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Abstract

This paper considers the problem of inference in a partially identified moment (in)equality model

with possibly many moment inequalities. Our contribution is to propose a novel two-step new inference

method based on the combination of two ideas. On the one hand, our test statistic and critical values

are based on those proposed by Chernozhukov et al. (2014c) (CCK14, hereafter). On the other hand, we

propose a new first step selection procedure based on the Lasso. Some of the advantages of our two-step

inference method are that (i) it can be used to conduct hypothesis tests and to construct confidence sets

for the true parameter value that is uniformly valid, both in underlying parameter θ and distribution

of the data; (ii) our test is asymptotically optimal in a minimax sense and (iii) our method has better

power than CCK14 in large parts of the parameter space, both in theory and in simulations. Finally,

we show that the Lasso-based first step can be implemented with a thresholding least squares procedure

that makes it extremely simple to compute.
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1 Introduction

This paper contributes to the growing literature on inference in partially identified econometric models

defined by many unconditional moment (in)equalities, i.e., inequalities and equalities. Consider an economic

model with a parameter θ belonging to a parameter space Θ, whose main prediction is that the true value

of θ, denoted by θ0, satisfies a collection of moment (in)equalities. This model is partially identified, i.e.,

the restrictions of the model do not necessarily restrict θ0 to a single value, but rather they constrain it

to belong to a certain set, called the identified set. The literature on partially identified models discusses

several examples of economic models that satisfy this structure, such as selection problems, missing data, or

multiplicity of equilibria (see, e.g., Manski (1995) and Tamer (2003)).

The first contributions in the literature of partially identified moment (in)equalities focus on the case in

which there is a fixed and finite number of moment (in)equalities, both unconditionally1 and conditionally2.

In practice, however, there are many relevant econometric models that produce a large set of moment

conditions (even infinitely many). As several references in the literature point out (e.g. Menzel (2009, 2014)),

the associated inference problems cannot be properly addressed by an asymptotic framework with a fixed

number of moment (in)equalities.3 To address this issue, Chernozhukov et al. (2014c) (hereafter referred

to as CCK14) obtain inference results in a partially identified model with many moment (in)equalities.4

According to this asymptotic framework, the number of moment (in)equalities, denoted by p, is allowed to

be larger than the sample size n. In fact, the asymptotic framework allows p to be an increasing function of n

and even to grow at certain exponential rates. Furthermore, CCK14 allow their moment (in)equalities to be

“unstructured”, in the sense that they do not impose restrictions on the correlation structure of the sample

moment conditions.5 For these reasons, CCK14 represents a significant advancement relative to previous

literature on inference in moment (in)equalities.

This paper builds on the inference method proposed in CCK14. Their goal is to test whether a collection

of p moment inequalities simultaneously holds or not. In order to implement their test they propose to

1 These include Chernozhukov et al. (2007), Andrews et al. (2004), Imbens and Manski (2004), Galichon and Henry (2006,
2013), Beresteanu and Molinari (2008), Romano and Shaikh (2008), Rosen (2008), Andrews and Guggenberger (2009), Stoye
(2009), Andrews and Soares (2010), Bugni (2010, 2015), Canay (2010), Romano and Shaikh (2010), Andrews and Jia-Barwick
(2012), Bontemps et al. (2012), Bugni et al. (2012), Romano et al. (2014), and Pakes et al. (2015), among others.

2These include Kim (2008), Ponomareva (2010), Armstrong (2012, 2014), Chetverikov (2013), Andrews and Shi (2013), and
Chernozhukov et al. (2013c), among others.

3As pointed out by Chernozhukov et al. (2014c), this is true even for conditional moment (in)equality models (which typically
produce an infinite number of unconditional moment (in)equalities). As they explain, the unconditional moment (in)equalities
generated by conditional moment (in)equality models inherit the structure from the conditional moment conditions, which
limits the underlying econometric model.

4See also the related technical contributions in Chernozhukov et al. (2013b,a, 2014a,b).
5This characteristic distinguished the proposed model from a standard conditional moment (in)equality model. While con-

ditional moment conditions can generate an uncountable set of unconditional moment (in)equalities, their covariance structure
is greatly restricted by the conditioning structure.
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compare a test statistic based on the maximum of p Studentized statistics and propose several methods

to compute the critical values. The construction of the critical values may include a first stage inequality

selection procedure. This first stage selection has the objective of detecting moment inequalities that are

slack, with the goal of increasing the power of the inference method. According to their simulation results,

including a first stage can result in significant power gains.

Our contribution is to propose a new inference method based on the combination of two ideas. On the

one hand, our test statistic and critical values are based on those proposed by CCK14. On the other hand,

we propose a new first stage selection procedure based on the Lasso. The Lasso was first proposed in the

seminal contribution by Tibshirani (1996) as a regularization technique in the linear regression model. Since

then, this method has found wide use as a dimension reduction technique in large dimensional models with

strong theoretical underpinnings.6 It is precisely these powerful shrinkage properties that serve as motivation

to consider the Lasso as a procedure to separate out and select binding moment inequalities from the non-

binding ones. Our Lasso first step inequality selection can be combined with any of the second step inference

procedures proposed by CCK14: self-normalization, multiplier bootstrap, or empirical bootstrap.

The present paper considers the use of the Lasso to select moments in a partially identified inference

moment (in)equality model. In the context of point identified problems, there is an existing literature that

proposes the Lasso to address estimation and moment selection in GMM settings. In particular, Caner

(2009) introduce Lasso type GMM-Bridge estimators to estimate structural parameters in a general model.

The problem of selection of moment in GMM is studied in Liao (2013) and Cheng and Liao (2015). In

addition, Caner and Zhang (2014) and Caner et al. (2016) find a method to estimate parameters in GMM

with diverging number of moments/parameters, and selecting valid moments among many valid or invalid

moments respectively. In addition, Fan et al. (2015) consider the problem of inference in high dimensional

models with sparse alternatives. Finally, Caner and Fan (2015) propose a hybrid two-step estimation pro-

cedure based on Generalized Empirical Likelihood, where instruments are chosen in a first-stage using an

adaptive Lasso procedure.

We obtain the following results for our two-step Lasso inference methods. First, we provide conditions

under which our methods are uniformly valid, both in the underlying parameter θ and the distribution of

the data. According to the literature in moment (in)equalities, obtaining uniformly valid asymptotic results

is important to guarantee that the asymptotic analysis provides an accurate approximation to finite sample

results.7 Second, by virtue of the results in CCK14, all of our proposed tests are asymptotically optimal in

6For excellent reviews of this method see, e.g., Belloni and Chernozhukov (2011), Bühlmann and van de Geer (2011), Fan
et al. (2011), and Hastie et al. (2015).

7In moment (in)equality models, the limiting distribution of the test statistic is discontinuous in the slackness of the moment
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a minimax sense. Third, we compare the power of our methods with the corresponding two-step methods

proposed by CCK14, both in theory and in simulations. Since our two-step procedure and the corresponding

one in CCK14 share the second step, our power comparison is a comparison of the Lasso first-step vis-a-vis

the ones in CCK14. On the theory front, we obtain a region of underlying parameters under which the power

of our method dominates that of CCK14. We also conduct extensive simulations to explore the practical

consequences of our theoretical findings. Our simulations indicate that a Lasso-based first step is usually as

powerful as the one in CCK14, and can sometimes be more powerful. In particular, our simulations reveal

that the Lasso-based first step delivers more power in designs with sparse alternatives, i.e., when only few of

the moment (in)equalities are violated. Fourth, we show that our Lasso-based first step can be implemented

with a thresholding least squares procedure that makes it extremely simple to compute.

The remainder of the paper is organized as follows. Section 2 describes the inference problem and

introduces our assumptions. Section 3 introduces the Lasso as a method to distinguish binding moment

inequalities from non-binding ones and Section 4 considers inference methods that use the Lasso as a first

step. Section 5 compares the power properties of inference methods based on the Lasso with the ones available

in the literature. Section 6 provides evidence of the finite sample performance using Monte Carlo simulations

and Section 7 presents some concluding remarks. Proofs of the main results and several intermediate results

are reported in the Supplementary materials file (hereafter referred to as [SM]).

Throughout the paper, we use the following notation. For any set S, |S| denotes its cardinality. For any

vector x ∈ Rd, ||x||1 ≡
∑d
i=1 |xi|.

2 The Setup

For each θ ∈ Θ, let X(θ) : Ω → Rk be a k-dimensional random variable with distribution P (θ) and mean

µ(θ) ≡ EP (θ)[X(θ)] ∈ Rk. For example, if Y is a d1-dimensional random vector and Θ ⊆ Rd2 and we consider

the moment condition involving µ(θ) = Eψ(Y, θ) for some ψ : Rd1+d2 → Rk, then X(θ) = ψ(Y, θ). Let µj(θ)

denote the jth component of µ(θ) so that µ(θ) = {µj(θ)}j≤k. The main tenet of the econometric model is

that the true parameter value θ0 satisfies the following collection of p moment inequalities and v = k − p

inequalities, while its finite sample distribution does not exhibit such discontinuities. In consequence, asymptotic results obtained
for any fixed distribution (i.e. pointwise asymptotics) can be grossly misleading, and possibly producing confidence sets that
undercover (even asymptotically). See Imbens and Manski (2004), Andrews and Guggenberger (2009), Andrews and Soares
(2010), and Andrews and Shi (2013) (Section 5.1).
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moment equalities:

µj(θ0) ≤ 0 for j = 1, . . . , p,

µj(θ0) = 0 for j = p+ 1, . . . , k. (2.1)

As in CCK14, we are implicitly allowing the collection P of distributions of X(θ) and the number of moment

(in)equalities, k = p + v to depend on n. In particular, we are primarily interested in the case in which

p = pn →∞ and v = vn →∞ as n→∞, but the subscripts will be omitted to keep the notation simple.

We allow the econometric model to be partially identified, i.e., the moment (in)equalities in Eq. (2.1)

do not necessarily restrict θ0 to a single value, but rather they constrain it to belong to the identified set,

denoted by ΘI(P ). By definition, the identified set is as follows:

ΘI(P ) ≡

θ ∈ Θ :

 µj(θ) ≤ 0 for j = 1, . . . , p,

µj(θ) = 0 for j = p+ 1, . . . , k.


 . (2.2)

Our goal is to test whether a particular parameter value θ ∈ Θ is a possible candidate for the true

parameter value θ0 ∈ ΘI(P ). In other words, we are interested in testing:

H0 : θ0 = θ vs. H1 : θ0 6= θ. (2.3)

By definition, the identified set is composed of all parameters that are observationally equivalent to the

true parameter value θ0, i.e., every parameter value in ΘI(P ) is a candidate for θ0. In this sense, θ = θ0

is observationally equivalent to θ ∈ ΘI(P ) and so the hypothesis test in Eq. (2.3) can be equivalently

reexpressed as:

H0 : θ ∈ ΘI(P ) vs. H1 : θ 6∈ ΘI(P ), (2.4)

i.e., H0 :

 µj(θ) ≤ 0 for all j = 1, . . . , p, and

µj(θ) = 0 for all j = p+ 1, . . . , k.

 vs. H1 : “not H0”. (2.5)

In this paper, we propose a procedure to implement the hypothesis test in Eq. (2.5)) with a given

significance level α ∈ (0, 1) based on a random sample of X(θ) ∼ P (θ), denoted by Xn(θ) = {Xi(θ)}i≤n.

The inference procedure will reject the null hypothesis whenever a certain test statistic Tn(θ) exceeds a
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critical value cn(α, θ), i.e.,

φn(α, θ) ≡ 1[Tn(θ) > cn(α, θ)], (2.6)

where 1[·] denotes the indicator function. By the duality between hypothesis tests and confidence sets, a

confidence set for θ0 can be constructed by collecting all parameter values for which the inference procedure

is not rejected, i.e.,

Cn(1− α) ≡ {θ ∈ Θ : Tn(θ) ≤ cn(α, θ)}. (2.7)

Our formal results will have the following structure. Let P denote a set of probability distributions. We will

show that for all P ∈ P and under H0,

P [Tn(θ) > cn(α, θ)] ≤ α+ o(1). (2.8)

Moreover, the convergence in Eq. (2.8) will be shown to occur uniformly over both P ∈ P and θ ∈ Θ. This

uniform size control result in Eq. (2.8) has important consequences regarding our inference problem. First,

this result immediately implies that the hypothesis test procedure in Eq. (2.6) uniformly controls asymptotic

size i.e., for H0 : θ0 = θ and for all θ ∈ Θ,

lim sup
n→∞

sup
P∈P

E[φn(α, θ)] ≤ α. (2.9)

Second, the result also implies that the confidence set in Eq. (2.7) is asymptotically uniformly valid, i.e.,

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P )

P [θ ∈ Cn(1− α)] ≥ 1− α. (2.10)

The rest of the section is organized as follows. Section 2.1 specifies the assumptions on the probability

space P that are required for our analysis. All the inference methods described in this paper share the same

test statistic Tn(θ) and differ in the critical value cn(α, θ). The common test statistic is introduced and

described in Section 2.2.

2.1 Assumptions

The collection of distributions P ≡ {P (θ) : θ ∈ Θ} are assumed to satisfy the following assumptions.

Assumption A.1. For every θ ∈ Θ, let Xn(θ) = {Xi(θ)}i≤n be i.i.d. k-dimensional random vectors

distributed according to X(θ) ∼ P (θ). Further, let EP (θ)[X1j(θ)] ≡ µj(θ) and V arP (θ)[X1j(θ)] ≡ σ2
j (θ) > 0,
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where Xij(θ) denotes the j component of Xi(θ).

Assumption A.2. For some δ ∈ (0, 1], maxj=1,...,k supθ∈Θ(EP (θ)[|X1j(θ)|2+δ])1/(2+δ) ≡ Mn,2+δ < ∞ and

M2+δ
n,2+δ(ln(2k − p))(2+δ)/2n−δ/2 → 0.

Assumption A.3. For some c ∈ (0, 1), (n−(1−c)/2 ln(2k − p) + n−3/2(ln(2k − p))2)B2
n → 0 where

supθ∈Θ(EP (θ)[maxj=1,...,k |Z1j(θ)|4])1/4 ≡ Bn <∞ and Zij(θ) ≡ (Xij(θ)− µj(θ))/σj(θ).

Assumption A.4. For some c ∈ (0, 1/2) and C > 0, max{M3
n,3,M

2
n,4, Bn}2 ln((2k − p)n)7/2 ≤ Cn1/2−c

where Mn,2+δ and Bn are as defined in Assumptions A.2-A.3.

We now briefly describe these assumptions. Assumption A.1 is standard in microeconometric applications.

Assumption A.2 has two parts. The first part requires that Xij(θ) has finite (2 + δ)-moments for all j =

1, . . . , k. The second part limits the rate of growth of Mn,2+δ and the number of moment (in)equalities.

Notice that Mn,2+δ is a function of the sample size because maxj=1,...,k supθ∈Θ(EP (θ)[|X1j(θ)|2+δ])1/(2+δ) is

function of P and k = v + p, both of which could depend on n. Also, notice that 2k − p = 2v + p, i.e.,

the total number of moment inequalities p plus twice the number of moment equalities v, all of which could

depend on n. Assumption A.3 could be interpreted in a similar fashion as Assumption A.2, except that it

refers to the standardized random variable Zij(θ) ≡ (Xij(θ)− µj(θ))/σj(θ).8

2.2 The test statistic

Given a random sample Xn(θ) = {Xi(θ)}ni=1, throughout the paper, we consider the following test statistic:

Tn(θ) ≡ max

{
max

j=1,...,p

√
nµ̂j(θ)

σ̂j(θ)
, max
s=p+1,...,k

√
n
∣∣µ̂s(θ)∣∣
σ̂s(θ)

}
, (2.11)

where, for j = 1, . . . , k, µ̂j(θ) ≡ 1
n

∑n
i=1Xij(θ) and σ̂2

j (θ) ≡ 1
n

∑n
i=1

(
Xij(θ)− µ̂j(θ)

)2
. The statistic in Eq.

(2.11) is not properly defined if σ̂2
j (θ) = 0 for some j = 1, . . . , k. In such cases, we use the convention that

0/0 ≡ 0, C/0 ≡ ∞ if C > 0, and C/0 ≡ −∞ if C < 0.

The test statistic is identical to that in CCK14 with the exception that we allow for the presence of

moment equalities. By definition, large values of Tn(θ) are an indication that H0 : θ = θ0 is likely to be

violated, leading to the hypothesis test in Eq. (2.6). The remainder of the paper considers several procedures

to construct critical values that can be associated to this test statistic.

8It is relevant to point out that Assumptions A.1-A.4 are tailored for the construction of confidence sets in Eq. (2.7) in the
sense that all the relevant constants are defined uniformly in θ ∈ Θ. If we were only interested in the hypothesis testing problem
for a particular value of θ, then the previous assumptions could be replaced by their “pointwise” versions at the parameter
value of interest.
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3 Lasso as a first step moment selection procedure

In order to propose a critical value that can be associated to our test statistic Tn(θ), we need to approxi-

mate its distribution under the null hypothesis. According to the econometric model in Eq. (2.1), the true

parameter satisfies p moment inequalities and v moment equalities. By definition, all moment equalities are

always binding under the null hypothesis. On the other hand, the moment inequalities may or may not be

binding, and a successful approximation of the asymptotic distribution depends on being able to distinguish

binding moment inequalities from non-binding ones. Incorporating this information into the hypothesis test-

ing problem is one of the key issues in the literature on inference in partially identified moment (in)equality

models.

In their seminal contribution, CCK14 is the first paper in the literature to conduct inference in a par-

tially identified model with many moment unstructured inequalities. Their paper proposes several pro-

cedures to select binding moment inequalities from non-binding based on three approximation methods:

self-normalization (SN), multiplier bootstrap (MB), and empirical bootstrap (EB). Our contribution to this

literature is to propose a novel approximation method based on the Lasso. By definition, the Lasso penalizes

parameters values by their `1-norm, with the ability of producing parameter estimates that are exactly equal

to zero. This powerful shrinkage property is precisely what motivates us to consider the Lasso as a first step

moment selection procedure in a model with many moment (in)equalities. As we will soon show, the Lasso

is an excellent method to detect binding moment inequalities from non-binding ones, and this information

can be successfully incorporated into an inference procedure for many moment (in)equalities.

For every θ ∈ Θ, let J(θ) denote the true set of binding moment inequalities, i.e., J(θ) ≡ {j =

1, . . . , p : µj(θ) ≥ 0}. Let µI(θ) ≡ {µj(θ)}pj=1 denote the moment vector associated to the moment

inequalities and let µ̂I(θ) ≡ {µ̂j(θ)}pj=1 denote its sample analogue. In order to detect binding moment

inequalities, we consider the weighted Lasso estimator of µI(θ), given by:

µ̂L(θ) ≡ arg min
t∈Rp

{(
µ̂I(θ)− t

)′
Ŵ (θ)

(
µ̂I(θ)− t

)
+ λn

∥∥∥Ŵ (θ)1/2t
∥∥∥

1

}
, (3.1)

where λn is a positive thresholding sequence that controls the amount of regularization and Ŵ (θ) is a

positive definite weighting matrix. To simplify the computation of the Lasso estimator, we impose the

weighting matrix Ŵ (θ) ≡ diag{1/σ̂j(θ)2}pj=1 throughout this paper. As a consequence of this, Eq. (3.1)

becomes:

µ̂L(θ) =

{
arg min
m∈R

{(
µ̂j(θ)−m

)2
+ λnσ̂j(θ)|m|

}}p
j=1

. (3.2)
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Notice that instead of using the Lasso in one p-dimensional model we instead use it in p one-dimensional

models. As we shall see later, µ̂L(θ) in Eq. (3.2) is closely linked to the soft-thresholded least squares

estimator, which implies that its computation is straight-forward. The Lasso estimator µ̂L(θ) implies a

Lasso-based estimator of J(θ), given by:

ĴL(θ) ≡ {j = 1, . . . , p : µ̂j,L(θ)/σ̂j(θ) ≥ − λn}. (3.3)

In order to implement this procedure, we need to choose the thresholding sequence λn, which determines

the degree of regularization imposed by the Lasso. A higher (lower, respectively) value of λn will produce

a larger (smaller) number of moment inequalities considered to be binding, resulting in a lower (higher)

rejection rate. In consequence, this is a critical choice for our inference methodology. For any arbitrary

ε > 0, a suitable choice of λn is given by (cf. [SM]):

λn = (4/3 + ε)n−1/2
(
M2
n,2+δn

−δ/(2+δ) − n−1
)−1/2

. (3.4)

According to Assumption A.2, Eq. (3.4) implies that λn → 0. Notice that Eq. (3.4) is infeasible in practice

as it depends on the unknown expression Mn,2+δ. In practice, one can replace this unknown expression with

its sample analogue: M̂2
n,2+δ = maxj=1,...,k supθ∈Θ

(
n−1

∑n
i=1 |Xij(θ)|2+δ

)2/(2+δ)
.

As explained earlier, our Lasso procedure is used as a first step in order to detect binding moment

inequalities from non-binding ones. The following result formally establishes that our Lasso procedure

includes all binding ones with a probability that approaches one, uniformly.

Lemma 3.1. Assume Assumptions A.1-A.3, and let λn be as in Eq. (3.4). Then,

P [J(θ) ⊆ ĴL(θ)] ≥ 1− 2p exp
(
− nδ/(2+δ)

2M2
n,2+δ

)[
1 +K

( Mn,2+δ

nδ/(2(2+δ))
+ 1
)2+δ

]
+ K̃n−c

≥ 1 + o(1),

where K, K̃ are universal constants and the convergence in the last line is uniform in all parameters θ ∈ Θ

and distributions P that satisfy the assumptions in the statement.

Thus far, our Lasso estimator of the binding constrains in Eq. (3.3) has been defined in terms of the

solution of the p-dimensional minimization problem in Eq. (3.2). We conclude the subsection by providing

an equivalent closed form solution for this set.

9



Lemma 3.2. The estimated set ĴL(θ) in Eq. (3.3) can be equivalently computed as follows:

ĴL(θ) = {j = 1, . . . , p : µ̂j(θ)/σ̂j(θ) ≥ −3λn/2}. (3.5)

Lemma 3.2 is a very important computational aspect of our methodology. This result reveals that the set

ĴL(θ) can be computed by comparing standardized sample averages of the data with a modified threshold

of −3λn/2. In other words, our Lasso first stage can be implemented at no additional computational cost,

i.e., there is no need to solve the p-dimensional minimization problem described in Eq. (3.2).

4 Inference methods with Lasso first step

In the remainder of the paper, we show how to conduct inference in our partially identified many moment

(in)equality model by combining the Lasso first step developed in Section 3 with a second step based on

the inference methods proposed by CCK14. In particular, Section 4.1 combines our Lasso first step with

their self-normalization approximation, while Section 4.2 combines our Lasso first step with their bootstrap

approximations.

4.1 Self-normalization approximation

Before describing our self-normalization (SN) approximation with Lasso first stage, we first describe the

“plain vanilla” SN approximation with no first stage selection. Our description slightly extends the SN

method proposed by CCK14 to the presence of moment equalities. To that end, we first define cSNn (α, |J |),

the SN approximation to the critical value in a hypothetical moment (in)equality model composed of |J |

moment inequalities and k − p moment equalities, and a significance level of α ∈ (0, 0.5]:

cSNn (α, |J |) ≡


0 if 2(k − p) + |J | = 0,

Φ−1(1−α/(2(k−p)+|J|))√
1−
(

Φ−1(1−α/(2(k−p)+|J|))
)2
/n

if 2(k − p) + |J | > 0.
(4.1)

Lemma A.5 in [SM] shows that cSNn (α, |J |) provides asymptotic uniform size control in a hypothetical moment

(in)equality model with |J | moment inequalities and k − p moment equalities under Assumptions A.1-A.2.

The main difference between this result and CCK14 (Theorem 4.1) is that we allow for the presence of

moment equalities. Since our moment (in)equality model has |J | = p moment inequalities and k−p moment

equalities, we can define the regular (i.e. one-step) SN approximation method by using |J | = p in Eq. (4.1).
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The following result is a corollary of Lemma A.5.

Theorem 4.1 (1-step SN approximation). Let Assumptions A.1-A.2 and H0 hold. Let

cSN,1Sn (α) ≡ cSNn (α, p) =
Φ−1

(
1− α/(2k − p)

)√
1−

(
Φ−1

(
1− α/(2k − p)

))2

/n

. (4.2)

Then,

P [Tn(θ) > cSN,1Sn (α)] ≤ α+ αKn−δ/2M2+δ
n,2+δ

(
1 + Φ−1

(
1− α/(2k − p)

) )2+δ

= α+ o(1),

where K is a universal constant and the convergence in the last line is uniform in all parameters θ ∈ Θ and

distributions P that satisfy the assumptions in the statement.

By definition, the regular SN approximation considers all moment inequalities in the model as binding.

A more powerful test can be constructed by using the data to reveal which moment inequalities are slack. In

particular, CCK14 propose a two-step SN procedure which combines a first step moment inequality based

on SN methods and the second step SN critical value in Theorem 4.1. If we adapt their methods to the

presence of moment equalities, this would be given by, with equation (4.1) in mind,

cSN,2S(θ, α) ≡ cSNn (α− 2βn, |ĴSN (θ)|), with (4.3)

ĴSN (θ) ≡
{
j ∈ {1, . . . , p} :

√
nµ̂j(θ)/σ̂j(θ) > −2cSN,1S(βn)

}
, (4.4)

where {βn}n≥1 is an arbitrary sequence of constants in (0, α/3). Notice that if p = k (i.e. no moment

equalities), then this critical value corresponds exactly to the two-step SN critical value in CCK14. By

slightly extending their arguments, one can show that inference based on the critical value cSN,2S(θ, α) in

Eq. (4.3) is asymptotically valid in a uniform sense.

In this paper, we propose an alternative SN procedure by using our Lasso-based first step. In particular,

we define the following two-step Lasso SN critical value, with equation (4.1) in mind,

cSN,Ln (θ, α) ≡ cSNn (α, |ĴL(θ)|), (4.5)

where ĴL(θ) is as in Eq. (3.5). The following result shows that an inference method based on our two-step

Lasso SN critical value is asymptotically valid in a uniform sense.

Theorem 4.2 (Two-step Lasso SN approximation). Assume Assumptions A.1-A.3, that H0 holds, and let

11



λn be as in Eq. (3.4). Then,

P
[
Tn(θ) > cSN,Ln (θ, α)

]

≤ α+


αKn−δ/2M2+δ

n,2+δ(1 + Φ−1
(
1− α/(2k − p)

)
)2+δ+

4p exp
(
−2−1nδ/(2+δ)/M2

n,2+δ

)[
1 +K

(
Mn,2+δ/n

δ/(2(2+δ)) + 1
)2+δ

]
+ 2K̃n−c


= α+ o(1),

where K, K̃ are universal constants and the convergence in the last line is uniform in all parameters θ ∈ Θ

and distributions P that satisfy the assumptions in the statement.

We now compare our two-step SN Lasso method with the SN methods considered in CCK14. Since

all inference methods share the test statistic, the only difference lies in the critical values. While the one-

step SN critical values considers all p moment inequalities as binding, our two-step SN Lasso critical value

considers only |ĴL(θ)| moment inequalities as binding. Since |ĴL(θ)| ≤ p and cSNn (α, |J |) is weakly increasing

in |J | (see Lemma A.4 in [SM]), then our two-step SN method results in a larger rejection probability for

all sample sizes. In contrast, the comparison between cSN,Ln (θ, α) and cSN,2Sn (θ, α) is not straightforward as

these differ in two aspects. First, the set of binding constrains ĴSN (θ) in Eq. (4.4) used by the two-step

SN method differs from the set of binding constrains ĴL(θ) according to the Lasso. Second, the quantile of

the critical values are different: the two-step SN method in Eq. (4.3) considers the α − 2βn quantile while

the Lasso-based one considers the usual α quantile. As a result of these differences, the comparison of these

critical values is ambiguous and so is the power of these two tests. The relative power comparison between

these two-step SN methods will be discussed in further detail in Section 5.

4.2 Bootstrap methods

In addition to the SN approximation method, CCK14 also propose two bootstrap approximation meth-

ods: multiplier bootstrap (MB) and empirical bootstrap (EB). Relative to the SN approximation, the

bootstrap methods have the advantage of taking into account the dependence between the coordinates

of {
√
nµ̂j(θ)/σ̂j(θ)}pj=1 involved in the definition of the test statistic Tn(θ).

As in the previous subsection, we first define the bootstrap approximation to the critical value in a

hypothetical moment (in)equality model composed of moment inequalities indexed by the set J and the

k − p moment equalities. The critical values for MB and EB are denoted by cMB
n (θ, J, α) and cEBn (θ, J, α),

respectively, for the parameter θ ∈ Θ and significance level of α ∈ (0, 0.5]. These are computed according to

12



the following algorithms:

Algorithm 4.1. Multiplier bootstrap (MB)

1. Generate i.i.d. standard normal random variables {εi}ni=1, and independent of the data Xn(θ).

2. Construct the multiplier bootstrap test statistic:

WMB
n (θ, J) = max

max
j∈J

1√
n

∑n
i=1 εi(Xij(θ)− µ̂j(θ))

σ̂j(θ)
, max
s=p+1,...,k

1√
n
|
∑n
i=1 εi(Xis(θ)− µ̂s(θ))|

σ̂s(θ)

 .

3. Calculate cMB
n (θ, J, α) as the conditional (1− α)-quantile of WMB

n (θ, J) (given Xn(θ)).

Algorithm 4.2. Empirical bootstrap (EB)

1. Generate a bootstrap sample {X∗i (θ)}ni=1 from the data, i.e., an i.i.d. draw from the empirical distri-

bution of Xn(θ).

2. Construct the empirical bootstrap test statistic:

WEB
n (θ, J) = max

max
j∈J

1√
n

∑n
i=1(X∗ij(θ)− µ̂j(θ))

σ̂j(θ)
, max
s=p+1,...,k

1√
n
|
∑n
i=1(X∗is(θ)− µ̂s(θ))|

σ̂s(θ)

 .

3. Calculate cEBn (θ, J, α) as the conditional (1− α)-quantile of WEB
n (θ, J) (given Xn(θ)).

All the results in the remainder of the section will apply to both versions of the bootstrap, and under

the same assumptions. For this reason, we can use cBn (θ, J, α) to denote the bootstrap critical value where

B ∈ {MB,EB} represents either MB or EB. Lemma A.6 in [SM] shows that cBn (θ, J, α) for B ∈ {MB,EB}

provides asymptotic uniform size control in a hypothetical moment (in)equality model composed of moment

inequalities indexed by the set J and the k − p moment equalities under Assumptions A.1 and A.4. The

main difference between this result and CCK14 is the presence of the moment equalities. Since our moment

(in)equality model has |J | = p moment inequalities and k − p moment equalities, we can define the regular

(i.e. one-step) MB or EB approximation method by using |J | = p in Algorithm 4.1 or 4.2, respectively. The

following result is a corollary of Lemma A.6.

Theorem 4.3. Assume Assumptions A.1, A.4, and that H0 holds. For B ∈ {MB,EB}, set cB,1Sn (θ, α) ≡

cBn (θ, {1, . . . , p}, α) where cBn (θ, J, α) is as in Algorithm 4.1 if B = MB or Algorithm 4.2 if B = EB. Then,

P [Tn(θ) > cB,1Sn (θ, α)] ≤ α+ C̃n−c̃,

13



where c̃, C̃ > 0 are positive constants that only depend on the constants c, C in Assumption A.4. Furthermore,

if µj(θ) = 0 for all j = 1, . . . , p, then |P [Tn(θ) > cB,1Sn (θ, α)]− α| ≤ C̃n−c̃. Finally, the proposed bounds are

uniform in all parameters θ ∈ Θ and distributions P that satisfy the assumptions in the statement.

Just like in the SN approximation method, the regular (one-step) bootstrap approximation considers all

moment inequalities in the model as binding. A more powerful bootstrap-based test can be constructed

using the data to reveal which moment inequalities are slack. However, unlike in the SN approximation

method, Theorem 4.3 shows that the size of the test using the bootstrap critical values converges to α when

all the moment inequalities are binding. This difference comes from the fact that the bootstrap can better

approximate the correlation structure in the moment inequalities, which is not taken into account by the SN

approximation. As we will see in simulations, this will translate into power gains in favor of the bootstrap.

CCK14 propose a two-step bootstrap procedure, combining a first step moment inequality based on the

bootstrap with the second step bootstrap critical value in Theorem 4.3.9 If we adapt their methods to the

presence of moment equalities, this would be given by:

cB,2S(θ, α) ≡ cBn (θ, ĴB(θ), α− 2βn) with (4.6)

ĴB(θ) ≡ {j ∈ {1, . . . , p} :
√
nµ̂j(θ)/σ̂j(θ) > −2cB,1S(α, βn)}, (4.7)

where {βn}n≥1 is an arbitrary sequence of constants in (0, α/2). Again, by slightly extending their formal

arguments, one can show that an inference method based on the critical value cB,2S(θ, α) in Eq. (4.6) is

asymptotically valid in a uniform sense.

This paper proposes an alternative bootstrap procedure by using our Lasso-based first step. For B ∈

{MB,EB}, define the following two-step Lasso bootstrap critical value

cB,Ln (θ, α) ≡ cBn (θ, ĴL(θ), α), (4.8)

where ĴL(θ) is as in Eq. (3.5), and where cBn (θ, J, α) is as in Algorithm 4.1 if B = MB or Algorithm 4.2

if B = EB. The following result shows that an inference method based on our two-step Lasso bootstrap

critical value is asymptotically valid in a uniform sense.

Theorem 4.4 (Two-step Lasso bootstrap approximation). Let Assumptions A.1, A.2, A.3, A.4, and H0

9CCK14 also consider the so-called “hybrid” procedures in which the first step can be based on one approximation method
(e.g. SN approximation) and the second step could be based on another approximation method (e.g. bootstrap). While these
are not explicitly addressed in this section they are included in the Monte Carlo section.

14



hold, and let λn be as in Eq. (3.4). Then, for B ∈ {MB,EB},

P [Tn(θ) > cB,Ln (θ, α)]

≤ α+
(
C̃n−c̃ + Cn−c + 2K̃n−c + 4p exp(2−1nδ/(2+δ)/M2

n,2+δ)
[
1 +K(Mn,2+δ/n

δ/(2(2+δ) + 1)2+δ
])

= α+ o(1),

where c̃, C̃ > 0 are positive constants that only depend on the constants c, C in Assumption A.4, K, K̃ are

universal constants, and the convergence is uniform in all parameters θ ∈ Θ and distributions P that satisfy

the assumptions in the statement. Furthermore, if µj = 0 for all 1 ≤ j ≤ p and that

2p exp(2−1nδ/(2+δ)/M2
n,2+δ)[1 +K(Mn,2+δ/n

δ/(2(2+δ) + 1)2+δ + K̃n−c ≤ C̃n−c̃, (4.9)

then,

|P [Tn(θ) > cB,Ln (θ, α)]− α| ≤ 3C̃n−c̃ + Cn−c = o(1),

where all constants are as defined earlier and the convergence is uniform in all parameters θ ∈ Θ and

distributions P that satisfy the assumptions in the statement.

By using the same arguments as for the SN methods, we can compare our two-step bootstrap Lasso

method with the bootstrap methods considered in CCK14. First, our two-step bootstrap method results in

a larger rejection probability than the one-step bootstrap method for all sample sizes. Second, the comparison

between cB,Ln (θ, α) and cB,2Sn (θ, α) is not straightforward as these differ in the same two aspects as before.

This comparison will be the main focus of Section 5.

5 Power comparison

The results in CCK14 indicate that all of their inference methods satisfy uniform asymptotic size control

under appropriate assumptions. Similarly, Theorems 4.2 and 4.4 show that our Lasso-based two-step infer-

ence methods also satisfy uniform asymptotic size control under similar assumptions. Given these results,

the natural next step is to compare these inference methods in terms of criteria related to power.

One possible criterion for comparison related to power is minimax optimality, i.e., the ability that a test

has of rejecting departures from the null hypothesis at the fastest possible rate that could be detected. In

particular, results in CCK14 indicate that all their proposed inference methods are asymptotically optimal

in a minimax sense, even in the absence of any inequality selection (i.e. defined as in Theorems 4.1 and 4.3
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in our moment (in)equality model). Since our Lasso-based inequality selection can only reduce the number

of moment inequalities and since critical values are weakly decreasing in these10, we can also conclude that

all of our two-step Lasso-based inference methods (SN, MB, and EB) are also asymptotically optimal in a

minimax sense. In other words, minimax optimality is a desirable property that is satisfied by all tests under

consideration and, thus, cannot be used as a criterion to compare among inference methods.

Thus, we proceed to compare our Lasso-based inference procedures with those proposed by CCK14 in

terms of rejection rates. Since all inference methods share the test statistic Tn(θ), the power comparison can

be established by comparing the methods in terms of critical values, i.e., the power increases as we decrease

the critical value.

5.1 Comparison with one-step methods

As already pointed out in previous sections, our Lasso-based two-step inference methods will always be more

powerful than the corresponding one-step analogue, i.e.,

P [Tn(θ) > cSN,Ln (θ, α)] ≥ P [Tn(θ) > cSN,1Sn (α)]

P [Tn(θ) > cB,Ln (θ, α)] ≥ P [Tn(θ) > cB,1Sn (θ, α)] ∀B ∈ {MB,EB},

for all θ ∈ Θ and n ∈ N. This is a direct consequence of the fact that one-step critical values are based on

considering all moment inequalities as binding, while the Lasso-based first-step will restrict attention to the

subset of these moment inequalities that are sufficiently close to binding, i.e., ĴL(θ) ⊆ {1, . . . , p}.

5.2 Comparison with two-step methods

The comparison between our two-step Lasso procedure and the two step methods proposed by CCK14 are not

straightforward for two reasons. First, the set of binding constrains according to the Lasso is different from

the ones considered by other two-step methods. Second, the quantile of the critical values are different: our

Lasso-based methods considers the usual α quantile while the other two-step methods consider the α− 2βn

quantile for a sequence of positive constants {βn}n≥1.

To simplify the remainder of the discussion, we focus exclusively on the case when the moment (in)equality

model is only composed of moment inequalities, i.e., k = p, which is precisely the setup in CCK14. Fur-

thermore, the introduction of moment equalities would not qualitatively change any of the conclusions that

follow.

10For SN critical values, see Lemma A.4 in [SM] and for bootstrap critical values, see Lemma A.7 in [SM].
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We begin the comparison between the two-step SN method and the two-step Lasso SN method. For all

θ ∈ Θ and n ∈ N, our two-step Lasso SN method will have more power than the two-step SN method if and

only if cSN,Ln (θ, α) ≤ cSN,2Sn (α). By inspecting their formulas, the previous equation occurs if and only if:

|ĴL(θ)| ≤ α

α− 2βn
|ĴSN (θ)|, (5.1)

where, by definition, {βn}n≥1 has to satisfy βn ≤ α/3. In turn, a sufficient condition for Eq. (5.1) is that

ĴL(θ) ⊆ ĴSN (θ). As it turns out, it is possible to establish sufficient conditions for this to occur which are

provided in the following result.

Theorem 5.1. For all θ ∈ Θ and n ∈ N,

P [Tn(θ) > cSN,Ln (θ, α)] ≥ P [Tn(θ) > cSN,2Sn (α)] (5.2)

is implied by

ĴL(θ) ⊆ ĴSN (θ). (5.3)

In turn, Eq. (5.3) occurs under any of the following circumstances:

4

3
cSNn (βn) ≥

√
nλn, or, (5.4)

βn ≤ 0.1,M2
2,2+δn

2/(2+δ) ≥ 2, and ln
( p

2βn
√

2π

)
≥ 9

8
(4/3 + ε)2nδ/(2+δ)M−2

n,2+δ (5.5)

where ε > 0 is as in Eq. (3.4).

Theorem 5.1 provides two sufficient conditions under which our two-step Lasso SN method will have

greater or equal power than the two-step SN method in CCK14. The power difference is a direct consequence

of Eq. (5.3), i.e., our Lasso-based first step inequality selection procedure chooses a subset of the inequalities

in the SN-based first step. The first sufficient condition, viz., (5.4) is sharper than the second one, viz.

(5.5) but the second one is of lower level and, thus, easier to interpret and understand. Notice that (5.5) is

composed of three statements but, as we now explain, it is only the third statement (i.e. (5.5)) that could

potentially be considered restrictive. The first, β ≤ 10%, is non-restrictive as CCK14 require that βn ≤ α/3

and the significance level α is typically much lower than 30%. The second, M2
2,2+δn

2/(2+δ) ≥ 2, is also

non-restrictive since M2
2,2+δ is typically a non-decreasing sequence of positive constants and n2/(2+δ) →∞.

In principle, Theorem 5.1 allows for the possibility of the inequality in Eq. (5.2) being an equality.

However, in cases in which the Lasso-based first step selects a strict subset of the moment inequalities
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Figure 1: In a moment inequality model with n = 400, βn = 0.1%, C = 2, M = Mn,2+δ ∈ [0, 10], and
p ∈ {1, . . . , 1000}, the left (right) panel shows in red the configurations of parameters that do not satisfy Eq.
(5.4) (Eq. (5.5), respectively). By Theorem 5.1, the regions in white are configurations of (p,M) for which
the two-stage SN Lasso is strictly more powerful than two-stage SN.

chosen by the SN method (i.e. the inclusion in Eq. (5.3) is strict), the inequality in Eq. (5.2) can be strict.

In fact, the inequality in Eq. (5.2) can be strict even in cases in which the Lasso-based and SN-based first

step agree on the set of binding moment inequalities. The intuition for this is that our Lasso-based method

considers the usual α quantile while the other two-step methods consider the α−2βn quantile for the sequence

of positive constants {βn}n≥1 (i.e. Eq. (5.1) is sufficient to obtain our result). This slight difference always

plays in favor of the Lasso-based first step having more power.11

Remark 5.1. Under the sufficient conditions of Theorem 5.1 the power advantage results also extend to

our two-step bootstrap-Lasso and the hybrid two-step method based on the SN approximation-bootstrap.

The reason for this is that the sufficient conditions imply Eq. (5.3) and this, together with the fact that our

Lasso procedure uses the α quantile while the hybrid procedure uses the α− 2βn quantile, would both result

in a relative power advantage in favor of our two-step bootstrap Lasso.

Of course, the relevance of the result in Theorem 5.1 depends on the generality of the sufficient conditions

in Eq. (5.4) and (5.5). Figure 1 provides heat maps that indicate combinations of values of Mn,2+δ and p

under which Eqs. (5.4) and (5.5) are satisfied. The graphs clearly show these conditions are satisfied for a

11This is clearly shown in our Monte Carlo section in Designs 5-6. In these cases, it is relatively easy for both first-step
methods to agree on the correct set of binding moment inequalities (i.e. JI = ĴL(θ) = ĴSN (θ)). Nevertheless, the slight
difference in quantiles will result in a small but positive power advantage in favor of methods that use the Lasso in a first stage.
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large portion of the parameter space. In fact, the region in which Eq. (5.4) fails to hold is barely visible. In

addition, the graph also confirms that Eq. (5.4) applies more generally than Eq. (5.5).

Remark 5.2. As long as the sufficient conditions hold, the power comparison in Theorem 5.1 holds in finite

samples. In other words, under our sufficient conditions, if the inference method that uses a SN-based first

step rejects the null hypothesis, then the corresponding inference method that uses a Lasso-based first step

will also reject the null hypothesis. Expressed in terms of confidence sets, the confidence set based on our

Lasso first step will be a subset of the corresponding confidence set based on a SN first step.

To conclude the section, we now compare the power of the two-step bootstrap procedures.

Theorem 5.2. Assume Assumption A.4 and let B ∈ {MB,EB}.

Part 1: For all θ ∈ Θ and n ∈ N,

ĴL(θ) ⊆ ĴB(θ) implies that (5.6)

cB,Ln (θ, α) ≤ cB,2Sn (α) (5.7)

which, in turn, implies that P [Tn(θ) > cB,2Sn (α)] ≤ P [Tn(θ) > cB,Ln (θ, α].

Part 2: Eq. (5.6) occurs with probability approaching one, i.e.,

P [ĴL(θ) ⊆ ĴB(θ)] ≥ 1− Cn−c (5.8)

under the following sufficient condition: M2
2,2+δn

2/(2+δ) ≥ 2, βn ≥ Cn−c for some C, c > 0, and any one of

the following conditions:

1− Φ

(
3

23/2
(4/3 + ε)nδ/(2(2+δ))M−1

n,2+δ

)
≥ 3βn, or, (5.9)√

(1− ρ(θ)) log(p)/2−
√

2 log(1/[1− 3βn]) ≥ 3

23/2
(4/3 + ε)nδ/(2(2+δ))M−1

n,2+δ, (5.10)

where ρ(θ) = maxj1 6=j2 corr[Xj1(θ), Xj2(θ)].

Part 3: By parts 1 and 2, and under any of the sufficient conditions in part 2,

P [Tn(θ) > cB,2Sn (α)] ≤ P [Tn(θ) > cB,Ln (θ, α)] + Cn−c (5.11)

Theorem 5.2 provides sufficient conditions under which any power advantage of the two-step bootstrap

method in CCK14 relative to our two-step bootstrap Lasso will vanish as the sample size diverges to infinity.
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Specifically, Eq. (5.11) indicates that, under any of the sufficient conditions, this power advantage will be not

exceed C̃n−c̃. As in the case of the SN approximation, this relative power difference is a direct consequence

of Eq. (5.6), i.e., our Lasso-based first step inequality selection procedure chooses a subset of the inequalities

in the bootstrap-based first step.

As in the SN approximation, the relevance of the result in Theorem 5.2 depends on the generality of the

sufficient condition. This condition has three parts. The first part, i.e., M2
2,2+δn

2/(2+δ) ≥ 2, was already

argued to be non-restrictive since M2
2,2+δ is typically a non-decreasing sequence of positive constants and

n2/(2+δ) →∞. The second part, i.e., βn ≥ Cn−c is also considered mild as {βn}n≥1 is a sequence of positive

constants and Cn−c converges to zero. The third part is Eq. (5.9) or (5.10) and we deem it to be the more

restrictive condition of the three. In the case of the latter, this condition can be understood as imposing a

lower bound on the maximal pairwise correlation within the moment inequalities of the model.

6 Monte Carlo simulations

We now use Monte Carlo simulations to investigate the finite sample properties of our tests and to compare

them to those proposed by CCK14. Our simulation setup follows closely the pure moment inequality model

(i.e. k = p) considered in the Monte Carlo simulations in CCK14. For a hypothetical fixed parameter value

θ ∈ Θ, we generate data from the model:

Xi(θ) = µ(θ) +A′εi i = 1, . . . , n = 400,

where Σ(θ) = A′A, εi = (εi,1, . . . , εi,p), and p ∈ {200, 500, 1000}. We simulate {εi}ni=1 to be i.i.d. with

E[εi] = 0p and V ar[εi] = Ip×p, and so {Xi(θ)}ni=1 are i.i.d. with E[Xi(θ)] = µ(θ) and V ar[Xi(θ)] = Σ(θ).

By definition, this model satisfies the moment (in)equality model in Eq. (2.1) if and only if µ(θ) ≤ 0p. In

this context, we are interested in implementing the hypothesis test in Eqs. (2.4) or (2.5) with a significance

level of α = 5%.

We simulate εi = (εi,1, . . . , εi,p) to be i.i.d. according to two distributions - (i) εi,j follows a t-distribution

with four degrees of freedom divided by
√

2, i.e., εi,j ∼ t4/
√

2 and (ii) εi,j ∼ U(−
√

3,
√

3). Note that both of

these choices satisfy E[εi] = 0p and V ar[εi] = Ip×p. Since (εi,1, . . . , εi,p) are i.i.d., the correlation structure

across moment inequalities depends entirely on the matrix Σ(θ), for which we consider two possibilities -

(i) Σ(θ)[j,k] = 1[j = k] + ρ · 1[j 6= k] and (ii) a Toeplitz structure, i.e., Σ(θ)[j,k] = ρ|j−k|, for parameters

ρ ∈ {0, 0.5, 0.9}. Finally, we repeat all our experiments 2, 000 times.
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The description of the model is completed by specifying µ(θ), given in Table 1. We consider ten different

specifications of µ(θ) which, in combination with the rest of the parameters, results in fourteen simulation

designs. Our first eight simulation designs correspond exactly to those in CCK14, half of which satisfy the

null hypothesis and half of which do not. We complement these experiments with six designs that do not

satisfy the null hypothesis. The additional experiments are constructed so that the moment inequalities

that agree with the null hypothesis are only slightly or moderately negative.12 As the slackness of these

inequalities becomes smaller, it becomes harder for the two step inference methods to correctly classify these

non-binding moment conditions as such, and thus to increase power. As a consequence, these new designs

will help us understand which two step inference procedures have better ability in detecting slack moment

inequalities.

Design no. {µj(θ) : j ∈ {1, . . . , p}} Σ(θ) Hypothesis CCK14 Design no.
1 −0.8 · 1[j > 0.1p] Equicorrelated H0 2
2 −0.8 · 1[j > 0.1p] Toeplitz H0 4
3 0 Equicorrelated H0 1
4 0 Toeplitz H0 3
5 0.05 Equicorrelated H1 5
6 0.05 Toeplitz H1 7
7 −0.75 · 1[j > 0.1p] + 0.05 · 1[j ≤ 0.1p] Equicorrelated H1 6
8 −0.75 · 1[j > 0.1p] + 0.05 · 1[j ≤ 0.1p] Toeplitz H1 8
9 −0.6 · 1[j > 0.1p] + 0.05 · 1[j ≤ 0.1p] Toeplitz H1 New
10 −0.5 · 1[j > 0.1p] + 0.05 · 1[j ≤ 0.1p] Toeplitz H1 New
11 −0.4 · 1[j > 0.1p] + 0.05 · 1[j ≤ 0.1p] Toeplitz H1 New
12 −0.3 · 1[j > 0.1p] + 0.05 · 1[j ≤ 0.1p] Toeplitz H1 New
13 −0.2 · 1[j > 0.1p] + 0.05 · 1[j ≤ 0.1p] Toeplitz H1 New
14 −0.1 · 1[j > 0.1p] + 0.05 · 1[j ≤ 0.1p] Toeplitz H1 New

Table 1: Parameter choices in our simulations.

We implement all the inference methods described in Table 2. These include all of the procedures

described in the main text plus some additional “hybrid” methods (i.e. MB-H and EB-H). The bootstrap

based methods are implemented with B = 1, 000 bootstrap replications. Finally, for our Lasso-based first

step, we use:

λn = C · n−1/2
(
M̂2
n,3n

−1/3 − n−1
)−1

, (6.1)

with C ∈ {2, 4, 6} and M̂n,3 ≡ maxj=1,...,p{ 1
n

∑n
i=1 |Xij(θ)|3}1/3. This corresponds to the empirical analogue

of Eq. (3.4) when δ = 1 and ε ∈ {2/3, 5/3, 8/3}.

12The last six designs only consider the case of Σ(θ) having a Toeplitz structure for reasons of brevity. We carried out
the same experiments with Σ(θ) being equicorrelated and obtained qualitatively similar results. These are available from the
authors, upon request.
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Method No. of steps First step Second step Parameters
SN Lasso Two Lasso Self-normalization C ∈ {2, 4, 6} in Eq. (6.1)
MB Lasso Two Lasso Multiplier bootstrap C ∈ {2, 4, 6} in Eq. (6.1)
EB Lasso Two Lasso Empirical bootstrap C ∈ {2, 4, 6} in Eq. (6.1)
SN-1S One None Self-normalization None
SN-2S Two Self-normalization Self-normalization None
MB-1S One None Multiplier bootstrap None
MB-H Two Self-normalization Multiplier bootstrap β ∈ {0.01%, 0.1%, 1%}
MB-2S Two Multiplier bootstrap Multiplier bootstrap β ∈ {0.01%, 0.1%, 1%}
EB-1S One None Empirical bootstrap None
EB-H Two Self-normalization Empirical bootstrap β ∈ {0.01%, 0.1%, 1%}
EB-2S Two Empirical bootstrap Empirical bootstrap β ∈ {0.01%, 0.1%, 1%}

Table 2: Inference methods

We shall begin by considering the simulation designs in CCK14 for experiments 1-8, of which results from

only experiment 2 are reported here. See [SM] for the other tables. Table 3 is concerned with the finite sample

size control of the proposed tests. The general finding is that our procedures and those proposed by CCK14

are very rarely over-sized. In Table 3, the size of either test does not exceed 6.15%. Some procedures, such

as SN-1S, may be heavily under-sized. Our simulations reveal that in order to achieve empirical rejection

rates close to α = 5% under the null hypothesis, one requires using a two step inference procedure that has a

bootstrap-based second step (either multiplier or empirical bootstrap). If we adopt them separately, neither a

two step inference procedure nor a bootstrap-based inference method are a guarantee of avoiding undersized

tests. In particular, notice that a two-step procedure with a second step based on self-normalization results

in undersized tests when ρ = 0.9, while a single-step bootstrap procedure results in undersized tests for all

values of ρ.

Before turning to the individual setups for power comparison, let us remark that a first step based on our

Lasso procedure compares favorably with a first step based on the self-normalization approximation. For

example, SN-Lasso with C = 2 has more or equal power than SN-2S with βn = 0.1%. While the differences

may often be small, this finding is in line with the power comparison in Section 5.

Designs 5-8 contain the designs used by CCK14 to gauge the power of their tests. Here we only report

the results from Design 8; See [SM] for results under Designs 5-7. Note that under Design 8, 90% of the

moment conditions have µj(θ) = −0.75 and our results seem to suggest that this value can be considered to

be relative far away from being binding. We deduce this from the fact that all first step selection methods

agree on the set of binding moment conditions, producing power numbers that are all very close to each

other. See Table 13 in [SM] which provides the percentage of moment inequalities retained by each of the

first step procedures in Design 8. For the t-distribution, all selection procedures retain around 10% of the
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inequalities which is also the fraction that are truly binding (and, in this case, violated). Thus, all procedures

are reasonably powerful. For the uniform distribution, all procedures have an equal tendency to be almost

too aggressive in removing slack inequalities. However, we have seen from the size comparisons that this does

not seem to result in oversized tests. Finally, we notice that the power of our procedures hardly varies with

its tuning parameter C. The overall message of the simulation results in Designs 1-8 is that our Lasso-based

procedures are comparable in terms of size and power to the ones proposed by CCK14.

Next consider Designs 9-14 that correspond to modifications of the setup in Design 8 in which progressively

decrease the degree of slackness of the non-binding moment inequalities from −0.75 to values within −0.6

and −0.1. Here again we choose to present the results for Designs 10 and 12 to save space. Results for the

other cases are included in [SM]. In Table 5 that corresponds to Design 10, the degree of slackness of the

non-binding moment inequalities is still large enough so that it can be detected perfectly by all first step

selection methods. The power advantage in favor of the Lasso-based first step is clearly present in Design

12 as shown in Table 6. In this case, the MB Lasso with C = 2 has power which is at least 15%-point

higher than the best procedure proposed by CCK14 for both error distributions. Notice also that when the

error terms are t-distributed, the MB Lasso actually always has a power which is at least 20%-point higher

than its competitors and sometimes more than 50%-point (e.g. see p = 1, 000 and ρ = 0). This power gain

mainly comes from the Lasso being better at removing the slack moment conditions. The overall message

from the results under Designs 9-14 is that our Lasso-based inference procedures can have higher power than

those proposed by CCK14 in cases when the slack moment conditions are difficult to distinguish from zero.

Finally, we notice that Designs 7-14 coincide in having 10% of the moment inequalities being violated. We

have also explored the behavior of our tests when this percentage drops to 5% or 1% and our Lasso based

procedure still remains reasonably powerful in these settings.13

7 Conclusions

This paper considers the problem of inference in a partially identified moment (in)equality model with

possibly many moment inequalities. Our contribution is to propose a two-step new inference method based

on the combination of two ideas. On the one hand, our test statistic and critical values are based on those

proposed by CCK14. On the other hand, we propose a new first step selection procedure based on the Lasso.

Our two-step inference method can be used to conduct hypothesis tests and to construct confidence sets for

the true parameter value.

13These are omitted from the paper for reasons of brevity. These are available from the authors, upon request.
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Our inference method is shown to have very desirable properties. First, under reasonable conditions, it

is uniformly valid, both in underlying parameter θ and distribution of the data. Second, by virtue of the

results in CCK14, our test is asymptotically optimal in a minimax sense. Third, we compare the power of

our method with that of the corresponding two-step method proposed by CCK14, both in theory and in

simulations. On the theory front, we obtain a region of underlying parameters under which the power of

our method dominates. Our simulations indicate that our inference method is usually as powerful as the

one proposed by CCK14, and can sometimes be more powerful. In particular, our simulations reveal that

the Lasso-based first step delivers more power in designs with sparse alternatives, i.e., when only few of the

moment (in)equalities are violated. Fourth, we show that our Lasso-based first step can be implemented

with a thresholding least squares procedure that makes it extremely simple to compute.
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A Supplementary material

This is the Supplementary material file, containing additional simulation results and all the proofs of the

paper. We write [MP] while referring to the main paper.

A.1 Additional simulation results

Here we report the results of the simulation studies in its entirety, including the results that were left out

in the main paper to save space. See Tables 1 and 2 in [MP] for the description of these simulation designs

and the inference methods under consideration.

We shall begin by considering the simulation designs in CCK14 as reported in Tables 3-4. The first four

tables are concerned with the finite sample size control of the proposed tests. The general finding is that

our procedures and those proposed by CCK14 are very rarely over-sized. The maximal size observed for

our procedures is 7.15 (e.g. EB Lasso in Design 4, p = 1, 000, ρ = 0, and uniform error terms) while the

corresponding number for CCK14 is 7.25 (e.g. EB-1S in Design 4, p = 1, 000, ρ = 0, and uniform error

terms). Some procedures, such as SN-1S, may be heavily under-sized. Our simulations reveal that in order

to achieve empirical rejection rates close to α = 5% under the null hypothesis, one requires using a two step

inference procedure that has a bootstrap-based second step (either multiplier or empirical bootstrap). If we

adopt them separately, neither a two step inference procedure nor a bootstrap-based inference method are

a guarantee of avoiding undersized tests. In particular, notice that a two-step procedure with a second step

based on self-normalization results in undersized tests when ρ = 0.9, while a single-step bootstrap procedure

results in undersized tests for all values of ρ.

Before turning to the individual setups for power comparison, let us remark that a first step based on our

Lasso procedure compares favorably with a first step based on the self-normalization approximation. For

example, SN-Lasso with C = 2 has more or equal power than SN-2S with βn = 0.1%. While the differences

may often be small, this finding is in line with the power comparison in Section 5.

Tables 6-4 contain the designs used by CCK14 to gauge the power of their tests. Tables 6 and 7 consider

the case where all moment inequalities are violated. Since none of the moment conditions are slack, there

is no room for power gains based on a first step procedure. In this sense, it should be no surprise that the

choice of inequality selection method plays no role in these two designs. For example, the power of SN-Lasso

is identical to the one of SN-1S while the power of SN-2S is also close to the one of SN-1S. However, the

SN-2S has lower power than SN-1S for some values of its tuning parameter β while the power of SN Lasso

appears to be invariant to its tuning parameter C. The latter is in accordance with our previous findings.
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The bootstrap still improves power for high values of ρ.

Next, we consider Tables 8 and 4. In this setting, 90% of the moment conditions have µj(θ) = −0.75 and

our results seem to suggest that this value can be considered to be relative far away from being binding. We

deduce this from the fact that all first step selection methods agree on the set of binding moment conditions,

producing power numbers that are all very close to each other. This is shown in Table 13 which provides

the percentage of moment inequalities retained by each of the first step procedures in Design 8. When the

error terms are t-distributed, all selection procedures retain around 10% of the inequalities which is also the

fraction that are truly binding (and, in this case, violated). Thus, all procedures are reasonably powerful.

When the error terms are uniformly distributed, all procedures have an equal tendency to be almost too

aggressive in removing slack inequalities. However, we have seen from the size comparisons that this does

not seem to result in oversized tests. Finally, we notice that the power of our procedures hardly varies with

its tuning parameter C.

The overall message of the simulation results in Designs 1-8 is that our Lasso-based procedures are

comparable in terms of size and power to the ones proposed by CCK14.

Tables 9-12 present simulations results for Designs 9-14. These correspond to modifications of the setup

in Design 8 in which progressively decrease the degree of slackness of the non-binding moment inequalities

from −0.75 to values within −0.6 and −0.1.

Tables 9-5 shows results for Designs 9 and 10. As in the case of Design 8, the degree of slackness of the

non-binding moment inequalities is still large enough so that it can be detected perfectly by all first step

selection methods.

This pattern starts to change with Design 11 as shown in Table 10. In this case, the MB Lasso with

C = 2 always has power at least 20%-point higher than the most powerful procedure in CCK14. Table 14

holds the key to these power differences. Ideally, a powerful procedure should retain only the 10% of the

moment inequalities that are binding (in this case, violated). Note that Lasso-based selection procedures

indeed often retain close to 10% of the inequalities for C ∈ {2, 4}. On the other hand, it may happen that

the SN-based procedures retain more than 90% of the inequalities (e.g. see t-distributed errors, p = 1, 000,

and ρ = 0.9).

The power advantage in favor of the Lasso-based first step is also present in Design 12 as shown in Table

6. In this case, the MB Lasso with C = 2 has power which is at least 15%-point higher than the best

procedure proposed by CCK14 for the two types of error distributions considered. Notice also that when

the error terms are t-distributed then the MB Lasso actually always has a power which is at least 20%-point

higher than its competitors and sometimes more than 50%-point (e.g. see p = 1, 000 and ρ = 0). As in
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the previous experiment, this power gain mainly comes from the Lasso being better at removing the slack

moment conditions.

Table 11 shows the results for Design 13. In this case, the MB Lasso with C = 2 is always more powerful

than the most powerful procedure of CCK14 (which is often MB-1S) by at least 5%-point when the error

terms are t-distributed. Sometimes the difference is larger than 45%-points (e.g. see p = 1, 000 and ρ = 0).

In particular, we can see that the it is the Lasso and not the bootstrap which gives the big increase in power

over the SN-1S procedure. For uniformly distributed error terms there seems to be no significant difference

between our procedures and the ones in CCK14; all of them have relatively low power. Finally, these results

are qualitatively similar to those in Design 14 as shown in Table 12.

The overall message from Tables 9-12 is that our Lasso-based inference procedures can have higher power

than those proposed by CCK14 in cases when the slack moment conditions are difficult to distinguish from

zero. Finally, we notice that Designs 7-14 coincide in having 10% of the moment inequalities being violated.

We have also explored the behavior of our tests when this percentage drops to 5% or 1% and our Lasso

based procedure still remains reasonably powerful in these settings.14

14These are omitted from the paper for reasons of brevity. These are available from the authors, upon request.
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A.2 Proofs

Throughout this section, we omit the dependence of all expressions on θ. Furthermore, LHS and RHS abbreviate

“left hand side” and “right hand side”, respectively.

A.3 Auxiliary results

Lemma A.1. Assume Assumptions A.1-A.2. Then, for any γ s.t.
√
nγ/

√
1 + γ2 ∈ [0, nδ/(2(2+δ))M−1

n,2+δ],

P [ max
j=1,...,p

|µ̂j − µj |/σ̂j > γ] ≤ 2p(1− Φ(
√
nγ/

√
1 + γ2))[1 +Kn−δ/2M2+δ

n,2+δ(1 +
√
nγ/

√
1 + γ2)2+δ], (A.1)

where K is a universal constant.

Proof. For any i = 1, . . . , n and j = 1, . . . , p, let Zij ≡ [Xij − µj ]/σj and Uj ≡
√
n
∑n
i=1[Zij/n]/

√∑n
i=1[Z2

ij/n]. By

simple algebra, it follows that
√
n[µ̂j − µj ]/σ̂j = Uj/

√
1− U2

j /n and so

√
n|µ̂j − µj |/σ̂j = |Uj |/

√
1− |Uj |2/n.

Notice that the right hand side of the above display is increasing in |Uj |. Therefore,

{
max

j=1,...,p
|µ̂j − µj |/σ̂j > γ

}
=

{
max

1≤j≤p
|Uj |/

√
1− |Uj |2/n >

√
nγ
}

=
{

max
1≤j≤p

|Uj | >
√
nγ/

√
1 + γ2

}
⊆

{
max

1≤j≤p
|Uj | ≥

√
nγ/

√
1 + γ2

}

such that

P
[

max
j=1,...,p

|µ̂j − µj |/σ̂j > γ
]

≤ P
[

max
1≤j≤p

|Uj | ≥
√
nγ/

√
1 + γ2

]
≤

p∑
j=1

P
[
|Uj | ≥

√
nγ/

√
1 + γ2

]
≤

p∑
j=1

P
[
Uj ≥

√
nγ/

√
1 + γ2

]
+

p∑
j=1

P
[
−Uj ≥

√
nγ/

√
1 + γ2

]
≤ 2p

(
1− Φ(

√
nγ/

√
1 + γ2)

) [
1 +Kn−δ/2M2+δ

n,2+δ

(
1 +
√
nγ/

√
1 + γ2

)2+δ
]
,

where the second line follows from Bonferroni bound and the fourth line follows from Eqs. (A.2) and (A.3) below

which are shown next.

To show Eq. (A.2), consider the following argument. For every j = 1, . . . , p, {Zij}ni=1 is a sequence of independent
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centered (E[Zij ] = 0) random variables with E[Z2
ij ] = 1 and E[|Zij |2+δ] ≤ M2+δ

n,2+δ < ∞. If we let Snj =
∑n
i=1 Zij ,

V 2
nj =

∑n
i=1 Z

2
ij , and 0 < Dnj = [n−1∑n

i=1 E[|Zij |2+δ]]1/(2+δ) ≤ Mn,2+δ < ∞, then Lemma A.1 in CCK14 implies

that uniformly in t ∈ [0, nδ/(2(2+δ))D−1
nj ]

∣∣∣P (Snj/Vnj ≥ t)
1− Φ(t)

− 1
∣∣∣ ≤ Kn−δ/2D2+δ

nj (1 + t)2+δ,

where K is a universal constant.

By using that Snj/Vnj = Uj , Dnj ≤ Mn,2+δ, and applying the inequality in the above display to t =

√
nγ/

√
1 + γ2, it then follows that for any γ s.t.

√
nγ/

√
1 + γ2 ∈ [0, nδ/(2(2+δ))M−1

n,2+δ],

∣∣P [Uj ≥
√
nγ/

√
1 + γ2]− (1− Φ(

√
nγ/

√
1 + γ2))

∣∣
≤ Kn−δ/2D2+δ

nj

(
1− Φ(

√
nγ/

√
1 + γ2)

) (
1 +
√
nγ/

√
1 + γ2

)2+δ
.

Thus, for any γ s.t.
√
nγ/

√
1 + γ2 ∈ [0, nδ/(2(2+δ))M−1

n,2+δ],

p∑
j=1

P
[
Uj ≥

√
nγ/

√
1 + γ2

]
≤ p

(
1− Φ(

√
nγ/

√
1 + γ2)

) [
1 +Kn−δ/2M2+δ

n,2+δ(1 +
√
nγ/

√
1 + γ2)2+δ] . (A.2)

By applying the same argument for −Zij instead of Zij , we deduce that for any γ s.t.
√
nγ/

√
1 + γ2 ∈

[0, nδ/(2(2+δ))M−1
n,2+δ],

p∑
j=1

P
[
−Uj ≥

√
nγ/

√
1 + γ2

]
≤ p

(
1− Φ(

√
nγ/

√
1 + γ2)

) [
1 +Kn−δ/2M2+δ

n,2+δ(1 +
√
nγ/

√
1 + γ2)2+δ] . (A.3)

This completes the proof.

Lemma A.2. Assume Assumptions A.1-A.2 and let {γn}n≥1 ⊆ R satisfy γn ≥ γ∗n for all n sufficiently large, where

γ∗n = n−1/2(M2
n,2+δn

−δ/(2+δ) − n−1)−1/2

= (nM2+δ
n,2+δ)

−1/(2+δ)(1− (nM2+δ
n,2+δ)

−2/(2+δ))−1/2 → 0. (A.4)

Then,

P
[

max
j=1,...,p

|µ̂j − µj |/σ̂j > γn
]

≤ 2p exp
(
−2−1nδ/(2+δ)/M2

n,2+δ

) [
1 +K(Mn,2+δ/n

δ/(2(2+δ)) + 1)2+δ]→ 0. (A.5)
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Proof. Since γn ≥ γ∗n, Eq. (A.5) holds if we show

P
[

max
j=1,...,p

|µ̂j − µj |/σ̂j > γ∗n

]
≤ 2p exp

(
−2−1nδ/(2+δ)/M2

n,2+δ

) [
1 +K(Mn,2+δ/n

δ/(2(2+δ)) + 1)2+δ]→ 0. (A.6)

As we show next, Eq. (A.6) follows from using Lemma A.1 with γ = γ∗n. Notice that this choice implies

√
nγ∗n/

√
1 + (γ∗n)2 = nδ/(2(2+δ))M−1

n,2+δ making γ∗n are valid choice in Lemma A.1. Simple algebra reveals that

the equalities in Eq. (A.4) hold and the convergence to zero in Eq. (A.4) follows from nM2+δ
n,2+δ →∞.

Then, Lemma A.1 with γ = γ∗n implies that

P
[

max
j=1,...,p

|µ̂j − µj |/σ̂j > γ∗n

]
≤ 2p

(
1− Φ(nδ/(2(2+δ))M−1

n,2+δ)
) [

1 +Kn−δ/2M2+δ
n,2+δ(1 + nδ/(2(2+δ))M−1

n,2+δ)
2+δ]

≤ 2p exp
(
−2−1nδ/(2+δ)/M2

n,2+δ

) [
1 +K(n−δ/(2(2+δ))Mn,2+δ + 1)2+δ] ,

where we have used that 1 − Φ(t) ≤ e−t
2/2. We now show that the right hand side of the above display converges

to zero by assumption A.2. First, notice that M
(2+δ)
n,2+δ(ln(2k − p))(2+δ)/2n−δ/2 → 0. Next, (2k − p) > 1 implies that

M
(2+δ)
n,2+δn

−δ/2 → 0 and, in turn, this implies that n−δ/(2(2+δ))Mn,2+δ → 0. Furthermore, notice that M
(2+δ)
n,2+δ(ln(2k −

p))(2+δ)/2n−δ/2 → 0, M
(2+δ)
n,2+δ(ln(2k−p))(2+δ)/2n−δ/2 > 0, and (2k−p) ≥ p implies that nδ/(2+δ)(M2

n,2+δ ln p)−1 →∞.

This implies that

p exp
(
−2−1nδ/(2+δ)/M2

n,2+δ]
)

= exp
(

ln p
[
1− 2−1[nδ/(2+δ)(M2

n,2+δ ln p)−1]
])
→ 0,

completing the proof.

Lemma A.3. For every c ∈ (0, 1),

P [ max
j=1,...,p

|σ̂j/σj − 1| > K(n−(1−c)/2B2
n ln p+ n−3/2B2

n(ln p)2)] ≤ K̃n−c,

where Bn ≡ E[maxj=1,...,p Z
4
1,j ]

1/4 and K, K̃ are universal constants.

Proof. This result is shown in Chernozhukov et al. (2014c, Lemma A.5) .

Proof of Lemma 3.1 of [MP]. By definition, J ⊆ JI where JI is as defined in the proof of Theorem 4.2 of [MP]. Then,

the result is a corollary of Step 2 in the proof of Theorem 4.2 of [MP].

Proof of Lemma 3.2 of [MP]. Fix j = 1, . . . , p arbitrarily. Bühlmann and van de Geer (2011, Eq. (2.5)) implies that

the Lasso estimator in Eq. (3.2) of [MP]. satisfies:

µ̂L,j = sign(µ̂j)×max{|µ̂j | − σ̂jλn/2, 0} ∀j = 1, . . . , p. (A.7)
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To complete the proof, it suffices to show that:

µ̂L,j ≥ −σ̂jλn ⇐⇒ µ̂j ≥ −3σ̂jλn/2. (A.8)

We divide the verification into four cases. First, consider that σ̂j = 0. If so, −σ̂jλn = −3σ̂jλn/2 = 0 and the

µ̂L,j = sign(µ̂j)×max{|µ̂j |, 0} = µ̂j and so Eq. (A.8) holds. Second, consider that σ̂j > 0 and µ̂j ≥ 0. By the case

under consideration, µ̂j ≥ 0 ≥ −3σ̂jλn/2 and so the RHS condition in Eq. (A.8) is satisfied. In addition, Eq. (A.7)

implies that µ̂L,j ≥ 0 ≥ −σ̂jλn and so the LHS of condition in Eq. (A.8) is also satisfied and, thus, Eq. (A.8) holds.

Third, consider that σ̂j > 0 and µ̂j ∈ [−σ̂jλn/2, 0). By the case under consideration, µ̂j ≥ −σ̂jλn/2 ≥ −3σ̂jλn/2

and so the RHS condition in Eq. (A.8) is satisfied. In addition, Eq. (A.7) implies that µ̂L,j = 0 ≥ −σ̂jλn and so the

LHS of condition in Eq. (A.8) is also satisfied and, thus, Eq. (A.8) holds. Fourth and finally, consider that σ̂j > 0

and µ̂j < −σ̂jλn/2. Then, Eq. (A.7) implies that µ̂L,j = µ̂j + σ̂jλn/2 and so Eq. (A.8) holds.

A.4 Results for the self-normalization approximation

Lemma A.4. For any π ∈ (0, 0.5], n ∈ N, and d ∈ {0, 1 . . . , 2k − p}, define the function:

CV (d) ≡


0 if d = 0,

Φ−1(1−π/d)√
1−(Φ−1(1−π/d))2/n

if d > 0.

Then, CV : {0, 1 . . . , 2k − p} → R+ is weakly increasing for n sufficiently large.

Proof. First, we show that CV (d) ≤ CV (d + 1) for d = 0. To see this, use that π ≤ 0.5 such that Φ−1(1 − π) ≥ 0,

implying that CV (1) ≥ 0 = CV (0).

Second, we show that CV (d) ≤ CV (d+ 1) for any d > 0. To see this, notice that CV (d) and CV (d+ 1) are both

the result of g1(g2(·)) : {1 . . . , 2k − p} → R where

g1(y) = y/
√

1− y2/n : [0,
√
n)→ R+,

g2(d) = Φ−1(1− π/d) : {1 . . . , 2k − p} → R.

We first show that the composition g1(g2(·)) is well-defined by verifying that the range of g2 is a subset of the support

of g1. Notice that g2 is an increasing function and so g2(d) ∈ [g2(1), g2(2(k−p)+p)] = [Φ−1(1−π),Φ−1(1−π/(2k−p))].

On the one hand, π ≤ 0.5 implies that Φ−1(1−π) ≥ 0. On the other hand, we need to verify that Φ−1(1−π/(2k−p)) ≤
√
n or, equivalently, (1 − Φ(

√
n)) ≤ π/(2k − p) for n sufficiently large. The latter can be verified by showing that

1
2

exp(−n/2) ≤ π/(2k − p) holds for all n large enough because (1 − Φ(
√
n)) ≤ (1/2) exp(−n/2). This is true by

Assumption A.2 and so g1(g2(·)) is well-defined. From here, the monotonicity of CV (d) follows from the fact that g1

and g2 are both weakly increasing functions and so CV (d) = g1(g2(d)) ≤ g1(g2(d+ 1)) = CV (d+ 1).
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Lemma A.5. Assume Assumptions A.1-A.2, and that H0 holds. For any non-stochastic set L ⊆ {1, . . . , p}, define:

Tn(L) = max

{
max
j∈L

√
nµ̂j
σ̂j

, max
s=p+1,...,k

√
n|µ̂s|
σ̂s

}
,

cSNn (α, |L|) ≡ Φ−1(1− α/(2(k − p) + |L|))√
1− (Φ−1(1− α/(2(k − p) + |L|)))2/n

.

Then,

P [Tn(L) > cSNn (α, |L|)] ≤ α+Rn,

where Rn ≡ αKn−δ/2M2+δ
n,2+δ(1 + Φ−1(1− α/(2k − p)))2+δ → 0 and K is a universal constant.

Proof. Under H0,
√
nµ̂j/σ̂j ≤

√
n(µ̂j − µj)/σ̂j for all j ∈ L and

√
n|µ̂s|/σ̂s =

√
n|µ̂s − µs|/σ̂s for s = p + 1, . . . , k.

From this, we deduce that:

Tn(L) = max
{

max
j∈L

√
nµ̂j
σ̂j

, max
s=p+1,...,k

√
n|µ̂s|
σ̂s

}
≤ max

{
max
j∈L

√
n(µ̂j − µj)

σ̂j
, max
s=p+1,...,k

√
n|µ̂s − µs|

σ̂s

}
= T ∗n(L).

For any i = 1, . . . , n and j = 1, . . . , k, let Zij ≡ [Xij − µj ]/σj and Uj ≡
√
n
∑n
i=1[Zij/n]/

√∑n
i=1[Z2

ij/n]. By simple

algebra, it follows that
√
n[µ̂j − µj ]/σ̂j = Uj/

√
1− U2

j /n and so

√
n(µ̂j − µj)/σ̂j = Uj/

√
1− |Uj |2/n,

√
n|µ̂j − µj |/σ̂j = |Uj |/

√
1− |Uj |2/n.

Notice that both expressions on the RHS of the above display are increasing in Uj and |Uj |, respectively. Therefore,

for any c ≥ 0,

{T ∗n(L) > c} =
{

max
j∈L

√
n(µ̂j − µj)

σ̂j
> c
}
∪
{

max
s=p+1,...,k

√
n|µ̂s − µs|

σ̂s
> c
}

=
{

max
j∈L

Uj/
√

1− |Uj |2/n > c
}
∪
{

max
s=p+1,...,k

|Us|/
√

1− |Us|2/n > c
}

=
{

max
j∈L

Uj > c/
√

1 + c2/n
}
∪
{

max
s=p+1,...,k

|Us| > c/
√

1 + c2/n
}
.
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From here, we conclude that for all c ≥ 0 such that c/
√

1 + c2/n ∈ [0, nδ/(2(2+δ))M−1
n,2+δ], one has

P [Tn(L) > c]

≤ P [T ∗n(L) > c]

≤ P

[{
max
j∈L

Uj > c/
√

1 + c2/n
}
∪
{

max
s=p+1,...,k

|Us| > c/
√

1 + c2/n
}]

≤
∑
j∈L

P
[
Uj > c/

√
1 + c2/n

]
+

k∑
s=p+1

P
[
|Us| > c/

√
1 + c2/n

]

≤
∑
j∈L

P
[
Uj > c/

√
1 + c2/n

]
+

k∑
s=p+1

P
[
Us > c/

√
1 + c2/n

]
+

k∑
s=p+1

P
[
−Uj > c/

√
1 + c2/n

]
≤ [2(k − p) + |L|](1− Φ(c/

√
1 + c2/n))[1 +Kn−δ/2M2+δ

n,2+δ(1 + c/
√

1 + c2/n)2+δ],

where the first inequality is a result of Tn(L) ≤ T ∗n(L), the third inequality is based on a Bonferroni bound, the last

inequality follows from Eqs. (A.2)-(A.3) in Lemma A.1 upon choosing γ = c/
√
n in that result.

We are interested in using c = cSNn (α, |L|) in the previous display. To see that this is a valid choice, i.e.

cSNn (α, |L|)/
√

1 + cSNn (α, |L|)2/n ∈ [0, nδ/(2(2+δ))M−1
n,2+δ], first observe that

cSNn (α, |L|)/
√

1 + cSNn (α, |L|)2/n = Φ−1(1− α/(2(k − p) + |L|)),

(2(k − p) + |L|)[1− Φ(cSNn (α, |L|)/
√

1 + cSNn (α, |L|)2/n)] = α.

Notice that cSNn (α, |L|) ≥ 0 implies that cSNn (α, |L|)/
√

1 + cSNn (α, |L|)2/n ≥ 0. Second, by the first line in the above

display cSNn (α, |L|)/
√

1 + cSNn (α, |L|)2/n ≤ nδ/(2(2+δ))M−1
n,2+δ holds if and only if

Φ−1(1− α/(|L|+ 2(k − p)))Mn,2+δn
−δ/(2(2+δ)) ≤ 1.

To show that this holds for n sufficiently large it suffices to show that the LHS converges to zero. To this end, notice

that Φ−1(1 − α/(2(k − p) + |L|)) ≤
√

2 ln((|L|+ 2(k − p))/α) ≤
√

2 ln((2k − p)/α), where the first inequality uses

that 1 − Φ(t) ≤ exp(−t2/2) for any t > 0 and the second inequality follows from |L| ≤ p. These inequalities and

ln((2k − p)/α)M2
n,2+δn

−δ/(2+δ) → 0 (by Assumption A.2) complete the verification.

Thus, cSNn (α, |L|)/
√

1 + cSNn (α, |L|)2/n ∈ [0, nδ/(2(2+δ))M−1
n,2+δ] and we conclude that

P [Tn > cSNn (α, |L|)] ≤ α+ αKn−δ/2M2+δ
n,2+δ(1 + Φ−1(1− α/(2(k − p) + |L|)))2+δ

≤ α+Rn,

where the second inequality follows from f(x) ≡ Φ−1(1−α/(2(k−p) +x)) being increasing and |L| ≤ p. To conclude

the proof, it suffices to show that Rn → 0. To this end, consider the following argument where K can change from
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line to line :

Rn ≡ αKn−δ/2M2+δ
n,2+δ(1 + Φ−1(1− α/(2k − p)))2+δ

≤ α21+δKn−δ/2M2+δ
n,2+δ(1 + |Φ−1(1− α/(2k − p))|2+δ)

≤ α21+δKn−δ/2M2+δ
n,2+δ + αK(n−δ/2M2+δ

n,2+δ ln((2k − p)/α))(2+δ)/2) = o(1),

where the first inequality uses the convexity of x 7→ x2+δ, δ > 0 to show (1 + a)2+δ ≤ 21+δ(1 + a2+δ) for any

a > 0 by Jensen’s inequality. The second inequality follows from 1 − Φ(t) ≤ exp(−t2/2) for any t > 0 and so

Φ−1(1−α/[2k− p]) ≤
√

2 ln([2k − p]/α), and the convergence to zero is based on n−δ/2M2+δ
n,2+δ ln(2k− p)(2+δ)/2 → 0

(by Assumption A.2) which for 2k − p > 1 implies that n−δ/2M2+δ
n,2+δ → 0.

Proof of Theorem 4.1 of [MP]. This result follows from Lemma A.5 with L = {1, . . . , p}.

Proof of Theorem 4.2 of [MP]. This proof is similar to the proof of Chernozhukov et al. (2014c, Theorem 4.2). Let

us define the (sequence of) sets JI and JcI as follows:

JI ≡ {j = 1, . . . , p : µj/σj ≥ −λn3/4},

JcI ≡ {j = 1, . . . , p : µj/σj < −λn3/4}.

We divide the proof into three steps.

Step 1. We need that µ̂j ≤ 0 for all j ∈ JcI with high probability, i.e., for any c ∈ (0, 1),

P
(
∪j∈Jc

I
{µ̂j > 0}

)
≤ 2p exp

(
−2−1nδ/(2+δ)/M2

n,2+δ

) [
1 +K(Mn,2+δ/n

δ/(2(2+δ)) + 1)2+δ]+ K̃n−c → 0,

where K and K̃ are universal constants.

First, we show that for any r ∈ (0, 1),

{
∪j∈Jc

I
{µ̂j > 0}

}
∩
{

sup
j=1,...,p

|σ̂j/σj − 1| ≤ r/(1 + r)
}
⊆
{

sup
j=1,...,p

|µ̂j − µj |/σ̂j > (1− r)λn3/4
}
.

To see this, suppose that there is an index j = 1, . . . , p s.t. µj/σj < −λn3/4 and µ̂j > 0. Then, |µ̂j − µj |/σ̂j >

λn(3/4)(σj/σ̂j). In turn, supj=1,...,p |1 − σ̂j/σj | ≤ r/(1 + r) implies that |1 − σj/σ̂j | ≤ r and so (σj/σ̂j)λn3/4 ≥

(1− r)λn3/4. By combining these, we conclude that supj=1,...,p |µ̂j − µj |/σ̂j > (1− r)λn(3/4).
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Based on this, consider the following derivation for any r ∈ (0, 1),

P (∪j∈Jc
I
{µ̂j > 0})

=

 P (∪j∈Jc
I
{µ̂j > 0} ∩ supj=1,...,p |σ̂j/σj − 1| ≤ r/(1 + r))+

P (∪j∈Jc
I
{µ̂j > 0} ∩ supj=1,...,p |σ̂j/σj − 1| > r/(1 + r))


≤ P

(
sup

j=1,...,p
|µ̂j − µj |/σ̂j > (1− r)λn3/4

)
+ P

(
sup

j=1,...,p
|σ̂j/σj − 1| > r/(1 + r)

)
. (A.9)

By evaluating this equation for r = rn = (((n−(1−c)/2 ln p+n−3/2(ln p)2)B2
n)−1− 1)−1 → 0 (due to Assumption A.3)

implies that:

P (∪j∈Jc
I
{µ̂j > 0}) ≤ 2p exp(−2−1nδ/(2+δ)/M2

n,2+δ)[1 +K(Mn,2+δ/n
δ/(2(2+δ)) + 1)2+δ] + K̃n−c,

where the first term is a consequence of Lemma A.2 and that rn → 0 and (1− rn)λn3/4 ≥ n−1/2(M2
n,2+δn

−δ/(2+δ) −

n−1)−1/2 for all n sufficiently large, and the second term is a consequence of Lemma A.3 and rn/(1 + rn) =

[n−(1−c)/2 ln p+ n−3/2(ln p)2]B2
n → 0.

Step 2. We wish to show that JI ⊆ ĴL with high probability. To be precise, we show that

P [JI 6⊆ ĴL] ≤ 2p exp(−2−1nδ/(2+δ)/M2
n,2+δ)[1 +K(Mn,2+δ/n

δ/(2(2+δ)) + 1)2+δ] + K̃n−c,

where K, K̃ are uniform constants.

First, we show that for any r ∈ (0, 1),

{
{JI 6⊆ ĴL} ∩

{
sup

j=1,...,p
|σ̂j/σj − 1| ≤ r/(1 + r)

}}
⊆
{

sup
j=1,...,p

|µ̂j − µj |/σ̂j > λn(1− r)3/4
}

To see this, consider the following argument. Suppose that j ∈ JI and j 6∈ ĴL, i.e., µj/σj ≥ −λn3/4 and µ̂L,j/σ̂j <

−λn or, equivalently by Eq. (A.8), µ̂j/σ̂j < −λn3/2. Then, |µj − µ̂j |/σ̂j > λn[ 3
2
− 3

4
(σj/σ̂j)]. In turn, supj=1,...,p |1−

σ̂j/σj | ≤ r/(1 + r) implies that |σj/σ̂j − 1| ≤ r and so λn[ 3
2
− 3

4
(σj/σ̂j)] ≥ λn(1 − r)3/4. By combining these, we

conclude that supj=1,...,p |µ̂j − µj |/σ̂j > λn(1− r)3/4, as desired.

Based on this, consider the following derivation for any r ∈ (0, 1),

P [JI 6⊆ ĴL]

= P

(
{JI 6⊆ ĴL} ∩ { sup

j=1,...,p
|σ̂j/σj − 1| ≤ r/(1 + r)}

)

+P

(
{JI 6⊆ ĴL} ∩ { sup

j=1,...,p
|σ̂j/σj − 1| > r/(1 + r)}

)

≤ P

(
sup

j=1,...,p
|µ̂j − µj |/σ̂j > λn(1− r)3/4]

)
+ P

(
sup

j=1,...,p
|σ̂j/σj − 1| > r/(1 + r)

)
.
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Notice that the expression on the RHS is exactly the RHS of Eq. (A.9) in step 1. Consequently, by evaluating this

equation in r = rn and repeating the arguments used in step 1, the desired result follows.

Step 3. We now complete the argument. Consider the following derivation:

{
{Tn > cSN,Ln (α)} ∩ {JI ⊆ ĴL} ∩ {∩j∈Jc

I
{µ̂j ≤ 0}}

}
⊆
{
{Tn > cSNn (α, |JI |)} ∩ {∩j∈Jc

I

{
µ̂j ≤ 0

}
}
}

⊆
{

max
{

max
j∈JI

√
nµ̂j
σ̂j

, max
s=p+1,...,k

√
n|µ̂s|
σ̂s

}
> cSNn (α, |JI |)

}
,

where we have used cSN,Ln (α) = cSNn (α, |ĴL|), Lemma A.4 (in that cSNn (α, d) is a non-negative increasing function of

d ∈ {0, 1 . . . , 2k − p}), and we take maxj∈JI
√
nµ̂j/σ̂j = −∞ if JI = ∅. Thus,

P (Tn > cSN,Ln (α))

=

 P ({Tn > cSN,Ln (α)} ∩ {{JI ⊆ ĴL} ∩ {∩j∈Jc
I
{µ̂j ≤ 0}}})+

P ({Tn > cSN,Ln (α)} ∩ {{JI 6⊆ ĴL} ∪ {∪j∈Jc
I
{µ̂j > 0}}})


≤ P

(
max

{
max
j∈JI

√
nµ̂j
σ̂j

, max
s=p+1,...,k

√
n|µ̂s|
σ̂s

}
> cSNn (α, |JI |)

)
+ P (JI 6⊆ ĴL) + P (∪j∈Jc

I
{µ̂j > 0})

≤ α+

 αKn−δ/2M2+δ
n,2+δ(1 + Φ−1(1− α/(2k − p)))2+δ+

4p exp(−2−1nδ/(2+δ)/M2
n,2+δ)[1 +K(Mn,2+δ/n

δ/(2(2+δ)) + 1)2+δ] + 2K̃n−c


≤ α+ o(1), (A.10)

where the third line uses Lemma A.5 and steps 1 and 2, and the convergence in the last line holds uniformly in the

manner required by the result.

A.5 Results for the bootstrap approximation

Lemma A.6. Assume Assumptions A.1, A.4, and that H0 holds. For any non-stochastic set L ⊆ {1, . . . , p}, define:

Tn(L) = max
{

max
j∈L

√
nµ̂j
σ̂j

, max
s=p+1,...,k

√
n|µ̂s|
σ̂s

}

and let cBn (α,L) denote the conditional (1−α)-quantile based on the multiplier bootstrap (MB) or empirical bootstrap

(EB), i.e., B ∈ {MB,EB}. Then,

P [Tn(L) > cBn (α,L)] ≤ α+ C̃n−c̃,

where c̃, C̃ > 0 are positive constants that only depend on the constants c, C in Assumption A.4. Furthermore, if

µj = 0 for all j ∈ L then:

|P [Tn(L) > cBn (α,L)]− α| ≤ C̃n−c̃.
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Finally, since c̃, C̃ depend only on the constants c, C in Assumption A.4, the proposed bounds are uniform in all

parameters θ ∈ Θ and distributions P that satisfy the assumptions in the statement.

Proof. If there were no equalities, then the result would follow immediately from replacing {1, . . . , p} with L in the

proof of Theorem 4.3 in CCK14. To complete the proof, we need to show how to modify the argument in the presence

of equalities. As we show next, this can be achieved by simply redefining the set of moment inequalities appropriately

by adding the moment equalities as two sets of inequalities with reversed sign.

Define A ≡ L ∪ {p+ 1, . . . , k} ∪ {k + 1, . . . , 2k − p} with |A| = |L|+ 2(k − p) and for any i = 1, . . . , n, let

XE
i ≡

{
{Xij}′j∈L, {Xis}′s=p+1,...,k, {−Xis}′s=p+1,...,k

}′
.

be an |A|-dimensional auxiliary data vector. Based on this definition, we modify all expressions analogously, e.g.,

µE = {{µj}′j∈L, {µs}′s=p+1,...,k, {−µs}′s=p+1,...,k}′,

σE = {{σj}′j∈L, {σs}′s=p+1,...,k, {σs}′s=p+1,...,k}′,

and notice that H0 is equivalently re-written as µE ≤ 0|A|.

In the new notation, the test statistic is re-written as:

Tn(L) = max
j∈A

√
nµ̂Ej /σ̂

E
j ,

and the critical values can re-written analogously. In particular, the multiplier bootstrap test statistic is:

WMB
n (L) = max

j∈A

√
n

n∑
i=1

εi(X
E
ij − µ̂Ej )/σ̂Ej ,

and the empirical bootstrap test statistic is:

WEB
n (L) = max

j∈A

√
n

n∑
i=1

(X∗,Eij − µ̂
E
j )/σ̂Ej .

Given this setup, the result follows immediately from Theorem 4.3 of CCK14.

Proof of Theorem 4.3 of [MP]. This result follows from Lemma A.6 with |L| = {1, . . . , p}.

Lemma A.7. For any α ∈ (0, 0.5), n ∈ N, and non-stochastic sets L1 ⊆ L2 ⊆ {1, . . . , p}, let cBn (α,L) denote the

conditional (1 − α)-quantile based on multiplier bootstrap (MB) or empirical bootstrap (EB), i.e., B ∈ {MB,EB}.

Then,

cBn (α,L1) ≤ cBn (α,L2).

Furthermore, for B ∈ {MB,EB} one has P
(
cBn (α,L) ≥ 0

)
≥ 1 − Cn−c for any L ⊆

{
1, . . . , p

}
where c, C are
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universal constants.

Proof. By definition, L1 ⊆ L2 implies that WB
n (L1) ≤WB

n (L2) which, in turn, implies cBn (α,L1) ≤ cBn (α,L2).

Next, we prove cBn (α,L) ≥ 0 for any L ⊆
{

1, . . . , p
}

for B ∈ {MB,EB}. When an equality constraint is

present WB
n (L) ≥ 0 for B ∈ {MB,EB} such that cBn (α,L) ≥ 0. Next, consider the case without equality

constraints. For the multiplier bootstrap (B = MB) notice that conditional on the data {Xn} it holds that

WMB
n (L) = maxj∈L (1/

√
n)
∑n
i=1 εi (Xij − µ̂j)/σ̂j is a maximum of centered Gaussian random variables. Thus,

as α ∈ (0, 0.5] we conclude that cMB
n (α,L) ≥ 0 (for all values of {Xn}).

Now turn to the empirical bootstrap. Define c0(α) as the (1 − α)-quantile of max1≤j≤p Yj where (Y1, . . . , Yp) ∼

N(0, E[Z1Z
T
1 ]). Fist, Chernozhukov et al. (2014c, Eq. (66)) implies that, for all γ > 0 and for all n can be chosen

sufficiently large, P (cBn (α) ≥ c0(α + γ)) ≥ 1 − Cn−c where c, C are universal constants (In particular, this holds

for B = EB). Second, since α ∈ (0, 0.5), we can choose γ > 0 sufficiently small s.t. α + γ ≤ 0.5, which implies

c0(α+ γ) ≥ 0. By combining these two, the desired result follows.

Proof of Theorem 4.4 of [MP]. This proof is similar to the proof of Chernozhukov et al. (2014c, Theorem 4.4). Let

us define the (sequence of) sets JI and JcI as follows:

JI ≡ {j = 1, . . . , p : µj/σj ≥ −3λn/4},

JcI ≡ {j = 1, . . . , p : µj/σj < −3λn/4}.

We divide the proof into three steps. Steps 1-2 are exactly as in the proof of Theorem 4.2 so they are omitted.

Step 3. We now want to complete the argument. First, note that Lemma A.7 implies that cBn (α, JI) ≤ cBn (α, ĴL)

when JI ⊆ ĴL. Hence, defining Tn(JI) = max{maxj∈JI

√
nµ̂j

σ̂j
,maxs=p+1,...,k

√
n|µ̂s|
σ̂s
}, one has

{
Tn > cBn (α, ĴL)

}
∩
{
JI ⊆ ĴL

}
∩
{
∩j∈Jc

I

{
µ̂j ≤ 0

}}
∩
{
cBn (α, JI) ≥ 0

}
⊆
{
Tn > cBn (α, JI)

}
∩
{
∩j∈Jc

I

{
µ̂j ≤ 0

}}
∩
{
cBn (α, JI) ≥ 0

}
⊆
{
Tn(JI) > cBn (α, JI)

}
,

where maxj∈JI
√
nµ̂j/σ̂j = −∞ if JI = ∅. Thus,
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P (Tn > cBn (α, ĴL))

=

 P
(
{Tn > cBn (α, ĴL)} ∩ {{JI ⊆ ĴL} ∩ {∩j∈Jc

I
{µ̂j ≤ 0}} ∩ {cBn (α, JI) ≥ 0}}

)
+

P
(
{Tn > cBn (α, ĴL)} ∩ {{JI 6⊆ ĴL} ∪ {∪j∈Jc

I
{µ̂j > 0}} ∪ {cBn (α, JI) < 0}}

)


≤ P (Tn(JI) > cBn (α, JI)) + P (JI 6⊆ ĴL) + P (∪j∈Jc
I
{µ̂j > 0}) + P (cBn (α, JI) < 0)

≤ α+ Cn−c + C̃n−c̃ + 4p exp(−2−1nδ/(2+δ)/M2
n,2+δ)[1 +K(Mn,2+δ/n

δ/(2(2+δ)) + 1)2+δ] + 2K̃n−c

≤ α+ o(1), (A.11)

where the convergence in the last line is uniform. The third line of Eq. (A.11) uses Lemmas A.6 and A.7 as well as

steps 1 and 2.

We next turn to the second part of the result. Notice that µ = 0 implies that JI = {1, . . . , p} and so, by definition,

ĴL ⊆ JI = {1, . . . , p}. By combining this with step 2 of Theorem 4.2, we conclude that

P [ĴL = JI = {1, . . . , p}] ≥ 1−Rn, (A.12)

where

Rn ≡ 2p exp(−2−1nδ/(2+δ)/M2
n,2+δ)[1 +K(Mn,2+δ/n

δ/(2(2+δ)) + 1)2+δ] + K̃n−c (A.13)

and K, K̃ are uniform constants. Thus, P [ĴL = JI = {1, . . . , p}] = 1 + o(1), uniformly. In turn, notice that

{ĴL = JI = {1, . . . , p}} implies that cB,1Sn (α) = cBn (α, JI) = cBn (α, ĴL). Thus,

P (Tn > cBn (α))

= P ({Tn > cBn (α)} ∩ {ĴL = JI = {1, . . . , p}}) + P ({Tn > cBn (α)} ∩ {ĴL = JI = {1, . . . , p}}c)

≥ P ({Tn > cB,1Sn (α)} ∩ {ĴL = JI = {1, . . . , p}})

= P (Tn > cB,1Sn (α))− P ({Tn > cB,1Sn (α)} ∩ {ĴL = JI = {1, . . . , p}}c)

≥ P (Tn > cB,1Sn (α))− P ({ĴL = JI = {1, . . . , p}}c))

≥ α− C̃n−c̃ −Rn ≥ α− 2C̃n−c̃, (A.14)

where, in the last line, the first inequality uses the second result in Theorem 4.3 of [MP] and Eq. (A.12), and the

second inequality uses Eq. (4.9) of [MP] and Eq. (A.13). If we combine this result with Eqs. (4.9) of [MP] and (A.11),

the result follows.
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A.6 Results for power comparison

Proof of Theorem 5.1 of [MP]. The fact that Eq. (5.3) of [MP] implies Eq. (5.2) of [MP] follows from the arguments

in the main text. To complete the proof, it suffices to show that any of the two conditions imply Eq. (5.3) of [MP].

By definition,

ĴSN = {j = 1, . . . , p : µ̂j/σ̂j ≥ −2cSN,1Sn (βn)/
√
n},

ĴL = {j = 1, . . . , p : µ̂j,L/σ̂j ≥ −λn} = {j = 1, . . . , p : µ̂j/σ̂j ≥ −λn3/2},

where the second expression of ĴL follows from Lemma 3.2 of [MP].

Condition 1. We show this by contradiction, i.e., suppose that Eq. (5.4) of [MP] and ĴL 6⊆ ĴSN hold. By the latter,

∃j = 1, . . . , p s.t. j ∈ ĴL∩ĴcSN , i.e., −2cSN,1Sn (βn)/
√
n > µ̂j/σ̂j ≥ −λn3/2, which implies that cSN,1Sn (βn)4/3 <

√
nλn,

which directly contradicts Eq. (5.4) of [MP].

Condition 2. By definition, cSN,1Sn (βn)4/3 ≥
√
nλn is equivalent to

[Φ−1(1− βn/p)]2 ≥ nλ2
n9/16. (A.15)

The remainder of the proof shows that Eq. (A.15) holds under the conditions of the result.

First, we establish a lower bound for the LHS of Eq. (A.15). For any x ≥ 1, consider the following inequalities:

1− Φ(x) ≥ 1

x+ 1/x

1√
2π
e−x

2/2 ≥ 1

2x

1√
2π
e−x

2/2 ≥ 1

2
√

2π
e−x

2

,

where the first inequality holds for all x > 0 by Gordon (1941, Eq. (10)), the second inequality holds by x ≥ 1 and

so x > 1/x, and the third inequality holds by e−x
2/2 ≤ 1/x for all x > 0. Note that for βn ≤ 10% and p ≥ 1,

Φ−1(1− βn/p) ≥ 1. Evaluating the previous display at x = Φ−1(1− βn/p) and some algebra yields:

[Φ−1(1− βn/p)]2 ≥ ln
( p

2
√

2πβn

)
. (A.16)

Second, we establish an upper bound for the RHS of Eq. (A.15). By Eq. (3.4) of [MP],

nλ2
n = (4/3 + ε)2 n

n2/(2+δ)M2
n,2+δ − 1

≤ (4/3 + ε)2n
2

n2/(2+δ)M2
n,2+δ

= 2(4/3 + ε)2nδ/(2+δ)M−2
n,2+δ, (A.17)

where the last inequality used that 1/(x− 1) ≤ 2/x for x ≥ 2 and that n2/(2+δ)M2
n,2+δ ≥ 2. Thus,

9

16
nλ2

n ≤
18

16
(4/3 + ε)2nδ/(2+δ)M−2

n,2+δ =
9

8
(4/3 + ε)2nδ/(2+δ)M−2

n,2+δ. (A.18)

To conclude the proof, notice that Eq. (A.15) follows directly from combining Eqs. (5.5) of [MP], (A.16), and

(A.18).

48



Proof of Theorem 5.2 of [MP]. This result has several parts.

Part 1: The fact that Eq. (5.6) of [MP] implies Eq. (5.7) of [MP] follows from the same arguments as in the SN

method.

Part 2: By definition,

ĴB = {j = 1, . . . , p : µ̂j/σ̂j ≥ −2cB,1Sn (βn)/
√
n},

ĴL = {j = 1, . . . , p : µ̂j,L/σ̂j ≥ −λn} = {j = 1, . . . , p : µ̂j/σ̂j ≥ −λn3/2},

where the second expression of ĴL follows from Lemma 3.2.

Suppose that ĴL ⊆ ĴB does not occur, i.e., ∃j ∈ ĴL ∩ ĴcB , i.e.,

−2cBn (βn)/
√
n > µ̂j/σ̂j ≥ −λn3/2.

From this, it follows that:

{cBn (βn)4/3 ≥ λn
√
n} =⇒ {ĴL ⊆ ĴB}.

Let c0(3βn) denote the (1−3βn)-quantile of max1≤j≤p Yj with (Y1, . . . , Yp) ∼ N(0, E[ZZ′]) with Z as in Assump-

tion A.3. In the remainder of this step, we consider two strategies to establish the following result:

c0(3βn)4/3 ≥
√
nλn. (A.19)

Once Eq. (A.19) occurs, we can conclude that:

{cBn (βn) ≥ c0(3βn)} =⇒ {cBn (βn)4/3 ≥ λn
√
n} =⇒ {ĴL ⊆ ĴB}.

From this and since c0(·) is decreasing, we conclude that:

P [ĴL ⊆ ĴB ] ≥ P [cBn (βn) ≥ c0(3βn)] ≥ P [cBn (βn) ≥ c0(µn)], (A.20)

for any µn ≤ 3βn.

To complete the proof, it suffices to show that the expression on the RHS exceeds 1− C̃n−c̃ for some C̃, c̃ > 0 and

a suitable choice of µn. We achieve this by evaluating Chernozhukov et al. (2014c, Eq. (66)) at the following values:

α = βn, νn = Cn−c, and ζn2, ζn1 s.t. ζn2 + 8ζn1

√
ln p ≤ Cn−c (see step 3 in their proof of Theorem 4.3). Under our

assumptions and βn ≥ Cn−c, these choices can be shown to yield µn ≡ βn+ζn2+vn+8ζn1

√
log p ≤ βn+2Cn−c ≤ 3βn,

as desired. By Chernozhukov et al. (2014c, Eq. (66)), the RHS of Eq. (A.20) exceeds 1− Cn−c, as desired.

To complete the proof the step, we now describe the two strategies that can be used to show Eq. (A.19). The

first strategy relies on Eq. (5.9) of [MP] and the second strategy relies on Eq. (5.10) of [MP].
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Strategy 1. By definition,

c0(3βn) ≥ Φ−1(1− 3βn), (A.21)

where Φ−1(1− 3βn) denotes the (1− 3βn)-quantile of N(0, 1). By combining Eqs. (A.21), (5.9) of [MP], and (A.17),

it follows that:

c0(3βn)4/3 ≥ Φ−1(1− 3βn)4/3 ≥
√

2(4/3 + ε)nδ/(2(2+δ))M−1
n,2+δ ≥

√
nλn,

as desired.

Strategy 2. First, by the Borell-Cirelson-Sudakov inequality (see, e.g. Boucheron et al. (2013, Theorem 5.8)),

P [ max
1≤j≤p

Yj ≤ E[ max
1≤j≤p

Yj ]− x] ≤ e−x
2/2, x ≥ 0,

where we used that the diagonal E[ZZ′] is a vector of ones. Equating the RHS of this to (1 − 3βn) yields x =√
2 log(1/[1− 3βn]) such that

c0(3βn) ≥ E[ max
1≤j≤p

Yj ]−
√

2 log(1/[1− 3βn]). (A.22)

We now provide a lower bound for the first term on the RHS. Consider the following derivation:

2E[ max
1≤j≤p

Yj ] ≥ min
i 6=j

√
E(Yi − Yj)2 log(p)

≥
√

2(1− ρ) log(p), (A.23)

where the first line follows from Sudakov’s minorization inequality (see, e.g., Boucheron et al. (2013, Theorem 13.4))

and the second line follows from E[ZZ′] having a diagonal elements equal to one and the maximal correlation bounded

above by ρ. Eqs. (A.22)-(A.23) imply that:

c0(3βn) ≥
√

(1− ρ) log(p)/2−
√

2 log(1/[1− 3βn]). (A.24)

By combining Eqs. (A.24), (5.10) of [MP], and (A.17), it follows that:

c0(3βn)4/3 ≥ 4/3(
√

(1− ρ) log(p)/2−
√

2 log(1/[1− 3βn]))

≥
√

2(4/3 + ε)nδ/(2(2+δ))M−1
n,2+δ ≥

√
nλn,

as desired.

Part 3: Consider the following argument.

P [Tn ≥ cB,2Sn (α)] = P [Tn ≥ cB,2Sn (α) ∩ ĴL ⊆ ĴB ] + P [Tn ≥ cB,2Sn (α) ∩ ĴL 6⊆ ĴB ]

≤ P [Tn ≥ cB,Ln (α)] + P [ĴL 6⊆ ĴB ]

≤ P [Tn ≥ cB,Ln (α)] + Cn−c,
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where the second line uses the part 1, and the third line uses that the sufficient conditions imply Eq. (5.8) of [MP].
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