposition 2.2, that volatility

is a non-semimartingale. Contrary to the case of prices, however, such a fact would not imply ar-

bitrage opportunities, since the log-prices themselves – even in the presence of non-semimartingale

volatility – could still be semimartingales. This is for instance the case in the model (6.2) above.

The results are given in Table 4. We find α̂ ≈ −0.33, which is the overall mean of the estimates

when p = 2. This is in line with what was found for similar time series in Gatheral et al. (2014)

and Bennedsen et al. (2016). The test H0: α = 0 is rejected in favor of the alternative H1: α < 0

for all series for p = 2 as well as for p = 1. Also, the confidence intervals are tight in both cases,

increasing our belief in the robustness of the results. In light of the findings for the log-prices

above, it might also provide tentative evidence that there are not any (large) jumps in volatility.

In summary, we conclude that we find very strong evidence in favor of the recently advanced

hypothesis that stochastic volatility is rough (Gatheral et al., 2014).

6.3 A closer look at the JPM stock

Let us now take a closer look at the JPM (JPMorgan Chase) asset, which was a case where the

confidence bands were particularly wide when α was estimates from the log-prices with p = 2, cf.
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Table 3: Testing H0: α = 0 on log-prices.

p = 2 p = 1

Asset n α̂ 95% CI p-value α̂ 95% CI p-value

AA 4278 0.00 (−0.14, 0.14) 1.00 0.03 (−0.00, 0.06) 0.07

AIG 4277 0.03 (−0.34, 0.42) 0.89 0.07 (0.02, 0.13) 0.00

AXP 4277 −0.03 (−0.25, 0.20) 0.78 −0.01 (−0.04, 0.02) 0.38

BA 4277 −0.01 (−0.16, 0.15) 0.90 0.02 (−0.01, 0.04) 0.32

BAC 4277 0.01 (−0.10, 0.12) 0.85 0.02 (−0.01, 0.05) 0.17

C 4263 0.03 (−0.38, 0.42) 0.91 0.05 (0.01, 0.10) 0.01

CAT 4277 −0.01 (−0.17, 0.16) 0.96 0.05 (0.02, 0.08) 0.00

CVX 3078 −0.06 (−0.32, 0.22) 0.69 −0.02 (−0.06, 0.01) 0.20

DD 4278 −0.02 (−0.20, 0.16) 0.78 0.01 (−0.02, 0.04) 0.47

DIS 4278 −0.03 (−0.32, 0.28) 0.83 0.01 (−0.03, 0.04) 0.69

GE 4277 −0.00 (−0.30, 0.28) 0.98 0.02 (−0.02, 0.05) 0.28

GM 3906 −0.01 (−0.56, 0.59) 0.98 0.05 (−0.01, 0.11) 0.14

HD 4277 0.01 (−0.12, 0.14) 0.95 0.03 (−0.00, 0.06) 0.07

IBM 4277 −0.03 (−0.26, 0.17) 0.79 0.01 (−0.02, 0.05) 0.42

INTC 4277 −0.01 (−0.17, 0.14) 0.84 −0.00 (−0.03, 0.03) 0.99

JNJ 4277 −0.02 (−0.29, 0.31) 0.90 −0.00 (−0.03, 0.03) 0.95

JPM 4277 −0.05 (−0.33, 0.25) 0.72 −0.02 (−0.05, 0.02) 0.32

KO 4277 −0.00 (−0.26, 0.26) 0.98 0.01 (−0.02, 0.04) 0.40

MCD 4277 −0.02 (−0.28, 0.28) 0.91 0.02 (−0.01, 0.05) 0.32

MMM 4277 −0.02 (−0.25, 0.24) 0.83 0.01 (−0.02, 0.04) 0.64

MRK 4277 −0.02 (−0.21, 0.19) 0.88 0.02 (−0.01, 0.05) 0.21

MSFT 4277 −0.02 (−0.20, 0.17) 0.83 0.01 (−0.02, 0.05) 0.38

PG 4277 −0.02 (−0.27, 0.26) 0.88 −0.01 (−0.05, 0.03) 0.55

SPY 4278 −0.06 (−0.09,−0.02) 0.00 −0.01 (−0.03, 0.02) 0.59

T 4270 −0.01 (−0.17, 0.14) 0.94 0.02 (−0.02, 0.05) 0.30

UTX 4277 −0.01 (−0.23, 0.21) 0.94 −0.01 (−0.04, 0.03) 0.70

VZ 3394 −0.03 (−0.07, 0.01) 0.14 −0.02 (−0.05, 0.00) 0.10

WMT 4277 −0.01 (−0.20, 0.17) 0.94 −0.01 (−0.03, 0.02) 0.72

XOM 3542 −0.07 (−0.31, 0.19) 0.58 −0.05 (−0.09,−0.02) 0.00

Avg 4166 −0.02 (−0.24, 0.22) 0.81 0.01 (−0.02, 0.04) 0.36

Empirical investigations concerning the roughness properties of financial log-prices. Stocks are identified by their

ticker symbol, with ”Avg” being the mean over all assets. α is estimated with the OLS regression (3.2) with m = 3.

The confidence intervals (CI) are computed using bootstrap method 2 with B = 999. The columns with ”p-value” are

simulated p-values using bootstrap method 1; bold face numbers denote rejections of H0 : α = 0 at a 5% level. The

alternative is H1 : α 6= 0.
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Table 4: Testing H0: α = 0 on log-volatility.

p = 2 p = 1

Asset n α̂ 95% CI p-value α̂ 95% CI p-value

AA 4278 −0.36 (−0.39,−0.33) 0.00 −0.37 (−0.39,−0.34) 0.00

AIG 4277 −0.30 (−0.33,−0.27) 0.00 −0.31 (−0.33,−0.28) 0.00

AXP 4277 −0.33 (−0.35,−0.30) 0.00 −0.33 (−0.35,−0.30) 0.00

BA 4277 −0.33 (−0.36,−0.31) 0.00 −0.34 (−0.36,−0.31) 0.00

BAC 4277 −0.29 (−0.31,−0.26) 0.00 −0.27 (−0.30,−0.25) 0.00

C 4263 −0.31 (−0.34,−0.29) 0.00 −0.31 (−0.33,−0.28) 0.00

CAT 4277 −0.33 (−0.36,−0.31) 0.00 −0.32 (−0.34,−0.30) 0.00

CVX 3078 −0.30 (−0.33,−0.27) 0.00 −0.30 (−0.33,−0.27) 0.00

DD 4278 −0.34 (−0.37,−0.32) 0.00 −0.33 (−0.36,−0.31) 0.00

DIS 4278 −0.34 (−0.37,−0.32) 0.00 −0.35 (−0.38,−0.33) 0.00

GE 4277 −0.33 (−0.35,−0.31) 0.00 −0.33 (−0.35,−0.31) 0.00

GM 3906 −0.33 (−0.36,−0.31) 0.00 −0.34 (−0.36,−0.32) 0.00

HD 4277 −0.34 (−0.37,−0.31) 0.00 −0.33 (−0.35,−0.31) 0.00

IBM 4277 −0.33 (−0.35,−0.30) 0.00 −0.33 (−0.35,−0.30) 0.00

INTC 4277 −0.29 (−0.31,−0.26) 0.00 −0.29 (−0.31,−0.27) 0.00

JNJ 4277 −0.36 (−0.38,−0.34) 0.00 −0.35 (−0.38,−0.33) 0.00

JPM 4277 −0.31 (−0.34,−0.29) 0.00 −0.30 (−0.33,−0.28) 0.00

KO 4277 −0.35 (−0.37,−0.32) 0.00 −0.35 (−0.37,−0.33) 0.00

MCD 4277 −0.36 (−0.38,−0.33) 0.00 −0.35 (−0.37,−0.32) 0.00

MMM 4277 −0.34 (−0.37,−0.31) 0.00 −0.32 (−0.35,−0.30) 0.00

MRK 4277 −0.34 (−0.37,−0.32) 0.00 −0.35 (−0.37,−0.32) 0.00

MSFT 4277 −0.31 (−0.34,−0.29) 0.00 −0.31 (−0.33,−0.28) 0.00

PG 4277 −0.33 (−0.37,−0.30) 0.00 −0.34 (−0.36,−0.32) 0.00

SPY 4278 −0.30 (−0.32,−0.27) 0.00 −0.30 (−0.32,−0.27) 0.00

T 4270 −0.34 (−0.36,−0.31) 0.00 −0.33 (−0.35,−0.31) 0.00

UTX 4277 −0.35 (−0.38,−0.33) 0.00 −0.35 (−0.37,−0.32) 0.00

VZ 3394 −0.34 (−0.37,−0.31) 0.00 −0.33 (−0.35,−0.30) 0.00

WMT 4276 −0.38 (−0.40,−0.35) 0.00 −0.36 (−0.39,−0.34) 0.00

XOM 3542 −0.32 (−0.35,−0.29) 0.00 −0.32 (−0.34,−0.29) 0.00

Avg 4166 −0.33 (−0.36,−0.30) 0.00 −0.33 (−0.35,−0.30) 0.00

Empirical investigations concerning the roughness properties of financial log-volatility. Stocks are identified by their

ticker symbol, with ”Avg” being the mean over all assets. α is estimated with the OLS regression (3.2) with m = 3.

The confidence intervals (CI) are computed using bootstrap method 2 with B = 999. The columns with ”p-value” are

simulated p-values using bootstrap method 1; bold face numbers denote rejections of H0 : α = 0 at a 5% level. The

alternative is H1 : α < 0.
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Figure 3: Top: Stock price evolution of JPMorgan Chase (JPM) from January 2, 1997, until De-

cember 31, 2013. On December 31, 2000, J. P. Morgan & Co. merged with The Chase Manhattan

Group. Bottom: Estimation of α in time by using a rolling window of 250 days and m = 3. Solid

lines are estimates of α; dashed lines are 95% (point-wise) confidence bands calculated using the

T ∗ statistic of bootstrap procedure 2 with B = 999 bootstrap replications.

Table 3. The top plot of Figure 3 shows the (closing) price evolution of JPM from January 2, 1997

to December 31, 2013.

In the period under study, JPM has undergone several stock splits, which are not visible in the

plot, and one large merger which is clearly visible. Indeed, on December 31st, 2000, J. P. Morgan

& Co. merged with The Chase Manhattan Group causing a major change in the quoted price of

the stock, as seen in the figure.

The effect of the large outlier in the JPM data is further analyzed in the bottom plot of Figure

3, where α is estimated from log-prices through time by using a rolling window with 250 days.

It is evident how the confidence bands (dashed lines) get wide when the large outlier enters the

data. This is alleviated somewhat by letting p = 1, and, to an even greater extend, when p = 1/2,

thus providing further evidence that letting p ≤ 1 will result in inference, which is more robust to

outliers than p = 2.

This conclusion is strengthened in Figure 4, which shows estimates of α, as a function of p. In

plot (a) the data is log-prices: it is clear how the values of α̂ is close to zero with tight confidence

bands for p ≤ 1, while the outlier will cause the estimate of α to be biased downwards, and the
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Figure 4: Estimates of α (crosses) with associated 95% confidence bands (vertical lines) calculated

using the T ∗ statistic of bootstrap procedure 2 with m = 3 and B = 999 bootstrap replications. The

data is from the JPMorgan (JPM) stock as explained in the text. (a): log-prices. (b): log-volatility.

confidence bands to be extremely wide, for p > 1. Conversely, in plot (b) the data is log-volatility:

here the estimates of α are stable, as a function of p, and the confidence bands are very tight, as

we would expect from such a large sample (n = 4277).

7 Conclusion

This paper has developed simulation-based methods to conduct inference on the fractal index of

a time series. We considered a particular semiparametric estimator of the fractal index, based on

OLS regression, but the same methods can be applied straightforwardly to different estimators of

the fractal index, as long as the (asymptotic) distribution of the estimator does not rely on the

particular characteristics on the DGP of the observations, but only on the fractal index α and a

possible heteroskedasticity factor.

The paper also answers a call for a general approach to inference on α for non-Gaussian processes

(Gneiting et al., 2012). Our methods allow for this, at least when the non-Gaussianity is volatility

induced, which is the case in many applications of interest in (e.g.) economics, econometrics, and

finance. In the empirical section, we considered two instances of such applications by looking at

time series of log-prices and log-volatility. We saw that p ≤ 1 will result in estimation and inference,

which is more robust to outliers, as compared to p > 1. Semimartingale hypotheses were tested

for the time series. Although no evidence of non-semimartingality was found in log-prices, strong

evidence of non-semimartingality was found in log-volatility, thereby supporting the claim that

volatility is rough (Gatheral et al., 2014).
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A Proofs

Proof of Proposition 2.1. Note first, that since X is Gaussian Assumption (A1) implies that for

n ≥ 1,

E[|Xt −Xs|2n] = C2n|t− s|(2α+1)nL(t− s)2n,

where x 7→ L(x)2n is slowly varying at zero. Let now K ⊂ (0,∞) be a compact set. By the

properties of slowly varying functions (Bingham et al., 1989, Theorem 1.5.6(ii)), for all ε > 0 we

can find a > 0 such that

E[|Xt −Xs|2n] ≤ C̃1,n|t− s|1+(2α+1)n−1−ε, t, s ∈ (0, a],

for a constant C̃1,n > 0. Suppose now that t, s ∈ K such that t− s > a. Since L is continuous on

(0,∞) we have that

E[|Xt −Xs|2n] ≤ C̃2,n|t− s|1+(2α+1)n−1,

for a constant C̃2,n > 0. In summary, we have that there exists a constant C̃3,n > 0 such that for

all ε > 0 we have

E[|Xt −Xs|2n] ≤ C̃3,n|t− s|1+(2α+1)n−1−ε, t, s ∈ K.

Using this, we deduce that for n sufficiently large, the continuity criterion of Kolmogorov shows

that X has a modification which is Hölder continuous of order φ for all φ ∈
(

0, (2α+1)n−1−ε
2n

)
=(

0, α+ 1/2− 1+ε
2n

)
. Letting n→∞ yields the desired result.

Proof of Proposition 2.2. Recall the p-variation

Vp(0, T ) := sup
Π

n∑
j=1

|Xtj −Xtj−1 |p,

where the supremum is taken over all partitions with mesh going to zero. Consider the associated

index of p-variation:

I(X, [0, T ]) := inf{p > 0|Vp(0, T ) <∞}.

It is a well-known fact that semimartingales have I(X, [0, T ]) ∈ [0, 1] ∪ {2} with probability one.

Likewise, it is known that if a process, X, has paths which are φ-Hölder continuous, then the index

of p-variation is 1
φ (e.g. Norvaĭsa, 2006). Now, by Proposition 2.1 we get that

p∗ := I(X, [0, T ]) =
1

α+ 1/2
∈ (1,∞) \ {2}.

In conclusion, X is therefore not a semimartingale. Note that α = 0⇒ p∗ = 2, so that the present

result does not hold for α = 0.
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Proof of Proposition 3.1. Note first, that since α = a/p− 1/2 we can write

α̂− α =
1

pxTmxm
xTm(Um + εm), (A.1)

where

Um :=
(
U1/n, U2/n, . . . , Um/n

)T
=

(
log

(
γ̂p(1/n)

γp(1/n)

)
, log

(
γ̂p(2/n)

γp(2/n)

)
, . . . , log

(
γ̂p(m/n)

γp(m/n)

))T
,

and

εm :=
(
ε1/n, ε2/n, . . . , εm/n

)T
= (logLp(1/n), logLp(2/n), . . . , logLp(m/n))T .

To see that the term xTmε
m vanishes, note that

m∑
k=1

xm,k =
m∑
k=1

(
log k − logm

)
= 0

and therefore

xTmε
m =

m∑
k=1

xm,k logLp(k/n) =
m∑
k=1

xm,k log

(
Lp(k/n)

Lp(1/n)

)
→ 0, n→ 0,

since limn→∞
Lp(k/n)
Lp(1/n) = 1 by the property of slowly varying functions.

The required result now follows by noting that

γ̂p(k/n)

γp(k/n)
=

γ̂p(k/n)

mpγ2(k/n)p/2
P→ 1, n→∞, k ≥ 1,

by Propositon 1 in Barndorff-Nielsen et al. (2009).

Proof of Theorem 3.1. Using Theorem 2 in Barndorff-Nielsen et al. (2011), see also Barndorff-

Nielsen et al. (2009) Theorem 7, and the limit in equation (3.5), this paper, we get

√
n


γ̂p(1/n)
γp(1/n) − 1

...
γ̂p(m/n)
γp(m/n) − 1

 d→ N(0,Λp), n→∞, (A.2)

where Λ = {λk,vp }mk,v=1 is a m×m matrix with entries

λk,vp = lim
n→∞

n · Cov
(
γ̂p(k/n;BH)

γp(k/n;BH)
,
γ̂p(v/n;BH)

γp(v/n;BH)

)
, k, v = 1, 2, . . . ,m, (A.3)

where γp(·;BH) denotes the p’th order variogram for a fractional Brownian motion with Hurst

index H = α + 1/2, and similarly for γ̂p. Note that the limit in (A.3) exists for k, v = 1, 2, . . .m,

by Breuer and Major (1983), Theorem 1, see also Corcuera et al. (2013), Remark 3.3. Now, from

(A.1) we get, using (A.2) and the delta method,

√
n (α̂− α)

d→ N

(
0,

xTmΛpxm
(xTmxm)2p2

)
, n→∞.

This concludes the proof.
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Proof of Proposition 3.2. Note that we can write

Ŝp =

√
m−1

2p γ̂p(1/n)/γ2(1/n)2p

m−1
p γ̂p(1/n)/γ2(1/n)p/2

.

The result now follows from Proposition 1 in Barndorff-Nielsen et al. (2009).

Proof of Theorem 4.1. Note first, that by Theorem 4 of Barndorff-Nielsen et al. (2011), see also

Theorem 3.2. and Remark 3.4. of Corcuera et al. (2013), we get

√
n


γ̂p(1/n)
γp(1/n) − 1

...
γ̂p(m/n)
γp(m/n) − 1

 st→
∫ 1

0
σpsΛpdBs,

where B is an m-dimensional Brownian motion, defined on an extension of the original probability

space, (Ω,F ,P), independent of F . The matrix Λp is identical to the one of Theorem 3.1, i.e. the

covariances in Λp is calculated using the covariance structure of the fBm, not the BSS process.

We proceed as in the proof of Theorem 3.1. In particular, invoking the delta method we get

√
n (α̂− α)

st→ xTmΛp
xTmxmp

∫ 1
0 σ

p
sdBs

σpsds
,

or, in other words (conditionally on {σt}t∈R),

√
n (α̂− α)

st→ Zp · Sp, Sp :=

√∫ 1
0 σ

2p
s ds∫ 1

0 σ
p
sds

,

and where Zp is as in Theorem 3.1. This concludes the proof.

B Deriving an expression for the Λ matrix of Theorem 3.1

Below we give expressions for the entries in the matrix Λp = {λk,vp }2k,v=1 of Theorem 3.1 when

p = 2. Let BH be an fBm with Hurst index H ∈ (0, 1). Recall that

γ2(k/n;BH) := E
[∣∣∣BH

k/n −B
H
0

∣∣∣2] = (k/n)2H .

Therefore,

λk,v2 = lim
n→∞

n1+4H(kv)−2HCov
(
γ̂2(k/n;BH), γ̂2(v/n;BH)

)
, k, v = 1, 2.

We illustrate how to derive the result using the case k = 1, v = 2 as example. Since BH is

Gaussian, we can use Isserlis’ theorem to calculate (cross) moments of the increments of X. Brute

force calculations yield

Cov
(
γ̂2(1/n;BH), γ̂2(2/n;BH)

)
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=
1

(n− 1)(n− 2)
Cov

n−1∑
i=1

|X(i+1)/n −Xi/n|2,
n−1∑
j=1

|X(j+2)/n −Xj/n|2


=
2−1n−4H

(n− 1)(n− 2)

n−1∑
i=1

n−2∑
j=1

(
|j − i+ 2|2H − |j − i+ 1|2H − |j − i|2H + |j − i− 1|2H

)2
,

where it was used that

E[BH
i/nB

H
j/n] =

1

2
n−2H

(
|i|2H + |j|2H − |i− j|2H

)
,

since BH is an fBm with Hurst index H. Now, deduce that

λ1,2
2 = 2−2H−1 lim

n→∞
n−1

n−1∑
i=1

n−2∑
j=1

(
|j − i+ 2|2H − |j − i+ 1|2H − |j − i|2H + |j − i− 1|2H

)2
.

Similarly, it can be shown that

λk,k2 = 2−1k−4H lim
n→∞

n−1
n−k∑
i=1

n−k∑
j=1

(
|j − i+ k|2H − 2|j − i|2H + |j − i− k|2H

)2
, k = 1, 2.

These expressions are convergent by Theorem 1 in Breuer and Major (1983), see also Remark

3.3. in Corcuera et al. (2013), but in our implementation we simply use the finite sample version

by implementing the finite sums as given above.

C Simulation setup

Section 5 requires simulating n ∈ N equidistant observations of the process X on the unit in-

terval [0, 1]. The following subsections give details concerning the various DGPs we consider for

X. Simulation of the Gaussian DGPs can be done exactly using the Cholesky decomposition of

the covariance matrix; since the processes are stationary (in case of the fBm the increments are

stationary) one can get this covariance matrix from the correlation function ρ. When X contains

stochastic volatility, the process is non-Gaussian and the Cholesky method is not valid. In this

case, we use the hybrid scheme of Bennedsen et al. (2015) which is a fast and accurate simulation

scheme for certain fractal processes with or without SV.

C.1 Brownian semistationary process

The Brownian semistationary (BSS) process was introduced in Barndorff-Nielsen and Schmiegel

(2007, 2009) and has been widely studied (e.g. Pakkanen, 2011; Barndorff-Nielsen et al., 2011, 2013;

Corcuera et al., 2013; Bennedsen et al., 2015) and applied to a number of empirical applications

(e.g. Veraart and Veraart, 2014; Bennedsen, 2015).

The driftless BSS process is defined as

Xt =

∫ t

−∞
g(t− s)σsdWs, t ≥ 0,
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where g is a square integrable kernel function, σ is a stochastic volatility process which is possi-

bly correlated with the driving Brownian motion W . The next section will present the different

specifications we consider for σ.

For simulation of the volatility modulated BSS process we utilize the hybrid scheme of Benned-

sen et al. (2015).

C.1.1 Stochastic volatility regimes

For the stochastic volatility process σ = {σt}t∈R, we consider three different specifications: (i)

constant volatility, labeled NoSV; (ii) one-factor stochastic volatility, labeled SV1F; and (iii) two-

factor stochastic volatility, labeled SV2F. For the NoSV model we take for t ∈ R,

σt = 1,

while we in the SV1F model take, following Barndorff-Nielsen et al. (2008),

σt = exp(β0 + β1τt),

dτt = ξτtdt+ dBt,

E[dWtdBt] = ρdt,

where B is a standard Brownian motion and β1 = 0.125, ξ = −0.025, β0 =
β2
1

2ξ = −0.3125 and

ρ = −0.3. Lastly, for the SV2F model we take, following Huang and Tauchen (2005) and Barndorff-

Nielsen et al. (2008),

σt = s- exp(β0 + β1τ1t + β2τ2t),

dτ1t = ξ1τ1tdt+ dB1t,

dτ2t = ξ2τ2tdt+ (1 + φτ2t)dB2t,

E[dWtdB1t] = ρ1dt,

E[dWtdB2t] = ρ2dt,

where B1, B2 are standard Brownian motions and the function s- exp is given by

s- exp(x) =

{
exp(x), x ≤ log(1.5),
3
2

√
1− log(1.5) + x2/ log(1.5), x > log(1.5),

and the parameters are set to (β0, β1, β2)T = (−1.20, 0.040, 1.50)T , (ξ1, ξ2)T = (−0.00137,−1.386)T ,

φ = 0.250, and ρ1 = ρ2 = −0.30.

We note that in the NoSV case the process X is Gaussian and can thus be simulated exactly

using a Cholesky decomposition of its variance-covariance matrix, which is what we do in our

simulations. The stochastic processes of SV1F and SV2F can be simulated exactly using methods

in Glasserman (2003), see also the Simulation Appendix to Barndorff-Nielsen et al. (2008).
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C.2 Fractional Brownian motion

The fractional Brownian motion (fBm, Mandelbrot and Van Ness, 1968) is the most well-known

fractal process. It is the zero-mean Gaussian process BH , starting at zero, with covariance function

Cov(BH
t , B

H
s ) =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
, t, s ≥ 0,

where H ∈ (0, 1) is the Hurst index. The fBm is self-similar, in the sense that BH(at)
d
= |a|HBH(t),

where “
d
=” means equality in distribution. As mentioned in the introduction, this self-similarity

implies a deterministic one-to-one relationship between the Hurst index H and the fractal index

α (Gneiting and Schlather, 2004). Indeed, we have H = α + 1
2 . What this means is that the

small-scale behavior (as governed by α) is determined by the large-scale behavior (as governed by

H) and vice versa: when H < 1/2 then BH has rough paths (i.e. α < 0) and short memory, while

H > 1/2 implies that BH has smooth paths (i.e. α > 0) and long memory (in the sense of a

non-integrable autocorrelation function). When H = 1/2 BH is a Brownian motion.

The increments of fBm are stationary, and the increment process XH
t := BH

t+1 − BH
t is called

fractional Gaussian noise (fGn). The correlation function of the fGn was given in (3.5).

C.3 Cauchy process

The Cauchy process (Gneiting and Schlather, 2004) X is the zero-mean, unit variance, stationary

Gaussian process with correlation function

ρ(h) =
(
1 + |h|2α+1

)− β
2α+1 , h ∈ R, (C.1)

with α ∈ (−1/2, 1/2) and β > 0. See e.g. Gneiting (2000) for arguments showing that these

parameter restrictions are necessary and sufficient conditions for (C.1) to be the autocorrelation

function of a stationary Gaussian process.

The Cauchy process satisfies the assumptions (A1)–(A3) as shown in Barndorff-Nielsen et al.

(2009), Example 3.

C.4 Powered exponential process

The powered exponential process X is the zero-mean, unit variance, stationary Gaussian process

with correlation function

ρ(h) = exp
(
−|ch|2α+1

)
, h ∈ R,

with α ∈ (−1/2, 1/2) and c > 0. Let us verify that the powered exponential process satisfies

assumptions (A1)–(A3). To check (A1), let x ≥ 0 and write

γ2(x) = 2 (1− ρ(x)) = x2α+1L(x),

where

L(x) = 2
1− ρ(x)

x2α+1
= 2

1− exp
(
−|cx|2α+1

)
x2α+1

.
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Using the rule of L’Hôpital it is easy to show that

lim
x→0

L(x) = 2c2α+1 > 0,

implying that L is slowly varying at zero. To see that (A2) holds, note that we can write

d2

dx2
γ2(x) = x2α−1L2(x),

where

L2(x) = 2c2α+1(2α+ 1)ρ(x)
[
2α− c2α+1(2α+ 1)x2α+1

]
.

Again, it is easy to see that

lim
x→0

L2(x) = c2α+14α(2α+ 1) ∈ R,

so that also L2 is slowly varying at zero. Lastly, note that

L′2(x) :=
d

dx
L2(x) = −2c4α+2(2α+ 1)2ρ(x)x2α

[
4α+ 1− c2α+1(2α+ 1)x2α+1

]
,

so that, around a neighborhood of x = 0 we have L′2(x) < 0 if α > −1/4 and L′2(x) > 0 if α ≤ −1/4.

In other words, in a neighborhood of zero, L2 is either decreasing or increasing. In both cases we

can therefore conclude that for all b ∈ (0, 1),

sup
y∈[x,xb]

∣∣∣∣L2(y)

L(x)

∣∣∣∣→ |4α|(2α+ 1) <∞, x→ 0,

which shows that (A3) is fulfilled as well.
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