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Abstract

We show that a trader, who starts with no initial wealth and is not allowed to
borrow money or short sell assets, is theoretically able to attain positive wealth by
continuous trading, provided that she has perfect foresight of future asset prices,
given by a continuous semimartingale. Such an arbitrage strategy can be con-
structed as a process of finite variation that satisfies a seemingly innocuous self-
financing condition, formulated using a pathwise Riemann—Stieltjes integral. Our
result exemplifies the potential intricacies of formulating economically meaning-
ful self-financing conditions in continuous time, when one leaves the conventional
arbitrage-free framework.
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1 Introduction

Common sense suggest that arbitrage strategies — in the sense of mathematical finance,
involving no initial wealth — should require short selling or an access to credit — an
obvious budget constraint. Indeed, in the real world, and in discrete-time models as well,
we can distinguish the first position in the risky asset prescribed by the strategy. If this
position were not short, it would have to be funded by borrowed money. However, in the
realm of continuous trading, there might not be any “first position”, as the composition
of the portfolio can vary rather freely as a function of time, so it is not a priori clear if
arbitrage strategies without short selling or borrowing are impossible.

Self-financing conditions are an important aspect of dynamic trading strategies.
They should be seen as a means to enforce coherent accounting: All profits from trading
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must be credited to, and all trading costs debited from the money market account. In
continuous time, self-financing conditions are formulated using stochastic integrals; see,
e.g., Bjork [1, Sections 6.1 and 6.2]. In particular, for adapted strategies, Ité integrals
can be used when the price process is a semimartingale. However, the choice of the
integral is a rather delicate matter, as not all stochastic integrals lend themselves to
economically meaningful self-financing conditions. (For example, the paper by Bjork
and Hult [2] documents some interpretability issues that arise from the use of Skorohod
integrals and Wick products in self-financing conditions.) In any case, any sound self-
financing condition should at the very least rule out arbitrage strategies without short
selling or borrowing. After all, such trading strategies, which are able to generate wealth
literally ex nihilo, should definitely not be self-financing.

Besides It integration, pathwise Riemann—Stieltjes integrals (see, e.g., Riga [7],
Salopek [8], or Sottinen and Valkeila [9]) have often been seen as a “safe” way to formu-
late reasonable self-financing conditions. The reasons are manifold: Like It6 integrals,
Riemann—Stieltjes integrals can, of course, be obtained transparently as limits of Rie-
mann sums that reflect the natural self-financing condition for simple trading strategies.
Also, a pathwise Riemann—Stieltjes integral coincides with the corresponding It6 inte-
gral whenever the latter exists. Recall that a Riemann—Stieltjes integral is guaranteed
to exist for example when the integrator is continuous and the integrand is of finite
variation. While it typically rules out the Markovian trading strategies that arise in
dynamic hedging and utility maximisation, say, the finite variation assumption is eco-
nomically justified as it amounts to keeping the trading volume of the strategy finite
(which is an essential requirement under transaction costs); see, e.g., Longstaff [5].

However, it transpires that self-financing conditions based on pathwise Riemann—
Stieltjes integrals alone do not necessarily prohibit pathological trading strategies (even
of finite variation). We show in this note that, quite surprisingly, a Riemann—Stieltjes-
based self-financing condition may in fact admit arbitrage strategies that require neither
borrowing nor short selling if the trader has perfect foresight of the future prices of
the risky asset. Our existence result for such strategies (Theorem 2.6, below) is valid
provided that the price process is a continuous semimartingale with an equivalent local
martingale measure and non-degenerate quadratic variation. While the requirement of
perfect foresight is admittedly artificial, the result still hints at a subtle weakness in
the way the self-financing condition is formulated: In reality, such egregious arbitrage
strategies would be infeasible due to the simple budget constraint that even a trader
with perfect insider information cannot breach!

2 Model and main results

Let us consider a continuous-time market model with a risky asset and a risk-free
money market account, where trading is possible up to a finite time horizon T' € (0, c0).
The price of the risky asset follows a continuous, positive-valued semimartingale S =



(St)iefo,), defined on a complete probability space (€2, F,P). For simplicity, the interest
rate of the money market account is zero. Additionally, we denote by (?f )te[o,T} the
natural filtration of the price process .S, augmented the usual way to make it complete
and right-continuous, and by (S) the quadratic variation process of S. Throughout the
paper, we use the interpretation inf @ = co.

Consider a trader, whose trading strategy is described by two caglad (continuous
from left with limits from right) processes 1 = (¢t).cjo,7) and ¢ = (¢t)ic(o,r) that keep
track of her money market account balance and holdings in the risky asset, respectively.
The mark-to-market value of her portfolio at time ¢ € [0, 7] can then be expressed as

Vi =t + ¢4S¢ . (2.1)

As per the discussion above, we are interested in a scenario where the trader attempts
to follow an arbitrage strategy, so she starts with no initial wealth, which translates to
the constraint V = 0.

The trader is additionally subject to a self-financing condition. Let us assume pro-
visionally that 1) and ¢ are adapted to the filtration (F7 Jtelo,r]- Then the self-financing
condition is formulated the usual way [1, Sections 6.1 and 6.2] by requiring that

t t
Vi="Vy +/ ¢udSy = / ¢udS, for any t € [0,7T], (2.2)
0 0

where the integral with respect to S is understood as an It6 integral. Under the self-
financing condition (2.2), the process 1 becomes redundant as, by plugging (2.2) into
(2.1), we can solve for 1, to wit,

t
= /0 6udSy — &S, L€ [0,T]. (2.3)

Now the key question is: Are there non-trivial processes ¢, with ¢; > 0 for all
t € [0, 7], such that ¢, > 0 for all ¢ € [0, T]? Using (2.3), we can reformulate this as a
question of existence of non-negative processes ¢ that satisfy the stochastic inequality

t
/ GudSy, = ¢S; for all t € [0,7]. (2.4)
0

In the adapted case, we can answer the question in a straightforward manner if we
assume that S is arbitrage-free. Indeed, if there exists a probability measure Q on
(Q, F) such that Q ~ P (where “~” denotes mutual absolute continuity of measures, as
usual) and that S is a local Q-martingale, then a suitable version of the fundamental
theorem of asset pricing (e.g., [3, Corollary 1.2]) implies that there are no non-negative
(adapted) processes ¢ that would satisfy (2.4) and P(V; > 0) > 0 for some ¢ € (0,T].
However, as discussed above, we shall not insist on adaptedness, so we consider
processes ¢ that are not necessarily adapted to the filtration (?f)te[o’T]. Then the
stochastic integral with respect to S that appears in (2.2), (2.3) and (2.4) may not
exist as an [t integral. But if we assume that ¢ is of finite variation, then the integral



does exist as a Riemann—Stieltjes integral, see [10, Theorems 1.2.3 and 1.2.13], defined
path-by-path for any ¢ € [0, 7] by

t En
A (z)udSu = ngolo ; (ﬁ’rl" (St/\Ti” - St/\Tin—1) P-a.s. ) (25)

kn

=

where x Ay := min{z, y} for all z,y € R and (7")
such that

Om>1 18 @ family of random times

O:TgéTfé---éTgn:T, forany n > 1,

and limy, ;o0 SUpP; ;< (77" —7;"1) = 0. The definition (2.5) is independent of the choice of
(Tf)fg(),n}l. Further, it ensures that the self-financing condition based on such integrals
reduces to the usual self-financing condition when ¢ is simple, that is, piecewise constant.

Our main result shows that, in this alternative framework, there are in fact non-
trivial, non-negative processes ¢ that satisfy the inequality (2.4). The proof of this

result is carried out in Section 3, below.

Theorem 2.6. Suppose that the positive continuous semimartingale S = (St)iec(o1]
satisfies P((S)r > 0) > 0. Assume further that there exist a probability measure Q ~ P
such that S is a local Q-martingale. Then there exists a non-negative process ¢ =
(&t)tefo, 1], with caglad sample paths of finite variation, such that ¢o = 0, and

t
/ GudSy = ¢Sy for all t € [0,T] P-a.s., (2.7a)
0

¢
P(/ GudSy > ¢Sy for allt € (p,T]) >0, (2.7b)
0
where p:=1inf{t € (0,T]: (S)s > 0} AT.

Remark 2.8. (i) While not explicitly stated above, the process ¢ of Theorem 2.6 is
indeed not (and could not be) adapted to (T3 )telo,r]- The specification of ¢ for
any t € (0,T] requires full knowledge of the path of S. However, ¢ is adapted to
the filtration

F =32, tel0,T],

corresponding to perfect foresight on S, which also ensures that ¢ does not depend
on any (external) randomness beyond S.

(ii) In the mathematical finance literature, it is common to restrict trading strategies
to be admissible; see, e.g., [3, Definition 2.7]. While there are actually several
slightly differing definitions of admissibility, they have the commonality that the
value process of an admissible strategy is bounded from below (in some sense).
The purpose of admissibility conditions is to preclude some outright pathological
trading strategies, such as doubling strategies [3, p. 467]. It is worth stressing that
the process ¢ of Theorem 2.6 would not violate the typical admissibility conditions
as the corresponding value process V; = fot ¢udS,y, t € [0,T], is non-negative due
to the property (2.7a).
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Figure 1: Numerical illustration of Theorem 2.6. In this example T' = 1 and S is
a Brownian motion started at one, so that p = 0. (Theoretically, the requirement
that S is positive can then be met, e.g., by reflecting or absorbing the process at
some level between zero and one.) The realisation of the process ¢ has been generated
following the construction (3.14) given in the proof of Theorem 2.6, below. Recall that

U= [y pudSy — ¢S and Vi = by + ¢1S; = [ $udSu.



Curiously, the assumption about positive quadratic variation in Theorem 2.6 — that
is, S exhibits “enough” fluctuation — is rather crucial: Using a result [6, Theorem 3.1]
on the positivity of Riemann—Stieltjes integrals, we can show that arbitrage without
borrowing or short selling is in fact eliminated in this setting if also the price process S
is of finite variation:

Proposition 2.9. Suppose that the positive continuous semimartingale S = (St)te[o,T}
satisfies, P-a.s., (S)r = 0. If ¢ = (d¢)se(o, 15 a non-negative process with caglad sample
paths of finite variation such that

P(¢+ > 0 for some t € [0,T]) >0, (2.10)

then .
]P’(/ GudSy, < ¢1Sy for some t € [O,T]> >0. (2.11)
0

Proof. The integration by parts formula for Riemann—Stieltjes integrals [10, Theorem
1.2.3] yields

t t
/ GudSu = G5 — doSo — / Suddu, t€[0,T].
0 0

Note that since S is a continuous semimartingale, the assumption (S)r = 0 implies that
the sample paths of S are of finite variation. Now if ¢; > 0 for some ¢ € [0, 7], then it
follows! from [6, Theorem 3.1] that

t
/ Sudg, >0 for some t € [0,7T].
0

The probability (2.11) is thus greater than or equal to the probability (2.10), and the
assertion follows. O

Remark 2.12. In some way, Theorem 2.6 and Proposition 2.9 defy the usual mathemat-
ical finance intuition that “smooth” price processes are easier to arbitrage than “rough”
ones. Here the “roughness” of S is the very property that makes it possible to construct
the process ¢ in Theorem 2.6.

In Theorem 2.6, we assume that the price process S is arbitrage-free whilst the strat-
egy ¢ may not be adapted. This is, of course, only one of the possible departures from
the standard arbitrage-free setting. Alternatively, one could also consider a scenario
where the process S is a very general continuous process that may admit arbitrage and
¢ is an adapted strategy of finite variation and ask, how the stronger form of arbitrage
without short selling and borrowing can be excluded. This looks less straightforward
and may require some new techniques and estimates for Riemann—Stieltjes integrals, so
we leave the question open:

'The term non-vanishing in the statement of [6, Theorem 3.1] is potentially misleading. The appro-
priate interpretation is that the integrand g should not be identically zero. It is also worth mentioning
that the assumption g(a) = 0 therein can be trivially weakened to g(a) > 0; see [6, p. 401].



Open Question 2.13. When S is a general positive, continuous process (not necessar-
ily a semimartingale), under which conditions on S is arbitrage without borrowing or
short selling excluded in the context of strategies of finite variation? We remark that,
to this end, the process S should satisfy some kind of a non-degeneracy condition, as
integrands similar to ¢ of Theorem 2.6 can be constructed for deterministic continuous
paths that exhibit enough variation; see [6, Theorem 2.1].

3 Proof of Theorem 2.6

Before proving Theorem 2.6 rigorously, we describe intuitively how the process ¢ is
constructed. The idea is to structure ¢ from a sequence of non-overlapping static
positions in the risky asset, so that they have an “accumulation point” at p, see Figure
1, bottom-right panel, for an illustration. The sizes of these static positions are chosen
so that they are gradually increasing (from zero) and the positions are timed, using the
quadratic variation of S and perfect foresight, so that the price of the asset is known to
increase during each holding period.

While the construction of ¢ this way is simple in principle, it is non-trivial to select
the sizes of the static positions so that:

e each position can be fully funded using the profits from the preceding positions
(without needing to borrow money),

e the cumulative trading volume remains finite, which is equivalent to ¢ being of
finite variation.

In fact most of the theoretical arguments in the proof of Theorem 2.6 revolve around
verifying that these two requirements are indeed met.

We introduce now some additional notation that are needed in the sequel. For all
z,y € R, we denote x V y := max{z,y} and z* := x V0. If X and Y are identically
distributed random variables, we write X Ly, Suppose that A € F. Then we say that a
property P (provided that it is “F-measurable”) holds P-a.s. on A, if P({P}NA) = P(A).
We use the convention that N := {1,2,...}.

As a preparation, we prove now two technical lemmata, which will be instrumental
in the proof of Theorem 2.6.

Lemma 3.1. Let (y,)22; be a sequence of non-negative numbers such that limy, oo yn, =
0. Suppose that for some « € (0,1),

> -« Xn: Yk
Z e k1 <o0. (3.2)
n=1
If we set B := ﬁi_—aa and define a sequence ()52 of non-negative numbers by
SO |
T 1= ——, neN, 3.3
" 141;[1 1+ By (3:3)



then > 07 | &y, < 00 and

o0
Ty < Z Ty < oo  foranyn € N. (3.4)
k=n+1

Proof. Consider a sequence (y,)>>; and a € (0,1) that satisfy the assumptions given
above. Define then  := 13—7&@ and a sequence (z,,)>2; through (3.3). Clearly, then
0<a<pf<land 0<ax, <1forallneN.

By the definition (3.3),
Tn—1 = (1 + Byn)xn = xp + Brpy, forn > 2.

Thus for all n, N € N with n < N, we have

N
p Z TkYk = Tn — TN - (3.5)

k=n+1

If Y02 < oo, then necessarily z — 0 as k — oo. Therefore, we may take N — oo
in (3.5) and conclude that for every n € N,

oo
z, < B la, = Z TrYp < 00,
k=n+1
and, thus, (3.4) holds then. To complete the proof, it remains to show that "2~ |z <
00.

To prove that the assumptions on (y,)5%; imply the summability of the sequence
(2r)5% 1, we rely on the inequality log(14+2) > x/(1+4z), which holds for all x > 0. (This
inequality can be proven using the integral representation log(1 +z) = [ (1 + y)ldy
and the monotonicity of the integrand therein.) Hence, for all £ > n > 1 we have

29,
—log(1 <— = ="y,
og(1 + Byx) YrBYk T o M

where v, := 1/(1 4+ Bsup,,>, Ym). Since limy_ooyr = 0, here v, /1 as n — oo.
In particular, there exists ng € N such that 7,, > (1 + «)/2 and for all k& > ny we
then have —log(l + fByx) < —ayg. Using the above estimates to the representation
Ty = szl e~ 108(1+5Yr) thus shows that for all n > ng,

n no n
0 <2y < 2y, exp(—a Z yk) = Tp, €XP (aZyk) exp(—aZyk) .
k=no+1 k=1 k=1

So (3.2) ensures that, indeed, Y7 | z, < 00. O

Lemma 3.6. Let B = (By);c(o1) be a standard Brownian motion and let o > 0. If we
define for some v € (0,1),
é.n = (O’an’y - O-B(n—f—l)*’Y)Jra ne Nu

8



then for any o > 0,

< _ad e
E(Ze k=1 k) < 00.
n=1

Proof. By the self-similarity of Brownian motion, we have &, 4 uan for any n € N,
where

Uy = 0\/n~7 — (n+1)"7
Observe also that, by the mean value theorem,
’yéa(n +1)P <up, < ’yéan_p, (3.7)

with p := 7+1 € (3,1).
Let us now fix a > 0. By Tonelli’'s theorem and the mutual independence of the

random variables &1, &9, ..., we obtain
= o Z 3 SPX: >
E(Z k) ZE( k=1 k) ZHgo —Quy,) , (3.8)
n=1 n=1k=1

where @(u) = E(e“Bfr), u € R. Since the P(Bf” > 0) = 1, E(B}) < oo and P(B] >
0) = 3 > 0, we have

E(BfeB)

= inf ——17 ) (0,00).
U elbne) m(epr) )
By Jensen’s inequality, for u € (0, ao),
1 E(e“BT@*UBIL) E(Bfe*”B )
— —~ >exp | u————% | = explucy),
p(—u) E(e*“Bl ) E(e*"Bl )

which implies that
n n
H o(—auy) < exp ( - Z uk) , (3.9)
k=1 k=1

for any n € N.
Using the lower bound in (3.7) we can estimate, for any n € N,

n

n n+2
Zuk > "}/%UZ(]{Z +1)7P> fyéo/ 7Pz > con' P, (3.10)
k=1 2

k=1

where co = ¢o(y,0,p) > 0 is a constant. Now note that for any exponent 6 > 0, there
exists a constant c3 = c3(f) > 0 such that e® > c32?, 2 > 0. Thus, applying (3.10) to
(3.9), we find that for any n € N,

n
clcgnl_p 1 1
—Qu <
U *) = (c1e2)le3 nf0-p)
and, in view of (3.8), it remains to choose 6 > ﬁ. O



The proof of Theorem 2.6 is based on the observation that the properties (2.7a) and
(2.7b) the process ¢ is expected to satisfy are robust to time changes and equivalent
changes of the probability measure. Under the assumptions of Theorem 2.6, we can
represent the process S as a time-changed Brownian motion under an equivalent local
martingale measure. Therefore we can verify (2.7a) and (2.7b) relying on the properties
of Brownian motion via Lemmata 3.1 and 3.6.

Proof of Theorem 2.6. The properties of the process ¢ to be constructed are clearly
invariant under rescaling of the process S by a positive constant. By rescaling S, the
probability of the event {sup,cjo 7] St < 1} can be made to be arbitrarily close to one.
In particular, we may assume, without loss of generality, that

]P’( sup S < 1) >1-P{S)r >0),
te[0,7

where, by assumption, P((S)r > 0) is positive and remains so even after the process S
has been rescaled. This implies that P(supcjo 1 St < 1, (S)r > 0) > 0, so we can find
a constant ¢ > 0 such that the event Ac := {supco 1St < 1} N {(S)r > c} satisfies
P(A.) > 0.

Let now 7 € (0,1), and introduce the stopping times

pni=1nf{t € [0,T]: (S)y = en "} AT, neN.

Since the process S is continuous, also its quadratic variation process (S) is P-a.s.
continuous [4, Theorem 17.5]. Thus we have P-a.s. on A,

0<p<- <pp<---<pp<p <T
and p, \, p as n — oo. Note additionally that
(S)p, =cen™ 7 P-as. on A for any n € N. (3.11)
We also introduce the random variables
Zp = (S,, — San)Jr, neN,

which will be instrumental in what follows.

Let now Q ~ P be such that S is a local Q-martingale. Then, clearly, Q(A.) > 0.
By the Dambis—Dubins—Schwarz theorem [4, Theorem 18.4], there exists a standard
Brownian motion B = (By)¢>0 defined on an extension (Q, F, @) of (©2,5,Q), such that
the scaled Brownian motion B} := \/cBy, t > 0, satisfies

Sy = Sy + B£,1<S>t for all t € [0,7] Q-a.s..
Then, in view of (3.11), it follows that the sequence
fn = (B;—“/ - Bén+1)—w)+ = (\ﬁBn*V - \ﬁB(n—l—l)*W)Jra n €N,

10



satisfies
Zp =&, Q-as.on A, for any n € N. (3.12)

Applying Lemma 3.6 to the random variables &, &2, . .. with o = y/c and then using the
equality (3.12), we deduce that, for any a € (0,1),

e —x i Zk
de = <o (3.13)
n=1

Q-a.s. on A.. Since the random variables Z;, Zs, ... are defined on the original space

(Q,F), the condition (3.13) also holds Q-a.s. on A., and thus P-a.s. on A, as well (due
to the relation Q ~ P).
We define now the process ¢ by

o
¢ =Y Hul(z, 50304 (pnirpu) (1)t €[0,T], (3.14)
n=1
where
- 1
Hn = H T 95 n € N.
k:1]'+_§2&

(Note that in (3.14), at most one of the summands is non-zero for fixed ¢, which dispels
any concerns about convergence of the random sum.) Since (3.13) holds P-a.s. on
A., Lemma 3.1 with a = % ensures that Z;;O:l H, < oo P-a.s. on A., which in turn
implies that the process ¢ is P-a.s. caglad and of finite variation with ¢g = 0. Thus, by
[10, Theorems 1.2.3 and 1.2.13], the stochastic integral fg ¢, dS, exists as a pathwise

Riemann—Stieltjes integral for any ¢ € [0,7] and is given by

t oo
/0 $udSy = Hulz, 0304, (Strpn = Strpnsr) -

n=1

Let n € Nand t € (0,7]. Then we have P-a.s. on A; N {pp+1 <t < pn},

t 00
/0 Sy =3 Hilizi00)(Sp — Spers) + Hul iz, 50 (St — Spi)
k=n+1

= Z HyZy — Hplyz,50)Sp, 1 + &St
k=n+1

Invoking again the fact that (3.13) holds P-a.s. on A., Lemma 3.1 with o = % implies
that

o
Z HyZy, > Hy > Hyl(z,50ySp,., P-as.on A,
k=n-+1

where second inequality follows since A, C {SuPte[(LT] Sy < 1}. Note additionally that

t 00 [e'e
u/‘¢ud5Li=i§::Hk2% >:§:>szk:>}ﬁ,>()::¢bst Flas.on<Acf1{p1<:t}.
0 k=1 k=2

11



Therefore,

t
/ GudSy > ¢Sy P-as.on A.N{p < t},
0

and since the process ( fg gbudSu)
that

te[0.T] is continuous and (¢1St) e[, 7] is caglad, we find

t
P(/ GudSy > ¢Sy for all t € (p,T}) >P(A4,) >0,
0

so we have established (2.7b). It remains to observe that

t
/ GudSu = 0= 6,5,
0

P-a.s. on 2\ A and when t < p, so also (2.7a) follows. O
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