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Abstract

We propose a non-structural pricing method to retrieve the risk-neutral density implied by op-

tions contracts on the CBOE VIX. �e method is based on orthogonal polynomial expansions around

a kernel density and yields the risk-neutral density of the underlying asset without the need for

modeling its dynamics. �e method imposes only mild regularity conditions on shape of the den-

sity. �e approach can be thought of as an alternative to Hermite expansions where the kernel has

positive support. �e family of Laguerre kernels is extended to include the GIG and the generalized

Weibull densities, which, due to their �exible rate of decay, are be�er suited at modeling the density

of the VIX. Based on this technique, we propose a simple and robust way to estimate the expansion

coe�cients by means of a principal components analysis. We show that the proposed methodol-

ogy yields an accurate approximation of the risk-neutral density also when the no-arbitrage and

e�cient option prices are contaminated by measurement errors. A number of numerical illustra-

tions support the adequacy and the �exibility of the proposed expansions in a large variety of cases.
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1 Introduction

�e Volatility Index (VIX) was introduced in 1993 by the Chicago Board Options Exchange (CBOE) to

measure the market expected volatility. In its �rst formulation, the VIX was de�ned as an average of

S&P 100 call and put implied volatilities. In response to the growing interest in volatility trading, in

2004 the CBOE introduced the VIX futures, alongside a revised formulation of the VIX which was based

on the replication of variance swap contracts wri�en on the broader S&P 500 (SPX) index. Speci�cally,

in its current formulation, see CBOE (2015), the VIX is computed as the present value of a portfolio

of SPX call and put options constructed as a static replication of a 30-days variance swap. In 2006,

options wri�en on the VIX also started trading. Since then, several authors have studied the pricing of

VIX options. �e main strand of literature addresses VIX derivative pricing under stochastic volatility

models, mostly within the a�ne class. �is branch is pioneered by Zhang and Zhu (2006) and Zhu and

Zhang (2007), who derive dynamics for the VIX starting from a square-root model for the spot variance.

�e works of Sepp (2008a,b) extend this approach by introducing jumps in the spot variance, within

the a�ne jump-di�usion (AJD) framework of Du�e et al. (2000). �e recent paper by Bardge� et al.

(2014) further generalizes the framework of Sepp (2008a,b) by allowing for a stochastic long-run mean

of variance. Non-a�ne pure-di�usion extensions of the square-root model for the spot variance are in

Gatheral (2008) and Bayer et al. (2013). Following di�erent approaches, based on in�nite-dimensional

speci�cations, Buehler (2006), Bergomi (2008), and Cont and Kokholm (2013) provide modeling frame-

works aimed at pricing variance swaps jointly with the SPX.

A common feature of these contributions is that the risk-neutral density (RND) is assumed to be

fully described by stochastic dynamic equations of state-variables that are functions of the underlying

model parameters. Unfortunately, fully parametric speci�cations of the dynamics of price and volatility

come at the cost of an intrinsic risk of model misspeci�cation, see for example Cont (2006). �e prob-

lem of correct model speci�cation in VIX option pricing is particularly troublesome since the linkage

between VIX and SPX is not fully explicit, and they both depend on the variance, which is an unob-

servable quantity. A comparative analysis of the performance of simple stochastic volatility models in

pricing of VIX options tend to con�rm these problems. For example, Christo�ersen et al. (2010) and

Wang and Daigler (2011) �nd some evidence in favor of models that assume log-normal dynamics for

the instantaneous variance, although none of these models achieve small pricing errors over the en-

tire range of strike prices. �is also re�ects the general disagreement in the literature on the ”‘nature”

and the roughness of the instantaneous volatility. For example, although the instantaneous volatility is

most commonly modeled as a jump-di�usion process, Todorov and Tauchen (2011) �nd that it is best

described by a pure jump process, with clear consequences on the VIX index and its related options.

�e econometric analysis carried out by Mencia and Sentana (2013) reveals that the risk of model mis-

speci�cation in structural pricing of VIX options is particularly high during �nancial crises. Reducing

the model risk concerned with VIX option pricing is possible but o�en comes at the cost of analytical

tractability and availability of closed-form solutions. As a consequence, consistent modeling frame-

works conceived for capturing stylized facts of the VIX are rarely suited to be employed for estimation
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purposes.

In this view, non-structural methods for estimating the RND directly from VIX options represent

a viable alternative to stochastic modeling. In this context ”non-structural” indicates that only mild

regularity conditions on the form of the RND are imposed. �is entails considerable reduction of the

risk associated to model misspeci�cation. Non-structural option pricing has been recently employed by

Song and Xiu (2016) with the purpose of estimating the volatility pricing kernel, which is proportional

to the ratio between the physical and the risk-neutral density of the VIX. In particular, building upon

Breeden and Litzenberger (1978), Song and Xiu (2016) adopt a direct method to extract the marginal

risk-neutral densities of SPX and VIX from their options. �e approach of Breeden and Litzenberger

(1978) strongly relies on the condition that there exist traded derivatives on the same asset for a con-

tinuum of its future states, which is not the case in practice. Consequently, the original data needs to

be complemented with arti�cial points, e.g. by interpolation techniques, see also Monteiro et al. (2008).

�e main shortcoming of this approach lies in the fact that estimated RNDs are highly sensitive to how

observed data is complemented.

�e method that we propose belongs to the class of non-structural approaches but removes the

restrictive condition required in Breeden and Litzenberger (1978). In particular, we recover the RND

implied by VIX options by means of a �nite orthogonal expansion around a kernel density, see for

instance Szegö (1939). Examples of these orthogonal expansions are the Hermite, which are obtained

when the kernel is a Gaussian density, and the Laguerre, which are obtained when the kernel is an

exponential density. �e key feature of orthogonal expansions is that they yield a description of the

RND without the need of specifying stochastic dynamics of the state-variables. Instead, this method

imposes mild integrability conditions on the form of the RND, proving to be particularly robust to

model misspeci�cation. �ere is extensive literature on the use of orthogonal expansions in �nancial

applications. Seminal examples are Jarrow and Rudd (1982), Corrado and Su (1996b), Madan and Milne

(1994), Coutant et al. (2001), and Jondeau and Rockinger (2001), while more recent contributions are

Rompolis and Tzavalis (2008), Zhang et al. (2011), Ñı́guez and Perote (2012), and Xiu (2014). In all

these cases, the expansions are provided in terms of Hermite polynomials. Our methodology can be

thought of as an alternative to the Hermite expansion in that the kernel has a positive support. Indeed,

adapting the expansion kernel to the data (for instance by choosing a kernel with support on the positive

axis only) may be a be�er alternative to the inverse approach of adapting the data to the kernel (for

instance by log-change or standardization). In particular, we extend the Laguerre expansions, used

recently by Filipovic et al. (2013), by introducing a family of kernels that encompasses well known

distributions such as the exponential, the Gamma, the Weibull and the GIG, among others. We show

that the introduction of the extended Laguerre (eLaguerre) kernels increases the adaptability of the

approach by reducing the number of restrictions to be imposed on the form of the RND.

We contribute to the literature on pricing of VIX options on several aspects. First, we provide gen-

eral convergence conditions of orthogonal expansions to the true RND. �ese conditions relate to the

rate of tail decay of the expansion kernel. We show that the log-normal density, due to its slow tail de-

cay rate, does not represent a suitable candidate for the expansion kernel as this would generally lead
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to inaccurate approximations. Instead, our extended Laguerre kernels are be�er suited to approximate

the RND associated to the VIX options, due to the very �exible decay rate on both tails. Indeed, due

to the irregular nature of the instantaneous volatility, see Todorov and Tauchen (2011) and Todorov

et al. (2014), the tails of the RND of the VIX are expected to display features that can only be captured

if a �exible choice of the kernel density is adopted. Second, in the same spirit of Aı̈t-Sahalia and Lo

(1998), Jondeau and Rockinger (2001), and Aı̈t-Sahalia and Duarte (2003), we propose an econometric

methodology to estimate the parameters of the polynomial expansion a minimum distance approach

based on the observed option prices. �is econometric methodology is robust under several points of

view, e.g. multicollinearity of the regressors, absence of the intercept in the model, positivity, and unit

mass of the estimated RND. Additionally, we prove that the proposed methodology yields a very ac-

curate approximation of the risk-neutral density also when the no-arbitrage and e�cient option prices

are contaminated by measurement errors. Finally, we test the robustness of the proposed method on

both option prices generated from known RNDs and market data. �e results highlight the reliabil-

ity of our methodology to recover risk-neutral densities up to negligible rounding errors and minor

adjustments of the observed option prices. Interestingly, although this paper focuses on VIX options,

our methodology is outlined in full generality and hence it can be applied to any option to recover the

implied RND.

�e paper is organized as follows. Section 2 de�nes the VIX risk-neutral density, while Section 3

introduces and discusses the properties of orthogonal polynomial expansions. Section 4 discusses the

estimation procedure based on principal components regression of the expansion coe�cients, under

additional consistency constraints. In Section 5 we evaluate the methodology by studying its accuracy

and robustness based on option data generated according to di�erent risk-neutral speci�cations for the

VIX. Section 6 addresses whether and how the estimated RND is a�ected by option prices contaminated

by measurement errors associated to no-arbitrage violations. Finally, Section 7 presents the empirical

applications with real data.

2 VIX option pricing

Introduced in 1993 by the Chicago Board Options Exchange (CBOE), the VIX (volatility index), in its

current formulation, measures the expected market volatility 30 days ahead, based on near-term SPX

options. Futures and options on the VIX were the �rst derivatives on the market volatility to be listed

on a regulated security exchange, see Carr and Wu (2006) and Carr and Lee (2009) for a historical review

of the VIX and a description of the improvements that have been made on this index over the years. �e

de�nition of the VIX (see CBOE, 2015) builds on the methodology of Carr and Madan (1998), Bri�en-

Jones and Neuberger (2000), and Jiang and Tian (2005) to price variance swap via static replication

based on options on the SPX. Speci�cally, under fairly general assumptions, the fair strike of a 30-days
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variance swap contract can be computed at time t as

2erτ

τ
*
,

∫ F (τ )

0

1

x2
PSPX (x )dx +

∫ ∞

F (τ )

1

x2
CSPX (x )dx+

-
, (1)

where r is the risk-free rate, τ is the time to maturity (30 days), F (τ ) is the SPX τ -forward index level

at time t and identi�es the at-the-money option cuto�. Finally, CSPX (x ) and PSPX (x ) are SPX call and

put mid-quotes, respectively, observed at time t and expiring at time t + τ , here expressed as functions

of the strike x .

�e VIX is computed by taking the square root (expressed in percentage points) of an approximate

fair price of a 30-days variance swap obtained by discretizing the in�nite strip of out-of-the-money

options in (1) over a �nite set of available strikes as

2erτ

τ
*.
,

∑
xi ≤X0

∆xi

x2

i
PSPX (xi ) +

∑
xi ≥x0

∆xi

x2

i
CSPX (xi )

+/
-
+

1

τ

[
F (τ )

x0

− 1

]
2

, (2)

where∆xi is half the distance between the next and the previous strikes, while x0 is the �rst strike below

the forward index level F (τ ). �e last term in (2) represents a correction for the fact that there might

not be perfectly at-the-money options. �e fair price of the 30-days variance swap is then obtained

by interpolating the values of (2) calculated by using SPX options with the largest available maturity

below 30 days (near term) and the smallest available maturity above 30 days (next term), respectively.

�e VIX index typically exhibits high negative correlation to the stock market, thus o�ering the

opportunity to hedge the volatility of a broad market portfolio separately from directional price moves,

as well as to leverage volatility and take advantage of upward or downward moves in the stock market,

without the need of taking a direct position on the underlying asset (the SPX). �erefore, VIX options

represent a powerful risk management tool to hedge against changes in the market volatility and, as a

ma�er of fact, many investors consider the VIX to be a leading indicator of market sentiment - o�en

the index is referred to as the investors fear gauge. �e popularity of the VIX is con�rmed by great

trading volume enjoyed by VIX options, which stand at approximately 37% of the average daily volume

of SPX options, see Mencia and Sentana (2013).

Under risk neutrality and no-arbitrage, the price of VIX call and put options at time t expiring at

time T with strike K are given by

CK (t ,T ,VIXt = y) = e−r (T−t )
∫ ∞

0

fQ (VIXT = x |VIXt = y) (x − K )+dx (3)

PK (t ,T ,VIXt = y) = e−r (T−t )
∫ ∞

0

fQ (VIXT = x |VIXt = y) (K − x )
+dx (4)

where fQ (VIXT = x |VIXt = y) is the RND of VIXT , conditional to VIXt = y. �e RND of the VIX yields

important information linking the investors expectations on the future states of market volatility with

their aversion towards risk, and is the object of interest in this paper. For sake of compactness we
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abbreviate fQ (VIXT = x |VIXt = y), CK (t ,T ,VIXt = y), and PK (t ,T ,VIXt = y) as fQ (x ), CK (t ,T ), and

PK (t ,T ), respectively. In the next section, we outline a mathematical method to approximate fQ (x ) on

the basis of a weighted polynomial expansion and we provide a robust method to retrieve fQ (x ) directly

from the option prices.

3 An orthogonal polynomial expansion for the RND

Under fairly general conditions that will be discussed below, the function fQ can be approximated by

the following polynomial expansion, f (n)
Q

, as

f (n)
Q

(x ) = ϕ (x ) *
,
1 +

n∑
k=1

ek (x )+
-
, n ≥ 1 (5)

where ϕ, the kernel, is a probability density function and ek are corrective factors. �e kernel function

ϕ represents the 0-order term in (5)

f (0)
Q

(x ) = ϕ (x )

and therefore it can be interpreted as an initial proxy for fQ. In the following, we assume that ϕ is a

probability density function with support D ⊆ R and possessing �nite polynomial moments, that is∫
D

|x |kϕ (x )dx < +∞, ∀k ∈ N.

Furthermore, the corrective factors e1, . . . , en in (5) are de�ned as

ek (x ) = ckh
ϕ
k (x ),

where, for every k = 1, . . . ,n, h
ϕ
k is a polynomial function in x of degree k and ck is a real constant.

Furthermore, the polynomials h
ϕ
1
, . . . ,h

ϕ
n only depend on ϕ and therefore the expansion coe�cients

c1, . . . , cn embed all the information on fQ. In other words, the sequence (ck )k ∈N yields a full description

of the fQ, through the relation expressed in (5). Importantly, this relation is non-structural, since no

speci�c form of fQ needs to be postulated in order to ensure the admissibility of (5). In the rest of

this section we provide elements to determine the polynomials (h
ϕ
k )k ∈N and we address mathematical

conditions on fQ, ϕ, and (ck )k ∈N ensuring the admissibility and the consistency of (5).

3.1 Determination of (hϕ
k
)k∈N

�e function f (n)
Q

is de�ned in (5) as the product between a probability density function and a polyno-

mial. �erefore, in general, f (n)
Q

may not be a consistent approximation for fQ, unless the polynomials

(h
ϕ
k )k ∈N are chosen so that f (n)

Q
is a probability density function, for every n ∈ N. A convenient way

to ensure unitary mass for f (n)
Q

is to require that the polynomials (h
ϕ
k )k ∈N form an orthogonal system

with respect to the measure generated by ϕ. �e elements of (h
ϕ
k )k ∈N are shortly said to be orthogonal
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polynomials with respect to ϕ if, for all k ∈ N and all j ∈ N such that j , k ,

deg

(
h
ϕ
k

)
= k and

∫
D

h
ϕ
k (x )h

ϕ
j (x )ϕ (x )dx = 0. (6)

Lemma 3.1. Let ϕ be a function with �nite k-th moment, for every k ∈ N. �en there exists a family

(hk )k ∈N of orthogonal polynomials with respect to ϕ. �e family (hk )k ∈N is uniquely determined, up to a

sign, if the following additional condition is satis�ed∫
D

h
ϕ
k (x )

2ϕ (x )dx = 1. (7)

Proof. Appendix A.1 provides a constructive proof of this lemma. �

Henceforth, for a given kernel ϕ possessing �nite moments, we denote by (h
ϕ
k )k ∈N the unique (up to

a sign) family of related orthogonal polynomials satisfying condition (7) for every k ∈ N. Furthermore,

for a given n ∈ N, we denote byW := (wi, j ) the (n + 1) × (n + 1) lower triangular matrix containing

the coe�cients of the polynomials h
ϕ
0
, . . . ,h

ϕ
n . Speci�cally, for i = 1, . . . ,n we have

h
ϕ
i (x ) = wi,0 +wi,1x + . . . +wi,ix

i ,

and wi, j = 0 for j > i .

3.2 Properties of f (n)
Q

A notable property of orthogonal polynomial expansions is that adding corrective terms to f (n)
Q

entails

a mass reshaping not a�ecting the �rst n moments. More precisely, the following result holds.

Lemma 3.2. Let p ≥ 0, then∫ +∞

−∞

xp f (n)
Q

(x )dx =

∫ +∞

−∞

xp f
(p )
Q

(x )dx , ∀n ≥ p. (8)

Proof. See Appendix A.2. �

As a major consequence of Lemma 3.2, the total mass underlined by then-th order expansion always

equals 1, regardless of the order n. In other words∫ +∞

−∞

f (n)
Q

(x )dx = 1 ∀n ∈ N. (9)

Furthermore, in view of Lemma 3.2, we can interpret the coe�cients c1, . . . , cp as corrective factors of

the �rst p moments of ϕ to match the corresponding moments of fQ. For example, by applying (8) with

p = 1 and p = 2 we get, respectively,∫ +∞

−∞

x f (n)
Q

(x )dx = µ1 + c1

√
µ2 − µ

2

1
, (10)
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and ∫ +∞

−∞

x2 f (n)
Q

(x )dx = µ2 + c1

µ3 − µ1µ2√
µ2 − µ

2

1

+ c2

√
−µ2

1
µ4 + µ2 (2µ1µ3 + µ4) − µ

3

2
− µ2

3√
µ2 − µ

2

1

. (11)

where µi , i = 1, . . . , 4, are the �rst four moments of ϕ. In particular, the quantity under square root in

(11) is positive as resulting from integrating a positive function in the process of �nding the normalizing

constant C2 for h
ϕ
2

(see A.1).

In general, f (n)
Q

is not guaranteed to be a positive function over its support, even under the as-

sumption that ϕ is a positive function. However, this property is recovered when the n-th coe�cient

cn ful�lls some constraints. More precisely, f (n)
Q
≥ 0 if and only if

c inf

n ≤ cn ≤ c
sup

n (12)

where

c inf

n = − sup

x : hϕn (x )>0

f (n−1)
Q

(x )

h
ϕ
n (x )

, c
sup

n = inf

x : hϕn (x )<0

f (n−1)
Q

(x )

h
ϕ
n (x )

.

�e result above follows a�er noticing that

f (n)
Q
= f (n−1)
Q

+ cnh
ϕ
n .

So far we have discussed under which conditions f (n)
Q

is a density function, i.e. integrates to one

and is non-negative. �e following lemma and the following remark are based on general properties of

Hilbert spaces, and ensure that f (n)
Q

is an admissible expansion for fQ. For a proof the reader may refer

e.g. to Rudin (1987), �eorem 4.14.

Lemma 3.3. Assume that ϕ−
1

2 fQ ∈ L
2 (D) and supp( fQ) ⊆ D. De�ne

Hϕ =
{
ψ , ϕ−

1

2ψ ∈ L2 (D)
}
, H ∗ϕ = Cl

(
span

{
ϕh

ϕ
k ,k ∈ N

})
⊆ Hϕ ,

dϕ (ψ1,ψ2) =

(∫
D

|ψ1 (x ) −ψ2 (x ) |
2

1

ϕ (x )
dx

) 1

2

, ∀ψ1,ψ2 ∈ Hϕ .

�en, there exist a sequence (ck )k ∈N and a function

f (∞)
Q

:= lim

n→+∞
ϕ *.

,
1 +

kn∑
k=1

ckh
ϕ
k

+/
-

in Hϕ

that solves the minimum distance problem

f (∞)
Q
= argmin

ψ ∈H ∗ϕ

dϕ (ψ , fQ), fQ ∈ Hϕ , f (n)
Q
∈ H ∗ϕ ∀n ∈ N. (13)

In particular, ifH ∗ϕ = Hϕ we have f (∞)
Q
= fQ almost everywhere.
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Remark 3.4. �e set (hϕk )k ∈N is an orthonormal set in the space Hϕ . As a consequence, for every k ∈ N

we have

ck =

∫
D

h
ϕ
k (x ) fQ (x )dx =

k∑
i=0

wk,i

∫ +∞

−∞

x i fQ (x )dx (14)

wherewk,i is the i-th coe�cient of hϕk . In particular there exists a linear mapping between the coe�cients

(ck )kN and the moments of the fQ.

Lemma 3.3 provides a set of theoretical conditions ensuring that fQ admits the expansion (5), while

allowing a certain freedom in the choice of the kernel ϕ. In view of this result, the kernel ϕ mostly

serves as an initializing state of the expansion (5), and its choice should not a�ect the form of f (n)
Q

,

provided that n is su�ciently large. �e validity of these results is thoroughly examined in Section 5

via numerical illustrations. In principle every function ϕ possessing all moments, up to normalization

constants, can be used as kernel density in the expansion (5). To ensure convergent expansions, Lemma

3.3 requires that supp( fQ) ⊆ supp(ϕ) and, more importantly, that ϕ−
1

2 fQ ∈ L
2 (D). In other words, the

tails of ϕ must decay at a slower rate than the tails of fQ. However, the general convergence conditions

provided by Lemma 3.3 ensures that the limit of (5) equals a function f ∗
Q

that in general may di�er from

fQ if H ∗ϕ , Hϕ . In this paragraph, we prove that if the tails of ϕ decay at a certain exponential rate,

the minimum distance problem (13) admits a solution for which the equality f ∗
Q
= fQ holds, whenever

the assumptions of Lemma 3.3 are ful�lled. Speci�cally, this condition on the decay of ϕ is shown to

guarantee the property of closure for the set (h
ϕ
k )k ∈N in the space L2

ϕ (x )dx (D).

In the following, given a kernel functionϕ and an associated set of orthogonal polynomials (h
ϕ
k )k ∈N,

the notationsHϕ andH ∗ϕ refer to the Hilbert spaces already de�ned in Lemma 3.3, where we recall that

the underlying scalar product is de�ned as

〈
ψ1,ψ2

〉
:=

∫
D

ψ1 (x )ψ2 (x )
1

ϕ (x )
dx ,

with supp( fQ) ⊆ D ⊆ supp(ϕ).

De�nition 3.5 (Closed polynomial set inHϕ ). �e kernel ϕ is said to generate closed polynomial sets

if

Cl

(
span

{
xk ,k ∈ N

})
= L2

ϕ (x )dx (D). (15)

In this case, we say that either (xk )k ∈N or (h
ϕ
k )k ∈N is closed with respect to ϕ.

If (h
ϕ
k )k ∈N is closed with respect to ϕ, then Hϕ = H

∗
ϕ and from Lemma 3.3 it follows that f ∗

Q
= fQ

whenever ϕ−
1

2 fQ ∈ L
2 (D). �e �rst implication can be readily shown by noticing that fQ ∈ Hϕ implies

ϕ−1 fQ ∈ L
2

ϕ (x )dx (D). �en, the closure of (h
ϕ
k )k ∈N implies that ϕ−1 fQ can be approximated by a certain

polynomial series a0 + a1x + a2x
2 + . . . in L2

ϕ (x )dx (D) or equivalently that fQ can be approximated by

a certain series c0ϕh
ϕ
0
+ c1ϕh

ϕ
1
+ c2ϕh

ϕ
2
. . . inHϕ .
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�eorem 3.6 (Conditions to the closure of (h
ϕ
k )k ∈N). Let ϕ be a positive integrable function and D =

[0,+∞[.

(i) If limx→+∞ ϕ (x )e
ςx

1

2 = 0 for some ς > 0 and there exists a polynomial p such that pϕ is bounded,

then ϕ generates closed polynomial sets.

(ii) If limx→+∞ ϕ (x )e
ςx

1

2
−γ
> 0 for some γ , ς > 0, then ϕ does not generate closed polynomial sets.

Proof. See Appendix A.3. �

�e �rst statement of the theorem above remarks that any kernel density whose right-tail decay is

faster than eς
√
x

ensures f (∞)
Q
= fQ, whenever the conditions of Lemma 3.3 are satis�ed. Notably, the

classic result of closure of Laguerre polynomials is also included in statement (i), whenϕ (x ) = xα−1e−βx

for some α , β > 0. On the other hand, the second statement of �eorem 3.6 intuitively suggests that the

”size” of the spaceH ∗ϕ , generated by all possible expansions with kernel ϕ, reduces as the right tail of ϕ

thickens. �erefore, while heavy-tailed kernels tend to make the condition ϕ−
1

2 fQ ∈ L
2 (D) of Lemma

3.3 less restrictive, ϕ is required to possess a su�ciently rapid decay rate to ensure f (∞)
Q
= fQ. �is

determines a trade-o�, since both features are required to guarantee full consistency of the expansion

in (5).

3.3 �e eLaguerre and the log-Hermite expansions

In this paragraph we introduce and discuss the properties of the following family of kernel functions

with support D = [0,+∞[

ϕ (x ) ∝ xα−1e−(βx
p+ξ x−1)1D (x ), α , β , ξ ,p ∈ Θ, (16)

where

Θ =
{
α , β, ξ ,p ∈ R | β > 0, 0 < p ≤ 1, (α > 0, ξ = 0) ∨ (α ∈ R, ξ > 0)

}
.

�e general speci�cation (16) embeds a number of notable sub-cases such as the gamma (for p = 1, ξ =

0), the generalized inverse Gaussian (GIG, for p = 1), and the generalized Weibull (GW, for ξ = 0)

kernel. �erefore, the orthogonal expansions based on the kernel de�ned in (16) extends the classical

Laguerre expansions. For this reason, we refer to this expansions as extended Laguerre (eLaguerre).

To point out the great �exibility of this family of kernels in capturing di�erent tail behaviours, which

could not be achieved by a simple gamma kernel, we will focus on the GIG and the GW kernels. Here,

we discuss their theoretical properties in relation with the consistency results provided in Lemma 3.3

and �eorem 3.6. Additionally, we consider the following log-normal (LN) kernel in our comparison

ϕ (x ) ∝
1

x
e−

1

2σ 2
(log(x )−µ )2

, µ ∈ R, σ > 0. (17)

An expansion on the underlying risk-neutral density based on the LN kernel is conceptually similar to

an Hermite expansion on the logarithm of the underlying, which makes the LN kernel an interesting
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competitor of the GIG and the GW kernels, due to the great interest that Hermite expansions have

received by many authors in the literature concerning option pricing. �e appeal of the LN kernel

could be further motivated by documented empirical evidence that the volatility, which is comparable

to the VIX, is roughly log-normally distributed (see e.g. Christo�ersen et al., 2010, Wang and Daigler,

2011, and Bayer et al., 2013).

�e behavior on both le� and right tails of the GIG, the GW and the LN kernels is therefore infor-

mative on their ability to meet the condition ϕ−
1

2 fQ ∈ L2 (D), which is necessary for the convergence

of f (n)
Q

to f (∞)
Q

, in view of Lemma 3.3. In this regard, it is worth to remark the following limit relations.

Compared to the GIG and the GW kernels, Table 1 highlights that the LN kernel entails a less restrictive

assumption on right tail behaviour of fQ to satisfy ϕ−
1

2 fQ ∈ L
2 (D). On the other hand, the GW kernel,

whose le� decay rate is polynomial, imposes the smallest restriction on the le� tail of fQ.

GIG GW LN

Density xα−1e−
1

2
(βx+ξ x−1) xα−1e−βx

p
1

x e
− 1

2σ 2
(log(x )−µ )2

Parameters α ∈ R, β > 0, ξ ≥ 0 α > 0, β > 0, 0 < p ≤ 1 µ ∈ R, σ > 0

Right tail of ϕ (x )−1 O (eςx ) ,∀ς > β O
(
eςx

p )
,∀ς > β O

(
eς log(x )2

)
, ∀ς ≥ 1

2σ 2

Le� tail of ϕ (x )−1 O
(
eζ x

−1
)
,∀ζ > ξ O

(
xζ

)
,∀ζ ≤ 1 − α O

(
eζ log(x )2

)
,∀ζ < 1

2σ 2

Closure of (h
ϕ
k ) always

1

2
≤ p ≤ 1 never

Table 1: �e table reports, for each kernel, the behavior on the le� and right tails of ϕ−1
and the parametric

conditions to guarantee that f (∞)
Q
= fQ.

Moreover, �eorem 3.6 imposes a restriction on the tail behavior of the kernel to guarantee the

closure of related orthogonal polynomials. Notably, this property is always satis�ed by the GIG kernel.

Di�erently, for the orthogonal polynomials related to a GW kernel, closure is achieved only when the

parameter p falls in the interval [
1

2
, 1]. Finally, the log-normal kernel never meets the closure condition

for the related orthogonal polynomials, independently of the parameters choice. �us, the log-normal

kernel does not guarantee that the expansion f (∞)
Q

converges to fQ in all cases. �is means that the LN

kernel is less capable than GIG and GW to recover fQ, as intuitively the set of polynomial expansions in

(5) does not cover a su�ciently large space to incorporate fQ. �erefore, using the LN density implicitly

translates in assigning some restrictions to the expansion, drastically reducing the �exibility of the non-

structural approach. In Section 5 we illustrate the pitfalls of choosing a LN kernel to estimate the RND

of the VIX.

4 Retrieving fQ from option prices

In this section, we outline a procedure to estimate the coe�cients (ck )k ∈N of the expansion (5) by

minimizing the distance with the market option prices. �e key feature of the proposed procedure is

to estimate the option pricing formulas in (3) and (4) based on the observed market prices, by choosing

a su�ciently large n in the expansion (5), where the coe�cients c1, . . . , cn are the unknown terms

11



that convey the information about fQ. �e consistency of the procedure fully relies on the following

theorem, which combines the results of Lemma 3.3 and �eorem 3.6.

�eorem 4.1. Assume that ϕ is a probability density function with support on [0,+∞[ and satisfying

limx→+∞ ϕ (x )e
ςx

1

2 = 0 for some ς > 0. Moreover assume that ϕ−
1

2 f ∈ L2 (D). �en:

(a) there exists a sequence (ck )k ∈N such that, for a proper subsequence (kn )n∈N of indexes

fQ (x ) = lim

n→+∞
ϕ (x ) *.

,
1 +

kn∑
k=1

ckh
ϕ
k (x )

+/
-

for a.e. x ∈ D,

(b) the following holds in the limit

lim

n→+∞

∫ +∞

0

Π(x ) f (n)
Q

(x )dx =

∫ +∞

0

Π(x ) fQ (x )dx , (18)

for any function Π such that Πϕ
1

2 ∈ L2 (D).

Proof. �e proof of this theorem is obtained by a direct application of classic results on Hilbert’s spaces.

For completeness, a short proof is reported in Appendix A.4. �

�eorem 4.1 represents a prerequisite to de�ne a mathematically well-posed procedure to estimate

the coe�cients (ck )k ∈N based on observed option prices. In particular, point (a) shows that fQ admits

the representation (5) for n → ∞, or, in other words, that f (n)
Q

converges to fQ for some (ck )k ∈N. Note

that if fQ is su�ciently regular then kn can be replaced by n for all n ∈ N. Point (b) ensures that we can

move the limit within the integral pricing formulas (3)-(4) and thus obtain convergent expansions also

for the option prices related to fQ.

Remark 4.2 (Pricing formulas for vanilla options). Let ϕ be a �xed probability density function whose

support is contained in [0,+∞[. Let us de�ne, for every K ≥ 0, n ∈ N and c1, . . . , cn ∈ R

C (n)
K (c1, . . . , cn ) :=

∫ +∞

K
ϕ (x ) *

,
1 +

n∑
k=1

ckh
(ϕ )
k

+
-
(x − K ) dx

P (n)
K (c1, . . . , cn ) :=

∫ K

0

ϕ (x ) *
,
1 +

n∑
k=1

ckh
(ϕ )
k

+
-
(K − x ) dx

�en, for every n ∈ N and every real vector c = [c1, . . . , cn]
′, the expressions for C (n)

K and P (n)
K can be

rewri�en in the compact form

C (n)
K (c1, . . . , cn ) = A(K )

0
+A(K )c, (19)

P (n)
K (c1, . . . , cn ) = B (K )

0
+ B (K )c, (20)

where

A(K )
0
=

∫ +∞

K
ϕ (x ) (x − K ) dx , B0 (K ) =

∫ K

0

ϕ (x ) (K − x ) dx ,

12



and A(K ) and B (K ) are 1 × n vectors, whose i-th element is given by

A(K )
i =

i∑
j=0

wi, j

∫ +∞

K

(
x j+1 − Kx j

)
ϕ (x )dx , B (K )

i =

i∑
j=0

wi, j

∫ K

0

(
Kx j − x j+1

)
ϕ (x )dx . (21)

Notably, the vectorsA(K )
and B (K )

are only functions of the strike price, of the kernel and the related

polynomials through the coe�cientswk,i . A method to retrieve values of (ck )k ∈N from observed option

prices given an expansion of order n is discussed in the next paragraph.

4.1 Estimation of (ck )k∈N

Given a �xed kernel ϕ and a �nite order expansion n, to obtain an estimate of the coe�cients c1, . . . , cn

one can collect a cross-section of undiscounted market prices, CObs
Km

(t ,T ) and PObsKm
(t ,T ), for m =

1, . . . ,M , then �nd the parameters ĉ1, . . . , ĉn that solve the problem

[ĉ1, . . . , ĉn] = argmin

c1, ...,cn ∈Rn
Q (t ,T ; c1, . . . , cn ), (22)

where Q (t ,T ; c1, . . . , cn ) de�nes a particular objective function to be minimized. Given that (19)-(20)

are linear in the coe�cients c , the objective function Q (t ,T ; c1, . . . , cn ) can be naturally characterized

as criterion function of a problem of minimum least squares for the following linear model

Y = X0c0 + Xc + ε, (23)

where c = [c1, . . . , cn]
′
,

Y = [CObs
K1

(t ,T ), . . . ,CObs
KM (t ,T ), PObsK1

(t ,T ), . . . , PObsKM (t ,T )]′,

X0 = [AK1

0
, . . . ,AKM

0
,BK1

0
, . . . ,BKM

0
]
′,

and

X =



A(K1)
1

. . . A(K1)
n

...
. . .

...

A(KM )
1

. . . A(KM )
n

B (K1)
1

. . . B (K1)
n

...
. . .

...

B (KM )
1

. . . B (KM )
n


is a 2M × n matrix. �e 2M × 1 vector ε represents the error term, whose properties are discussed

more in detail in Section 6. For what concerns the regressors, since the constraint c0 = 1 is necessary

to ensure unitary mass by construction, the 2M × 1 vector of dependent variables could be de�ned as

Y∗ = Y−X0, where X0 is the option price vector generated by the kernel. Hence, the objective function
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could take the following quadratic form

Q (t ,T ; c1, . . . , cn ) = (Y∗ − Xc )′(Y∗ − Xc ), (24)

which, in turns, allows for a closed-form solution for the vector of coe�cients given by

ĉ = (X′X)−1X′Y (25)

if X has full column rank. Unfortunately, the columns of X are functions of the �rst non-standardized n

moments. �erefore, X tends to display increasing degree of multicollinearity as n grows. As a conse-

quence, employing the standard OLS estimator to solve (24) is not suitable whenn is large. �is problem

is well known in the literature concerned with orthogonal polynomial expansions. For example, Jar-

row and Rudd (1982) and Corrado and Su (1996a,b) consider expansions only up to the fourth order

and calibrate the standardized skewness and kurtosis to the options on the SPX. Similarly, Jondeau and

Rockinger (2001) estimate the RND of the Franc-Mark exchange rate by matching only the �rst four

moments, which again implies n = 4. In this regard, it is important to stress that the RND of VIX is

expected to be characterized by a fat right tail, especially during turmoil periods, meaning that the

information carried by higher moments may provide signi�cant correction to the expansion kernel.

4.1.1 Orthogonal regressors

We propose to solve the problem of multicollinearity outlined above by means of a principal component

analysis (PCA), which allows to estimate the coe�cients of an expansion of any arbitrarily large order

n. �e PCA analysis is implemented as follows: �rst, to avoid scale e�ects, we standardize each column

of X, as

Zi =
Xi −

1

2M
∑

2M
j=1

Xji√
1

2M−1

∑
2M
j=1

(
Xji −

1

2M
∑

2M
j=1

Xji
)

2

, i = 1, . . . ,n (26)

where Xi and Xji denote the i-th column and the j, i-th element of X, respectively. �en, we determine

the 2M × n matrix of principal components as V = PZ and the n × n orthonormal matrix of weights

P from the spectral decomposition ZP = PΛ. Lastly, we extract the sub-matrix Ṽ = V·,1:s of the �rst s

principal components, associated with a given threshold on the explained total variance (e.g. 99%), to

be used as regressor. For example, when n > 10, the �rst 4-5 principal components typically explain at

least the 99% of the total variance.

Once we have obtained V, we estimate the coe�cients γ̂ = (γ̂1, . . . , γ̂s ) of the following regression,

Y∗ = Ṽγ + u, (27)

where γ represents the loading on the �rst s principal components. �e estimated coe�cients c̃ are
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�nally retrieved by reverting the orthogonalization as follows

c̃ = (Oγ̂ ) ◦


√
2M − 1∑

2M
j=1

(Xj1 −
1

2M
∑

2M
j=1

Xj1)2
, . . . ,

√
2M − 1∑

2M
j=1

(Xjn −
1

2M
∑

2M
j=1

Xjn )2



′

, (28)

where O is the n×s matrix obtained from the �rst s columns of P and ◦ denotes the Hadamard product.

Given the vector c̃ , the estimated RND function
˜f (n)
Q

is determined as

˜f (n)
Q

(x ) = ϕ (x ;θ ) *
,
1 +

n∑
k=1

c̃kh
ϕ
k (x )

+
-
. (29)

Note that the kernel ϕ in (29) is now expressed as function of an additional term, to highlight its depen-

dence on a the set of parameters θ ∈ Θ. For example, θ = [α , β, ξ ]
′

for the GIG kernel, θ = [α , β,p]
′

for

the GW kernel, and θ = [µ,σ 2
] for the LN kernel. It is important to highlight that for the polynomial

expansion de�ned in (5) the results in Lemma 3.3 and �eorems 3.6-4.1 are obtained for any ϕ satisfying

certain regularity conditions on the decay rate on their tails. �erefore, any θ ∈ Θ such that the kernel

satis�es these conditions can be chosen to initialize the expansion and �eorem 4.1 guarantees a con-

vergent approximation f (∞)
Q

to fQ. In other words, the initialization of the kernel has an impact on the

approximation of fQ that quickly decreases as n increases. �is is clearly illustrated in the numerical

examples in Section 5.3. However, in order to minimize the impact of the initialization also for �nite

n (that is the relevant case in practice), we determine θ as the set of parameters that minimizes the

residuals variance for the expansion of order 0. �e minimization is performed under the restriction

of zero-mean residuals, which implies absence of systematic pricing errors, as discussed in the next

paragraph.

4.1.2 Regression through the origin

In regression (27), there is no intercept and the columns of Ṽ have zero-mean by construction, while Y∗

has zero mean if and only if the sample mean of Y and X0 coincide. To enforce that E (Y∗) = E (Y−X0) =

0, the initial estimation of the kernel parameters, θ , must be constrained such that E (X0) = E (Y). �is

represents a very mild constraint but it has several practical advantages. First, it ensures that the

approximation of order 0 does not produce systematic mispricing, since the observed market prices are

centered around the estimated price curve generated by the kernel. Second, the residuals of (27) have

zero mean for any order n ≥ 1 by construction.

Since the principal components are constructed from the standardized regressors Z, when remap-

ping the solution of (27) onto the solution of (23), a constant term equal to

∑n
i=1

diRi appears, where

R = Oγ̂ and di =

√
1

2M−1

∑
2M
j=1

Xji√∑
2M
j=1

(Xji−
1

2M
∑

2M
j=1

Xji )2
, i = 1, . . . ,n. �erefore, in order to guarantee that the relation

in equation (23) holds for any n ≥ 1, the following constrained optimization is performed
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[γ1, . . . ,γs ] = argmin

γ1, ...,γs
Q̃ (t ,T ;γ1, . . . ,γs ), (30)

s.t.

n∑
i=1

diRi = 0

where Q̃ (t ,T ;γ1, . . . ,γs ) = (Y − Ṽγ )′(Y − Ṽγ ). �is restriction also guarantees that c̃ is such that there

is no systematic pricing error or, in other words, that ε̃ = Y−X0 −Xc̃ are centered around zero for any

n.

4.1.3 Positivity and unitary mass

As pointed out in Section 3.1 a potential issue of orthogonal expansions is that they generate approx-

imate RNDs that might not be positive functions, even if the convergence of f (n)
Q

to fQ ensures that

possible negative mass becomes negligible as n → +∞. However, since the estimation of c̃1, . . . , c̃n is

performed on a �nite set of option prices, the estimated RND
˜f (n)
Q

could display signi�cant negative

mass even for large values of n. �erefore, we add an extra implicit constraint to the optimization prob-

lem (30). In particular, the optimal parameters γ1, . . . ,γs are found by solving the following constrained

minimum distance problem

[γ1, . . . ,γs ] = argmin

γ1, ...,γs
Q̃ (t ,T ;γ1, . . . ,γs |θ ), (31)

s.t.

n∑
i=1

diRi = 0

s.t. 1 − ∆pos <

∫ ∞

0

������
ϕ (x ;θ ) *

,
1 +

n∑
k=1

ck (γ )h
ϕ
k

+
-

������
dx < 1 + ∆pos

where ∆pos = is the tolerance on the unity mass constraint, e.g. ∆pos = 0.000001, while the coe�cients

c1 (γ ), . . . , cn (γ ) are deterministic functions of the parameters γ1, . . . ,γs , determined as in (28).

4.1.4 Kernel displacement

Consistency conditions ensured by �eorem 4.1 are rather �exible with respect to the support of the

kernel. In principle, it is su�cient that the support of the RND is contained in the support of the kernel.

However, if the support of ϕ is too large with respect to the support of fQ, then the expansion (5) is

”forced” to converge to zero for all points that are outside the support of fQ. �is has clear disadvantages

from an empirical perspective, since the kernel, which is the starting point of the optimization in (31),

associated with c1, . . . , cn = 0, does not satisfy the constraint of unit mass in supp( f ). Even if in general

we may assume that supp( f ) = R+, when the le� tail of the true RND is particularly short around a

point Kmin > 0, this implies that that nearly the whole probability mass is concentrated away from the

origin. Since the put price curve of VIX contract normally becomes quickly linear as the strike price

16



approaches the deep OTM region, the RND is expected to display a strong negative skewness associated

with a very short le� tail. Hence, when fQ displays such a behavior on the le� tail, it may be convenient

to choose the kernel ϕ so that the following condition is satis�ed∫ Kmin

0

ϕ (x ,θ )dx = 0. (32)

A simple way to guarantee (32) is to displace the domain of a kernel byKmin . �e idea of using displaced

densities is not new to �nance, see e.g. Brigo and Mercurio (2002), and has a�racted particular interest

in the context of volatility derivatives, see e.g. Carr and Lee (2007) and Lee and Wang (2009). �e kernel

displacement is done by considering a set K∗ of shi�ed strikes de�ned as K∗ = [K1 − Kmin , . . . ,KM −

Kmin], and de�ning the matrix of regressors X with respect to K∗. Once the optimal c̃ are obtained as

solution of the of the problem (31) based on K∗, then the estimated RND is determined as follows

˜f (n)
Q

(x ) = ϕ (x − Kmin ;θ ) *
,
1 +

n∑
k=1

c̃kh
ϕ
k (x − Kmin )+

-
. (33)

which guarantees that

∫ Kmin

0

˜f (n)
Q

(x )dx = 0. �e choice ofKmin is based on the analysis of the convexity

of deeply OTM put prices, see the discussion in Section 7.

5 Numerical illustrations under no-arbitrage

In this section, we test the accuracy of the proposed approach by means of two numerical examples

under no-arbitrage. �e purpose here is to show that the orthogonal polynomials are able to approx-

imate RNDs, belonging to di�erent families, with a high degree of accuracy. �erefore, we perform

the estimation on option prices generated by structural models for which the RND is known in closed-

form. �e option prices that are thereby considered are arbitrage-free by construction. In this section

we illustrate the practical relevance of the asymptotic conditions on the RND required in �eorem 4.1

to ensure a convergent estimation. To obtain the target RND and the related option prices, we consider

two simple but popular models. In the �rst case, the VIX is determined as a function of the instanta-

neous variance process of the Heston model, as explained in Zhang and Zhu (2006). In the second case,

the RND of the log-VIX is assumed to be normal inverse Gaussian (NIG), an approach that is adopted

in Huskaj and Nossman (2013). In both cases, the estimation of c1, . . . , cn is performed according to the

methodology outlined in Section 4 on a set of M = 42 option prices relative to strikes in the interval

[K1,KM ] = [10, 55]. �e option prices to be matched are generated through direct integration of the

RND implied by the two models. �e expansions order is set to 20, which is su�ciently high to en-

sure that the ��ing cannot be further improved by adding more terms to the expansion. Furthermore,

choosing a high order for the expansion illustrates the convergence and stability properties of the ap-

proach. Notably, the true risk-neutral densities associated with the two models display di�erent decay

rates on the tails, thus o�ering an interesting evaluation on how violating the conditions of Lemma 3.3
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may possibly generate divergent expansions. Moreover, this numerical exercise provides valuable in-

formation on the robustness of the estimates to the initial choice of the expansion kernel. In particular,

although the asymptotic properties of ϕ have a tangible e�ect on the accuracy of the approximation,

the choice of its parameters has only a marginal impact, provided that it guarantees that convergence

and closure conditions are respected (see �eorem 4.1).

5.1 Heston model

Under Heston dynamics, the undiscounted SPX price (St )t ≥0 and its variance (vt )t ≥0
are generated

according to the following SDE

d log St = −
1

2

vtdt +
√
vtdWt ,

dvt = k (v̄ −vt )dt + η
√
vtdW

∗
t ,

where dWt and dW ∗
t are correlated Brownian motions with constant correlation ρ. �e parameters k

and v̄ govern the speed of mean reversion and long-run value ofvt respectively, whileη is the volatility-

of-volatility parameter. Following the approach of Zhang and Zhu (2006), under the Heston model the

square of the VIX at time T can be expressed as the following linear function of vT

VIXT = 100 · (a1 · vT + a2)
1

2 , a1 =
1 − ekτ

kτ
, a2 = v̄ (1 − a1), τ =

30

365

.

Moreover, the density of vT given vt = z has the following closed-from expression

(vT | vt = z) ∼ д, д(s ) = C1s
kv̄
η2
− 1

2e
− 2ks
η2 (1−e−kT ) I 2kv̄

η2
−1
(C2

√
s ),

where C1 =
2k

η2 (1−e−k (T−t ) ) and C2 = 2C1

√
e−k (T−t )z do not depend on the state variable s and Iν denotes

the modi�ed Bessel function of �rst kind of order ν . Hence, the RND of VIXt is also known in closed-

form

fQ (x ) =
2

a
x · д

(
x2 − b

a

)
and vanilla options prices can be generated through the integral formulas (3) and (4). �e support of fQ

is [

√
a2,+∞[ and, by the asymptotic properties of Iν (see for example Abramowitz and Stegun, 1964),

it can be shown that fQ (x ) ∼ xα
∗

e−β
∗x 2+γ ∗x

as x → +∞, where the leading term is clearly e−β
∗x 2

.

Moreover, whenever the support of ϕ strictly contains [

√
a2,+∞[, the le�-tail decay of fQ does not

in�uence the integrability of f 2

Q
ϕ−1

. �erefore, the condition ϕ
1

2 f ∈ L2 (D) of �eorem 4.1 is met for

any choice of the kernel among the families of GIG, GW and LN densities. Figure 1 portrays the true

RND of the Heston model and the related orthogonal polynomial expansions based on di�erent choices

of the kernel. �e approximated densities reported in Figure 1 highlight the ability of the expansions

based on the GIG and the GW kernels to well recover the original density fQ. On the contrary, the

LN kernel fails in approximating fQ, although several corrective terms are considered in the expansion
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and the convergence condition fQϕ
−1/2 ∈ L2 (D) is satis�ed. �e expansion based on the LN kernel

proves particularly ine�ectual on both tails of fQ. �is is a practical consequence of the fact that the LN

density does not generate closed polynomial sets (see �eorem 3.6), and may serve as an interpretive

example of the importance of the hypotheses required by �eorem 4.1.
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Figure 1: Probability density functions in standard scale (le�) and semi-logarithmic scale (right). Comparison

between the true density of VIX implied by the Heston model and the estimated RNDs of order 20. �e parameters

for the Heston model are: k = 1.71, v̄ = 0.097, η = 0.577, v (0) = v̄ and T − t = 30/365. �e dashed vertical lines

on the right panel identify several relevant probability levels and the corresponding quantiles.

5.2 NIG distribution

We assume that the log-VIX at maturity T follows a NIG distribution, that is

log (VIXT ) ∼ д, д(s ) = C ·
K1

(
α
√
δ 2 + (s − µ )2

)
√
δ 2 + (s − µ )2

eβ (s−µ ),

where C = αδ
π eδγ is the normalization constant and Kν denotes the modi�ed Bessel function of the

second kind (cf. Abramowitz and Stegun (1964)). �erefore, by the change of variable s = log(x ) we

obtain the RND of the VIX

fQ (x ) =
1

x
· д (log(x )) .

�e asymptotic properties of Kν determine polynomial decay of fQ both on the right and the le� tail. It

follows that none of the kernels considered here meets the condition fQϕ
− 1

2 ∈ L2 (R+). Figure 2 reports

the true RND implied by the log-NIG density, and related expansions based on di�erent choices of

the kernel. As expected, in all cases the main convergence issues involve the tails. In particular, the

expansion based on the GIG kernel is defective on both tails, which is consistent with the fact that a

GIG kernel decays more rapidly than the true RND, at both sides. Due to the polynomial decay of the

GW kernel on le� tail, which accommodates the slow decay of the true RND, the GW-based expansion

proves inexact only on the right tail. Finally, the LN kernel provides again the weakest performance,

19



but it is worth noticing that here the approximation is more accurate than in the previous test. �is

is a consequence of the fact that the LN is nested within the log-NIG family, and therefore here fQ is

intuitively ”closer” to a log-normal than in the previous case.
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Figure 2: Probability density functions in standard scale (le�) and semi-logarithmic scale (right). Comparison

between the true density of VIX implied by the NIG density and the estimated RNDs of order 20. �e parameters

for the NIG density are chosen as follows: α = 14.36, β = 9.8, µ = 2.97, γ = 0.38. �e dashed vertical lines on the

right panel identify relevant probability levels and the corresponding quantiles.

5.3 Robustness to kernel speci�cation

We now test the robustness of our estimation to the initialization of the kernel parameters, θ . So far,

the parameters of the kernels were optimally determined by minimizing the residuals variance for the

expansion of order 0. However, it is interesting to empirically assess how the initial choice of the pa-

rameters θ ∈ Θ a�ects the accuracy of (5). To answer this question, we perturb the parameters of

optimally calibrated kernels, so that the moments and the option prices implied by the kernels heavily

mismatch those generated by the true fQ. In Table 2 we report the �rst four moments of the GIG and

True GIG kernel GW kernel GIG (order 20) GW (order 20)

Mean 30.13 27.65 35.44 30.14 30.17

Variance 65.36 50.79 165.78 65.27 65.81

Skewness 50.26 21.07 56.86 50.16 50.40

Kurtosis 2.86 0.80 6.07 2.82 2.87

Table 2: �e table reports mean, variance, standardized skewness and kurtosis of the true density of the Heston

model, of the calibrated kernel densities (GIG kernel and GW kernel) and of their related expansions of order

larger than 20.

the GW kernels, where mean and variance are drastically perturbed as compared to the values implied

by the true density of the Heston model. �e last two columns of the table highlight the capability

of the polynomial expansions to yield precise ��ing of the moments of the RND, even when the ker-
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nel largely deviates from the true density. It is inherently assumed, however, that the assumptions of

�eorem 4.1 are always satis�ed. Figure 3 portrays the true density implied by the Heston model, the

perturbed kernels, and the RNDs obtained by estimating the coe�cients of the corresponding orthog-

onal expansions.
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Figure 3: Probability density functions in standard scale (le�) and semi-logarithmic scale (right). Comparison

between the true density implied by the Heston model, the ”mismatching” kernels, and the related estimated

expansions. �e dashed vertical lines locate some relevant mass levels and the corresponding quantiles.

�e non-calibrated kernels clearly mismatch the true RND and totally deviate from each other, but

almost perfect approximations of the RND are a�ained in both cases through expansions of order 20.

�us, the estimation based on the orthogonal expansions proves to be very robust with respect to the

initialization of ϕ.
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Figure 4: Call and put option prices implied by the Heston model, the mismatching GIG and GW kernels, and

related expansions of order 20.

Figure 4, depicting the option prices generated by the densities reported in Figure 3, con�rms that
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the accuracy of the estimated RND is a�ected by the choice of the kernel only to a minor extent. Indeed,

the kernel has almost no impact on the estimation, provided that the conditions of convergence have

been guaranteed and that the expansion order can be set su�ciently large - which is our case.

6 No-arbitrage violations

In de�ning the linear model (23) on which we build the estimation procedure based on orthogonal

polynomials, we can assume that the error term ε subsumes all the uncertainty associated to the fact

that the polynomial expansion is truncated to a �nite n, that the number of available strikes M is �nite

and that the market prices may be subject to no-arbitrage violations. In other words, the error term in

(23) can be de�ned as ε = δ+ϵ , whereδ is a vector of non-stochastic terms coming from the fact that both

n and M are �nite, while ϵ is a random term related to the no-arbitrage violations. Indeed, the observed

option prices are subject to a number of frictions that are typically function of the market liquidity.

While displaying non-negligible trading volume from most strikes, the VIX option market is still not as

liquid as the equity market and, as a ma�er of fact, the noise produced by no-arbitrage violations may

be signi�cantly re�ected in the estimation residuals. Although the arbitrage opportunities can hardly

be exploited in reality due to the presence of transaction costs in the form of bid and ask spread, from

a mathematical perspective the fact that the mid-quote is adopted to approximate the latent arbitrage-

free option price can be seen a violation of the no-arbitrage assumption. In particular, the noise term ϵ

approximates all the deviations from the e�cient option price that are the result of the trading activity

on the option markets and it is assumed to be the only component of ε that is subject to randomness.

�e presence of no-arbitrage violations makes it impossible to achieve absolutely perfect matching

of all the observed option prices by minimizing (22), even if we rule out the error associated to the

discretization/truncation (δ = 0), since the option prices obtained by a RND are free of (static) arbitrages

by construction.

Deferring to Section 6.2 a speci�c distributional form for the error term, we now assume that ϵ is a

vector of independent random variables, with zero mean, and such that the vector de�ned byY = Y−ϵ
is arbitrage-free. In the following, an in�ll asymptotic analysis is adopted to show that, as the observed

prices are sampled increasingly over a �xed interval of strikes and as n → ∞, then δ → 0 and the

only remaining error term is the noise associated with the no-arbitrage violations. Assuming that the

observed option strikes fall in a �xed interval I = [K1,KM ], we de�ne the ”in�ll version” of (22) as
1

[ĉ1, . . . , ĉn] = argmin

c1, ...,cn ∈Rn
Q(n) (t ,T ; c1, . . . , cn ), (34)

where

Q(n) (t ,T ; c ) =
1

KM − K1

∫
I

(
CObs
K (t ,T ) −C (n)

K (c )
)

2

+
(
PObsK (t ,T ) − P (n)

K (c )
)

2

dK .

1
�ere is no unique way to de�ne an ”in�ll counterpart” of Q . �e de�nition that we adopt, justi�ed by mathematical

convenience, builds on the fact that the integral in (34) is the limit of
1

MQ , under continuity assumptions for the integrand.

On the other hand, multiplying Q by any constant does not a�ect the solution ĉ of (22) and therefore (34) can be legitimately

interpreted as a continuous version of (22).

22



�e observed prices CObs (t ,T ), PObs (t ,T ) appearing in (34) are assumed to take the form

CObs
K (t ,T ) = CK (t ,T ) + ϵ

C
K , PObsK (t ,T ) = PK (t ,T ) + ϵ

P
K ,

where C · (t ,T ), P · (t ,T ) ∈ C2 (I ) are arbitrage-free price curves as in (3)-(4) , while ϵC = (ϵCK )K ∈I and

ϵP = (ϵPK )K ∈I are zero mean processes on a probability space (Ωϵ ,F ϵ , Pϵ ), belonging to L2 (Ωϵ × I ).

Under these assumptions, the in�ll target function Q(n) (t ,T ; c1, . . . , cn ) is well-de�ned and has �nite

expected value for every n. �en, the following result holds

Proposition 6.1 (In�ll asymptotics). Under the hypotheses of �eorem 4.1 and denoting by ĉ (n) the

solution of (22), for every n ∈ N, we have that

lim

n→+∞
E

[
Q(n) (t ,T ; ĉ (n))

]
≤

1

KM − K1

E

[∫
I

(
ϵCK

)
2

+
(
ϵPK

)
2

dK

]
. (35)

�e inequality in (35) becomes an equality under the following additional hypotheses:

(i) �ere exists n̄ ∈ N such that, for all n ≥ n̄, ĉ (n) is obtained by constraining (22) to the space of

coe�cients c1, . . . , cn such that

ϕ *.
,
1 +

kn∑
k=1

ckh
ϕ
k

+/
-
≥ 0 on D .

(ii) If ¯C· (t ,T ), ¯P· (t ,T ) ∈ C
2 (I ) are arbitrage-free curves, then almost surely∫

I

(
CObs
K (t ,T ) − ¯CK (t ,T )

)
2

+
(
PObsK (t ,T ) − ¯PK (t ,T )

)
2

dK ≥

∫
I

(
ϵCK

)
2

+
(
ϵPK

)
2

dK .

Proof. See Appendix A.5. �

�e inequality (35) de�nes an upper-bound on the expected value of the target function,Q(n) (t ,T ; c̃ (n)).

In particular, the expected value of the target function evaluated in ĉ (n) is lower than the variance of the

non-arbitrage residuals when C· (t ,T ) and P· (t ,T ) are calculated on the basis of any probability density

function that satis�es the hypotheses of �eorem 4.1. Under the additional assumptions (i)-(ii), Propo-

sition 6.1 states that our estimation method provides the closest arbitrage-free prices to the observed

ones. In particular, assumption (i) requires that the estimation always returns a probability density

function, while assumption (ii) can be interpreted as a uniqueness requirement on the target RND. �is

establishes an interesting linkage with the work of Aı̈t-Sahalia and Lo (1998). Furthermore, under no-

arbitrage (i.e. ϵC = 0 and ϵP = 0), Proposition 6.1 ensures that the sum of the squared residuals goes to

zero as n → ∞, so that the estimated and the observed prices coincide.

Summing up, Proposition 6.1 provides conditions ensuring that the estimation procedure based on

orthogonal polynomials is robust to the presence of measurement errors in the option prices. �is is a

remarkable feature as compared to the approach of Breeden and Litzenberger (1978), which, instead, is
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extremely sensitive to data inconsistency. However, it may be argued that the theoretical information

provided by Proposition 6.1 could be not very meaningful in practice, as it builds on a condition that

might be unfeasible to be veri�ed. In particular, condition (ii) imposes the possibly strong requirement

that the noise a�ecting the observed prices does not cause indeterminacy of the target RND.

�e aim of the following section is to show that the validity of Proposition 6.1 is empirically con-

�rmed. To this purpose, we �rst derive a theoretical lower bound for the estimation residuals, to be

inferred directly from the put-call parity violations based on the observed option prices. �is bound is

subsequently and consistently used as a proxy for (35) in a number of numerical tests, to establish to

what extent the estimated RND is a�ected by the noise produced by no-arbitrage violations.

6.1 An observable lower bound for the estimation residuals

Following the discussion above and the result of Proposition 6.1, it is natural to tolerate a minimum

degree of variability on estimation residuals ε̃ , below a certain threshold that should quantify the pres-

ence of potential arbitrage opportunities. Given a �xed threshold ∆Q > 0, we de�ne ”admissible RND”

any probability density function that implies option prices whose distance from the observed ones is

below ∆Q
. Consistently, we say that a solution c̃1, . . . , c̃n of (30) is admissible if

1

M

M∑
m=1

(
CObs
Km −C

(n)
Km

(c̃1, . . . , c̃n )
)

2

+
1

M

M∑
m=1

(
PObsKm − P

(n)
Km

(c̃1, . . . , c̃n )
)

2

≤ ∆Q .

Since option data always contain some noise, in view of Proposition 6.1 the existence of admissible

RNDs is not guaranteed when ∆Q
is chosen to be too small. A lower bound for the set of all possible

values of ∆Q
can be expressed in terms of the residual ∆pcp

generated by the put-call parity violations.

Denote by µQ
1

the price of the future calculated under Q, given c̃1, . . . , c̃n , as

µQ
1
=

∫ +∞

0

x f (n)
Q

(x ;
ˆθ , c̃1, . . . , c̃n )dx ,

and by ∆pcp
the variance of the put-call parity violations

∆pcp =
1

M

M∑
m=1

(
CObs
Km (t ,T ) − PObsKm (t ,T ) + Km − µ

Obs
)

2

, (36)

where µObs =
1

M

∑M
m=1

(
CObs
Km

(t ,T ) − PObsKm
(t ,T ) + Km

)
.

We observe that

∆pcp =
1

M

M∑
m=1

[
CObs
Km (t ,T ) − PObsKm (t ,T ) −C (n)

Km
(c̃1, . . . , c̃n ) + P

(n)
Km

(c̃1, . . . , c̃n ) +
(
µQ

1
− µObs

1

)]
2

≤
1

M

M∑
m=1

(
CObs
Km (t ,T ) − C̃ (n)

Km
(c̃1, . . . , c̃n )

)
2

+
1

M

M∑
m=1

(
PObsKm (t ,T ) − P̃ (n)

Km
(c̃1, . . . , c̃n )

)
2

+
(
µQ

1
− µObs

1

)
2

,
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which yields the following inequality

∆Q ≥ ∆pcp − d2

µ . (37)

where dµ =
(
µQ

1
− µObs

1

)
. From (37) we obtain a lower bound for the tolerance level that must be

allowed on the estimation residual. Moreover, it proves that admissible solutions of (28) with tolerance

level lower than ∆pcp −
(
µQ

1
− µObs

1

)
2

do not exist.
2

�erefore, (37) suggests that se�ing the tolerance

level as ∆Q = ∆pcp
is a convenient choice since ∆pcp

is an observable quantity and is expected to be

only slightly greater than the lower bound.

6.2 Robustness to no-arbitrage violations

We now assess the practical validity of Proposition 6.1 by means of Monte Carlo simulations. To this

end, we evaluate how adding a random noise to a discrete set of arbitrage-free prices obtained from a

known RND a�ects the estimates of RND obtained by solving the problem in (22). Consistently with

notations of Section 4 we assume the following form for the vector Y of observed prices

Y = Y + ϵ,

whereY are arbitrage free option prices and ϵ is a vector of random shocks embedding all the violations

from the no-arbitrage assumption. Speci�cally, we assume that the vector of observed call and put are

given by

C = C + ϵC , P = P + ϵP

where C = [CK1
(t ,T ), . . . ,CKM (t ,T )]′, P = [PK1

(t ,T ), . . . ,PKM (t ,T )]′, ϵC and ϵP are independent

vectors of independent centered random variables with non-constant variance

σ 2

C,i = Var[ϵCi ], σ 2

P,i = Var[ϵPi ], i = 1, . . . ,M .

Choosing a non-constant variance is owed to the fact that the magnitude of no-arbitrage violations

must be consistent with the magnitude of option prices, which are monotonic quantities. �erefore,

σ 2

C = [σ 2

C,1, . . . ,σ
2

C,M ] and σ 2

P = [σ 2

P,1, . . . ,σ
2

P,M ] are assumed to be an increasing and a decreasing

vector, respectively.

To identify σ 2

C and σ 2

P we further assume that the arbitrage error ϵF induced on the vector F of

future prices implied by put-call parity consists of i.i.d. components, that is

F = C − P + K = F + ϵF ,

where

F = Ci − Pi + Ki ∀i = 1, . . . ,M

is the unique arbitrage-free future price. Hence ϵF = ϵC − ϵP and E[ϵF ] = 0. Assuming Var[ϵF ] :=

2
Note that this level is certainly positive if the underlying future price is ��ed su�ciently well by the estimated RND.
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σ 2

F < ∞, the identi�cation of Var[ϵC ] and Var[ϵP ] can therefore be achieved by

σ 2

C,i + σ
2

P,i = σ
2

F ,
σ 2

C,i

σ 2

P,i
=

Ci

Pi
, i = 1, . . . ,M,

which gives

σ 2

P,i =
σ 2

F

1 +
C2

i
P2

i

, σ 2

C,i = σ
2

F − σ
2

P,i , i = 1, . . . ,M . (38)

Note that observable quantity ∆pcp
de�ned in (36) is an sample counterpart of σ 2

F . �erefore, since

σ 2

F = σ 2

C,i + σ
2

P,i by construction, up to switching the integration order in (35), ∆pcp
can consistently

approximate the right hand of (35). We therefore carry out a number N = 1000 of Monte Carlo sim-

ulations with the purpose of investigating the robustness of the proposed method to the no-arbitrage

violations and the usefulness of the threshold ∆pcp
to provide an useful indication for the lower bound

on the variance of residuals. Each Monte Carlo simulation consists of a set of perturbed option prices

Y over a �xed number M = 25 of strikes. �e vector of arbitrage-free call and put prices, Y , is gener-

ated only once, by direct integration of the VIX-RND implied by the Heston model, with parameters

k = 1.71, v̄ = 0.097, η = 0.577, v (0) = v̄ and T − t = 30/365. �e arbitrage components ϵC and ϵP for

each Monte Carlo simulation are obtained as



ϵC

ϵP


=



σC

σP


◦ R,

where ◦ denotes the Hadamard product, σC ,σP are determined as in (38), and R is a 2M × 1 vector of

i.i.d. standard Gaussian realizations, symmetrically truncated to ensure Y ≥ 0. We repeat the procedure

based on either the GIG or the GW kernel, and for σF = 0.01, 0.03, 0.05.
3

�e results of these Monte

Carlo simulations are summarized in Table (3). �e so called divergence rate, which is associated to the

cases in which the RSME exceeds the threshold 2

√
∆pcp

, is intended to give of proxy on how frequently

the conditions of Proposition 6.1 are not met. On the other hand, the second column of Table 3 endorses

the validity of (35), since the RSME is below

√
∆pcp

in a large percentage of cases. Furthermore, by look-

ing at the Monte Carlo average RMSE it emerges that variance of the error associated to the expansion

of order 10 decreases with σF and is of the same order of σF in most cases. Di�erently, the two kernels

on average are not associated to a residual variance that is comparable to ∆pcp
and the RMSE remains

very high also when σF = 0.01. �e third column of Table 3 reports the �ltering rate as a measure

of how o�en, among the convergent cases, the noise produced on data does not a�ect the estimated

RND. As expected, the �ltering rate increases as the level of noise on data, namely σF , decreases. �is

is consistent with Proposition 6.1 since the hypotheses 6.1.i)-ii) are expected to be less restrictive as σF

decreases. �ese additional hypotheses require that the estimated RND is constrained to be positive

3
Typical values of

√
∆pcp

determined on real data fall in the interval [0.01, 0.05], which roughly correspond to an uncer-

tainty between 1 and 5 cents of dollar on the futures prices implied by the put-call parity.
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- which is the case here - and that the observed prices do not embed multiple arbitrage-free curves.

Intuitively, under these hypotheses, the estimated RND is not a�ected by the arbitrage noise existing

in the observed prices. �e �gures reported in Table 3 provide a solid con�rmation of this intuition,

since the percentage of cases where the noise does not a�ect the estimated RND grows as σ 2

F decreases,

which in turn implies reducing the uncertainty on the RND. Consistently, the L2
distance between the

estimated and the true RND decreases as σ 2

F decreases, as shown in the ��h column. Finally, the last

column of Table 3 con�rms that the estimation based on expansions of order 10 outperforms the related

kernel, in all cases that we consider.

Order 10 Kernel

Div. rate Fi�. rate Filt. rate RMSE L2 RMSE L2

σF = 0.01

GIG 14.4 % 71.4 % 100 % 0.0123 0.0069 0.0969 0.0218

GW 15.6 % 71.3 % 100 % 0.0125 0.0070 0.0962 0.0217

σF = 0.03

GIG 5.6 % 74 % 82.57 % 0.0362 0.0135 0.0988 0.0217

GW 4.7 % 76.3 % 80.47 % 0.0356 0.0131 0.0980 0.0217

σF = 0.05

GIG 6.8 % 81.5 % 56.81 % 0.0713 0.0186 0.1024 0.0218

GW 4.7 % 83.2 % 57.81 % 0.0536 0.0174 0.1017 0.0217

Table 3: �e table summarizes the results of the Monte Carlo tests described above, corresponding to di�erent

kernels and di�erent values of σ 2

F . �e �rst column reports the divergence rate of the estimation, determined as

the percentage of tests such that the residual root-mean squared error (RMSE) is greater than 2

√
∆pcp

. �e second

column reports the rate of optimal ��ing according to Equation (37), that is the percentage of tests yielding a

RMSE lower or equal to σF . �e third column reports the percentage of tests for which the arbitrage component

is successfully ”�ltered”. �e arbitrage component is considered to be �ltered when the RND estimated on the

perturbed data and the RND estimated on arbitrage-free data achieve the same level of accuracy, in terms of

magnitude (∼ 10
−3) of their distance from the true RND, measured as L2

norm (L2). Only convergent tests are

considered in this computation. �e last four columns report the Monte Carlo average of RMSE and L2 relative

to the expansion of order 10 and kernel (order 0).

7 Empirical Analysis

In this section we apply the methodology for the estimation of the RND of VIX based on observed

option prices. �e sample consists of 64 contracts quoted by the CBOE on November 16, 2011 and

expiring on December 21, 2011. �e data is obtained from the OptionMetrics database. �e choice of

this date is not coincidental. Indeed, the end of 2011 is characterized by extremely high levels of market

volatility, registered in connection with the turmoil caused by the European sovereign debt crisis and

the US sovreign debt downgrading . As a consequence, on November 16, 2011, the VIX reached the high

value of 33.51%. Consistently, actively traded VIX options spanned a strike range between 15$ and 90$,

while under normal market conditions VIX option strikes would typically fall between 10$ and 45$,

with the range being expected to remain stable over time, due to mean-reversion of the VIX. Hence, on

the chosen date, deep out-of-the-money options were associated to a su�ciently high trading volume to
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ensure informative market prices in a wide range of strikes and, in particular, suggest an uncommonly

long right-tail of the RND.

Before proceeding to the estimation of the RND, we operate minimum pre-�ltering of the data. More

speci�cally we exclude all OTM puts (calls) with mid-quote below 0.05$ as well as the corresponding

ITM calls (puts) with the same strike. �ese contracts turn out to be highly illiquid (if traded at all) and

likely to be mis-priced, thus they are not informative on the RND. Obviously, this solution has li�le

impact when, as in the instance considered here, contracts are traded over a su�ciently large set of

strikes. A�er �ltering, we end up with 52 contracts (26 calls and 26 puts) with strikes ranging between

21$ and 80$.

We consider two di�erent kernels: the GIG and the GW. �e kernel parameters -θ = [α , β, ξ ]
′
for the

GIG kernel and θ = [α , β,p]
′

for the GW kernel - are estimated using the procedure detailed in Section

4.1.2, which ensures a correct speci�cation of the option prices representation given in (23). We also

operate a displacement of the kernel to ensure that

∫ Kmin

0

˜f (n)
Q

dx = 0. Following the arguments detailed

in Section 4.1.4, Kmin is set to 16.5$ for the GIG kernel and 18.2$ for the GW kernel. Table 4 reports

the parameters estimated for the two kernels. As discussed in Section 4.1.1, the main advantage of the

GIG GW

Par. Estimate Par. Estimate

α -0.899 α 2.467

β 0.090 β 0.874

ξ 33.99 p 0.605

Table 4: �e table reports the kernel parameters for the GIG and GW kernels respectively, estimated using the

procedure detailed in Section 4.1.2.

procedure that we propose in this paper lies in the fact that we can arbitrarily increase the expansion

order n thanks to the orthogonalization of the regressors in (23) and the dimension reduction operated

by applying the principal component approach. �erefore, we set a relatively high order, that is n = 18,

and we estimate the RND by using the solution c1 (β ), . . . , c18 (β ) of (30). Given a threshold of 99%

on the explained total variance, this corresponds to using 6 (GIG kernel) and 5 (GW kernel) principal

components. �e estimated RNDs obtained using expansions of order n = 18 are reported in Figure 5

(solid lines), together with the corresponding kernels (dashed lines). In the following, we discuss the

results in terms of estimation residuals and features related to the estimated RNDs.

7.1 Analysis of the estimation residuals

In order to evaluate the accuracy of the estimated RND obtained by using the expansion (29) for n =

18, we plot in Figure 6 the residuals from (27). As a reference, we also report the residuals for the

intermediate case of an expansion of ordern = 9, i.e.
˜f (9)
Q

. �ese expansions use 5 principal components

for both GIG and GW kernels. As the order of expansion increases, and with virtually no cost in terms

of estimation of extra parameters, we note a dramatic drop in the cross-sectional dependence (across
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Figure 5: Estimated RNDs. �e le� panel depicts the graphs of the two kernels considered in this section as

well as the corresponding estimated RNDs obtained for n = 18. �e right panel reports the same contents of the

le� panel in semi-log scale, to highlight tail features that are di�cult to observe in linear scale. �e percentage

values denote average mass levels of the two kernels and the two corresponding estimated RNDs, respectively,

related to the quantiles identi�ed by the dashed vertical lines.

strikes) and a reduction in the mispricing for blocks of neighboring strikes. Similarly, we observe

a steady increase in the accuracy in the ��ing. Indeed, the root-mean squared error (RMSE) of the

residuals drops from 0.1 for the GIG kernel (0.16 for the GW kernel) to 0.04 when the expansion is of

order 9, and it lands on 0.03 when n = 18. In both cases the RMSE with n = 18 is very close to the value

√
∆pcp = 0.031, computed as described in (36), meaning that we have reached convergence. Following

the discussion provided in Section 6, we can conclude that the error ε mostly consists of a component

due to no-arbitrage violations. In other words, we achieved the best possible ��ing to option data, see

Proposition 6.1. For sake of comparison, we also report the ��ing results obtained by using the an

expansion of order 4 with 100% of explained variance by the PCA, which is comparable to what has

been done in Corrado and Su (1996b) and Jondeau and Rockinger (2001), among others. Since all the

principal components are used, the PCA is adopted in this case only to orthogonalize the regressors

without reducing the dimensionality of the problem. �is is analogous in spirit to the standardization

adopted in Corrado and Su (1996b) to the third and fourth cumulants to overcome the multicollinearity

problem discussed above.

As discussed in Section 4.1, the multicollinearity of the regressors in (23) implicitly constraints the

order of expansion to a limited number of terms (four in this case), which proves to be unreasonably

restrictive in practice for the VIX. Indeed, the RND of the VIX exhibits a characteristic tail behavior,

meaning that moments higher than the fourth may provide signi�cant information on its shape. Figure

7 shows that such a low order expansion proves inadequate and does not provide any sizable improve-

ment to the corresponding zero-order expansions, i.e., the baseline GIG and GW kernels. �e same

result is con�rmed by examining the residuals of the regression, reported in Figure 8. For both kernel

expansions, the residuals exhibit a high degree of cross sectional dependence, systematic over (under)

pricing over subset of neighboring strikes and virtually the same variability of the ones computed using
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the corresponding simple kernels (i.e., the RMSE of the residuals is 0.09 and 0.14 for the GIG and the

GW expansions, respectively).
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Figure 8: Call and put price residuals obtained by estimation based on the GIG and GW kernel. Parameters

estimated with n = 4 and PCA and 100% of explained variance.

7.2 Features of the estimated RND

Although showing seemingly comparable values in terms of absolute di�erence, see �rst and second

column of Table 5, the moments of the two alternative kernels exhibit notable relative di�erences, see

third column of Table 5, in particular regarding the kurtosis. �is is re�ected into tangibly di�erent

right tails of the two densities, in a part of the domain that identi�es roughly 98% of their average

mass, as it emerges from Figure 5. �e le� tails are instead rather similar and both suggest that a RND

consistent with VIX options should decay very quickly on the le� tail, which is located very far from

the origin. �is supports the use of the kernel displacement discussed above.

Irrespective of the initial choice of the kernel, the expansion yields a substantial correction to the

estimated kernel. As compared to the simple kernels, the relative spread between the moments of the

estimated densities is reduced by a factor of 4 to 5 times, see last column of Table 5, and both the

estimated RNDs assign a higher probability to tail-events than the corresponding kernels. �e right

tail of the RND plays a determinant role in the pricing of OTM calls and ITM puts. In this sense, the

importance of the right tail correction provided by the orthogonal polynomials is be�er understood by

comparing the implied volatility curves obtained from OTM call and ITM put options generated by the
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Figure 7: Estimated RNDs. �e le� panel depicts the graphs of the two kernels considered in this section as

well as the corresponding estimated RNDs obtained for n = 4 with PCA and 100% of explained variance. �e

right panel reports the same contents of the le� panel in semi-log scale, to highlight tail features that are di�cult

to observe in linear scale. �e percentage values denote average mass levels of the two kernels and the two

corresponding estimated RNDs, respectively, related to the quantiles identi�ed by the dashed vertical lines.

GIG kernel GW kernel Perc. Di�. Expansion (GIG) Expansion (GW) Perc. Di�.

Mean 32.63 32.58 0.15% 32.67 32.66 0.03%

Variance 151.13 144.24 4.56% 153.60 151.93 1.08%

Skewness 21.41 20.57 3.92% 20.31 20.17 0.69%

Kurtosis 12.44 11.29 9.24% 11.15 10.91 2.15%

Table 5: �e table reports mean, variance, standardized skewness and kurtosis of the kernel densities (GIG kernel

and GW kernel) calibrated to VIX option prices and of the related orthogonal expansions of order 18. �e third

column reports the relative di�erence between the �rst and second column, while the sixth column reports the

relative di�erence between the fourth and the ��h column.

two kernels and their corresponding expansions, reported in Figure 9. First, we observe that the implied

volatility curves, associated with ITM put and generated by the two kernels (right panel, dashed lines),

are more similar than the corresponding implied volatility curves of OTM call (le� panel, dashed lines).

Second, we observe that the implied volatilities generated by both kernels are considerably di�erent

from the implied volatilites generated by market prices (solid lines), with the di�erences tending to en-

large as the options go OTM. �ird, the correction provided by the orthogonal expansion is substantial

and, as a ma�er of fact, the expansion proves able to produce implied volatilities that closely replicate

the observed ones.

All these observations point in the same direction: neither of the two baseline kernels is able to

reproduce the tail-features of the VIX risk-neutral density, and in particular they both display posi-

tive excess mass between the 75% and 95% quantiles while, on the other hand, they display negative

excess mass in the area covered by the last 5 percentiles. �e degree of �exibility that the expansion

o�ers emerges clearly, in that it adequately approximates densities with complicated shapes. Also, ac-
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Figure 9: Black and Scholes implied volatility curves obtained from market prices, GIG kernel, GW kernel, and

the resulting approximated RNDs with expansion order equal to n = 18.

cordingly to Lemma 3.3, the expansions obtained using the two di�erent kernels converge to the same

density, with small di�erences between the GIG and the GW expansions that become noticeable only

deep into the right tail - the two functions diverge from each other starting from roughly the 99.5%

quantile. In terms of implied volatilities, the two expansions generate indistinguishable curves in the

range of strikes between 20$ and 70$, while small di�erences are observed for strikes above 70$. In par-

ticular, the expansion based on the GIG kernel seems to overprice call options with strike above 70$, as

compared to the expansion based on the GW kernel. �is might be related to a slight overestimate of

VIX variance and kurtosis provided by the GIG-based expansion, see third and fourth column in Table

5.

8 Conclusion and future research

In this paper, we proposed a methodology based on a �nite orthogonal expansion to infer the RND

of the underlying asset from option prices. �e methodology closely relates to Hermite expansions

and generalizes the Laguerre expansions to suit cases where the density is supported over the positive

real axis. We emphasize the importance of a proper choice of the kernel, which turns out to be a

crucial aspect not only from a theoretical but also from an empirical point of view. �e approach is

non-structural since it does not require restrictive parametric assumptions on the underlying asset

dynamics, reducing the number of restrictions to be imposed on the form of the RND. Our approach

drastically reduces the intrinsic risk of misspeci�cation entailed when working with transformed data.

Particular a�ention is dedicated to the statistical aspects and practical implementation of the method.

Adopting PCA proves a robust and e�ective solution to overcome the problem of multicollinearity and

to reduce the number of coe�cients to be estimated. We use the developed technique to recover the

RND underlying VIX options, although the same principle can be applied to di�erent classes of �nancial

derivatives sharing the same characteristics, e.g. the VVIX or interest rates. �e empirical application
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to VIX options shows that this technique is very successful in retrieving the underlying RND. �us,

our results may be particularly useful when the estimation of time-varying risk-premia embedded in

option prices is of interest, see Bollerslev and Todorov (2011) and Andersen et al. (2015), or to compute

a VaR on volatility (VolaR, see Caporin et al., 2014), adjusted for risk aversion as in Aı̈t-Sahalia and Lo

(2000). �e investigation of the dynamic properties of the RND or the extension to the multivariate case

are further natural extensions of this work. However, we leave such extensions to future research.

A Appendix

A.1 Proof of �eorem 3.1

We start by introducing the following notation for the i-th moment of ϕ

µi =

∫ +∞

−∞

x iϕ (x )dx , (39)

and by de�ning

h
ϕ
0
(x ) = 1, h

ϕ
1
(x ) =

x − µ1√
µ2 − µ

2

1

.

It is straightforward to verify that∫ +∞

−∞

h
ϕ
1
(x )h

ϕ
0
(x )ϕ (x )dx = 0,

∫ +∞

−∞

h
ϕ
1
(x )2ϕ (x )dx = 1.

To determine h
ϕ
k , for k ≥ 2, we impose the following recursive relation

h
ϕ
k (x ) =

1

Ck

[
(x − ak )h

ϕ
k−1
− bkh

ϕ
k−2

]
, (40)

and seek for a solution ak , bk , and Ck , 0. We notice that, by construction, for every ak ,bk ∈ R and

Ck , 0, we have ∫ +∞

−∞

h
ϕ
k (x )h

ϕ
j (x )ϕ (x )dx = 0, ∀0 ≤ j < k − 2.

�en, we only need to plug (40) into the system∫ +∞

−∞

h
ϕ
k (x )h

ϕ
j (x )ϕ (x )dx = δik , j = k − 2,k − 1,k, (41)

Solving (41) with respect to ak ,bk , and Ck yields

an =

∫ +∞

−∞

h
ϕ
k−1

(x )2xϕ (x )dx , bn =

∫ +∞

−∞

h
ϕ
k−1

(x )h
ϕ
k−2

(x )xϕ (x )dx ,

C2

k =

∫ +∞

−∞

[
(x − ak )h

ϕ
k−1
− bkh

ϕ
k−2

]2

ϕ (x )dx .
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To show that

(
h
ϕ
k

)
k ∈N

is uniquely determined up to a sign let us consider a polynomial h of degree k

such that ∫ +∞

−∞

h(x )h
ϕ
j (x )ϕ (x )dx = 0, j = 0, . . . ,k − 1 (42)

then the k + 1 coe�cients of h must solve a linear system of k equations, therefore are determined in a

one-dimensional space and uniquely up to a sign if (7) is also required.

A.2 Proof of Lemma 3.2

We �rst point that∫ +∞

−∞

xp f (n)
Q

(x )dx =

∫ +∞

−∞

xp f
(p )
Q

dx +
n∑

k=p+1

ck

∫ +∞

−∞

xph
ϕ
k (x )ϕ (x )dx .

�en, since for every k ∈ N we can write xk as a linear combination of h
ϕ
0
(x ), . . . ,h

ϕ
k (x ), by (6) we get∫ +∞

−∞

xph
ϕ
k (x )ϕ (x )dx = 0,

which gives ∫ +∞

−∞

xp f (n)
Q

(x )dx =

∫ +∞

−∞

xp f
(p )
Q

dx .

A.3 Proof of �eorem 3.6

�e proof of this theorem relies on standard results on orthogonal polynomials. In order to adapt these

results to our context, we need the following lemma.

Lemma A.1. Suppose that ϕ∗ generates closed polynomial sets and ϕ = h · ϕ∗, where h is bounded and

positive a.e. on D. �en ϕ generates closed polynomial sets.

Proof. By the Riesz-Fischer characterization it su�ces to prove that if f ∈ L2

ϕ (x )dx (D) and

∫
D

f (x )xkϕ (x )dx = 0 ∀k ∈ N,

then f (x ) = 0 a.e. on D. De�ne д(x ) = h(x ) f (x ), then∫
D

д2 (x )ϕ∗ (x )dx ≤ max

x ∈D
h(x ) ·

∫
D

f 2 (x )ϕ (x )dx < +∞

which proves д ∈ L2

ϕ∗ (x )dx (D). Furthermore

∫
D

д(x )xkϕ∗ (x )dx =

∫
D

f (x )xkϕ (x )dx = 0
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for every k ∈ N, which implies in view of hypothesis that д(x ) = 0 a.e. on D and therefore f (x ) = 0

a.e. on D due to positivity assumptions on h(x ). �

Proof of statement (i) We start by recalling a classic result due to Hewi� (1954) showing that every

bounded functionψ supported on the entire real line and such that

lim

|x |→+∞
ψ (x )eς |x | = 0 (43)

generates closed polynomial sets. Based on this result, statement (i) can be proven under the addi-

tional hypothesis that ϕ is bounded. Indeed, under this assumption, the function ψ (x ) = |x |ϕ ( |x |
1

2 ) is

bounded on R and satis�es (43), and therefore it generates closed polynomial sets. Statement (i) is then

a straightforward consequence of the main theorem reported in Shohat (1942). To prove statement (i)

with no additional requirements on ϕ, we remark that by hypothesis there exist a polynomial p and

ς∗ > 0 such that the function ϕ∗ de�ned by

ϕ∗ (x ) := p (x )eς
∗
√
xϕ (x )

is bounded onD. Since ϕ∗ clearly preserves the same integrability and asymptotic properties of ϕ, then

it generates closed polynomial sets. Now, consider f such that f 2ϕ is integrable and∫
D

f (x )xkϕ (x )dx = 0, ∀k ∈ N.

Moreover, de�ne д as

д(x ) = e−ς
∗
√
x f (x ), x ∈ D .

We have ∫
D

д(x )2ϕ∗ (x )dx ≤ sup

x ∈D

���p (x )e
−ς ∗
√
x ���

∫
D

f 2 (x )ϕ (x )dx < +∞.

On the other hand, for every k ∈ N∫
D

д(x )xkϕ∗ (x )dx =

∫
D

f (x )xkp (x )ϕ (x )dx = 0,

which proves д(x ) = 0 and therefore f (x ) = 0 a.e. on D. �is concludes the proof of statement (i).

Proof of statement (ii) We base our proof on a counterexample by V.A. Steklov (cf. entry ”Closed

system of elements” in Hazewinkel (1988)), showing that every functionψ of the form

ψ (x ) = e |x |
2m

2m+1

, x ∈ R, m ∈ N.
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By combining this counterexample with the results of Shohat (1942), we can conclude that the function

ψ supported on [0,+∞[ and de�ned by

ψ (x ) = x−
1

2e−x
m

2m+1

, x ≥ 0, m ∈ N.

does not generate closed polynomial sets. By proceeding similarly to the proof of (i), this result can be

proven also whenψ is of the form

ψ (x ) = e−x
m

2m+1

, x ≥ 0, m ∈ N.

By a change of variable and through the Riesz-Fischer characterization, one can extend the la�er result

to the case whereψ is supported on [x0,+∞[ and is of the form

ψ (x ) = e−ς (x−x0)
m

2m+1

, x ≥ x0, m ∈ N.

for some ς > 0 and x0 ≥ 0. To prove statement (ii), then, we proceed by contradiction and suppose that

there exists an integrable function ϕ, supported on [0,+∞[ and such that limx→+∞ ϕ (x )e
ςx

1

2
−γ
> 0 for

some γ , ς > 0, which generates closed polynomial sets. To this aim, we observe that by the hypothesis

made on the right-tail of ϕ, there exists x0 ≥ 0 such that ϕ (x ) > 0 for all x ≥ x0. �e closure property

of polynomial sets with respect to ϕ holds in particular when the support is restricted, by truncation,

to [x0,+∞[. Furthermore, the function h de�ned by

h(x ) := e−ς (x−x0)
m

2m+1 ϕ (x )−1,

is bounded on [x0,+∞[, for m su�ciently large. �en, as a consequence of Lemma A.1, the func-

tion e−ς (x−x0)
m

2m+1

generates closed polynomial sets on [x0,+∞[, which is a contradiction. �e proof is

thereby concluded.

A.4 Proof of �eorem 4.1

We remark thatHϕ andH ∗ϕ endowed with the scalar product

〈
ψ1,ψ2

〉
:=

∫
D

ψ1 (x )ψ2 (x )
1

ϕ (x )
dx

are separable Hilbert spaces and dϕ is the induced distance. �en, (a) follows immediately from Lemma

3.3 by noticing that the assumptions on ϕ imply Hϕ = H
∗
ϕ in view of �eorem 3.6. To prove (18), we

observe that for every ϕ ∈ H ∗ϕ and every n ∈ N

�����

∫ +∞

0

Π(x ) f (n)
Q

(x )dx −

∫ +∞

0

Π(x ) f (∞)
Q

(x )dx
�����
≤

∫ +∞

0

Π(x ) ���f
(n)
Q

(x ) − f (∞)
Q

(x )���dx

=

∫
D

ϕ
1

2 (x )Π(x ) ���ϕ
− 1

2 (x ) f (n)
Q

(x ) − ϕ−
1

2 (x ) f (∞)
Q

(x )���dx ≤ C · dϕ
(
f (n)
Q
, f (∞)
Q

)
,
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where C =‖ ϕ
1

2 Π ‖L2 (D) is �nite by hypothesis. �en (18) follows from Lemma 3.3.

A.5 Proof of Proposition 6.1

For the sake of readability, throughout this proof we omit the dependence on t ,T ofQ(n),CObs , PObs ,C,P.

Moreover, we denote by (ck )k ∈N and f (n)
Q

the quantities de�ned in �eorem 4.1-(a). For every n ∈ N

we have

(KM − K1) · E
[
Q(n) (ĉ (n))

]
= E

[∫
I

(
CObs
K −C (n)

K (ĉ (n))
)

2

+
(
PObsK − P (n)

K (ĉ (n))
)

2

dK

]

≤ E

[∫
I

(
CK + ϵ

C
K −C

(n)
K (c1, . . . , cn )

)
2

+
(
PK + ϵ

P
K − P

(n)
K (c1, . . . , cn )

)
2

dK

]

= E

[∫
I

(
CK −C

(n)
K (c1, . . . , cn )

)
2

+
(
ϵCK

)
2

+ 2ϵCK
(
CK −C

(n)
K (c1, . . . , cn )

)
dK

]

+ E

[∫
I

(
PK − P

(n)
K (c1, . . . , cn )

)
2

+
(
ϵPK

)
2

+ 2ϵPK
(
PK − P

(n)
K (c1, . . . , cn )

)
dK

]

=

∫
I

(
CK −C

(n)
K (c1, . . . , cn )

)
2

+
(
PK − P

(n)
K (c1, . . . , cn )

)
2

dK + E

[∫
I

(
ϵCK

)
2

+
(
ϵPK

)
2

dK

]
.

Since C, P are arbitrage-free, the following identities hold

CK =

∫ +∞

K
fQ (x ) (K − x )dx , PK =

∫ K

0

fQ (x ) (x − K )dx , K ≥ 0.

�en ∫
I

(
CK −C

(n)
K (c1, . . . , cn )

)
2

+
(
PK − P

(n)
K (c1, . . . , cn )

)
2

dK

=

∫
I

[∫ +∞

K

(
fQ (x ) − f (n)

Q
(x )

)
(K − x )dx

]
2

+

[∫ K

0

(
fQ (x ) − f (n)

Q
(x )

)
(x − K )dx

]2

dK

≤

∫
I

[∫ +∞

0

���fQ (x ) − f (n)
Q

(x )��� |K − x |dx
]

2

dK ≤ dϕ
(
fQ, f

(n)
Q

)
2

·

∫
I

∫ +∞

0

(K − x )2ϕ (x )dxdK ,

where dϕ is the L2
distance de�ned in Lemma 3.3. Since

∫
I

[∫ +∞

0

(K − x )2ϕ (x )dx

]
2

dK < +∞,

then, in view of �eorem 4.1

lim

n→+∞

∫
I

(
CK −C

(n)
K (c1, . . . , cn )

)
2

+
(
PK − P

(n)
K (c1, . . . , cn )

)
2

dK = 0,

which proves (35). �e proof is concluded by noticing that, under the additional hypotheses (i) and (ii)

E
[
Q(n) (ĉ (n))

]
≥

1

KM − K1

E

[∫
I

(
ϵCK

)
2

+
(
ϵPK

)
2

dK

]
, ∀n ≥ n̄.
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