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Abstract

We introduce a bootstrap procedure for high-frequency statistics of Brownian semistationary
processes. More specifically, we focus on a hypothesis test on the roughness of sample paths of
Brownian semistationary processes, which uses an estimator based on a ratio of realized power
variations. Our new resampling method, the local fractional bootstrap, relies on simulating
an auxiliary fractional Brownian motion that mimics the fine properties of high frequency
differences of the Brownian semistationary process under the null hypothesis. We prove the first
order validity of the bootstrap method and in simulations we observe that the bootstrap-based
hypothesis test provides considerable finite-sample improvements over an existing test that is
based on a central limit theorem. This is important when studying the roughness properties of
time series data; we illustrate this by applying the bootstrap method to two empirical data sets:
we assess the roughness of a time series of high-frequency asset prices and we test the validity
of Kolmogorov’s scaling law in atmospheric turbulence data.
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1 Introduction

In the study of pathwise properties of continuous stochastic processes, roughness is a central

attribute. Theoretically, roughness relates to the degree of Hölder regularity enjoyed by the sample
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paths of the stochastic process in question. The fractional Brownian motion (fBm), introduced

by Kolmogorov (1940) and popularized later by Mandelbrot and Van Ness (1968), is perhaps the

most well-known example of a process that can exhibit various degrees of roughness. The fBm

with Hurst index H ∈ (0, 1) is a Gaussian process that coincides with the standard Brownian

motion when H = 1/2. If H < 1/2 (respectively H > 1/2), then the sample paths of the fBm are

rougher (respectively smoother) than those of the standard Brownian motion in terms of Hölder

regularity. In this work, we are concerned with conducting inference on the fractal index, α, of a

stochastic process, when α is estimated using the so-called change-of-frequency (COF) estimator,

introduced by Lang and Roueff (2001) for Gaussian processes and extended by Barndorff-Nielsen

et al. (2013) and Corcuera et al. (2013) to a non-Gaussian setting. In the case of the fBm it holds

that α = H−1/2, whilst in general α < 0 indicates roughness and α > 0 smoothness relative to the

standard Brownian motion, as with fBm. When α = 0, the stochastic process under consideration

has the same roughness as the standard Brownian motion.

Several interesting empirical time series exhibit signs of roughness, i.e. α < 0. Some noteworthy

examples include:

• time-wise measurements of velocity in turbulent flows (Corcuera et al., 2013), where roughness

in inertial time scales is predicted by Kolmogorov’s scaling law (Kolmogorov, 1941) and

Taylor’s frozen field hypothesis (Taylor, 1938),

• time series of electricity spot prices (Barndorff-Nielsen et al., 2013; Bennedsen, 2015),

• measures of the realized volatility of asset prices (Gatheral et al., 2014; Bennedsen et al.,

2016).

In these applications, estimation of, and inference on, the index α is important. There is a long

history of methods of estimating α, concentrating mostly on Gaussian processes, of which a com-

prehensive survey is provided in Gneiting et al. (2012). In the time series data mentioned above,

non-Gaussian features are pervasive, however, which is why we concentrate on a specific, yet flex-

ible, non-Gaussian framework. Brownian semistationary (BSS) processes (Barndorff-Nielsen and

Schmiegel, 2007, 2009) form a class of stochastic processes that accommodate various departures

from Gaussianity and different degrees of roughness. Barndorff-Nielsen et al. (2013) and Corcuera

et al. (2013) and have studied the properties of the COF estimator of α in the context of BSS
processes. In particular, they have derived a central limit theorem (CLT), that makes it possible

to conduct hypothesis tests on α.

In the present paper, our main focus will be on the COF estimator of a driftless BSS process

(Xt)t∈R, given by

Xt =

∫ t

−∞
g(t− s)σsdWs,
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where g : R+ → R is a kernel function, (σt)t∈R a stochastic volatility process, and (Wt)t∈R a

standard Brownian motion. Important for our present purpose, we assume that the kernel function

g(x) behaves like a power function, x 7→ xα, when x is near zero; a statement we will make precise

below. When this assumption holds, and some additional (mild) technical conditions are met,

the sample paths of X are Hölder continuous with index α + 1/2 − ε for any ε > 0 (Bennedsen

et al., 2015, Proposition 2.1). Moreover, α = 0 is a necessary condition for the process to be a

semimartingale (Basse, 2008; Bennedsen, 2016). Intuitively, the BSS process is a moving average

process driven by volatility-modulated Brownian noise and is, thus, quite general and flexible. The

BSS framework is also closely related to processes such as the fBm and Gaussian Volterra processes

of convolution type; see e.g. Bennedsen et al. (2015). Therefore we expect the methods proposed

in this paper to apply to these processes as well, but research into the specifics is beyond the scope

of the present paper and left for future work.

The contribution of this paper is to derive a bootstrap procedure that improves the finite sample

properties of the test of the null hypothesis

H0 : α = α0,

for some α0 ∈
(
−1

2 ,
1
2

)
, when the fractal index α is estimated using the COF estimator. Theoreti-

cally, the COF estimator has two regimes: in the first regime α ∈
(
−1

2 ,
1
4

)
, the estimator uses the

entire sample to estimate α. In this case, we propose a novel bootstrap method, the local fractional

bootstrap, which utilizes simulations of an auxiliary fractional Brownian motion with Hurst index

H = α0 + 1
2 , thereby mimicking the fine properties of the sample paths of the underlying BSS

process under H0. We establish the first-order asymptotic validity of the local fractional bootstrap

for the percentile-t methods, i.e. when the test-statistic is normalized by its (bootstrap) standard

deviation.

As noted in Corcuera et al. (2013, Section 4), in the second regime α ∈
[

1
4 ,

1
2

)
, the asymptotic

behavior of the COF estimator is potentially affected (depending on the form of g) by a non-

negligible bias term, causing the CLT to break down. For this reason, the authors suggest using a

modified COF estimatorthat implements asymptotically increasing gaps between increments from

which the power variations are computed. These gaps make the increments used in the estimator

asymptotically uncorrelated, which opens the door to a wild bootstrap approach (e.g. Wu, 1986;

Liu, 1988; Gonçalves and Meddahi, 2009) in this regime. However, it turns out that even when

α ∈
[

1
4 ,

1
2

)
, the local fractional bootstrap actually works very well in practice, as confirmed by

simulations that indicate the superiority of the local fractional bootstrap to the wild bootstrap also

in this regime. For the sake of brevity, we present the details on the wild bootstrap method, along

with the simulation study of its finite sample properties, in a separate web appendix (Bennedsen

et al., 2016).
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In a Monte Carlo simulation study, we assess the finite sample properties of the local fractional

bootstrap procedure in comparison with the inference method based on the CLT of Corcuera et al.

(2013). We find that for all α ∈
(
−1

2 ,
1
2

)
, the local fractional bootstrap offers improvements in

terms of the size of the test of H0, especially when the sample size ranges from small to moderate.

Indeed, since our method simulates the auxiliary bootstrap observations under H0, we minimize the

probability of a type I error (Davidson and MacKinnon, 1999), i.e. of rejecting H0 when it actually

holds. This feature proves to be important when we in the empirical section apply the method to

assess the roughness of the time series of logarithmic prices of the E-mini futures contract. In this

case, no-arbitrage considerations suggest that α = 0, and we find that the bootstrap procedure is

crucial for achieving the correct size of the test of H0 : α = 0 when applied to intraday price series.

We also apply the bootstrap method to a time series of measurements of atmospheric turbulence to

test for the empirical validity of Kolmogorov’s scaling law (Kolmogorov, 1941). We find the data

to be in good agreement with the scaling law, but again using the bootstrap is crucial for accurate

inference when the sample size is small.

The rest of this paper is structured as follows. Section 2 sets the stage by presenting the

mathematical definition of the BSS process as well as the assumptions we work under. This section

also briefly reviews existing results as they pertain to the present work. In Section 3 we detail

our bootstrap method, the local fractional bootstrap, and give the details on its implementation.

Section 4 contains a Monte Carlo study of the finite sample properties of the bootstrap method

and Section 5 presents the empirical applications. Section 6 concludes. Simulation setup, proofs,

as well as some additional technical derivations, are relegated to the Appendices A, B, and C. The

details on the wild bootstrap method, including proofs and a simulation experiment, are available

in a web appendix (Bennedsen et al., 2016).

2 Setup, assumptions, and review of existing results

Now, we introduce some essential notation. Following the conventions of bootstrap literature,

P∗ (E∗ and V ar∗) denotes the probability measure (expected value and variance) induced by the

bootstrap resampling, conditional on a realization of the original time series. In addition, for a

sequence of bootstrap statistics Z∗n, we write Z∗n = op∗ (1) in probability, or Z∗n
P∗→ 0, as n→∞, in

probability, if for any ε > 0, δ > 0,

lim
n→∞

P [P∗ (|Z∗n| > δ) > ε] = 0.

Similarly, we write Z∗n = Op∗ (1) as n → ∞, in probability if for all ε > 0 there exists Mε < ∞
such that

lim
n→∞

P [P∗ (|Z∗n| > Mε) > ε] = 0.
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Finally, we write Z∗n
d∗→ Z as n → ∞, in probability, if conditional on the sample, Z∗n converges

weakly to Z under P∗, for all samples contained in a set with P-probability converging to one.

2.1 BSS setup and assumptions

We follow Barndorff-Nielsen et al. (2013) and consider a filtered probability space
(
Ω,F , (Ft)t∈R ,P

)
,

on which we define a Brownian semistationary (BSS) process X = (Xt)t∈R, without a drift as

Xt =

∫ t

−∞
g (t− s)σsdWs, t ∈ R, (1)

where (Wt)t∈R is a two-sided standard Brownian motion, g : R+ → R is a deterministic weight

function satisfying g ∈ L2 (R+), and (σt)t∈R is an (Ft)t∈R-adapted càdlàg process. We assume that∫ t

−∞
g2 (t− s)σ2

sds <∞ a.s., for all t ∈ R,

to ensure that Xt is a.s. finite for any t ∈ R. We introduce a centered stationary Gaussian process

G = (Gt)t∈R that is associated to X, which we will call the Gaussian core of X, as

Gt =

∫ t

−∞
g (t− s) dWs, t ∈ R. (2)

The correlation kernel r of G is given via

r (t) = corr (Gs, Gs+t) =

∫∞
0 g (u) g (u+ t) du

‖g‖2L2(R+)

, t ≥ 0.

A crucial object in the asymptotic theory is the variogram R, given by

R (t) = E
[
(Gs+t −Gs)2

]
= 2 ‖g‖2L2(R+) (1− r (t)) , t ≥ 0.

We assume that the process X is observed at equidistant time points ti = i∆n, i = 0, 1, . . . , bt/∆nc,
with ∆n ↓ 0 as n → ∞. This kind of asymptotics is termed in-fill asymptotics. The theory

considered in this paper will call for computing second order differences of the BSS process using

different lag spacing, υ ∈ N. In particular, we are concerned with power variations of the following

type

V (X; p, υ)nt ≡
bt/∆nc∑
i=2υ

∣∣Xi∆n − 2X(i−υ)∆n
+X(i−2υ)∆n

∣∣p , (3)

where p ≥ 1 and where we refer to υ as the lag between observations. Although the theory goes

through for general υ ∈ N we will mainly consider υ = 1, 2, which will be sufficient for our purposes.

For the asymptotic theory, Corcuera et al. (2013) also introduce the normalized power variations:

V̄ (X; p, υ)nt ≡ ∆nτn (υ)−p V (X, p, υ)nt , (4)
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where τn (υ) =

√
E
[∣∣Gi∆n − 2G(i−υ)∆n

+G(i−2υ)∆n

∣∣2] is the standard deviation of the second

order increment of the Gaussian core calculated with lag spacing υ∆n.

Our proposal is to use the bootstrap to approximate the sampling distributions of a general

class of nonlinear transformations of these statistics. This relates to the limiting behavior of the

roughness parameter estimator of the BSS process, studied in Corcuera et al. (2013). In order to

recall the consistency result for V̄ (X; p, υ)nt , derived by Corcuera et al. (2013), we need to introduce

a set of assumptions. Below, α denotes a number in
(
−1

2 , 0
)
∪
(
0, 1

2

)
and functions Lf indexed by

a mapping f , are assumed to be slowly varying at zero, i.e. be such that limx↓0
Lf (tx)
Lf (x) = 1 for all

t > 0. For a function f , f (k) denotes the k-th derivative of f .

Assumption 1.

(i) g (x) = xαLg (x).

(ii) g(2) (x) = xα−2Lg(2) (x) and for any ε > 0, we have g(2) ∈ L2 ((ε,∞)) . Furthermore,
∣∣g(2)

∣∣ is

non-increasing on the interval (a,∞) for some a > 0.

(iii) For any t > 0

Ft =

∫ ∞
1

∣∣∣g(2) (s)
∣∣∣2 σ2

t−sds <∞

almost surely.

The next set of assumptions deals with the variogram R.

Assumption 2. For the roughness parameter α from Assumption 1, it holds that

(i) R (x) = x2α+1LR (x).

(ii) R(4) (x) = x2α−3LR(4) (x).

(iii) There exists a b ∈ (0, 1) such that

lim sup
x↓0

sup
y∈[x,xb]

∣∣∣∣LR(4) (y)

LR (x)

∣∣∣∣ <∞.
Finally, we introduce an assumption on the smoothness of the process σ.

Assumption 3. For any q > 0, it holds that

E [|σt − σs|q] ≤ Cq |t− s|γq

for some γ > 1/2 and Cq > 0.
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Remark 1 The methods and results presented in this paper can be trivially extended to processes

of the form

X]
t =

∫ t

−∞

(
g(t− s)− g0(−s)

)
σsdWs, t ≥ 0,

where g is as before and g0 : R→ R is a measurable function such that g(x) = 0 for all x < 0 and∫ t

−∞

(
g(t− s)− g0(−s)

)2
σ2
sds <∞, for all t ≥ 0.

In particular, we note that X]
t −X

]
s = Xt−Xs for any t > s ≥ 0, which is why the techniques that

rely on the increments of X presented below, apply, mutatis mutandis, to X] as well.

2.2 Power variation of the BSS process and its asymptotic theory

Under Assumptions 1 and 2, Corcuera et al. (2013, Theorem 3.1 and equation (4.5)) show that for

υ ∈ N

V̄ (X; p, υ)nt
u.c.p.→ V (X; p)t = mp

∫ t

0
|σs|p ds, (5)

where mp ≡ E [|U |p] , U ∼ N (0, 1), and
u.c.p.→ denotes uniform convergence in P-probability on

compact sets. Corcuera et al. (2013, Theorems 3.2 and 4.5) also derive a joint asymptotic distribu-

tion of the vector ∆
−1/2
n

(
V̄ (X; p, 1)nt − V (X; p)t , V̄ (X; p, 2)nt − V (X; p)t

)
. In particular, under

Assumptions 1–3 (Corcuera et al., 2013, Theorem 3.2),

∆−1/2
n

(
V̄ (X; p, 1)nt −mp

∫ t
0 |σs|

p ds

V̄ (X; p, 2)nt −mp

∫ t
0 |σs|

p ds

)
st→ N (0,Σp,t) , (6)

where
st→ denotes stable convergence, and

Σp,t ≡ Λp

∫ t

0
|σs|2p ds,

with the matrix Λp =
(
λijp
)

1≤i,j≤2
given by

λ11
p = lim

n→∞
∆−1
n var

(
V̄
(
BH ; p, 1

)n
1

)
, λ22

p = lim
n→∞

∆−1
n var

(
V̄
(
BH ; p, 2

)n
1

)
,

λ12
p = lim

n→∞
∆−1
n cov

(
V̄
(
BH ; p, 1

)n
1
, V̄
(
BH ; p, 2

)n
1

)
,

with BH being a fractional Brownian motion with Hurst parameter H = α + 1/2.1 Note that the

computation of the statistic V̄ (X; p, υ)nt requires knowledge of the factor τn (υ), which is infeasible

since it depends, among other things, on the roughness parameter α of the BSS process X.2 Based

on (5) and (6) Corcuera et al. (2013) construct consistent and asymptotically normal estimators of

1Expressions for λij2 can be found in Appendix B.
2This approach can be made feasible by first estimating the factor τn(υ), see Barndorff-Nielsen et al. (2014,

Appendix B). However, this procedure has the shortcoming that the central limit theorem no longer holds.
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the roughness parameter α. Under Assumptions 1 and 2, Corcuera et al. (2013, equations 4.2 and

4.5) show that

α̂ (p)nt = hp (COF (p)nt )
u.c.p.→ α, (7)

where

hp (x) =
log2 (x)

p
− 1

2
, x > 0, (8)

with log2 standing for the base-2 logarithm, whereas

COF (p)nt =
V (X; p, 2)nt
V (X; p, 1)nt

. (9)

By the delta method and the properties of stable convergence, Corcuera et al. (2013, Propositions

4.2 and 4.6) deduce a feasible CLT for the roughness parameter α. Assume that the conditions of

the CLT result (6), with α ∈
(
−1

2 , 0
)
∪
(
0, 1

4

)
then for any p ≥ 2, we have

p log (2)V (X; p, 1)nt (α̂ (p)nt − α)√
m−1

2p V (X; 2p, 1)nt (−1, 1) Λp (−1, 1)T
d→ N (0, 1) . (10)

As mentioned in the introduction, the CLT (10) may break down when α ∈
[

1
4 ,

1
2

)
. This

motivated Corcuera et al. (2013) to develop a modified estimator implementing gaps between

increments, from which the power variation (3) is computed. By letting the gaps widen sufficiently

fast, the estimator satisfies a CLT and the relevant increments become asymptotically independent.

In this case, one can develop a bootstrap method based on the idea of wild bootstrap. While we

have also worked out the details of this approach, we relegate them to a web appendix (Bennedsen

et al., 2016) for two reasons: Firstly, the case α ∈
[

1
4 ,

1
2

)
seems to be of limited practical interest.

Secondly, our simulation experiments indicate that for all reasonable values of α ∈
(
−1

2 ,
1
2

)
, the

wild bootstrap is outperformed by the local fractional bootstrap (and even the CLT).

The results of Corcuera et al. (2013) do not explicitly allow for α = 0. However, we can show

that under slightly amended assumptions, the LLN and CLT developed for the COF estimator

remain valid also in this case. Indeed, only Assumptions 1(ii) and 2(ii) need to be changed. In

the rest of this paper, when α = 0, we thus work under Assumptions 1–3 above with the following

modifications to 1(ii) and 2(ii):

Assumption 1.

(ii’) g(2) (x) = Lg(2) (x) and for any ε > 0, we have g(2) ∈ L2 ((ε,∞)) . Furthermore,
∣∣g(2)

∣∣ is

non-increasing on the interval (a,∞) for some a > 0.
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Assumption 2.

(ii’) R(4) (x) = f(x)LR(4) (x), where the function f is such that |f(x)| ≤ Cx−β for some constants

C > 0 and β > 1/2.

We now obtain the following result, which is proved in Appendix C.

Proposition 2.1 Suppose Assumptions 1–3 hold. Then the LLN (7) and CLT (10) hold with

α = 0.

Example 2.1 The Ornstein-Uhlenbeck kernel g(x) = e−λx, λ > 0, satisfies Assumptions 1 and 2

with α = 0. Indeed, Assumption 1 is trivially seen to hold and since

R(x) = λ−1
(

1− e−λx
)

= xLR(x),

where

LR(x) = x−1λ−1
(

1− e−λx
)

is a slowly varying function, Assumption 2(i) also holds. We also have

R(m)(x) = (−1)m−1λm−1e−λx, m ≥ 1,

so Assumption 2(ii’) holds with f(x) = e−λx and LR(4) = −λ−3. Lastly,

lim
x↓0

LR(x) = 1,

so Assumption 2(iii) clearly also holds.

3 The local fractional bootstrap

In this section, we introduce a bootstrap method for a general class of nonlinear transformations

of the vector
(
V̄ (X; p, 1)nt , V̄ (X; p, 2)nt

)
. We then use the method to approximate the sampling

distribution of the roughness parameter estimator α̂ (p)nt . In particular, we consider a hypothesis

test where the null hypothesis is

H0 : α = α0

for some α0 ∈
(
−1

2 ,
1
2

)
, whereas the alternative hypothesis is

H1 : α 6= α0.

Our idea is to resample the high frequency second order differences of the BSS process X as

defined in (3). To be valid, the method should mimic the dependence properties of the increments

of X. As pointed out in Corcuera et al. (2013), under Assumption 2, the short-term behavior of

9



the Gaussian core G is similar to that of a fractional Brownian motion BH with Hurst parameter

H = α+ 1/2. More precisely, for any t0 ∈ R,(
Gεt+t0 −Gt0√
V ar(Gε −G0)

)
t≥0

d→ (BH
t )t≥0 in C(R+)

as ε→ 0.

Consider for now the following constant-volatility toy model,

X̃t = σGt = σ

∫ t

−∞
g (t− s) dWs, t ≥ 0, (11)

obtained from X by setting σt = σ > 0 for all t ∈ R. The above discussion suggests that in the

context of X̃, the bootstrap scheme should be able to replicate the correlation structure of the

increments of a fractional Brownian motion with Hurst parameter H = α + 1/2. To this end, we

propose the following local fractional bootstrap algorithm:

Step 1. Specify a null hypothesis H0 : α = α0 by fixing α0 ∈
(
−1

2 ,
1
2

)
.

Step 2. Generate bt/∆nc random variables, BH
∆n
, . . . , BH

bt/∆nc, which are independent of the origi-

nal process X, where BH is a fractional Brownian motion with Hurst parameter H = α0+1/2.

Step 3. Finally, return the observations

X∗i∆n
= σ̂ ·BH

i∆n
, i = 2υ, . . . , bt/∆nc , (12)

where σ̂ = σ̂(p, υ)n is a consistent estimator of the volatility σ.

This bootstrap algorithm deserves a few comments. First, we generate the bootstrap observa-

tions under the null hypothesis H0 : α = α0; this feature is not only natural, but it is important

to minimize the probability of a type I error, see e.g. Davidson and MacKinnon (1999). Second,

although (12) is motivated by the very simple model (11), as we will show below, this does not

prevent the bootstrap method to be valid more generally. In particular, its validity extends to

the case where the volatility is not constant as in (1). The choice of σ̂ may change depending

on the statistics of interest. As we will see shortly, for instance, when we consider the vector

∆
−1/2
n

(
V̄ (X; p, 1)nt , V̄ (X; p, 2)nt

)
, one could simply use σ̂ = σ̂(p, υ)nt =

(
m−1
p V̄ (X; p, υ)nt

)1/p
, cf.

Equation (5).

Define the bootstrap power variations analogues of (3) and (4), respectively, as follows

V ∗
(
X,BH ; p, υ

)n
t
≡ |σ̂(p, υ)nt |

p

µ(p, υ)nt
V (BH ; p, υ)nt , (13)

V̄ ∗
(
X,BH ; p, υ

)n
t
≡ ∆nτn (υ)−p V ∗

(
X,BH ; p, υ

)n
t

=
|σ̂(p, υ)nt |

p

µ(p, υ)nt
V̄
(
BH ; p, υ

)n
t
, (14)

where µ(p, υ)nt = ∆nτn (υ)−p µ(p, υ)nt with µ(p, υ)nt = E∗
(
V
(
BH ; p, υ

)n
t

)
.
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Lemma 3.1 Consider (1), (13), and (14) where BH is a fractional Brownian motion with Hurst

parameter H = α0 + 1/2. It follows that

(i) E∗
(
V̄ ∗
(
X,BH ; p, υ

)n
t

)
= |σ̂(p, υ)nt |

p .

(ii) V ar∗
(

∆
−1/2
n V̄ ∗

(
X,BH ; p, 1

)n
t

)
= ∆−1

n V ar
(
V̄
(
BH ; p, 1

)n
t

)
︸ ︷︷ ︸

≡λ11p,n

|σ̂(p,1)nt |
2p

(µ(p,1)nt )2
,

(iii) V ar∗
(

∆
−1/2
n V̄ ∗

(
X,BH ; p, 2

)n
t

)
= ∆−1

n V ar
(
V̄
(
BH ; p, 2

)n
t

)
︸ ︷︷ ︸

≡λ22p,n

|σ̂(p,2)nt |
2p

(µ(p,2)nt )2
,

(iv) Cov∗
(

∆
−1/2
n V̄ ∗

(
X,BH ; p, 1

)n
t
,∆
−1/2
n V̄ ∗

(
X,BH ; p, 2

)n
t

)
= ∆−1

n Cov
(
V̄
(
BH ; p, 1

)n
t
, V̄
(
BH ; p, 2

)n
t

)
︸ ︷︷ ︸

≡λ12p,n

|σ̂(p,1)nt |
p|σ̂(p,2)nt |

p

µ(p,1)nt µ(p,2)nt
,

(v) If |σ̂(p, υ)nt |
2p u.c.p.→

∫ t
0 |σs|

2p ds and |σ̂(p, 1)nt |
p |σ̂(p, 2)nt |

p u.c.p.→
∫ t

0 |σs|
2p ds, then

p lim
n→∞

Σ∗
(
X,BH ; p

)n
t
− Σ̃n

p,t = 0,

where

Σ∗
(
X,BH ; p

)n
t
≡ V ar∗

(
∆−1/2
n

(
V̄ ∗
(
X,BH ; p, 1

)n
t

V̄ ∗
(
X,BH ; p, 2

)n
t

))
, and

Σ̃n
p,t ≡ Λnp,t

∫ t

0
|σs|2p ds,

such that

Λnp,t =

(
(µ(p, 1)nt )−2 λ11

p,n (µ(p, 1)nt )−1 (µ(p, 2)nt )−1 λ12
p,n

(µ(p, 2)nt )−1 (µ(p, 2)nt )−1 λ12
p,n (µ(p, 2)nt )−2 λ22

p,n

)
.

Part (v) of Lemma 3.1 shows that the bootstrap variance Σ∗
(
X,BH ; p

)n
t

will only be a consis-

tent estimator of Σp,t under the general model (1) if the following three conditions hold true:

|σ̂(p, υ)nt |
2p u.c.p.→

∫ t

0
|σs|2p ds, |σ̂(p, 1)nt |

p |σ̂(p, 2)nt |
p u.c.p.→

∫ t

0
|σs|2p ds (15)

and

Λnp,t → Λp (i.e. µ(p, υ)nt → 1). (16)

It is easy to see that letting σ̂(p, υ)nt =
(
m−1

2p V̄ (X; 2p, υ)nt

)1/2p
will satisfy (15). However, it may

not be possible to satisfy (16). For instance, for p = 2 (which is the most important case in

practice), one can show that (see Appendix B)

µ(2, 1)nt = (bt/∆nc − 1) ∆2H
n

(
4− 22H

)
.
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However, despite Σ∗
(
X,BH ; p

)n
t

not being consistent for Σp,t, we can still achieve an asymptotically

valid bootstrap for the studentized distribution. To this end, we need to find a consistent estimator

of Σ∗
(
X,BH ; p

)n
t

based on bootstrap observations. In the following, without loss of generality, we

will use both choices of σ̂(p, υ)nt given by

σ̂(p, υ)nt =
(
m−1
p V̄ (X; p, υ)nt

)1/p
, for p = 1, 2, . . . , and υ = 1, 2 (17)

and

σ̂(p, υ)nt =
(
m−1
βp V̄ (X;βp, υ)nt

)1/βp
, for β > 0, p = 1, 2, . . . , and υ = 1, 2. (18)

We propose the following consistent estimator of Σ∗
(
X,BH ; p

)n
t

defined by

Σ̂∗
(
X,BH ; p

)n
t

=

 λ11
p,n
|σ̂(p,1)n∗t |

2p

(µ(p,1)nt )2
λ12
p,n
|σ̂(p,1)n∗t |

p|σ̂(p,2)n∗t |
p

µ(p,1)nt µ(p,2)nt

λ12
p,n
|σ̂(p,1)n∗t |

p|σ̂(p,2)n∗t |
p

µ(p,1)nt µ(p,2)nt
λ22
p,n
|σ̂(p,2)n∗t |

2p

(µ(p,2)nt )2

 (19)

where

|σ̂(p, υ)n∗t |
p = V̄ ∗

(
X,BH ; p, υ

)n
t
. (20)

Theorem 3.1 Suppose that Assumptions 1–3 hold for α ∈
(
−1

2 ,
1
2

)
. Assume that bootstrap ob-

servations are given by (12) where BH is a fractional Brownian motion with Hurst parameter

H = α0 + 1/2. It follows that as n→∞,

Ŝ∗n =
(

Σ̂∗
(
X,BH ; p

)n
t

)−1/2
∆−1/2
n

(
V̄ ∗
(
X,BH ; p, 1

)n
t
− E∗

(
V̄ ∗
(
X,BH ; p, 1

)n
t

)
V̄ ∗
(
X,BH ; p, 2

)n
t
− E∗

(
V̄ ∗
(
X,BH ; p, 2

)n
t

) )
d∗→ N (0, I2) ,

in prob-P.

Thus, we can deduce a bootstrap CLT result for the bootstrap smoothness parameter estimator

α̂∗ (p)nt analogue of α̂ (p)nt . To this end, let

α̂∗ (p)nt = hp (COF ∗ (p)nt ) ,

where hp (·) is defined by (8), whereas

COF ∗ (p)nt =
V ∗
(
X,BH ; p, 2

)n
t

V ∗ (X,BH ; p, 1)nt
. (21)

To understand the asymptotic behavior of COF ∗ (p)nt , we can write

COF ∗ (p)nt =

(
τn (2)2

τn (1)2

)p/2
V̄ ∗
(
X,BH ; p, 2

)n
t

V̄ ∗ (X,BH ; p, 1)nt
.

12



From Assumption 2, we have(
τn (2)2

τn (1)2

)p/2
→ 2

(2α+1)p
2 ,

and thus by Theorem 3.1, part (i) of Lemma 3.1, in conjunction with (17) and (18), and by using

equation (5) with υ = 1, 2, we can deduce that

V̄ ∗
(
X,BH ; p, 2

)n
t

V̄ ∗ (X,BH ; p, 1)nt

P∗→ 1, in prob-P.

It follows that, by applying the delta method on the CLT results of Theorem 3.1, we can characterize

the distribution of α̂∗ (p)nt . These results are summarized in the following theorem.

Theorem 3.2 Suppose that Assumptions 1–3 hold for α ∈
(
−1

2 ,
1
2

)
. Assume that bootstrap ob-

servations are given by (12) where BH is a fractional Brownian motion with Hurst parameter

H = α0 + 1/2. It follows that for any p ≥ 2, as n→∞,

T ∗α̂,n ≡ ∆−1/2
n

(α̂∗ (p)nt − α̃ (p)nt )√
V̂ ∗ (α̂)t

d∗→ N (0, 1) , in prob-P,

where

α̃ (p)nt = hp

(
C̃OF (p)nt

)
, (22)

such that

C̃OF (p)nt =

(
τn (2)2

τn (1)2

)p/2
|σ̂(p, 2)nt |

p

|σ̂(p, 1)nt |
p

=


V (X;p,2)nt
V (X;p,1)nt

, if σ̂(p, υ)nt is given by (17),(
V (X;βp,2)nt
V (X;βp,1)nt

)1/β
, if σ̂(p, υ)nt is given by (18),

and the estimator of the asymptotic variance V̂ ∗ (α̂)t is defined as

V̂ ∗ (α̂)t =
1

(p log (2))2 ς̂
∗ (X,BH ; p

)n
t
, (23)

with

ς̂∗
(
X,BH ; p

)n
t

=
λ11
p,n[

E∗
(
V̄ ∗ (X,BH ; p, 1)nt

)]2 (|σ̂(p, 1)n∗t |
p)2

(µ(p, 1)nt )2 +
λ22
p,n[

E∗
(
V̄ ∗ (X,BH ; p, 2)nt

)]2 (|σ̂(p, 2)n∗t |
p)2

(µ(p, 2)nt )2

− 2
λ12
p,n

E∗
(
V̄ ∗ (X,BH ; p, 1)nt

)
E∗
(
V̄ ∗ (X,BH ; p, 2)nt

) |σ̂(p, 1)n∗t |
p |σ̂(p, 2)n∗t |

p

µ(p, 1)nt µ(p, 2)nt
.

Remark 2 Note that the bootstrap statistic T ∗α̂,n is feasible: it is only a function of the original

sample of the observed data {Xi∆n} , the fractional Brownian motion generated in Step 2,
{
BH
i∆n

}
,

13



and their absolute moments
{
E
∣∣∣BH

i∆n
− 2BH

(i−υ)∆n
+BH

(i−2υ)∆n

∣∣∣p}. To see this, write

α̂∗ (p)nt = hp (COF ∗ (p)nt ) ,

where hp (·) and COF ∗ (p)nt are given in (8) and (21), respectively. Given (21) and (13), it follows

that

COF ∗ (p)nt =

(
τn (2)2

τn (1)2

)p/2
V̄ ∗
(
X,BH ; p, 2

)n
t

V̄ ∗ (X,BH ; p, 1)nt

=


µ(p,1)nt
µ(p,2)nt

V (BH ;p,2)
n

t

V (BH ;p,1)nt

V (X;p,2)nt
V (X;p,1)nt

, if σ̂(p, υ)nt is given by (17),

µ(p,1)nt
µ(p,2)nt

V (BH ;p,2)
n

t

V (BH ;p,1)nt

(
V (X;βp,2)nt
V (X;βp,1)nt

)1/β
, if σ̂(p, υ)nt is given by (18).

(24)

Similarly, when σ̂(p, υ)nt is given by (17) or (18), we can write V̂ ∗ (α̂)t given in Theorem 3.2 through

V̂ ∗ (α̂)t =
1

(p log (2))2 ς̂
∗ (X,BH ; p

)n
t
,

with

ς̂∗
(
X,BH ; p

)n
t

= A+B + C,

where

A = ∆−1
n (µ(p, 1)nt )−4

(
V
(
BH ; p, 1

)n
t

)2
V ar

(
V
(
BH ; p, 1

)n
t

)
,

B = ∆−1
n (µ(p, 2)nt )−4

(
V
(
BH ; p, 2

)n
t

)2
V ar

(
V
(
BH ; p, 2

)n
t

)
,

C = C1 · C2,

and

C1 = −2 (µ(p, 1)nt )−2 (µ(p, 2)nt )−2 V
(
BH ; p, 1

)n
t
V
(
BH ; p, 2

)n
t
,

C2 = ∆−1
n Cov

(
V
(
BH ; p, 1

)n
t
, V
(
BH ; p, 2

)n
t

)
.

Expressions for V ar
(
V
(
BH ; p, υ

)n
t

)
, Cov

(
V
(
BH ; p, 1

)n
t
, V
(
BH ; p, 2

)n
t

)
and µ(p, υ) for p = 2 can

be found in Appendix B.

3.1 Bootstrap implementation

We can use the bootstrap method proposed above to test hypotheses on the roughness of the

sample paths of a BSS process. Consider the following, where the null hypothesis is H0 : α = α0

for some α0 ∈
(
−1

2 ,
1
2

)
, whereas the alternative hypothesis is H1 : α 6= α0. We let p = 2. For

a given time period [0, t] with step size ∆n = t
n we suppose we have n + 1 ∈ N observations

X = (X0, X∆n , . . . , Xn∆n) of a BSS process. Below, B is the number of bootstrap replications

(e.g. B = 999).
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Algorithm for hypothesis testing using the Local Fractional Bootstrap

1. From the data X, compute the estimate of the roughness parameter α given by

α̂ (2)nt = h2 (COF (2)nt ) ,

where hp (·) and COF (2)nt are given in (8) and (9), respectively. Then, compute an estimator

of the asymptotic variance V (α̂)nt = lim
n→∞

V ar (α̂ (2)nt ) , given by

V̂ (α̂)t = n
m−1

2p V (X; 4, 1)nt (−1, 1) Λ2 (−1, 1)T

(2 log (2)V (X; 2, 1)nt )2 .

2. Simulate n + 1 observations BH
0 , B

H
∆n
, . . . , BH

n∆n
of a fractional Brownian motion with Hurst

parameter H = α0 + 1/2 that are independent of the data X.

3. Using the simulated sample (BH
0 , B

H
1 , . . . , B

H
n ), compute the estimate of the bootstrap rough-

ness parameter α̂∗ (2)nt , given by

α̂∗ (2)nt = h2 (COF ∗ (2)nt ) ,

where hp (·) and COF ∗ (p)nt are given in (8) and (24), respectively.

4. The actual test relies on the bootstrap studentized statistic. Thus, compute

T ∗α̂,n = ∆−1/2
n

(α̂∗ (2)nt − α̃ (2)nt )√
V̂ ∗ (α̂)t

,

where α̃ (2)nt is given by (22), whereas α̂∗ (2)nt is obtained in step 3, and V̂ ∗ (α̂)t is defined in

(23).

5. Repeat steps 2–4 B times and store the values of T ∗α̂,n,j , j = 1, . . . , B.

6. Reject H0 : α = α0, when

α0 /∈ IC∗perc−t,1−γ =

[
α̂ (2)nt − n

−1/2q∗1−γ/2

√
V̂ (α̂)t, α̂ (2)nt − n

−1/2q∗γ/2

√
V̂ (α̂)t

]
,

where q∗γ/2 and q∗1−γ/2 are the γ/2 and 1− γ/2 quantiles of the bootstrap distribution of T ∗n ,

respectively.

4 Monte Carlo simulation study

In this section, we evaluate the finite sample performance of the test based on local fractional

bootstrap and compare it to the performance of the CLT-based test. In our simulations we take g

to be the gamma kernel, i.e. g(x) = xαe−λx for x > 0 and with λ = 1. For an in-depth analysis

of the theoretical properties of the gamma kernel, see Barndorff-Nielsen (2012, 2016). We consider
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α ∈ {−1/3,−1/6, 0, 1/6, 1/3}; recall that the CLT for the COF estimator does not hold when when

α ∈ [1/4, 1/2). We experimented with several different values of λ and α, but the results were in

all cases very similar to what we find below. We consider three specifications for the stochastic

volatility process:

• constant volatility (NoSV),

• one-factor stochastic volatility (SV1F),

• two-factor stochastic volatility (SV2F).

The details of these specifications, along with the simulation procedure, are explained in Ap-

pendix A. Our investigations concern the finite sample size of the test H0 : α = α0 against the

two-sided alternative H1 : α 6= α0 at (nominal) 5% level. We also calculate the power of the test

at 5% level where the (now false) null hypothesis is H0 : α = 0. The null hypothesis H0 : α = 0 is

particularly interesting as α = 0 is a necessary condition for the semimartingality of X. Further,

in the case of the gamma kernel g(x) = xαe−λx that we consider here, α = 0 implies that the BSS
process actually is an Ornstein-Uhlenbeck process.

Tables 1 and 2 contain the results of our Monte Carlo study and detail the finite sample

properties of both the CLT and the local fractional bootstrap. Table 1 presents rejection rates of

H0 when H0 is true (i.e. the size), while Table 2 displays rejection rates of H0 when H1 is true

(i.e. the power). Some clear conclusions can be drawn. Firstly, the bootstrap method offers clear

gains in the size of the test when the number of observations, n, is small. Secondly, the power of

the CLT is slightly better for α < 0, while the opposite is true for α ≥ 0. Thirdly, the presence

or absence of SV does not alter results very much, except in the case of SV2F where the methods

lose some power. Finally, these conclusions also hold for α = 1/3 > 1/4, indicating the validity

of the methods in the range α ∈ [1/4, 1/2), even though the CLT for the COF estimator does not

hold there.

5 Empirical applications

In this section, we apply the local fractional bootstrap method presented above to two relevant

empirical data sets. As we saw in the previous section, the bootstrap method is crucial for achieving

the correct empirical size of the hypothesis test H0 : α = α0, especially when the number of

observations n is small. In both of our applications, theoretical arguments suggest specific null

hypotheses to be true, and we examine how the CLT and bootstrap fare in confirming or rejecting

these hypotheses.
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Table 1: Rejection rates under H0

Panel A: NoSV

n α = −1/3 α = −1/6 α = 0 α = 1/6 α = 1/3

CLT boot CLT boot CLT boot CLT boot CLT boot
20 0.0968 0.0470 0.0950 0.0454 0.0968 0.0354 0.1044 0.0478 0.1110 0.0456
40 0.0742 0.0534 0.0728 0.0540 0.0754 0.0488 0.0746 0.0584 0.0852 0.0558
80 0.0642 0.0568 0.0562 0.0512 0.0644 0.0550 0.0638 0.0526 0.0726 0.0610
160 0.0620 0.0596 0.0638 0.0598 0.0536 0.0514 0.0576 0.0558 0.0572 0.0528
320 0.0568 0.0556 0.0540 0.0530 0.0562 0.0526 0.0610 0.0582 0.0548 0.0516

Panel B: SV1F

n α = −1/3 α = −1/6 α = 0 α = 1/6 α = 1/3

CLT boot CLT boot CLT boot CLT boot CLT boot
20 0.1012 0.0466 0.1124 0.0506 0.1052 0.0380 0.1050 0.0466 0.1222 0.0554
40 0.0740 0.0542 0.0796 0.0550 0.0772 0.0464 0.0796 0.0552 0.0872 0.0612
80 0.0580 0.0526 0.0588 0.0512 0.0652 0.0526 0.0658 0.0552 0.0686 0.0610
160 0.0614 0.0596 0.0546 0.0506 0.0584 0.0558 0.0622 0.0572 0.0660 0.0590
320 0.0564 0.0558 0.0508 0.0546 0.0502 0.0492 0.0532 0.0536 0.0528 0.0512

Panel C: SV2F

n α = −1/3 α = −1/6 α = 0 α = 1/6 α = 1/3

CLT boot CLT boot CLT boot CLT boot CLT boot
20 0.0918 0.0400 0.0962 0.0470 0.0986 0.0340 0.1092 0.0516 0.1458 0.0534
40 0.0734 0.0548 0.0638 0.0504 0.0748 0.0516 0.0822 0.0670 0.1056 0.0634
80 0.0616 0.0584 0.0656 0.0624 0.0686 0.0572 0.0678 0.0620 0.0844 0.0632
160 0.0558 0.0544 0.0612 0.0594 0.0572 0.0550 0.0630 0.0606 0.0650 0.0602
320 0.0562 0.0562 0.0572 0.0554 0.0512 0.0508 0.0550 0.0574 0.0624 0.0602

Simulation study of the finite sample properties of the test H0 : α = α0 against the alternative
H1 : α 6= α0, using the CLT and the local fractional bootstrap. The simulations are done under
H0, i.e. we consider the size of the tests. The nominal size is 5% and the numbers shown are the
rejection rates of H0 over 5 000 Monte Carlo simulations, each with B = 999 bootstrap replications.
We set p = 2 and λ = 1.
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Table 2: Rejection rates under H1

Panel A: NoSV

n α = −1/3 α = −1/6 α = 1/6 α = 1/3

CLT boot CLT boot CLT boot CLT boot
20 0.3474 0.1566 0.1922 0.0708 0.0754 0.0510 0.1198 0.1118
40 0.4318 0.2886 0.2016 0.1148 0.0872 0.1030 0.2648 0.3146
80 0.6370 0.5428 0.2536 0.1848 0.1622 0.1994 0.5532 0.6212
160 0.8700 0.8248 0.3832 0.3228 0.3066 0.3526 0.8768 0.8998
320 0.9896 0.9852 0.6122 0.5654 0.5716 0.6074 0.9954 0.9964

Panel B: SV1F

n α = −1/3 α = −1/6 α = 1/6 α = 1/3

CLT boot CLT boot CLT boot CLT boot
20 0.3364 0.1536 0.1978 0.0710 0.0742 0.0472 0.1170 0.1084
40 0.4288 0.2914 0.1968 0.1108 0.0842 0.0986 0.2578 0.3052
80 0.6324 0.5350 0.2648 0.1958 0.1508 0.1880 0.5526 0.6126
160 0.8772 0.8302 0.3844 0.3242 0.3048 0.3458 0.8788 0.9020
320 0.9908 0.9874 0.6126 0.5672 0.5746 0.6092 0.9936 0.9948

Panel C: SV2F

n α = −1/3 α = −1/6 α = 1/6 α = 1/3

CLT boot CLT boot CLT boot CLT boot
20 0.2864 0.1166 0.1660 0.0628 0.0708 0.0450 0.0826 0.0686
40 0.3388 0.2238 0.1684 0.0988 0.0844 0.0948 0.1638 0.1942
80 0.4524 0.3598 0.1840 0.1312 0.1182 0.1446 0.3206 0.3740
160 0.6472 0.5890 0.2460 0.1960 0.1974 0.2338 0.5832 0.6262
320 0.8628 0.8396 0.3846 0.3468 0.3638 0.4008 0.8428 0.8620

Simulation study of the finite sample properties of the test H0 : α = 0 against the alternative
H1 : α 6= 0, using the CLT and the local fractional bootstrap. The simulations are done under the
alternative, i.e. we consider the power of the tests, with the true value of α used in the simulations
being the α indicated in the respective column. The nominal size is 5% and the numbers shown
are the rejection rates of H0 over 5 000 Monte Carlo simulations, each with B = 999 bootstrap
replications. We set p = 2 and λ = 1.
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5.1 High-frequency futures price data

Here, we consider testing H0 : α = 0 for the price of a financial asset, the E-mini S&P 500 futures

contract. Note that, at least theoretically, on no-arbitrage grounds (Delbaen and Schachermayer,

1994, Theorem 7.2) one would expect H0 to be true, since α 6= 0 implies that the BSS process is

not a semimartingale (e.g. Corcuera et al., 2013; Bennedsen, 2016).

Our data consists of high-frequency3 observations of the E-mini S&P 500 futures contract,

traded on CME Globex electronic trading platform, from January 2, 2013 until December 31,

2014, excluding weekends and holidays. This results in 516 trading days, 18 of which were not

full trading days; we removed these to arrive at a total of 498 days in our sample. Although the

E-mini S&P 500 contract is traded almost around the clock, we restrict attention to the most

liquid time period which is when the NYSE is open, i.e. to the 6.5 hours from 9.30 a.m. to 4 p.m.

EST. We resample the price at different frequencies, ∆ ∈ {2, 5, 10, 15} minutes, which results in

n = 196, 79, 40, 27 daily prices, respectively. We then test H0 : α = 0 for each day using both the

CLT and the local fractional bootstrap against the two-sided alternative H1 : α 6= 0. The results,

averaged over the 498 days in our sample, are presented in Figure 1. We see that when we sample

the price frequently (∆ = 2 minutes), both methods reject often (16.5% and 14.1%, respectively)

indicating that the number of days when H0 : α = 0 is rejected is significant. This result may

seem surprising, but is likely due to market microstructure (MMS) noise effects: at very short time

scales, high-frequency data often exhibits negative autocorrelations that are compatible with the

alternative hypothesis α < 0.

When sampling at lower frequencies, i.e. ∆ being at least 5 minutes, one expects the MMS

effects to be negligible and rejections of H0 should occur at the nominal rate. Figure 1 indeed

shows that we reject H0 less often in these cases; we also observe that the bootstrap method

rejects less often than the CLT. Indeed, the bootstrap is closer to the nominal 5% rejection rate

which we would expect under H0. In the case ∆ = 15 minutes, we have only n = 27 observations

per day; considering the Monte Carlo evidence above, we expect the CLT to be oversized in this

case. As seen in the figure, the CLT indeed rejects H0 more often here (11.4%) while the bootstrap

essentially retains the nominal size, rejecting on 4.6% of the days. This is encouraging as any MMS

effects should be negligible at this time scale.

5.2 Turbulence data

In our second application, we study a time series of one-dimensional hot-wire anemometer mea-

surements of the longitudinal component of a turbulent velocity field in the atmospheric boundary

layer, measured 35 meters above ground level. The time series consists of 2 × 107 observations,

sampled at a rate of 5 kHz. In other words, there are 20 million observations, measured over a

3The data has been recorded with one-second time stamp precision.
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Figure 1: Estimates of α and test of H0 : α = 0 against H1 : α 6= 0 from 498 intraday time series
of log-prices from the E-mini data set, sampled every ∆ period. The plots depict the estimated
value of α from a given day. The particular days where H0 was rejected by both the CLT and
LFB are shown by red squares; the days where only the CLT, but not the LFB, rejected are green
diamonds; the days where only the LFB, but not the CLT, rejected are magenta asterisks; and the
days where no method rejects H0 are blue circles. We used B = 999 bootstrap replications and
the black horizontal line indicates the null value α = 0.
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period of T = 4 000 seconds with 5 000 observations recorded per second. This time series was

also studied in Corcuera et al. (2013) and Barndorff-Nielsen et al. (2014), and we refer to Dhruva

(2000) for further details on how it was recorded.

When timewise data on turbulence is modeled using a BSS process whose kernel function

satisfies Assumption 1(i), Kolmogorov’s 5/3 scaling law (Kolmogorov, 1941) for fully developed

turbulence, assuming Taylor’s frozen field hypothesis (Taylor, 1938), is compatible with the pa-

rameter value α = −1/6 at intermediate time scales that correspond to the so-called inertial range;

see also Márquez and Schmiegel (2016). By analyzing the spectral density of the time series, for

this data the inertial range was found to be approximately between 0.1 Hz and 200 Hz (Corcuera

et al., 2013, Section 5).

As in the previous application, we experiment with resampling the data at various frequencies

f , varying f to study the roughness properties of the time series at different time scales. More

specifically, we vary f between 1 Hz and 200 Hz to include time scales both firmly within and on the

border of the inertial range. The time increment ∆ used in resampling is related to f by ∆ = 1/f .

Motivated by Kolmogorov’s scaling law, we formulate H0 : α = −1/6 and test it against the two-

sided alternative H1 : α 6= −1/6. In our analysis, we divide the sample period (of 4 000 seconds)

into M = 400 sub-periods of 10 seconds. We conduct the test on each sub-period individually,

treating them as separate measurements of the same phenomenon, which seems reasonable given

the putative stationarity of the time series. Note that after resampling at frequency f , the number

of observations covering each sub-period is n = 10f .

Figure 2 presents results on the rejection rate of H0, which is the relative frequency of rejections

over the M = 400 sub-periods. As expected, H0 is often rejected when the sampling rate is on the

border of the inertial range (cf. the results for f = 200 Hz). When firmly inside the inertial range

(f = 20 Hz), the null hypothesis is rejected in roughly 4% of the sub-periods for both methods. At

these sampling frequencies, the CLT- and bootstrap-based tests largely agree; this is as expected

since there are plenty of observations.

The results change as the sampling frequency is lowered, resulting in fewer observations. Indeed,

we see that the CLT-based test yields rejection rates of 10.8% and 17.3% at sampling frequencies

1 and 2 Hz, respectively, while the bootstrap-based test rejects roughly at the nominal 5% rate,

as we would expect from a correctly-sized test when H0 is true. As seen also in the previous

application, at low sampling frequencies (here 1 Hz, which leads to n = 10 observations), the COF

estimator seems to be severely biased (the mean of the estimates of α is around −0.475). In this

case, the CLT-based test starts rejecting H0 at an unplausibly high rate (around 17%) while the

bootstrap-based test is more conservative with rejection rate around 6%. As we would still expect

the null hypothesis H0 : α = −1/6 to be actually true at this sampling frequency, it is reassuring

that the bootstrap-based test is so close to the nominal rate 5% in this, arguably extreme, case.
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However, this comes with the caveat that n = 10 observations might simply be too few to draw

any definite conclusion on.

6 Conclusion

We have proposed a novel bootstrap method of conducting inference on the roughness index α of

a Brownian semistationary process using the change-of-frequency estimator. While our simulation

study indicates that the performance of both the CLT- and bootstrap-based tests is generally good,

the bootstrap approach improves the size properties of the test of H0 : α = α0 when the number

of observations is moderate or small.

As an application, we applied the method to test for H0 : α = 0 with a time series of intraday

prices of the E-mini S&P 500 futures contract and to test for H0 : α = −1/6 with a time series of

measurements of atmospheric turbulence. With both data sets, we observed what the simulation

results already indicated: the CLT rejects the respective null hypotheses, that we expect to be

true on theoretical grounds, too often when the number of observations is limited, while the local

fractional bootstrap retains the correct size. We conclude that the local fractional bootstrap is a

powerful alternative to the CLT when drawing inference on the roughness index α, and it appears

to be essential at lower observation frequencies.

Finally, we note that while in this paper we have focused on BSS processes, the local fractional

bootstrap method should be applicable to other “fractional” processes such as the fractional Brow-

nian motion (fBm), fractional Ornstein-Uhlenbeck process, and the like. We leave such extensions

for future work.
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Figure 2: Estimates of α and test of H0 : α = −1/6 against H1 : α 6= −1/6 from 400 experiments
using the turbulence data described in the text, see also Dhruva (2000). The data is sampled at
frequency f . The plots depict the estimated value of α from a given experiment. The particular
experiments where H0 was rejected by both the CLT and LFB are shown by red squares; the
experiments where only the CLT, but not the LFB, rejected are green diamonds; the experiments
where only the LFB, but not the CLT, rejected are magenta asterisks; and the experiements where
no method rejects H0 are blue circles. We used B = 999 bootstrap replications and the black
horizontal line indicates the null value α = −1/6.
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A Simulation design

In our Monte Carlo study presented above we have simulated n + 1 ∈ N equidistant observations

X0, X1/n, X2/n, . . . , X1 of the BSS process

Xt =

∫ t

−∞
g(t− s)σsdWs (25)
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on the time interval [0, 1]. Recall that we take g(x) = xαe−λx where λ > 0 and α ∈
(
−1

2 ,
1
2

)
.

Simulation of X is not straightforward as the process is typically neither Gaussian nor Markovian,

which rules out both exact and recursive simulation schemes. However, as shown in Bennedsen

et al. (2015), the process X can be simulated efficiently and accurately using the so-called hybrid

scheme, which is based on approximating Xt by a Riemann sum plus Wiener integrals of a power

function that mimicks the steep behavior of g at zero. In particular, the hybrid scheme improves

significantly simulation accuracy compared to any approximation using merely Riemann sums.

To simulate the observations X0, X1/n, X2/n, . . . , X1, the hybrid scheme approximates Xi/n,

i = 0, 1, . . . , n, by

Xn
i/n := X̌n

i/n + X̂n
i/n,

where

X̌n
t :=

κ∑
k=1

Lg

(
k

n

)
σt−k/n

∫ t− k
n

+ 1
n

t− k
n

(t− s)αdWs, (26)

X̂n
t :=

Nn∑
k=κ+1

g

(
b∗k
n

)
σt−k/n(Wt−k/n+1/n −Wt−k/n). (27)

The number Nn := bn1+δc, for some δ > 0, determines the truncation ”towards minus infinity”,

while κ ≥ 0 denotes the number of terms that are simulated directly via Wiener integrals, cf. (26).

As shown in Bennedsen et al. (2015), κ = 1 suffices when α < 0, but we need κ = 3 when α is

close to 1
2 . In the simulations, we therefore choose κ = 1 when α < 0 and κ = 3 when α > 0. We

also let δ = 0.5. The numbers

b∗k =

(
kα+1 − (k − 1)α+1

α+ 1

)1/α

,

k = 1 . . . , Nn, are the optimal points4 to evaluate g at; see Proposition 2.2 of Bennedsen et al.

(2015). We refer to Bennedsen et al. (2015) for implementation of the algorithm used to simulate

(26) and (27) exactly while simulateneously simulating σi/n−k/n, i, k = 0, 1, . . . , which may be

correlated with W.

For the stochastic volatility process σ = (σt)t∈R, we consider three different specifications:

(i) constant volatility, labeled NoSV; (ii) one-factor stochastic volatility, labeled SV1F; and (iii)

two-factor stochastic volatility, labeled SV2F. For the NoSV model we take for t ∈ R,

σt = 1,

4In the sense of asymptotic mean-square error.
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while we in the SV1F model take, following Barndorff-Nielsen et al. (2008),

σt = exp(β0 + β1τt),

dτt = ξτtdt+ dBt,

d[W,B]t = ρdt,

where B is a standard Brownian motion and β1 = 0.125, ξ = −0.025, β0 =
β2
1

2ξ = −0.3125 and

ρ = −0.3. Lastly, for the SV2F model we take, following Huang and Tauchen (2005) and Barndorff-

Nielsen et al. (2008),

σt = s- exp(β0 + β1τ1t + β2τ2t),

dτ1t = ξ1τ1tdt+ dB1
t ,

dτ2t = ξ2τ2tdt+ (1 + φτ2t)dB
2
t ,

d[W,B1]t = ρ1dt,

d[W,B2]t = ρ2dt,

where B1, B2 are standard Brownian motions and the function s- exp is given by

s- exp(x) =

{
exp(x), x ≤ log(1.5),
3
2

√
1− log(1.5) + x2/ log(1.5), x > log(1.5)

and the parameters are set to (β0, β1, β2)T = (−1.20, 0.040, 1.50)T , (ξ1, ξ2)T = (−0.00137,−1.386)T ,

φ = 0.250 and ρ1 = ρ2 = −0.30.

We note that in the NoSV case the process X is Gaussian and can thus be simulated exactly

using a Cholesky decomposition of its variance-covariance matrix, which is what we do in our

simulations. The stochastic processes of SV1F and SV2F can be simulated exactly using methods

in Glasserman (2003), see also the Simulation Appendix to Barndorff-Nielsen et al. (2008).

B Expressions for Λp, λ
i,j
p,n, and µ(p, υ)nt

In both the ordinary CLT (10) as well as the bootstrap CLT there are various terms that are

necessary to derive when implementing the methods. In particular, the ordinary CLT requires

calculation of Λp = {λi,jp }1≤i,j≤2 while the bootstrap CLT requires calculation of {λi,jp,n}1≤i,j≤2

as well as µ(p, υ)nt = E∗
(
V
(
BH ; p, υ

)n
t

)
for υ = 1, 2, see Remark 2. Although the calculations

involved are quite straightforward, they are tedious. For the convenience of the reader, we supply

the expressions for these terms here. In what follows we denote by n = bt/∆nc the total number

of observations.
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Recall the specifications

λ11
p,n = ∆−1

n var
(
V̄
(
BH ; p, 1

)n
1

)
,

λ22
p,n = ∆−1

n var
(
V̄
(
BH ; p, 2

)n
1

)
,

λ12
p,n = ∆−1

n cov
(
V̄
(
BH ; p, 1

)n
1
, V̄
(
BH ; p, 2

)n
1

)
,

and λi,jp = limn→∞ λ
i,j
p,n. Analytical expressions are only known for p = 2, which is arguably

the most relevant in empirical applications as it corresponds to using squared increments when

calculating power variations. We therefore only consider p = 2 here.

Let ρHυ1,υ2 be the correlation function between the second order increments of the fractional

Brownian motion with Hurst index H, calculated at lag υ1, and the second order increment calcu-

lated at lag υ2. In other words

ρHυ1,υ2(h) := Corr
(
BH
i+h − 2BH

i+h−υ1 +BH
i+h−2υ1 , B

H
i − 2BH

i−υ2 +BH
i−2υ2

)
, h ∈ Z.

We will need the combinations (υ1, υ2) = (1, 1), (2, 2), (1, 2) and we give them for reference:

ρH1,1(h) :=
1

2(4− 22H)

(
−|h− 2|2H + 4|h− 1|2H − 6|h|2H + 4|h+ 1|2H − |h+ 2|2H

)
,

ρH2,2(h) :=
1

2 (4 · 22H − 42H)

(
−|h− 4|2H + 4|h− 2|2H − 6|h|2H + 4|h+ 2|2H − |h+ 4|2H

)
,

ρH1,2(h) :=
−|h− 2|2H + 2|h− 1|2H + |h|2H − 4|h+ 1|2H + |h+ 2|2H + 2|h+ 3|2H − |h+ 4|2H

2
√

4− 22H
√

4 · 22H − 42H
.

Brute force calculations will yield

λ11
2,n = 2∆4H

n

n∑
i=2

n∑
j=2

ρH1,1(i− j)2,

λ22
2,n = 2∆4H

n

n∑
i=4

n∑
j=4

ρH2,2(i− j)2,

λ12
2,n = λ21

2,n = 2∆4H
n

n∑
i=2

n∑
j=4

ρH1,2(i− j)2.

In the feasible implementation in Remark 2 we will actually need the unnormalized variants of

λij2,n which are

V ar
(
V
(
BH ; p, 1

)n
1

)
= ∆nλ

11
2,n · (4− 22H)2,

V ar
(
V
(
BH ; p, 2

)n
1

)
= ∆nλ

22
2,n · (4 · 22H − 42H)2,

Cov
(
V
(
BH ; p, 1

)n
1
, V
(
BH ; p, 2

)n
1

)
= ∆nλ

12
2,n · (4− 22H)(4 · 22H − 42H).
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To arrive at expressions for λijp we can either take limits in the above or use the theory in

Nourdin et al. (2011) (see e.g. Barndorff-Nielsen et al., 2013) to get

λ11
2 = 2 + 4

∞∑
h=1

ρH1,1(h)2,

λ22
2 = 2 + 2−4H+2

∞∑
h=1

[
ρH1,1(h− 2) + 4ρH1,1(h− 1) + 6ρH1,1(h) + 4ρH1,1(h+ 1) + ρH1,1(h+ 2)

]2
,

λ12
2 = λ21

2 = 23−2H
(
ρH1,1(1) + 1

)2
+ 22−2H

∞∑
h=0

[
ρH1,1(h) + 2ρH1,1(h+ 1) + ρH1,1(h+ 2)

]2
.

Finally, we need to calculate µ(2, 1)nt and µ(2, 2)nt . Straightforward calculations yield

µ(2, 1)nt = (n− 1)∆2H
n

(
4− 22H

)
,

µ(2, 2)nt = (n− 3)∆2H
n

(
4 · 22H − 42H

)
.

C Proofs

Proof of Proposition 2.1. The proofs of the statements follow the ones referenced in Cor-

cuera et al. (2013) almost verbatim, which in turn relies on results from Barndorff-Nielsen et al.

(2013). We note that in the case of α = 0 the increments of the BSS process are asymptotically

uncorrelated. Indeed, we have by Assumption 2’(i) (cf. equation (2.6) in Corcuera et al., 2013)

rn(j) := corr
(
G(j+1)∆n

− 2Gj∆n +G(j−1)∆n
, G∆n − 2G0 +G−∆n

) n→∞−→ ρ2(j), j ≥ 0,

where ρ2(j) is the correlation function of the second order increments of a Brownian motion.

Therefore,

ρ2(j) = 0, j ≥ 2.

This uncorrelatedness simplifies matters, for instance when we need to calculate Λp (see pages

85-86 in Barndorff-Nielsen et al., 2013). The proof of Proposition 2.1 has two main parts, see the

similar proofs in Barndorff-Nielsen et al. (2011, 2013). First, we need to show the existence of a

sequence r(j), such that

|rn(j)| ≤ Cr(j),
∞∑
j=1

r(j)2 <∞, (28)

where C > 0, see page 75 in Barndorff-Nielsen et al. (2013) for the case of α 6= 0. Given that (e.g.

Barndorff-Nielsen et al., 2013)

rn(j) =
−R

(
j+2
n

)
+ 4R

(
j+1
n

)
− 6R

(
j
n

)
+ 4R

(
j−1
n

)
−R

(
j−2
n

)
4R
(

1
n

)
−R

(
2
n

) ,
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it is not difficult to show, using Assumptions 2’(i)-(iii) and the approach from the proof of Lemma

1 in Barndorff-Nielsen et al. (2009), that the sequence

r(j) = (j − 1)−β, j ≥ 2,

will suffice as the sequence in (28), where β is the parameter from Assumption 2’(ii). We now turn

to the second part of the proof. Define

πn(A) :=

∫
A (g(x+ 2∆n)− 2g(x+ ∆n) + g(x))2 dx∫∞
0 (g(x+ 2∆n)− 2g(x+ ∆n) + g(x))2 dx

, A ∈ B (R) .

The only remaining thing to show is to ensure that the limit theorems apply for stochastic σ, is

that for all ε > 0 we have πn((ε,∞)) → 0 as n → ∞. Using Assumption 1’ (ii) and arguments as

the ones in Barndorff-Nielsen et al. (2013) page 74, we easily deduce this property. This concludes

the proof.

Proof of Lemma 3.1. (i) Given (1), (13), and (14) the result follows. In particular, we have

that

E∗
(
V̄ ∗
(
X,BH ; p, υ

)n
t

)
=
|σ̂(p, υ)nt |

p

µ(p, υ)nt
E∗
(
V̄
(
BH ; p, υ

)n
t

)
= |σ̂(p, υ)nt |

p

(ii) Given (1), (13), and (14), we can write

V ar∗
(

∆−1/2
n V̄ ∗

(
X,BH ; p, 1

)n
t

)
= ∆−1

n

(
|σ̂(p, 1)nt |

p

µ(p, 1)nt

)2

V ar∗
(
V̄
(
BH ; p, 1

)n
t

)
.

(iii) Follows similarly as the proof of Lemma 3.1 part (ii). (iv) Given (14), we can write

Cov∗
(

∆−1/2
n V̄ ∗

(
X,BH ; p, 1

)n
t
,∆−1/2

n V̄ ∗
(
X,BH ; p, 2

)n
t

)
= ∆−1

n

(
|σ̂(p, 1)nt |

p

µ(p, 1)nt

)(
|σ̂(p, 2)nt |

p

µ(p, 2)nt

)
Cov

(
V̄
(
BH ; p, 1

)n
t
, V̄
(
BH ; p, 2

)n
t

)
.

(iv) This result follows immediately given parts (ii), (iii), and (iv) of Lemma 3.1, the assumed

condition |σ̂(p, υ)nt |
2p u.c.p.→

∫ 1
0 |σs|

2p ds, and the definition of Λ̃np,t.

Proof of Theorem 3.1. Note that we can write

Ŝ∗n = Â∗nS
∗
n,

where S∗a,n is given by

S∗n =
(

Σ∗
(
X,BH ; p

)n
t

)−1/2
(∆n)−1/2

(
V̄ ∗
(
X,BH ; p, 1

)n
t
− E∗

(
V̄ ∗
(
X,BH ; p, 1

)n
t

)
V̄ ∗
(
X,BH ; p, 2

)n
t
− E∗

(
V̄ ∗
(
X,BH ; p, 2

)n
t

) ) ,
and

Â∗n =
(

Σ̂∗
(
X,BH ; p

)n
t

)−1/2 (
Σ∗
(
X,BH ; p

)n
t

)1/2
.
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Hence, to obtain the desired result of Ŝ∗n, we may proceed in two steps:

Step 1. Show that S∗n
d∗→ N (0, I2) .

Step 2. Show that Â∗n
P∗→ I2.

For Step 1, note that we can write S∗n as follows

S∗n =
(

Σ∗
(
X,BH ; p

)n
t

)−1/2
D ·Tn

where

D =

( |σ̂(p,1)nt |
p

µ(p,1)nt
0

0
|σ̂(p,2)nt |

p

µ(p,2)nt

)
,

and

Tn = (∆n)−1/2

(
V̄
(
BH ; p, 1

)n
t
− E

(
V̄
(
BH ; p, 1

)n
t

)
V̄
(
BH ; p, 2

)n
t
− E

(
V̄
(
BH ; p, 2

)n
t

) ) .
Under our assumptions, we have that (Breuer and Major, 1983, Theorem 1)

Tn
d→ N (0,Λp) .

Thus, results in Step 1 will follow if we can show that(
Σ∗
(
X,BH ; p,

)n
t

)−1/2
D =

(
D−1

(
Σ∗
(
X,BH ; p

)n
t

)1/2
)−1

P∗→ Λ−1/2
p .

To this end, note that we have

D−1
(

Σ∗
(
X,BH ; p

)n
t

)1/2
=


√
λ11
p,n 0

λ12p,n√
λ11p,n

√
λ22
p,n −

(λ12p,n)
2

λ11p,n

 ≡ Θp,n,

where we use

D−1=

( µ(p,1)nt
|σ̂(p,1)nt |

p 0

0
µ(p,2)nt
|σ̂(p,2)nt |

p

)
,

and (
Σ∗
(
X,BH ; p

)n
t

)1/2

=


√

(µ(p, 1)nt )−2 λ11
p,n |σ̂(p, 1)nt |

2p 0

(µ(p,2)nt )−1λ12p,n|σ̂(p,2)nt |
p

√
λ11p,n

√
(µ(p, 2)nt )−2 λ22

p,n |σ̂(p, 2)nt |
2p − (µ(p,2)nt )−2(λ12p,n)

2|σ̂(p,2)nt |
2p

λ11p,n

 .

The result follows since

Θp,nΘT
p,n = Λp,n =

(
λ11
p,n λ12

p,n

λ12
p,n λ22

p,n

)
→ Λp.
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For Step 2, it suffices to show that(
Σ̂∗
(
X,BH ; p

)n
t

)−1 (
Σ∗
(
X,BH ; p

)n
t

)
=

((
Σ∗
(
X,BH ; p

)n
t

)−1 (
Σ̂∗
(
X,BH ; p

)n
t

))−1
P∗→ I2.

We here utilize the fact that convergence in L1 implies convergence in probability and that all

elements of the sum in Σ̂∗i,j are non-negative (where Σ̂∗i,j is the (i, j)-th element of the matrix

Σ̂∗ =
(

Σ̂∗i,j

)
1≤i,j≤2

). In particular, given (20) and (19), for 1 ≤ i, j ≤ 2, we have

E∗
∣∣∣Σ̂∗i,j∣∣∣ = E∗

(
Σ̂∗i,j

)
= Σ∗i,j .

Thus, we deduce that

Σ̂∗
(
X,BH ; p

)n
t
− Σ∗

(
X,BH ; p

)n
t

P∗→ 0.

This concludes the proof of Step 2 and also that of Theorem 3.1.

Proof of Theorem 3.2. Given Theorem 3.1, the result follows from an application of the

delta method.
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