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Abstract

This paper extends the class of Epstein-Zin-Weil preferences with a new utility

kernel that disentangles uncertainty about the consumption trend (long-run risk) from

short-term variation around this trend (cyclical risk). Our estimation results show

that these preferences enable the long-run risk model to explain asset prices with a low

relative risk aversion (RRA) of 9.8 and a low intertemporal elasticity of substitution

(IES) of 0:11. We also show that the proposed preferences allow an otherwise standard

New Keynesian model to match the equity premium, the bond premium, and the risk-

free rate puzzle with a low IES of 0:07 and a low RRA of 5.
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1 Introduction

The seminar work of Mehra and Prescott (1985) and Weil (1989) show that it is challenging

to explain the high equity premium and the low risk-free rate in consumption-based models

with plausible levels of risk aversion and intertemporal substitution. This has been termed

the equity premium puzzle and the risk-free rate puzzle, respectively.

One of the most successful endowment models to explain these puzzles is the long-run risk

model of Bansal and Yaron (2004). This model introduces stochastic volatility and a small

but very persistent component in consumption growth to match the high equity premium

with a low relative risk aversion (RRA) of 10. To avoid the risk-free rate puzzle, Bansal

and Yaron (2004) adopt a relatively high intertemporal elasticity of substitution (IES) of

1:5. An IES well above one is generally also required in real business cycle models to match

asset prices, as illustrated in Kaltenbrunner and Lochstoer (2010) and Croce (2014) with

homoscedastic shocks and in Gourio (2012) with rare disasters.1 Although the IES is hard

to estimate accurately, most reduced-form estimates are typically below one or even close to

zero.2 It therefore seems desirable to extend consumption-based asset pricing models to also

match historical data with an IES well below one, as it would serve to robustify the asset

pricing channels emphasized in these models.

The contribution of the present paper is to explain the equity premium and the risk-free

rate puzzle with low risk aversion and an IES well below one. This is done by introduc-

ing a new utility kernel (i.e. periodic utility function) within the class of Epstein-Zin-Weil

preferences that disentangles uncertainty about the consumption trend (long-run risk) from

short-term variation around this trend (cyclical risk). This utility kernel is derived by com-

bining the ratio-habits of Abel (1990) with positive preference externalities from the level

of government infrastructure as in Barro (1981). The utility contribution from long-run risk

is given by a power function, whereas the contribution from cyclical consumption risk ~Ct

initially has the general form u
�
~Ct

�
where u0

�
~Ct

�
> 0 and u00

�
~Ct

�
< 0.

Within the long-run risk model of Bansal and Yaron (2004), we �rst use a second-order

perturbation approximation to show analytically that these preferences may explain the

1Jermann (1998) and Boldrin et al. (2001) show that consumption habits with an IES<1 and capital
frictions can explain the equity premium and the risk-free rate puzzle but not the low variability in the
risk-free rate. Campanale et al. (2010) use disappointment aversion (or high risk aversion) with an IES close
to zero to match the equity premium and the risk-free rate puzzle, but this model is also unable to match
the low variability in the risk-free rate.

2For instance, Barsky et al. (1997) use surveys to estimate an IES between 0.15 and 0.21, whereas Hall
(1988) and Yogo (2004) use time series regressions to estimate an IES between 0 and 0.2. The meta-study
of Havranek (2015) �nds that the IES in micro studies are about 0.2, or between 0.3-0.4, when conditioning
on households with asset holdings.
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equity premium and the risk-free rate puzzle with a low IES. We next estimate this extension

of the long-run risk model by generalized method of moments (GMM) using unconditional

�rst and second moments for the price-dividend ratio, the risk-free rate, the market return,

consumption growth, and dividend growth. Our estimates show that disentangling cyclical

and long-run risk lowers the IES from 1:5 in Bansal and Yaron (2004) to just above one

when u
�
~Ct

�
has a power-speci�cation. We also show that the IES can not be reduced below

one for this speci�cation of u
�
~Ct

�
, mainly because long-run risk then reduces the equity

premium and raises the risk-free rate. To explore the full potential of disentangling cyclical

and long-run risk in the utility kernel, we next consider a semi-parametric version of our

model, where u
�
~Ct

�
is approximated by a second-order Taylor expansion around the steady

state of ~Ct. Our estimation results reveal that asset prices can be matched with a low IES

of 0:12 and a RRA equal to 9:67. We then largely reproduce these semi-parametric results

by adopting an exponential power-speci�cation for u
�
~Ct

�
, which gives an IES of 0:11 and

a RRA of 9:8. In addition to matching the �rst and second unconditional moments for the

considered �ve variables in the estimation, we also show that this extension of the long-run

risk model matches i) the predictability of the price-dividend ratio for excess market return,

ii) the inability of the price-dividend ratio to forecast consumption and dividend growth, and

iii) the negative relationship between consumption volatility and the price-dividend ratio.

To provide further support for the proposed preferences disentangling cyclical and long-

run risk, we also consider their asset pricing implications in a dynamic stochastic general

equilibrium (DSGE) model, where consumption and dividends are determined endogenously.

Our GMM estimates reveal that these preferences allow an otherwise standard New Keyne-

sian model to explain the equity premium, the risk-free rate puzzle, and the bond premium

(i.e. the level and variability of the 10-year nominal term premium) with a low IES of

0:07 and a low RRA of 5. In contrast, most existing New Keynesian models are only able to

match asset prices by postulating highly risk-averse households (see Rudebusch and Swanson

(2012), Andreasen (2012), Swanson (2015), among others).3

The remainder of this paper is organized as follows. Section 2 introduces our new utility

kernel within the long-run risk model, and we present our analytical expressions for the

unconditional mean of the market return and the risk-free rate. Section 3 estimates our

extension of the long-run risk model and study its empirical performance. Section 4 considers

a New Keynesian model with our proposed preferences and explore its empirical performance.

Concluding comments are provided in Section 5.4

3The recent paper by Li and Palomino (2014) considers a somewhat low RRA of 16 but at the expense
of generating a too low equity premium of 0:96% per annum compared to 7:12% in their data.

4All technical derivations and proofs are deferred to an online appendix available from the homepage of
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2 A Long-Run Risk Model

This section extends the long-run risk model with a utility kernel that disentangles cyclical

and long-run risk. The representative agent is introduced in Section 2.1, and the exogenous

processes for consumption and dividends are speci�ed in Section 2.2. We present our new

utility kernel in Section 2.3 and discuss its asset pricing implications in Section 2.4 using an

analytical second-order perturbation solution.

2.1 The Representative Household

Consider a representative household with recursive preferences as in Epstein and Zin (1989)

and Weil (1990). Using the convenient formulation proposed in Rudebusch and Swanson

(2012), the value function Vt is given by

Vt =

(
Ut + �Et[V 1��

t+1 ]
1

1�� for Ut > 0
Ut � �Et[(�Vt+1)1��]

1
1�� for Ut < 0

; (1)

where Et is the conditional expectation given information in period t.5 The subjective

discount factor is given by � 2 (0; 1) and Ut � U (Ct) denotes the utility kernel as a function
of consumption Ct. For higher values of � 2 Rnf1g, these preferences generate higher levels
of risk aversion if Ut is always positive, and vice versa for Ut < 0. The formulation in (1)

also implies preferences for early resolution of uncertainty if � > 0 for Ut > 0, or if � < 0 for
Ut < 0. The main bene�t of considering Epstein-Zin-Weil preferences is to disentangle risk
aversion and the IES that otherwise have a perfect inverse relationship when � = 0 and (1)

simpli�es to standard expected utility.

2.2 Consumption and Dividends

The consumption process is speci�ed to be compatible with production economies displaying

balanced growth.6 Hence, we let

Ct � Zt � ~Ct; (2)

where Zt > 0 is the balanced growth path of technology and ~Ct refers to cyclical variation

in consumption around Zt. The level of Zt coincides with long-lasting supply shocks in

the authors or on request.
5The speci�cation in (1) is equivalent to the one in Epstein and Zin (1989), i.e. V̂ �t = Û

�
t +�Et

h
V̂ �̂t+1

i�=�̂
,

if we let V = V̂ �, U = Û�, and � = 1� �̂=�.
6See King et al. (1988) and King and Rebelo (1999) for a detailed exposition.

4



production economies and is typically speci�ed with deterministic and stochastic trends.

Uncertainty about the growth path is therefore captured by Zt, which allow us to incorporate

long-run risk as in Bansal and Yaron (2004). Following Bansal et al. (2010), the second

component ~Ct in (2) introduces cyclical consumption risk, which in production economies

originates from demand-related shocks, monetary policy shocks, or short-lived supply shocks

(see Smets and Wouters (2007), Justiniano and Primiceri (2008), among others).

Inspired by the work of Bansal and Yaron (2004), we assume that the balanced growth

path of technology evolves as

logZt+1 = logZt + log �z + xt + �z�t"z;t+1

xt+1 = �xxt + �x�t"x;t+1
; (3)

with the conditional volatility �t for �uctuating economic uncertainty given by

�2t+1 = 1� �� + ���
2
t + ��"�;t+1: (4)

Here, "i;t+1 � NID (0; 1) for i 2 (z; x; �) with j�xj < 1 and j��j < 1.7 Hence, the balanced
growth path of technology has a deterministic trend when log �z 6= 0 and a stochastic trend
for �z > 0 or �x > 0. Our speci�cation in (2) leads to the same trends in consumption, where

xt introduces persistent changes in the growth rate of Zt and captures long-run risk. The

innovation "z;t does not generate any persistence in the growth rate of Zt and is therefore

referred to as short-run risk.8 Variation in consumption around its balanced growth path Zt
is speci�ed as in Bansal et al. (2010) by letting

log ~Ct+1 = �~c log ~Ct + �~c�t"~c;t+1; (5)

where "~c;t � NID (0; 1) and j�~cj < 1.
To see how (2) to (5) relate to the existing literature, note that

�ct+1 = log �z + xt +�~ct+1 + �z�t"z;t+1; (6)

where �ct+1 � log (Ct+1=Ct), ~ct � log ~Ct, and �~ct+1 � �~c�~ct + �~c (�t"~c;t+1 � �t�1"~c;t). Our

speci�cation is thus similar to the one in Bansal et al. (2010) without jumps, which for �~c = 0

7Although (4) does not enforce �2t � 0, we nevertheless maintain this speci�cation for comparison with
Bansal and Yaron (2004) and Bansal et al. (2010). Accounting for the non-negativity constraint on �2t
may be done using a log-normal process for �t, as in Schorfheide et al. (2014), or the two speci�cations
mentioned in Andreasen (2010). Asset prices may also for these alternative speci�cations be computed by
the perturbation method as applied below.

8Hence, we follow the terminology from the long-run risk model (see for instance Bansal et al. (2010)),
although variation in "z;t has a permanent e¤ect on the level of Zt.
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reduces to the consumption process in Bansal and Yaron (2004) without cyclical risk.

Finally, as in Bansal and Yaron (2004), we let dividends Dt be positively correlated with

the balanced growth path of technology in the following way

�dt+1 = log �d + �xt + �d�t"d;t+1; (7)

where dt+1 � logDt+1, "d;t � NID (0; 1), and � denotes �rm leverage (see Abel (1999)). For
completeness, all innovations are assumed to be mutually uncorrelated at all leads and lags.

2.3 A New Utility Kernel

The Epstein-Zin-Weil preferences may be applied to a wide range of utility kernels and are

in this sense very general. That is, modifying the utility kernel U (Ct) induces di¤erent
preferences and di¤erent behavior for the representative household. The single behavioral

characteristic which we study in this paper is to disentangle e¤ects from cyclical and long-run

risk in the utility kernel as follows. First, the household obtains utility from consumption

relative to an exogenous habit stock Ht, i.e. u (Ct=Ht), as in Abel (1990) and Fuhrer (2000)

among others. Second, as for instance in Barro (1981) and Guo and Harrison (2008), the mar-

ginal utility of consumption may depend positively on the level of government infrastructure

Gt but with a diminishing e¤ect for higher values of Gt. That is, we let U(Ct) = G�
t u
�
Ct
Zt

�
with 0 � � < 1, where the level of Gt is considered to be exogenous to the household. To

keep our model as simple as possible, we assume that the level of government infrastructure

corresponds to the balanced growth path in the economy, i.e. Gt = Zt.9 Thus, the proposed

utility kernel has the form

U(Ct) = Z�
t u

�
Ct
Zt

�
: (8)

Given that Ct=Zt is non-trending, tractability of this utility kernel does not restrict the

functional form of u (�), where we initially only impose the standard conditions u0 (�) > 0

and u00 (�) < 0. The standard power-speci�cation U(Ct) = C�
t is clearly nested by (8)

when u (Ct=Zt) = (Ct=Zt)
� and the diminishing marginal e¤ect of public infrastructure and

private consumption coincide. Importantly, the utility kernel in (8) allows for the possibility

that an increase in the economy�s balanced growth path Zt may not only increase U(Ct)
through higher consumption, as traditionally assumed, but also through a higher level of

public infrastructure Z�
t . In doing so, we disentangle e¤ects of cyclical and long-run risk,

9Using the same line of argument as in Rudebusch and Swanson (2012), another way to justify these
positive externalities is to consider non-separable preferences for home production Cht , and let the production
function for Cht be proportional to Zt.
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with cyclical risk operating through u (�) and long-run risk through �. This is in contrast to
the standard power-speci�cation U(Ct) = C�

t , where � controls the e¤ects of both cyclical

and long-run risk.

The degree of intertemporal substitution in (8) is determined by the partial derivatives

of u (�) as
IES = � U 0 (Css)

U 00 (Css)Css
= � u0 (Css=Zss)

u00 (Css=Zss)Css=Zss
; (9)

where the subscript ss denotes steady state values. Using the expression in Swanson (2013),

the relative risk aversion for (1) and (8) is

RRA =
1

IES
+ �

u0 (Css=Zss)Css=Zss
u (Css=Zss)

(10)

in the steady state. Hence, risk aversion is determined by the IES, the Epstein-Zin-Weil

parameter �, and the ratio of u0 (�) to u (�).10 With marginal utility U 0 (Ct) = Z��1
t u0 (Ct=Zt),

the stochastic discount factor becomes

Mt;t+1 = �

0@Et �V 1��
t+1

� 1
1��

Vt+1

1A�

u0 (Ct+1=Zt+1)

u0 (Ct=Zt)

Z��1
t+1

Z��1
t

: (11)

Although � does not a¤ect the IES or RRA, it still a¤ects asset prices through the stochastic

discount factor. The main asset pricing implications of � go through three channels: i) the

value function, ii) the ratio of marginal utilities, and iii) the conditional covariance between

Mt;t+1 and dividends as both �ct+1 and �dt+1 co-move with the balanced growth path of

technology, i.e. Zt.

2.4 Understanding Asset Prices

To explain the main e¤ects of our new utility kernel, we follow Bansal and Yaron (2004)

and consider a simpli�ed version of the long-run risk model without stochastic volatility, i.e.

�� = 0. Given the unspeci�ed form of u(�), the stochastic discount factor is not necessarily
log-linear and asset prices can not be computed by the standard log-normal method as

in Bansal and Yaron (2004) or the approach taken in Hansen et al. (2008). Instead, we

use the perturbation method of Judd and Guu (1997) to derive an analytical second-order

approximation. This solution captures quite accurately the mean level of asset prices and is

10Unreported results show that � has a small impact on RRA outside of steady state, for which (10) serves
as a good approximation.
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therefore su¢ cient to understand how our utility kernel helps to simultaneously resolve the

equity premium and the risk-free rate puzzle.11

To obtain our analytical approximation, we �rst solve for the log-transformed value func-

tion vt � log Vt and the twisted log-transformed value function evt � logEt
h
e(1��)(vt+1+� log �z;t+1)

i
where �z;t � Zt=Zt�1. These approximations are then used to solve for the net risk-free rate

rft � logRf
t , the price-dividend ratio pdt � log (Pt=Dt), and �nally the net expected equity

return rm;et � Et
�
rmt+1

�
where rmt � logRm

t . In the interest of space, we only provide the

solution for the risk-free rate and the expected equity return.

Proposition 1 The second-order approximation to the risk-free rate rft and the expected
equity return rm;et at the steady state are given by

rft = rfss + rf~c ~ct + rfxxt +
1

2
rf~c~c~c

2
t + rf~cx~ctxt +

1

2
rfxxx

2
t +

1

2
rf��

rm;et = rm;ess + rm;e~c ~ct + rm;ex xt +
1

2
rm;e~c~c ~c

2
t + rm;e~cx ~ctxt +

1

2
rm;exx x

2
t +

1

2
rm;e��

where

rfss = rm;ess = � log � � (�� 1) log �z

rf~c = rm;e~c = (1� �~c)
u00 (1)

u0 (1)

rfx = rm;ex = 1� �

rf~c~c = rm;e~c~c =
�
1� �2~c

� u000 (1)
u0 (1)

+
u00 (1)

u0 (1)
�
�
u00 (1)

u0 (1)

�2!
rf~cx = rm;e~cx = 0

rfxx = rm;exx = 0

rf�� = ��v2x�2x � [1 + (1� �)� (�� 2)]�2z � �2~c

�
u000 (1)

u0 (1)
+
u00 (1)

u0 (1)
(1� 2�v~c) + �v2~c

�
rm;e�� = � (1� �1) pd�� + �1

�
pd~c~c + pd2~c

�
�2~c + �1

�
pdxx + pd2x

�
�2x + �2d

and �1 =
��

(��1)
z �d

1+��
(��1)
z �d

. The derivatives of vt and pdt are provided in Appendix A.

Proposition 1 shows that the expressions for rft and r
m;e
t only di¤er in their uncertainty

corrections rf�� and r
m;e
�� , which is explained by the fact that all the remaining terms represent

a perfect foresight approximation. The steady state value of rft and r
m;e
t is directly a¤ected

11The analytical perturbation approximation may also be applied to the version of the long-run risk model
with stochastic volatility, but its additional state variables complicate the model solution and make the
e¤ects of our new utility kernel less transparent.
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by the impact of long-run risk in the utility kernel as parametrized by �, where high values

of � ensure low levels of rfss and r
m;e
ss . For a standard power utility kernel, i.e.

u

�
Ct
Zt

�
=

1

1� 1= 

�
Ct
Zt

�1�1= 
and � = 1� 1= ; (12)

we obtain the well-known result rfss = rm;ess = � log �+log �z= , where a high  =IES ensures
low steady state returns, for instance  = 1:5 as in Bansal and Yaron (2004). Returning to

our general utility kernel, the �rst-order e¤ects from variation in ~ct may be re-expressed as

� (1� �~c) =IES using (9) and Css=Zss = 1, showing that r
f
~c = rm;e~c < 0 due to the negative

auto-correlation in �~ct. A similar negative e¤ect on the risk-free rate from cyclical risk is

reported in Bansal et al. (2010). We also �nd the traditional positive e¤ect of long-run risk,

i.e. rfx = rm;ex > 0, given our assumption that � < 1. For the standard power kernel in (12),

note also that rfx simpli�es to 1= > 0 as in Bansal and Yaron (2004). The uncertainty

correction in the risk-free rate depends i) on the size of the shocks, ii) the curvature of u (�),
iii) the Epstein-Zin-Weil parameter �, and iv) how cyclical risk a¤ects the value function

through v~c. The same holds for rm;e�� following an inspection of the approximated expression

for pdt provided in Proposition A.2.

To further explore the implications of our new utility kernel and how it relates to the

equity premium and the risk-free rate puzzle, Proposition 2 provides the unconditional mean

of the risk-free rate and the ex ante equity premium.

Proposition 2 The unconditional mean of the risk-free rate and the ex ante equity premium
in a second-order approximation at the steady state are given by

E
h
rft

i
= rfss �

�2x
2

��20�
2

(1� �0�x)
2 �

�2z
2
[1 + (1� �)� (�� 2)]

��
2
~c

2

"
u00 (1)2

u0 (1)2
� 2�u

00 (1)

u0 (1)

u0 (1)

u (1)

1� �0
1� �0�~c

+ �
u0 (1)2

u (1)2
(1� �0)

2

(1� �0�~c)
2

#

and

E
h
rmt+1 � rft

i
= �x�

2
x + �~c�

2
~c ;

where

�x =
��0�1

(1� �0�x) (1� �1�x)
� (�+ �� 1)

�~c = �1
1� �~c
1� �1�~c

u00 (1)2

u0 (1)2
� ��1

(1� �~c) (1� �0)

(1� �0�~c) (1� �1�~c)

u00 (1)

u0 (1)

u0 (1)

u (1)
:
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The auxiliary parameters are �0 = ��z
� and �1 =

��
(��1)
z �d

1+��
(��1)
z �d

.

Proposition 2 shows that the mean risk-free rate is given by its steady level rfss and uncer-

tainty corrections for each of the shocks a¤ecting consumption. The �rst uncertainty correc-

tion �1
2
�2x��

2
0�

2= (1� �0�x)
2 relates to long-run risk and has a negative impact on E

h
rft

i
,

given a positive value function with � > 0. Importantly, this correction becomes more

negative for larger values of � and �. The second correction ��2z
2
[1 + (1� �)� (�� 2)]

relates to short-run risk and is also negative, given � 2 [0; 1[ and � > 0. The uncer-

tainty correction attached to cyclical risk has three terms. The �rst term is given by

�0:5�2~c (u00 (1) =u0 (1))
2 = �0:5�2~c=IES2 and decreases for lower values of the IES. The sec-

ond term �2~c�
u00(1)
u0(1)

u0(1)
u(1)

1��0
1��0�~c

is also negative, because �u (1) must be positive to ensure a

reasonable level of RRA, whereas u0 (1) > 0 and u00 (1) < 0 by assumption. The �nal term

��2~c
2
�u

0(1)2

u(1)2
(1��0)2

(1��0�~c)2
is also negative provided � > 0.

The exposure of the equity premium to innovations in xt is given by �x which is positive

if � + � > 1 and � > 0. The size of this exposure is increasing in i) the persistency of

xt determined by �x, ii) the Epstein-Zin-Weil parameter �, iii) �rm leverage �, and iv) the

impact of long-run risk in the utility kernel through �. The exposure of the equity premium

to cyclical risk is given by �~c, where the �rst term always is positive, whereas the �nal term

only is positive for � > 0. The magnitude of these terms dependent on the curvature of u (�),
the Epstein-Zin-Weil parameter �, and the persistency of the cyclical risk �~c.

To summarize our insights from these analytical expressions, recall that existing models

tend to generate too low equity premia and too high risk-free rates. We thus require a

positive correction in E
h
rmt+1 � rft

i
and a negative correction in E

h
rft

i
to simultaneously

resolve the equity premium and the risk-free rate puzzle. The utility kernel we propose in

(8) does exactly so for high values of � and � in combination with low values of the IES.

That is, we break the tight link between � and the IES in the standard power kernel by

disentangling e¤ects of cyclical and long-run risk in U(Ct). This allow us to control the

impact of long-run risk in U(Ct) without a¤ecting the IES. We also note from our analytical
approximation that the proposed preferences are not solely characterized by their RRA and

IES. That is, one can not eliminate � and derivatives of u (�) from the solution and solely

use RRA and IES to describe preferences. It is also important to note that � > 0 is required

to ensure a high equity premium and a low risk-free rate.
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3 Estimation Results: The Long-Run Risk Model

This section studies the ability of our long-run risk model to explain key features of the post-

war U.S. stock market. We �rst describe our model solution and estimation methodology

in Section 3.1. The estimation results for the standard long-run risk model are provided

in Section 3.2 as a natural benchmark. The following four subsections consider di¤erent

versions of our long-run risk model disentangling cyclical and long-run in the utility kernel.

The ability of these models to match moments not included in the estimation is �nally

explored in Section 3.7.

3.1 Model Solution and Estimation Methodology

We solve for asset prices using a perturbation approximation, as in Section 2.4, but use

a third-order expansion to allow for time-variation in risk premia. This approximation is

computed using the algorithm of Binning (2013). The estimation is carried out on quarterly

data, as this data frequency strikes a good balance between getting a reasonably long sample

and providing reliable measures of consumption and dividend growth.12 Consistent with the

common calibration procedure for the long-run risk model, we let one period in the model

correspond to one month and time-aggregate its moments to the considered data frequency.

Our quarterly data set is from 1947Q1 to 2014Q4, where we use the same �ve variables

as in Bansal and Yaron (2004): i) the log-transformed price dividend ratio pdt, ii) the real

risk-free rate rft , iii) the market return r
m
t , iv) consumption growth �ct, and v) dividend

growth �dt.13 All variables are stored in datat with dimension 5 � 1. We explore whether
our model can match the means, the variances, the contemporaneous covariances, and the

persistence in these �ve variables. Hence, we let

qt�

264 datat

vec (datatdata
0
t)

diag
�
datatdata

0
t�1
�
375 ;

where diag (�) denotes the diagonal elements of a matrix. Letting � contain the model para-
meters, the GMM estimator of Hansen (1982) is then given by the value of � that minimizes

12Although the long-run risk model often is calibrated to moments in annual data, as in Bansal and Yaron
(2004), its performance is remarkably robust and carries over to quarterly data (see Bansal et al. (2012b)
and Beeler and Campbell (2012)).
13Details on the data sources and data construction are provided in the online appendix.

11



the objective function

Q =

�
1

T

PT
t=1 qt � E [qt (�)]

�0
WT

�
1

T

PT
t=1 qt � E [qt (�)]

�
;

where 1
T

PT
t=1 qt denotes the empirical moments. The model-implied moments E [qt (�)]

are computed in closed form as in Andreasen et al. (2013) using a pruning scheme when

constructing the approximated model solution.14 We adopt the conventional 2-step imple-

mentation of GMM and use a diagonal weighting matrix based on the variance of the sample

moments in a preliminary �rst step, before obtaining our �nal estimate �̂ using the optimal

weighting matrix.15

3.2 The Benchmark Model

As a natural benchmark, we �rst consider the standard long-run risk model without separate

e¤ects for cyclical and long-run risk in the utility kernel. That is, we let

U(Ct) =
1

1� 1= C
1�1= 
t : (13)

For comparability with nearly all calibrations of the long-run risk model, we let RRA = 10

and IES = 1:5 as in Bansal and Yaron (2004).16 Table 1 shows that xt generates a small but

very persistent component in consumption growth with �̂x = 0:0004 and �̂x = 0:9802. As in

the calibration of Bansal et al. (2012a), we also �nd the conditional volatility to be highly

persistent (�̂� = 0:9942), as it ampli�es the volatility channel in the model. Variation in

cyclical risk is much more mean-reverting (~�~c = 0:17), but still important given the relative

large value of �̂~c = 0:0033. We also note that the constraint on the e¤ective discount factor

�� � ��
1�1= 
z < 1 for (1) with (13) is binding, suggesting that the standard utility kernel at

least along this dimension is constrained in its ability to �t the data.

< Table 1 about here >

Table 2 veri�es the common �nding in the literature that the standard long-run risk

model is very successful in explaining asset prices. The model largely reproduces the mean

and standard deviation of the price-dividend ratio, the risk-free rate, and the market return.

14Omitting the pruning scheme for the approximated model solution and computing unconditional mo-
ments by the Monte Carlo method gives nearly identical results.
15The weigthing matrices are in both steps computed by the Newey-West estimator using 15 lags, but our

results are robust to using either 10 or 20 lags.
16The desired level of risk aversion is obtained by setting � appropriately using (10). Estimating the RRA

and the IES give nearly identical results to those provided in Tables 1 and 2.
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The only possible exception is the mean market return which is somewhat lower than in the

data (5:44% vs. 6:92%), but still well within the 95% con�dence interval. Omitting short-

run risk by letting �~c = 0 as in Bansal and Yaron (2004), does not a¤ect the mean of asset

prices but lowers the standard deviation of the risk-free rate from 2:21% to 1:66%.17 The last

part of Table 2 shows that our estimated version of the long-run risk model underestimates

the persistence in the risk-free rate (0:59 vs. 0:87), overestimates the standard deviation

in consumption growth (2:90% vs. 2:04%) as well as its persistence (0:57 vs. 0:31), and

generates too high contemporaneous correlations for the price-dividend ratio and the risk-

free rate.

< Table 2 about here >

3.3 A New Utility Kernel: a Power Speci�cation

Next, we explore whether disentangling cyclical and long-run risk in the utility kernel allows

us to match asset prices with an IES well below one. Given the popularity of the power

utility kernel, the most obvious speci�cation is probably to let

U(Ct) =
Z�
t

1� 1= 

�
Ct
Zt

�1�1= 
; (14)

where � and  are free parameters.18 Table 1 shows that the GMM estimates are �̂ = 0:51

and  ̂ = 1:02. A Wald test clearly rejects the restriction 1 � 1= = � from the benchmark

model in (13) at all conventional signi�cance levels, as 1�1= ̂ = 0:02 and thus substantially
lower than �̂.

Table 2 further shows that this version of the long-run risk model generally improves the

�t of auto-correlations and most contemporaneous correlations compared to the benchmark

model. However, this comes at the cost of a slightly worse �t in matching the standard

deviations. To evaluate the goodness of the �t, Table 2 also reports the value of the objective

function Qstep2 in step 2 of our GMM estimation and the related P-value for the well-

known J-test for model misspeci�cation (see Hansen (1982)). The benchmark model and our

extension(s) are not rejected by the data, but we note that the J-test has low power given

our relative short sample (T = 271). The values of Qstep2 are unfortunately not comparable

across models, because they are computed for model-speci�c weighting matrices. To facilitate

17Similar e¤ects of cyclical risk are reported in Bansal et al. (2012a).
18For instance, the recent paper by Creal and Wu (2016) considers Epstein-Zin-Weil preferences with

ratio-habits when the utility kernel has a power speci�cation.
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model comparison, we therefore introduce the following measure for goodness of �t

Qscaled =

nX
i=1

�
mdata
i �mmodel

i

1 +mdata
i

�2
; (15)

where mdata
i and mmodel

i refer to the scaled moments in the data and the model, respectively,

reported in Table 2.19 Although the moments in (15) are weighted di¤erently than in the

estimation, Qscaled may nevertheless serve as a natural summary statistics for model com-

parison from an economic perspective. We �nd that the benchmark model has a value

of Qscaled = 1:14 and therefore marginally dominates an extension based on (14) with

Qscaled = 1:17. Thus, the better �t of most auto- and contemporaneous correlations in

this extension of the long-run risk model does not compensate for its weaker performance in

matching standard deviations when using the weights in (15).

These �ndings suggest that the long-run risk model can be improved along some dimen-

sions by disentangling cyclical and long-run risk in the utility kernel. Given that  in (14)

corresponds to the IES, this is achieved with a lower IES of 1:02 compared to 1:5 in the

benchmark model. Although this is a sizable reduction in the IES, it is still somewhat far

from most reduced-form estimates of the IES. To understand why the utility kernel in (14)

is unable to reduce the IES below one, recall from our analytical expressions in Section 2.4

that the IES should be as low as possible and � > 0 to resolve the equity premium and the

risk-free rate puzzle. Our estimates show that we obtain the best �t by having a relative

high IES of 1:02, because it ensures u (1) > 0 and hence the desired positive value of � to

get realistic levels of RRA. To illustrate the sizable e¤ect of an IES less than one, suppose  

is lowered to 0:95 with all other parameters given as in Table 1. This minor change means

that u (1) < 0 and therefore � < 0. As shown in Section 2.4, a negative Epstein-Zin-Weil

parameter implies that many of the uncertainty corrections go in the opposite direction to

resolve the equity premium and the risk-free rate puzzle. For instance, long-run risk now

has a negative e¤ect on E
h
rmt+1 � rft

i
and a positive e¤ect on E

h
rft

i
when IES<1.20 As a

result, lowering the IES to 0:95 increases the mean risk-free rate from 0:98% to 4:35% and

reduces the equity return from 8:74% to 1:56%.

3.4 A New Utility Kernel: a Semi-Parametric Speci�cation

An important insight from our analytical expressions in Section 2.4 is that the asset pricing

implications of the considered preferences are not solely characterized by their RRA and IES.

19The di¤erence mdata
i �mmodel

i in (15) is standardized by 1 +mdata
i , as oppose to just mdata

i , to ensure
that moments close to zero do not get very large weights.
20A similar result is reported in Bansal et al. (2010).
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Hence, the inability of (14) to �t asset prices with an IES well below one may be due to the

adopted power-speci�cation of u (�). Given that our setup does not restrict the functional
form of u (�), we can easily explore this possibility by considering a semi-parametric version of
our utility kernel, where u

�
Ct
Zt

�
is approximated by a second-order expansion at Css=Zss = 1.

Hence, we let

U(Ct) = Z�
t

 
u (1) + u0 (1)

�
Ct
Zt
� 1
�
+
1

2
u00 (1)

�
Ct
Zt
� 1
�2!

: (16)

The value of u (1) is not identi�ed and therefore normalized to one, leaving only u0 (1) and

u00 (1) as free parameters.21 Table 1 shows that the preferred utility kernel is characterized

by û0 (1) = 5:190� 10�4 and û00 (1) = �0:0042, which imply û0 (1) =u (1) = 5:190� 10�4 and
jû00 (1) =û0 (1)j = 8:0259. Thus, these estimates di¤er substantially from the power kernel in

(14) by having a much larger value of jû00 (1) =û0 (1)j, which corresponds to an IES of 0:12.
Table 2 further shows that this low IES is fully consistent with asset prices, as this extension

of the long-run risk model matches most of the considered moments, including the mean of

the risk-free rate and the market return. Note also, that this version of the long-run risk

model has a very low value of Qscaled = 0:42, implying that it provides a substantially better

overall �t to the data than the benchmark model with Qscaled = 1:14.

3.5 A New Utility Kernel: an Exponential Power Speci�cation

Our semi-parametric estimates show that disentangling e¤ects of cyclical and long-run risk

and considering a su¢ ciently �exible utility kernel allows us to explain asset prices with

an IES well below one. A natural question is what functional form of u (�) is capable of
reproducing these semi-parametric estimates? Our proposed functional form is given by

U (Ct) =
Z�
t

�

�
1� e��(Ct=Zt)

�

��
; (17)

which is referred to as the exponential power utility kernel. The impact of long-run risk

remains controlled by �, whereas the e¤ect of cyclical risk is determined by an exponential

function indexed by � > 0. The utility of cyclical risk is raised to the power of � to ensure

that (17) reduces to the standard power utility kernel in (13) when � ! 0.22 To illustrate

21Unreported results reveal that third- and fourth-order derivatives of u (�) are also not identi�ed in our
case, although these terms in principle may a¤ect our third-order perturbation approximation.
22Another alternative would be to let U (Ct) = Z�t

1�1= 

�
1�e��(Ct=Zt)

�

�1�1= 
, but unreported results suggest

that �,  , and � are not jointly identi�ed.
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the asset pricing implications of (17), consider the two steady state ratios

u0 (1) =u (1) =
��

e� � 1 and u00 (1) =u0 (1) = ��
�
1 +

1� �

e� � 1

�
: (18)

Hence, a higher value of � lowers u0 (1) =u (1) and increases ju00 (1) =u0 (1)j. Given that the
IES= �u0 (1) =u00 (1), the latter corresponds to a lower IES for higher values of � . These
e¤ects are also illustrated in Figure 1, which shows that � controls the concavity of u (�) and
hence the rate of decay in marginal utility. The preference parameter � therefore also has a

signi�cant e¤ect on risk aversion, which is given by

RRA =
1

IES
+ ��

�

e� � 1 : (19)

The �rst term in (19) coincides with the measure of RRA obtained with standard expected

utility, i.e. � = 0, and increases in � . The second term in (19) is due to the presence of

Epstein-Zin-Weil preferences and decreases in � . To understand this e¤ect, recall that the

second term of RRA equals �u0 (1) =u (1), meaning that higher values of � generate a larger

reduction in u0 (1) compared to u (1), which then reduces u0 (1) =u (1). This in turn makes

the value function less responsive to changes in future consumption paths, which then lowers

the required compensation for holding risky assets, i.e. the RRA.

< Figure 1 about here >

The �nal column of Table 1 shows that �̂ = 8:95, which is statistically di¤erent from zero

given a standard error of 1:03. This suggests that (17) improves upon the standard power

utility kernel in (13). In line with previous calibrations of the long-run risk model, we also

�nd a low relative risk aversion with [RRA = 9:78. Given �̂ = 0:51, the two steady state

ratios are u0 (1) =u (1) = 0:0006 and ju00 (1) =u0 (1)j = 8:95 with the exponential power utility
kernel, and hence very close to the semi-parametric estimates in Section 3.4. This implies

that the IES based on (17) is 0:11 and hence well below one. The last column of Table 2 shows

that this extension of the long-run risk model is able to explain the considered moments for

asset prices, consumption growth, and dividend growth. This includes matching the mean of

the market return and the risk-free rate, implying that we resolve the equity premium and

the risk-free rate puzzle with low risk aversion and low IES. It is also worth noticing that

this fully parametric extension of the long-run risk model gives an Qscaled = 0:50 and hence

provides a better overall �t to the data than the benchmark model with Qscaled = 1:14.
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3.6 Analyzing the Exponential Power Utility Kernel

We next explore the main asset pricing implications of the exponential power utility kernel

by gradually increasing � from � ! 0 to its estimated value. Table 3 shows that a higher

value of � generate a fast reduction in the IES and a substantial increase in the required value

of � to ensure a constant RRA. We also see that increasing � has the desired e¤ects on asset

prices as it i) reduces E[pdt] and E[rft ], ii) increases E[rmt ], and iii) generates more variability
in pdt, r

f
t , and r

m
t . The �nal column in Table 3 illustrates that we are unable to explain these

asset pricing moments by using the standard power utility kernel (i.e. for � ! 0) with the

same low IES= 0:11 as implied by the exponential power utility kernel. In particular, E[rft ]
increases to 20:4% and the excess market return is now negative

�
E[rmt ]� E[r

f
t ] = �0:139

�
.

To understand the e¤ects of � on E[rft ] and E[rmt ] in greater detail, Table 3 also de-
composes their values based on Proposition 2.23 Here, we emphasize to main e¤ects. First,

lowering the IES through higher values of � does not a¤ect rfss = rmss = � log ��(�� 1) log �z,
which in contrast increases to extreme levels in the standard utility kernel when reducing

the IES through large negative values of � for log �z > 0. Second, a high value of � lowers

u0
�
~Ct

�
=u
�
~Ct

�
and implies relative large values of the Epstein-Zin-Weil parameter � to

make the household su¢ ciently risk averse, even for RRA� 10. To understand the e¤ect of
increasing � for a given level of RRA, recall that the household is indi¤erent to resolution

of uncertainty when � = 0, and all uncertainty corrections are therefore either very small

or absent. This case is well-represented by the �rst column in Table 3 where � ! 0. Now

suppose we increase � to make the household prefer early resolution of uncertainty, but with-

out a¤ecting the RRA. This modi�cation makes the certain cash�ow from the one-period

risk-free bond more attractive, and a lower risk-free rate is therefore required. This e¤ect

explains why we see larger negative corrections for long-run, short-run, and cyclical risk in

E[rft ]. On the other hand, uncertain future dividends from equity become less attractive for

higher values of � due to the presence of long-run risk. A household with strong preferences

for early resolution of uncertainty therefore requires a larger compensation for long-run risk

(and its stochastic volatility) to hold equity compared to the case of � = 0. Table 3 shows

that these e¤ects on E[rmt ] from higher values of � dominate the larger negative risk correc-

tions from short-run and cyclical risk, which are similar to those for the risk-free rate and

hence constitute a pure discounting e¤ect.

< Table 3 about here >
23This decomposition exploits the fact that the unconditional mean of any variable in the pruned state-

space system with Gaussian shocks is identical at second- and third order (see Andreasen et al. (2013)).
The contribution from stochastic volatility is then given by the di¤erence between the unconditional mean
at third order and the mean implied by Proposition 2, which omits stochastic volatility.
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3.7 Additional Model Implications

In addition to the moments used for the estimation, the long-run risk model is also frequently

evaluated on its ability to reproduce several stylized facts for the U.S. stock market. We �rst

study the ability of the price-dividend ratio to predict the excess market return, consumption

growth, and dividend growth. The �rst column of Figure 2 shows that our extension of the

long-run risk model with an exponential power utility kernel preserves the good performance

of the benchmark model and almost perfectly reproduces the ability of a high price-dividend

ratio to forecast low excess market returns at all considered horizons. As found in Beeler and

Campbell (2012), the price-dividend ratio does not forecast either consumption or dividend

growth in the data, which is also matched when using the exponential power utility kernel

in the long-run risk model.

As a supplement to these univariate predictability tests, Bansal et al. (2012a) suggest

expanding the information set in these forecasts regressions by consumption growth and the

risk-free rate. The R-squared for these multivariate regressions are provided in the second

column of Figure 2, showing that the long-run risk model with the exponential power utility

kernel also in this case reproduces the desired degree of predictability in excess market

returns. For consumption and dividend growth, our estimated version of the standard long-

run risk model generally produces too much predictability. A similar �nding is reported in

Beeler and Campbell (2012) for two calibrated versions of this model. On the other hand,

our extension of the long-run risk model with an exponential power utility kernel generates

too little predictability in consumption and dividend growth.

< Figure 2 about here >

Following Beeler and Campbell (2012), we next study the ability of the price-dividend

ratio to explain past and future consumption growth. Figure 3 shows that our estimated

version of the standard long-run risk model generates too high correlation between past

consumption growth and the price-dividend ratio compared to empirical evidence. A similar

�nding is reported in Beeler and Campbell (2012) for two calibrated versions of this model.

On the other hand, our extension of the long-run risk model with an exponential power utility

kernel implies that past consumption growth and the price-dividend ratio are completely

uncorrelated as seen in the data.

The last two charts in Figure 3 explore the relationship between consumption volatility

and the price-dividend ratio. As in Bansal and Yaron (2004), we measure the conditional

volatility �t by the absolute value of the residual from an AR-model for consumption growth.

In line with empirical evidence, our extension of the long-run risk model has the properties

that i) a high price-dividend ratio predicts future low volatility and ii) high uncertainty
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forecasts a low price-dividend ratio (see also Bansal et al. (2005)). Hence, our extension

of the long-run risk model with an exponential power utility kernel matches the negative

relationship between volatility and the price-dividend ratio with an IES well below one.

This is in contrast to the standard long-run risk model, which only reproduces this negative

relationship with an IES larger than one, as emphasized in Bansal and Yaron (2004). Our

results show that one can avoid this restriction by i) disentangling cyclical and long-run

risk in the utility kernel and ii) modeling utility of cyclical risk by an exponential power

speci�cation.

< Figure 3 about here >

4 A New Keynesian Model

To provide further support for the considered Epstein-Zin-Weil preferences with the expo-

nential power utility kernel in (17), we next show that they also help to explain asset prices in

an otherwise standard New Keynesian DSGE model, where consumption and dividends are

derived endogenously. In addition to explaining the equity premium and the risk-free rate

puzzle, we also show that these preferences enable the New Keynesian model to match the

level and the variability of the nominal term premium and hence resolve the bond premium

puzzle (see Rudebusch and Swanson (2008)). Our main �nding is to match these puzzles

with a low IES of 0:07 and a low RRA of 5, whereas most existing DSGE models require

extreme levels of RRA to explain asset prices.

We proceed by presenting our New Keynesian model in Section 4.1, the adopted estima-

tion routine in Section 4.2, and �nally our estimation results in Section 4.3.

4.1 Model Description

The considered model is speci�ed along the lines of Rudebusch and Swanson (2012) and

Swanson (2015) for comparability with much of the existing macro-�nance literature building

on the standard New Keynesian models (see Hordahl et al. (2008), Andreasen (2012), among

others).

4.1.1 Household

The representative household is similar to the one considered in Section 2, except for a

variable labor supply Lt. To match the persistence in consumption growth, we follow much

of the New Keynesian tradition and extend our consumption habits with bCt�1. These
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modi�cations are included in the exponential power utility kernel by letting

U (Ct; Lt) =
Z�
t

�

0@1� e
��
�
Ct�bCt�1

Zt

�
�

1A�

+ Z�
t '0

(1� Lt)
1� 1

'

1� 1
'

; (20)

where '0 > 0 and ' 2 R nf1g. To ensure a balanced growth path, the utility of leisure
is scaled by Z�

t , which may be justi�ed by home production, as shown in Rudebusch and

Swanson (2012). The degree of RRA implied by (20) can be obtained by the general formulas

in Swanson (2013), which in our case gives

RRA =
~Css

expf�(1�b=�Z;ss) ~Cssg�1
�(expf�(1�b=�Z;ss) ~Cssg��) + ' ~Wss (1� Lss)

+ �
~Css�

expf�(1�b=�Z;ss) ~Cssg�1
�

+ � ~Wss(1�Lss)
1� 1

'

(21)

where ~Css and ~Wss refer to the steady state of consumption and the real wage in the normal-

ized economy without trending variables. The deterministic trend in consumption is given

by �Z;ss which coincides with the deterministic trend in technology, speci�ed below in (23).

Simple inspection of (21) reveals that the �rst term is undetermined in � , whereas the second

term decreases in � for the same reason as outlined in Section 3.5. The IES in the steady

state is given by

IES =
1

�Css

1� exp
n
�
�
1� b=�Z;ss

�
~Css

o
�� exp

n
�
�
1� b=�Z;ss

�
~Css

o ; (22)

which converges to the familiar expression
�
1� b

�Z;ss

�
= (1� �) when � ! 0. A careful

inspection of (22) shows that the e¤ect of � on the IES is undetermined. However, for a

given value of ~Css, the IES is decreasing in � if

exp
n
�
�
1� b=�Z;ss

�
~Css

o
� 1

�

�
expf�(1�b=�Z;ss) ~Cssg
expf�(1�b=�Z;ss) ~Cssg�1

��
1� b

�Z;ss

�
~Css � 1

> 1� �:

That is, the IES may increase in � for low values of this parameter but will eventually

decrease when � becomes su¢ ciently high.24

Finally, the real budget constraint is given by Et
h
Mt;t+1

Xt+1
�t+1

i
+ Ct =

Xt
�t
+WtLt + Dt,

where Xt is nominal state-contingent claims, �t denotes gross in�ation, Wt is the real wage,

and Dt is real dividend payments from �rms.

24The assumption that ~Css is una¤ected by � is rather weak and satis�ed in our version of the New
Keynesian model.
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4.1.2 Firms

Final output Yt is produced by a perfectly competitive representative �rm, which combines

a continuum of di¤erentiated intermediate goods Yt (i) using the production function Yt =�R 1
0
Yt (i)

��1
� di

� �
��1

where � > 1. This implies that the demand for the ith good is Yt (i) =�
Pt(i)
Pt

���
Yt, where Pt �

�R 1
0
Pt (i)

1�� di
� 1
1��

denotes the aggregate price level.

The di¤erentiated goods are produced by intermediate �rms using the production func-

tion Yt (i) = ZtAtK
�
ssLt (i)

1��, where Kss and Lt (i) denote capital and labor services at

the ith �rm, respectively. Technology shocks are allowed to have the traditional stationary

component At, but also a non-stationary component Zt to generate long-run risk into the

model. For the stationary shocks, we let logAt+1 = �A logAt + �A"A;t+1, where j�Aj < 1,

�A > 0, and "A;t+1 � NID (0; 1). Similarly for the non-stationary shocks, we introduce
�Z;t+1 = Zt+1=Z and let

log

�
�Z;t+1
�Z;ss

�
= �Z log

�
�Z;t
�Z;ss

�
+ �Z"Z;t+1; (23)

where j�Z j < 1; �Z > 0, and "Z;t+1 � NID (0; 1).25

Intermediate �rms can freely adjust their labor demand at the given market wageWt and

are therefore able to meet demand in every period. Price stickiness is introduced via Calvo

contracts, where a fraction � of randomly selected �rms can not set the optimal nominal

price Pt (i) of the good they produce and instead let Pt (i) = �ssPt�1 (i).

4.1.3 The Central Bank and Aggregation

The central bank sets the one-period nominal interest rate it as

it = �iit�1 + (1� �i)

�
iss + �� log

�
�t
�ss

�
+ �y log

�
Yt

ZtYss

��
;

based on a desire to close the in�ation and the output gap with �n = [0; 5] for n = f�; yg,
subject to smoothing changes in the policy rate with �i 2 [0; 1]. Note that the in�ation gap
accounts for steady-state in�ation �ss, and that the output gap is expressed in deviation from

the balanced growth path as in Justiniano and Primiceri (2008), Rudebusch and Swanson

(2012), among others.

25The speci�cation of long-run risk adopted in the endowment model, i.e. (3), could also be used in the
New Keynesian model, but we prefer the more parsimonious speci�cation in (23) for comparability with
the existing DSGE literature (see for instance Justiniano and Primiceri (2008), Altig et al. (2011), Swanson
(2015), among others)
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Summing across the heterogeneous �rms implies YtSt+1 = ZtAtK
�
ssL

1��
t , where Lt �R 1

0
Lt (i) di is aggregated labor demand and St+1 is the price dispersion index. As in Rude-

busch and Swanson (2012), �KssZt units of output are used to maintain a constant capital

stock, meaning that aggregate resource constraint is given by Yt = Ct + �KssZt.

4.1.4 Equity and Bond Prices

Equity is de�ned as a claim on aggregate dividends from �rms, i.e. Dt = Yt �WtLt, and its

real price is therefore 1 = Et
�
Mt;t+1R

m
t+1

�
where Rm

t+1 =
�
Dt+1 + Pm

t+1

�
=Pm

t .

The price in period t of a default-free zero-coupon bond B(n)
t maturing in n periods with

a face value of one dollar is B(n)
t = Et

h
Mt;t+1

�t+1
B
(n�1)
t+1

i
for n = 1; :::; N with B(0)

t = 1. Its yield-

to-maturity with continuously compounding is then i(n)t = � 1
n
logB

(n)
t . Following Rudebusch

and Swanson (2012), we de�ne term premia as 	(n)t = i
(n)
t �ei(n)t , where ei(n)t is the yield-to-

maturity on a zero-coupon bond eB(n)
t under risk-neutral valuation, i.e. eB(n)

t = e�itEt
h eB(n�1)

t+1

i
with eB(0)

t = 1.

4.2 Model Solution and Estimation Methodology

As in Section 3, we approximate the model solution by a third-order perturbation approx-

imation and estimate the model by GMM using unconditional �rst and second moments

computed as in Andreasen et al. (2013). The selected series describing the macro economy

and the bond market are given by �ct, �t, it, i
(40)
t , 	(40)t , and logLt, where one time period

in the model corresponds to one quarter. The 10-year nominal interest rate and its term

premium (obtained from Adrian et al. (2013)) are available from 1961Q3, leaving us with

quarterly data from 1961Q3 to 2014Q4. We include all means, variances, and �rst-order

auto-covariances of these six variables for the estimation, in addition to nine contempora-

neous covariances related to the correlations reported at the end of Table 5. To examine

whether our New Keynesian model is able to match the equity premium, we also include

the mean of the net market return rmt = logR
m
t in the set of moments.

26 Finally, the GMM

estimation is implemented using the conventional two-step procedure outlined in Section 3.1.

We estimate all structural parameters in the model except for a few badly identi�ed

parameters. That is, we let � = 0:025 and � = 1=3 as typically considered for the U.S.

economy. We also let � = 6 to get an average markup of 20% and impose ' = 1=4 to match

a Frisch labor supply elasticity in the neighborhood of 0:5. Finally, we set the ratio of capital

to output in the steady state equal to 2:5 as in Rudebusch and Swanson (2012).

26Details on the data sources and data construction are provided in the online appendix.
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4.3 Estimation Results

We proceed by �rst considering Epstein-Zin-Weil preferences with a standard power utility

kernel in Section 4.3.1, before disentangling e¤ects of cyclical and long-run risk in Section

4.3.2.

4.3.1 A Standard Power Utility Kernel

Given that RRA is hard to estimate accurately in the New Keynesian model, the analysis is

conducted by conditioning the estimation on di¤erent values of RRA. Following Kaltenbrun-

ner and Lochstoer (2010), we �rst let RRA = 5, which is within the middle range of reason-

able values for the RRA suggested by Mehra and Prescott (1985). The estimated coe¢ cients

are summarized in Table 4 and are all fairly standard, except for a high steady state in�ation

(�̂ss = 1:14) and high curvature in consumption utility (�̂ = �13:4) giving an IES = 0:034.
Table 5 shows that the model does well in matching all means (including the 10-year term

premium and market return), but that this comes at the cost of too much variability in

consumption growth (3:31% vs. 1:80%) and labor supply (2:93% vs. 1:61%). These results

just iterate the �nding in Rudebusch and Swanson (2008) that the standard New Keynesian

model with low RRA can not match key asset pricing moments without distorting the macro

economy.

< Table 4 about here >

We next follow Swanson (2015) and increase RRA to 60, although such extreme level

of risk aversion is hard to justify based on micro-evidence. Table 5 shows that the New

Keynesian model now reproduces all means without generating too much variability in the

macro economy, except for a slightly elevated standard deviation in the log-transformed

labor supply (2:44% vs. 1:61%). High risk aversion also helps in matching most auto- and

contemporaneous correlations, and the model therefore has a much better overall �t with

Qscaled = 0:268 compared to Qscaled = 1:012 with RRA= 5.

< Table 5 about here >

4.3.2 The Exponential Power Utility Kernel

We �nally estimate our proposed utility kernel in (20) when conditioning on a realistic level

of risk aversion with RRA = 5. Table 4 shows that �̂ = 16:9, which is statistical di¤erent

from zero, meaning that disentangling cyclical and long-run risk in the utility kernel also

helps the New Keynesian model to explain postwar U.S. data. Correcting for consumption
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habits and Css = 0:8, the scale-adjusted estimate of � is �̂
�
1� b̂

�
Css = 6:5 and hence

somewhat similar to �̂ = 8:95 in the long-run risk model - at least when accounting for

estimation uncertainty. Using (22), we thus estimate a relative low IES of 0:07.

Table 5 shows that the New Keynesian model now matches all means and standard

deviations, except for labor supply that displays the same degree of variability as in the

standard New Keynesian model with RRA = 60. Subject to this quali�cation, the New

Keynesian model now explains the equity premium and the risk-free rate puzzle with a low

IES = 0:07 and a low RRA = 5. We also match the mean and the variability of the 10-

year nominal term premia, implying that our New Keynesian model also explains the bond

premium puzzle with low IES and low RRA. The auto- and contemporaneous correlations are

also well matched, and our extension of the New Keynesian model therefore has a slightly

better overall �t with Qscaled = 0:255 compared to Qscaled = 0:268 for the standard New

Keynesian model with RRA = 60.

Table 6 illustrates the e¤ects of gradually increasing � in the New Keynesian model.

As for the long-run risk model in Section 3.6, we emphasize two main e¤ects. First, a

higher value of � reduces the IES without a¤ecting returns in the steady state. Second,

increasing � lowers u0
�
~Ct

�
=u
�
~Ct

�
and imply that relative large values of the Epstein-Zin-

Weil parameter � are needed to ensure RRA = 5. The large value of � then ampli�es the

existing risk corrections and allows the model to explain asset prices with low IES and low

RRA.

< Table 6 about here >

5 Conclusion

This paper extends the class of Epstein-Zin-Weil preferences with a new utility kernel that

disentangles uncertainty about the consumption trend (long-run risk) from short-term varia-

tion around this trend (cyclical risk). Adopting a power-speci�cation for cyclical risk within

the long-run risk model, we �rst show that the IES can be lowered to just above one. To

reduce the IES further, we then propose an exponential power utility kernel for cyclical risk,

enabling us to match asset prices with a low RRA of 9.8 and a low IES of 0.11. In addition

to accounting for the equity premium and the risk-free rate puzzle, we also show that our

extension of the long-run risk model matches i) the predictability of the price-dividend ratio

for excess market return, ii) the inability of the price-dividend ratio to forecast consumption

and dividend growth, and iii) the negative relationship between consumption volatility and

the price-dividend ratio.
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To examine the performance of the proposed preferences in a production-based model,

we �nally extend an otherwise standard New Keynesian model with the exponential power

utility kernel disentangling cyclical and long-run risk. Our GMM estimates reveal that these

preferences allow the New Keynesian model to explain the equity premium, the risk-free rate

puzzle, and the bond premium with a low IES of 0:07 and a low RRA of 5.
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A A Perturbation Approximation under Homoscedas-
ticity

Proposition A.1 The second-order approximated log-transformed value function vt and the
log-transform twisted value function evt at the steady state are given by

vt = vss + v~c~ct + vxxt +
1

2
v~c~c~c

2
t + v~cx~ctxt +

1

2
vxxx

2
t +

1

2
v��; (24)

evt = evss + ev~c~ct + evxxt +
1

2
ev~c~c~c

2
t + ev~cx~ctxt +

1

2
evxxx

2
t +

1

2
ev�� (25)

where

vss = log

�
1fu(1)>0gu (1)� 1fu(1)<0gu (1)

1� �0

�
v~c =

u0 (1)

u (1)

1� �0
1� �~c�0

vx =
�0

1� �x�0
�

v~c~c =
1� �0
1� �2~c�0

�
u00 (1)

u (1)
+
u0 (1)

u (1)

�
�
�
u0 (1)

u (1)

1� �0
1� �~c�0

�2
v~cx =

u0 (1)

u (1)

1� �0
1� �~c�0

�

�
�~c�0

1� �~c�x�0
� �0
1� �x�0

�
vxx =

�0
1� �2x�0

1� �0

(1� �x�0)
2�

2

v�� =
�0

1� �0

�
v~c~c�

2
~c + (1� �) v2~c�

2
~c + vxx�

2
x + (1� �) v2x�

2
x + (1� �)�2�2z

�
and

evss = (1� �)

�
log

�
1fu(1)>0gu (1)� 1fu(1)<0gu (1)

1� �0

�
+ � log �z

�
ev~c = (1� �) �~c

u0 (1)

u (1)

1� �0
1� �~c�0

evx =
(1� �)�

1� �x�0

ev~c~c = (1� �) �2~c
1� �0
1� �2~c�0

�
u00 (1)

u (1)
+
u0 (1)

u (1)

�
� (1� �) �2~c

�
u0 (1)

u (1)

1� �0
1� �~c�0

�2
evx~c = (1� �) �x�~cvx~c

evxx = (1� �) �2x
�0

1� �2x�0

1� �0

(1� �x�0)
2�

2

ev�� =
1� �

1� �0

�
v~c~c�

2
~c + (1� �) v2~c�

2
~c + vxx�

2
x + (1� �) v2x�

2
x + (1� �)�2�2z

�
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and �0 = ���z .

Proposition A.2 The second-order approximated log-transformed price-dividend ratio pdt
at the steady state is given by

pdt = pdss + pd~c~ct + pdxxt +
1

2
pd~c~c~c

2
t + pd~cx~ctxt +

1

2
pdxxx

2
t +

1

2
pd��;

where

pdss = log
�1

1� �1

pd~c = � 1� �~c
1� �1�~c

u00 (1)

u0 (1)

pdx =
�+ �� 1
1� �1�x

pd~c~c = �pd2~c � 2
u00 (1)

u0 (1)
pd~c �

1� �2~c
1� �1�2~c

�
u000 (1)

u0 (1)
+
u00 (1)

u0 (1)

�
pd~cx = �pd~cpdx +

�1�~cpd~c (�� 1 + �)
1� �1�~c�x

�
(1� �~c)

u00(1)
u0(1) (�� 1 + �+ �x�1pdx)

1� �1�~c�x

pdxx = �pd2x +
(�� 1 + �)2

1� �2x�1
+ 2�1�x

�� 1 + �
1� �2x�1

pdx

pd�� =
�2d

1� �1
+

�2z
1� �1

�
�+ (1� �) (1� �)2

�
+

�2~c
1� �1

�
�v2~c � 2��1pd~cv~c + �1pd~c~c

+ �1pd
2
~c � 2�

u00 (1)

u0 (1)
v~c + 2�1pd~c

u00 (1)

u0 (1)
+
u000 (1)

u0 (1)
+
u00 (1)

u0 (1)

�
+

�2x
1� �1

�
�v2x � 2��1pdxvx + �1pdxx + �1pd

2
x

�
and �1 =

��
(��1)
z �d

1+��
(��1)
z �d

. The expressions for v~c and vx are provided in Proposition A.1.
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Table 1: The Long-Run Risk Model: The Structural Parameters
Estimation results using data from 1947Q1 to 2014Q4. The reported estimates are from the
second step in GMM with the weigthing matrix estimated by 15 lags in the Newey-West
estimator. The model has a monthly time frequency with model-implied moments
time-aggregated to a quarterly time frequency. In column (1), the values of RRA and  are
calibrated and standard errors are therefore not available.

Benchmark Cyclical vs. long-run risk

(1) (2) (3) (4)
Power Power Semi-parametric Exponential power

utility kernel utility kernel utility kernel utility kernel
u0 (1) � � 5:19� 10�4

(0:0002)
�

u00 (1) � � �0:0042
(0:0019)

�

� � 0:5106
(0:0066)

0:4637
(0:9579)

0:5144
(0:4998)

RRA 10 13:515
(2:4618)

9:6716
(3:1934)

9:7809
(0:9846)

 1:5 1:0181
(0:0119)

� �

� � � � 8:9505
(1:0252)

� 0:9995a 0:9980
(0:0010)

0:9981
(0:0019)

0:9987
(0:0008)

�~c 0:1651
(0:0272)

0:0041
(6:1043)

0:9998
(0:0004)

0:9962
(0:0018)

�x 0:9802
(0:0030)

0:6450
(0:2446)

0:1510
(1:1698)

0:3756
(0:6678)

�� 0:9942
(0:0008)

0:9933
(0:0020)

0:9889
(0:0094)

0:9941
(0:0016)

�z 1:0014a 1:0018
(0:0028)

1:0019
(0:0001)

1:0018
(0:0001)

�d 1:0006
(0:0001)

1:0015
(0:0011)

1:0015
(0:0001)

1:0014
(0:0006)

� 1:8858
(0:0414)

3:6231
(2:6532)

2:2725
(4:6025)

1:9909
(2:4266)

�~c 0:0033
(0:0003)

0:0017
(0:0080)

0:0025
(0:0004)

0:0025
(0:0004)

�z 0:0021
(0:0004)

0:0024
(0:0006)

0:0008
(0:0018)

0:0008
(0:0017)

�d 0:0147
(0:0009)

0:0129
(0:0014)

0:0133
(0:0013)

0:0148
(0:0014)

�x 0:0004
(0:0001)

0:0009
(0:0005)

0:0013
(0:0023)

0:0012
(0:0015)

�� 0:0876
(0:0134)

0:0775
(0:0267)

0:1199
(0:0984)

0:1042
(0:0353)

Memo
IES 1:50 1:02 0:12 0:11
� 28:00 703:42 3; 171 1; 390

a The coe¢ cient is at the boundary of its domain as ��1�1= z < 1 and its standard error is
therefore not available.
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Table 2: The Long-Run Risk Model: Fit of Moments
Except for the price-dividend ratio, all means and standard deviations are expressed in annualized
percent. Moments are annualized through a multiplication of 400, except for the standard
deviation of the market return which is multiplied by 200. All model-implied moments in columns
(2) to (5) are from the unconditional distribution, whereas the empirical data moments in column
(1) are the sample means. In column (1), �gures in parentesis refer to the standard error of the
empirical moment, computed based on the Newey-West estimate (with 15 lags) of the co-variance
matrix for the considered set of moments.

Benchmark Cyclical vs. long-run risk

(1) (2) (3) (4) (5)
Data Power Power Semi-parametric Exponential power

utility kernel utility kernel utility kernel utility kernel
Means
pdt 3:495

(0:095)
3.514 3.505 3.519 3.499

rft 0:831
(0:411)

0.997 0.975 1.393 1.100

rmt 6:919
(1:842)

5.440 8.737 8.520 6.001

�ct 1:905
(0:209)

1.735 2.189 2.229 2.108

�dt 2:391
(0:979)

0.692 1.775 1.836 1.722

Stds
pdt 0:421

(0:060)
0.392 0.361 0.430 0.422

rft 2:224
(0:378)

2.206 1.782 1.914 1.986

rmt 16:445
(1:201)

16.521 15.351 15.658 16.559

�ct 2:035
(0:169)

2.904 1.859 1.791 1.875

�dt 9:391
(1:221)

8.710 7.516 7.173 8.040

Persistence
corr(pdt; pdt�1) 0:982

(0:150)
0.980 0.980 0.985 0.983

corr
�
rft ; r

f
t�1

�
0:866
(0:085)

0.574 0.930 0.909 0.925

corr
�
rmt ; r

m
t�1
�

0:084
(0:058)

0.002 -0.006 0.005 -0.006

corr (�ct;�ct�1) 0:306
(0:130)

0.571 0.253 0.220 0.248

corr (�dt;�dt�1) 0:396
(0:092)

0.298 0.207 0.138 0.143
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Table 2: Long-Run Risk Model: Fit of Moments (continued)

Benchmark Cyclical vs. long-run risk

(1) (2) (3) (4) (5)
Data Power Power Semi-parametric Exponential power

utility kernel utility kernel utility kernel utility kernel
Correlations
corr

�
pdt; r

f
t

�
0:035
(0:250)

0.437 0.952 0.157 0.543

corr (pdt; r
m
t ) 0:058

(0:073)
0.112 0.078 0.058 0.073

corr (pdt;�ct) 0:025
(0:093)

0.197 0.007 0.005 0.021

corr (pdt;�dt) �0:017
(0:132)

0.109 0.005 0.000 0.001

corr
�
rft ; r

m
t

�
0:023
(0:062)

0.093 0.060 0.052 0.042

corr
�
rft ;�ct

�
0:161
(0:102)

0.362 0.132 0.059 0.055

corr
�
rft ;�dt

�
�0:168
(0:102)

0.303 0.104 0.035 0.036

corr (rmt ;�ct) 0:233
(0:065)

0.063 0.032 0.047 0.140

corr (rmt ;�dt) 0:104
(0:050)

0.275 0.262 0.265 0.282

corr (�ct;�dt) 0:062
(0:062)

0.374 0.274 0.158 0.156

Goodness of �t
QStep2 - 0.0623 0.0500 0.0388 0.0366
J-test: P-value - 0.112 0.195 0.311 0.449
Qscaled - 1.145 1.171 0.417 0.497
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Table 3: The Long-Run Risk Model: Analyzing the Exponential Power Kernel
Moments are computed using a third-order perturbation approximation and represented as in
Table 2. Unless stated otherwise, all parameters attain the estimated values from column (4) in
Table 1. For decomposing E[rft ] and E[rmt ], the contribution from the steady state, long-run risk,
short-run risk, and cyclical risk are computed based on Proposition 2, while the contribution from
stochastic volatility is given by the di¤erence between the unconditional mean and the sum of
these four terms.

� = 0:51 � = �8:091
� ! 0 � = 5 � = �̂GMM � ! 0

Means
pdt 7:287 6:589 3:499 4:162

rft 2:611 2:276 1:100 20:438
rmt 2:540 3:180 6:001 20:299

Stds
pdt 0:017 0:131 0:422 0:059

rft 0:563 0:945 1:986 10:548
rmt 5:395 6:838 16:559 7:181

Decomposing E[rft ]
rfss 2:631 2:631 2:631 20:807
Long-run risk �0:011 �0:159 �0:809 0:012
Short-run risk �0:005 �0:080 �0:406 �0:034
Cyclical risk �0:005 �0:117 �0:317 �0:346
Stochastic volatility 0:000 0:000 0:000 0:000

Decomposing E[rmt ]
rmss 2:631 2:631 2:631 20:807
Long-run risk 0:013 0:199 1:011 0:004
Short-run risk �0:005 �0:080 �0:406 �0:034
Cyclical risk �0:005 �0:116 �0:314 �0:343
Stochastic volatility �0:095 0:545 3:079 �0:134

Memo
RRA 9:78 9:78 9:78 9:78
IES 2:06 0:20 0:11 0:11
� 18:07 273:05 1; 389:69 �0:09
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Table 4: The New Keynesian Model: The Structural Parameters
Estimation results using data from 1961Q3 to 2014Q4. The reported estimates are from the
second step of GMM with the weigthing matrix estimated by 15 lags in the Newey-West
estimator. The estimate of � in column (1) is on the boundary and the standard error is therefore
not available.

Benchmark Cyclical vs.
long-run risk

(1) (2) (3)
RRA=5 RRA=60 RRA=5

� 0:9999 0:9955
(0:0032)

0:9908
(0:0019)

b 0:5085
(0:0093)

0:6970
(0:0718)

0:5157
(0:1499)

� �13:3678
(0:9909)

�4:0710
(1:3655)

0:8148
(0:5563)

� ! 0 ! 0 16:9450
(6:8596)

� 0:5195
(0:0164)

0:7300
(0:0143)

0:6677
(0:0351)

�� 1:4232
(0:0176)

2:2226
(0:2670)

1:1810
(0:0788)

�y 0:2175
(0:0179)

0:7255
(0:3458)

0:0190
(0:0422)

�Z 1:0040
(0:0001)

1:0055
(0:0004)

1:0052
(0:0004)

�ss 1:1407
(0:0113)

1:0300
(0:0017)

1:0431
(0:0065)

Lss 0:3364
(0:0005)

0:3355
(0:0005)

0:3367
(0:0009)

�r 0:5890
(0:0261)

0:8872
(0:0252)

0:5975
(0:0605)

�A 0:9953
(0:0004)

0:9878
(0:0006)

0:9909
(0:0012)

�Z 0:1009
(0:0086)

0:4818
(0:0895)

0:6272
(0:3229)

�A 0:0125
(0:0003)

0:0051
(0:0006)

0:0082
(0:0010)

�Z 0:0130
(0:0004)

0:0040
(0:0002)

0:0029
(0:0019)

Memo
IES 0:034 0:061 0:074
Uss �274; 454:69 �571:80 0:568
� �1:31 �32:54 171:62
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Table 5: The New Keynesian Model: Fit of Moments
All variables are expressed in annualized terms in percentage, except for the mean of log(lt). All
model-implied moments in columns (2) to (5) are from the unconditional distribution, whereas
the empirical data moments in column (1) are given by the sample means. In column (1), �gures
in parentesis refer to the standard error of the empirical moment, computed based on the
Newey-West estimate (with 15 lags) of the co-variance matrix for the considered set of moments.

Benchmark Cyclical vs.
long-run risk

(1) (2) (3) (4)
Data RRA=5 RRA=60 RRA=5

Means
�ct 1:975

(0:253)
1:595 2:182 2:055

�t 3:890
(0:512)

3:391 3:417 3:432

it 4:999
(0:682)

5:188 5:040 5:061

i
(40)
t 6:497

(0:617)
6:556 6:463 6:507

	
(40)
t 1:663

(0:251)
1:741 1:583 1:678

logLt �1:081
(0:003)

�1:081 �1:080 �1:081

rmt 5:527
(1:786)

4:760 5:390 5:419

Stds
�ct 1:802

(0:137)
3:313 1:442 1:361

�t 2:716
(0:342)

2:938 2:744 2:696

it 3:173
(0:478)

2:942 2:615 2:912

i
(40)
t 2:621

(0:441)
2:672 2:308 2:547

	
(40)
t 1:165

(0:167)
1:084 1:092 1:109

logLt 1:619
(0:162)

2:926 2:437 2:476

Persistence
corr (�ct;�ct�1) 0:529

(0:082)
0:506 0:709 0:777

corr (�t; �t�1) 0:953
(0:037)

0:777 0:858 0:894

corr (it; it�1) 0:949
(0:044)

0:947 0:989 0:981

corr
�
i
(40)
t ; i

(40)
t�1

�
0:976
(0:066)

0:991 0:981 0:985

corr
�
	
(40)
t ;	

(40)
t�1

�
0:937
(0:063)

0:995 0:988 0:991

corr (logLt; logLt�1) 0:932
(0:545)

0:753 0:942 0:969
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Table 5: The New Keynesian Model: Fit of Moments (continued)

Benchmark Cyclical vs.
long-run risk

(1) (2) (3) (4)
Data RRA=5 RRA=60 RRA=5

Correlations
corr (�ct; �t) �0:184

(0:136)
0:275 �0:045 �0:112

corr (�ct; it) 0:021
(0:181)

0:143 �0:039 �0:037

corr
�
�ct;	

(40)
t

�
�0:036
(0:165)

�0:008 �0:022 �0:045

corr (�t; it) 0:703
(0:059)

0:932 0:877 0:965

corr
�
�t; i

(40)
t

�
0:585
(0:146)

0:822 0:851 0:859

corr
�
�t;	

(40)
t

�
0:236
(0:146)

0:442 0:419 0:377

corr
�
it; i

(40)
t

�
0:900
(0:043)

0:853 0:869 0:878

corr
�
it;	

(40)
t

�
0:424
(0:222)

0:358 0:381 0:377

corr
�
i
(40)
t ;	

(40)
t

�
0:757
(0:252)

0:698 0:766 0:721

Goodness of �t
QStep2 - 0:0609 0:0525 0:0583
J-test: P-value - 0:6051 0:6724 0:4941
Qscaled - 1:0116 0:2680 0:2546
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Table 6: The New Keynesian Model: Analyzing the Exponential Power Kernel
All moments are computed using a third-order perturbation and represented as in Table 5. Unless
stated otherwise, all parameters attain the estimated values from column (3) in Table 4.

� = 0:815 � = �5:54
� ! 0 � = 10 � = �̂GMM � ! 0

Means
�ct 2:055 2:055 2:055 2:055
�t 16:916 14:910 3:432 9:089
it 20:979 18:614 5:061 24:806

i
(40)
t 20:946 18:834 6:507 24:351

	
(40)
t 0:058 0:427 1:678 �0:185

logLt �1:089 �1:083 �1:081 �1:075
rmt 4:073 4:217 5:419 15:989

Stds
�ct 4:190 1:955 1:361 1:848
�t 3:356 4:585 2:696 6:785
it 3:231 4:995 2:912 6:746

i
(40)
t 2:679 4:120 2:547 3:723

	
(40)
t 0:015 0:204 1:109 0:118

logLt 1:793 4:902 2:476 5:580

Memo
RRA 5 5 5 5
IES 2:629 0:124 0:074 0:074
� 0:50 19:85 171:62 �1:56
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Figure 1: The Exponential Power Utility Kernel
All plots are done for � = 1=3.
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Figure 2: Predictive Regressions
All model-implied moments are computed given the estimated parameters in Table 1 using a
simulated sample path of 1; 000; 000 observations. The 95 percentage con�dence bands are
computed using the Newey-West estimator with 2� j lags for the univariate regressions, and for
the multivariate regressions by the block bootstrap using a window of 2� j observations.
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Figure 3: Properties of Consumption Growth and Volatility
All model-implied moments are computed given the estimated parameters in Table 1 using a
simulated sample path of 1; 000; 000 observations. The conditional volatility �̂t is estimated by
jûtj where ût is the residual from the OLS regression �ct = �+

P4
j=1 � (j)�ct�j + ut. The 95

percentage con�dence bands are computed using the Newey-West estimator with max(10; 2� j)
lags for the two consumption growth regressions, whereas the lag length in the two volatility
regressions are 2� j.
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