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Abstract

This paper reviews the roles of gamma type kernels in the theory and modelling for Brownian and
Lévy semistationary processes. Applications to financial econometrics and the physics of turbulence are
pointed out.
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1 Introduction

The use of gamma kernels in modelling Brownian and Lévy semistationary (BSS and LSS) processes,
at first introduced as a simple convenient choice, has turned out to be of a more significant nature than
first envisaged. This paper reviews the roles the kernels have had in the study of these and related types
of processes and their applications.1

BSS and LSS processes are prominent examples of the types of continuous time stationary processes
on R studied in Ambit Stochastics, a concept introduced in [6]. Two main areas of applications of such
processes are financial econometrics and the physics of turbulence, cf. for instance [21] respectively [43].

In its full generality Ambit Stochastics is a framework for modelling tempo-spatial dynamic fields. A
main point of Ambit Stochastics is that it specifically incorporates terms modelling stochastic volatility.
This is true in particular of BSS and LSS processes.

The papers [8], [49] and [11] review recent developments in the theory and applications of Ambit
Stochastics.

Section 2 recalls the definitions of BSS and LSS processes and presents some instances of the role of
the gamma kernels, including an illustration of the modelling capability. Section 3 points out that the
gamma kernel has an interpretation as a Green’s function corresponding to a certain fractional differential
operator.

The asymptotic behaviour of the autocorrelation functions of BSS and LSS processes is of crucial
importance for their applications, not least in regard to the modelling of turbulence, and this is reviewed
in Section 4 under the gamma kernel assumption.

An outstanding issue is the establishment of an Ito type stochastic calculus for BSS and LSS processes;
the point here is that these types of processes are not in general semimartingales. An important step in

1Proofs and technical details are, in most cases, not presented here. For these and related literature we refer to the papers
cited.

1



this direction has been a detailed study of the path properties of such processes, as discussed in Section
5.

The questions of what can be deduced about the ingredients of a BSS or LSS process based on
knowledge of its law and/or from high frequency observations of its sample path form the topic of Section
6. This involves both purely theoretical reasoning and central questions of inference.

2 BSS and LSS processes

The concept of Brownian semistationary processes, or BSS processes, was introduced in [16], cf. also [14],
[15]. Such a process is of the form

Yt = µ+

∫ t

−∞
g(t− s)σsdBs +

∫ t

−∞
q(t− s)asds (1)

where B is Brownian motion, σ and a are stochastic processes and g and q are deterministic kernels with
g (t) = h (t) = 0 for t ≤ 0. The process Y is stationary provided σ and a are stationary, as we shall
henceforth assume. The intended role of the processes σ and a is to model volatility, or intermittency as
it is called in turbulence.

For simplicity we assume from now on that σ and a are independent of the Brownian motion B. We
note however that a very general treatment of stochastic integration theory for Ambit Stochastics is given
in [28].

The specification (1) is a particular case of the general concept of LSS (Lévy semistationary) processes
defined as

Yt = µ+

∫ t

−∞
g(t− s)σsdLs +

∫ t

−∞
q(t− s)asds. (2)

where L denotes an arbitrary Lévy process on R. This concept was introduced in [7]) and has been further
studied for instance in [54], [21], [49], [48], and references given there. One of the roles of processes of
type LSS is to model volatility/intermittency. General conditions for existence of the stochastic integrals
in (1) and (2) are given in [18].

We refer to

Gt =

∫ t

−∞
g (t− s) dBs (3)

as the Gaussian base process.
The case where a = σ2, i.e.

Yt = µ+

∫ t

−∞
g(t− s)σsdBs +

∫ t

−∞
q(t− s)σ2

sds, (4)

can be seen as a stationary process analogue of the so-called BNS model, discussed extensively in financial
econometrics, see for instance [22].

In this paper we discuss cases where g, and possibly also q, is of the gamma type

g (t; ν, λ) =
λν

Γ(ν)
tν−1e−λt. (5)

The form of the gamma kernel means that small and large lag behaviour of Y can be controlled separately.
The more general form g (t) = tν−1f (t) with f continuous and slowly varying at 0 offers the same type
of control, and many of the asymptotic results in the literature on BSS/LSS processes are derived under
this latter asumption. However, the gamma kernel has some very particular properties of key relevance.

We note that with g as the gamma kernel the restriction ν > 1
2

is needed for the stochastic integral in
(1) to be well defined and that (3) constitutes a semimartingale only if ν = 1 or ν > 3

2
. For ν ∈

(
1
2
, 3

2

)
the

process is Hölder continuous with index less than ν − 1
2
. These aspects and some of their consequences

are discussed in [16], [9], [10] and [19] and will be touched upon later in the paper.
As models for the timewise development of the main component of the velocity vector in a homoge-

neous turbulent field stochastic processes of BSS type have been extensively studied probabilistically and
compared to empirical and simulated data, see [14], [15], [34], [43]. Of special interest in the context of
turbulence are the cases where the roughness parameter ν of the gamma kernel satisfies either 1

2
< ν < 1

or 1 < ν < 3
2
. Near 0 the gamma kernel behaves quite differently depending on whether 1

2
< ν < 1 or

1 < ν < 3
2
, tending respectively to 0 and ∞. The dynamics of the process (1) is significantly different

in the two cases and this has strong consequences with respect to path behaviour and to inference on
volatility/intermittency, see Sections 5 and 6.

2



Considering the setting (4) we note that to accomodate the manifest observed skewness in the distri-
bution of velocity differences in turbulence, cf. [3], the conditional mean E {Yt+u − Yt|σ} should be of the
same order as the variance
V {Yt+u − Yt|σ}

1
2 for small values of u. This can be achieved by having

q2 (u) ∼
∫ u

0

g2 (s) ds (6)

for u ↓ 0. With g as the gamma kernel a natural way of obtaining this is to take q (t) = g
(
t; ν − 1

2
, λ
)
.

For ν = 5
6

the resulting process may, for suitable choice of the volatility/intermittency process σ2, be
considered as a temporal stochastic model for fully developed turbulence; cf. the following Section 4.

It is natural to extend the concept of LSS processes to the specification

Yt = µ+

∫ t

−∞
g(t− s)σsdLTs +

∫ t

−∞
q(t− s)asds (7)

where T denotes a time change and LTt = L (T (t)). Here T and σ represent the two different aspects of
the volatility: intensity and amplitude. For a discussion of time change in stochastic processes and its
role in modelling volatility/intermittency see [17].

Note 1 Convolution Let

Yt =

∫ t

−∞
g(t− s)σsdLTs

and let h be a shift kernel. Then under mild conditions (cf. the Fubini Theorem presented in [2]) we have∫ t

−∞
h(t− s)Ysds =

∫ t

−∞
h ∗ g(t− s)σsdLTs

where h ∗ g is the convolution of h and g. The resulting process is again of LSS type, the left hand side
constituting a natural operation on LSS processes while convolution of kernels, as on the right hand, is a
useful way to flexible modelling. As a concrete example, in [43] the convolution of two gamma kernels is
used succesfully as description of the spectral density function in well developed turbulence.

The paper [48] discusses the case where

Yt =

∫ t

−∞
g(t− s; ν, λ)dLs (8)

in great detail. Necessary and sufficient conditions for the existence of Y are given in terms of ν and
the Lévy measure v of L, under the assumption that σ is predictable, strongly stationary and square

integrable and satisfies E
{
σ

2(1−ν)
0

}
< ∞. Provided the Lévy measure has log moment, existence is

guaranteed for all ν > 1
2

while for 0 < ν ≤ 1
2

an additional condition on the Lévy measure is needed.

Note 2 Selfdecomposability A striking example of the special character of the gamma kernel is the
fact that whenever the process (8) is well-defined the one-dimensional law of Y is self-decomposable even
if the driving Lévy process L does not have that property. In view of how the class of selfdecomposable
distributions is defined this is both remarkable and difficult to explain. (The proof given in [48] is by
direct analytical derivation and does not throw light on the probabilistic aspect.)

On the other hand, as shown in [13], the process Y as such is selfdecomposable if and only if L is
selfdecomposable.

We conclude this Section by an illustration of the flexibility of modelling using gamma kernels. Here,
as is often convenient, the volatility/intermittency process σ2 is taken to be of LSS form.

Example 1 BSS process with GH marginals A stationary BSS processes with generalised hyper-
bolic marginals was used in [7] in connection with a study on modelling electricity spot prices by Lévy
semistationary processes. As an illustration of the versatility of BSS/LSS processes we here represent the
proof of the existence of such a GH related process.

We recall that the GH laws are analytically very tractable and have been found to fit empirical
distributions in a wide range of applications (cf. for instance [3], [30], [31], [34]. Also, in a recent extensive
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development of the Kolmogorov-Obukhov statistical theory of turbulence, Björn Birnir ([23], [24], [25])
has formulated a stochastic version of the Navier-Stokes equations under which the velocity differences
follow GH distributions and this theoretical study is backed by a detailed empirical and simulation based
analysis showing excellent agreement to the GH form.

The existence of stationary BSS processes having generalised hyperbolic marginals is established
on the basis of the form (4) by suitable choice of g and q as gamma kernels and by taking σ2 as a
particular LSS process, specifically as a generalised inverse Gaussian Ornstein-Uhlenbeck process (GIG-
OU process).

Note first that, whatever g, q and σ2, the conditional law of Yt given σ is normal:

Yt|σ
law
= N

(
µ+ β

∫ t

−∞
q (t− s)σ2

sds,

∫ t

−∞
g2 (t− s)σ2

sds

)
.

Now suppose that σ2 follows an LSS process given by

σ2
t =

∫ t

−∞
h (t− s) dLs (9)

where L is a subordinator. Then, by the stochastic Fubini theorem we find∫ t

−∞
q (t− s)σ2

sds =

∫ t

−∞

∫ t

u

q (t− s)h (s− u) dsdLu

=

∫ t

−∞
k (t− u) dLu

where k = q ∗ h, the convolution of q and h. Similarly,∫ t

−∞
g2 (t− s)σ2

sds =

∫ t

−∞
m (t− u) dLu

with m = g2 ∗ h.
Next, for 1

2
< ν < 1 define g by

g (t) =

(
λ

Γ(2ν − 1)

Γ(ν)2

)− 1
2

g

(
t; ν,

λ

2

)
.

Then we have
g2(t) = g(t; 2ν − 1, λ).

Hence, if
h(t) = g(t; 2(1− ν), λ)

and if, moreover,
q (t) = g (t; 2ν − 1, λ)

we obtain
k (t) = m(t) = e−λt.

In other words,

Yt|σ
law
= N

(
µ+ βϑ2

t , ϑ
2
t

)
.

where

ϑ2
t =

∫ t

−∞
e−λ(t−u)dLu. (10)

It follows that if the subordinator L is such that ϑ2
t has the generalised inverse Gaussian law GIG(δ, γ)

then the law of Yt is the generalised hyperbolic GH(α, β, µ, δ) (where α =
√
β2 + γ2). The existence of

such a subordinator follows from a theorem of Jurek and Verwaat, see [38], according to which a random
variable X is representable in law on the form

X
law
=

∫ ∞
0

e−λtdLTt (11)

if and only if the distribution of X is selfdecomposable; and selfdeconposability of GIG has been estab-
lished in [33].
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3 Gamma kernel as Green’s function

For any γ ∈ (0, 1) and n ∈ N the Caputo fractional derivative Dn,γ is, in its basic form, defined by

Dn,γf(x) = Γ(1− γ)−1

∫ x

c

(x− ξ)−γ f (n) (ξ) dξ

where f denotes any function on the interval [c,∞) which is n times differentiable there and such that
f (n) is absolutely continuous on [c,∞). This concept was introduced by [27] and has since been much
generalised and extensively applied in a great variety of scientific and technical areas. For a comprehensive
exposition of this and other concepts of fractional differentiation, see [42], cf. also [44], [1] and [45].

For functions f on R let Mλ with λ ≥ 0 be the operator Mλf(x) = eλxf(x) and, for 0 < γ < 1 and
c ∈ R, define the operator Dn,γλ by

Dn,γλ f(x) = M−1
λ DDn,γMλf(x)

where D indicates ordinary differentiation and Dn,γ is the Caputo fractional derivative.2

Now, suppose that 1 < ν < 3
2

and consider the equation

D1,ν−1
λ f(x) = φ(x) (12)

where φ is assumed known. We seek the solution f to this equation, stipulating that f (c) should be equal
to 0, and it turns out to be

f(x) = Γ(ν)−1

∫ x

c

(x− ξ)ν−1e−λ(x−ξ)φ(ξ)dξ. (13)

In other words,
g(x) = g (x; ν, λ) = Γ(ν)−1xν−1e−λx (14)

is the Green’s function corresponding to the operator D1,ν−1
λ when 1 < ν < 3

2
.

The verification is by direct calculation. With f given by (13) we find

(Mλf)(x) = Γ(ν)−1

∫ x

c

(x− ξ)ν−1eλξφ(ξ)dξ

so

(Mλf)′(x) = Γ(ν − 1)−1

∫ x

c

(x− ξ)ν−2eλξφ(ξ)dξ

and hence, for any γ ∈ (0, 1),

D1,γ
λ f(x) = Γ(ν − 1)−1Γ(1− γ)−1e−λxD

∫ x

c

(x− ξ)−γ
∫ ξ

c

(ξ − η)ν−2eληφ(η)dηdξ

= Γ(ν − 1)−1Γ(1− γ)−1e−λxD

∫ x

c

eληφ(η)

∫ x

η

(x− ξ)−γ(ξ − η)ν−2dξdη

= Γ(ν − 1)−1Γ(1− γ)−1e−λxD

∫ x

c

(x− η)−γ+ν−1eληφ(η)dη

×
∫ 1

0

(1− w)(1−γ)−1w(ν−1)−1dw

= Γ(ν − γ)−1e−λxD

∫ x

c

(x− η)−γ+ν−1eληφ(η)dη.

Consequently, for γ = ν − 1 we have

D1,ν−1
λ f(x) = e−λxD

∫ x

c

eληφ(η)dη = φ(x).

2The differentiation term DDn,γ may be viewed as a special case of the more general definition

Dm,n,γ = DmDn,γ

where m, like n, is a nonnegative integer and 0 < γ < 1. Then Dm,0,γ equals the Riemann-Liouville fractional derivative while
D0,n,γ is the Caputo fractional derivative.

5



On the other hand, in case ν ∈
(

1
2
, 1
)

the relevant equation is

D0,ν
λ f(x) = φ(x),

and the solution is again of the form (13). In fact,

D0,γ
λ f(x) = Γ(ν)−1Γ(1− γ)−1e−λxD

∫ x

c

(x− ξ)−γ
∫ ξ

c

(ξ − η)ν−1eληφ(η)dηdξ

= Γ(ν)−1Γ(1− γ)−1e−λxD

∫ x

c

eληφ(η)dη

∫ x

η

(x− ξ)−γ(ξ − η)ν−1dξ

= Γ(ν)−1Γ(1− γ)−1e−λxD

∫ x

c

(x− η)−γ+ν eληφ(η)dη

×
∫ 1

0

(1− w)(1−γ)−1w(ν−1)−1dw

= Γ(ν)−1Γ(1− γ)−1e−λxD

∫ x

c

(x− η)−γ+ν eληφ(η)dη

×
∫ 1

0

(1− w)(1−γ)−1w(ν−1)−1dw

= Γ(1− γ + ν)−1e−λxD

∫ x

c

(x− η)−γ+ν eληφ(η)dη

and with γ = ν we have
D0,ν
λ f(x) = φ (x) .

Thus, in both cases, 1
2
< ν < 1 and 1 < ν < 3

2
, the gamma kernel (14) occurs as the Green’s function.

In the former case the differential operator is of Riemann-Liouville type and in the latter of Caputo type.
This suggests, in particular, that for suitable choice of g and q as gamma kernels there may exist an

extension of the definition of Caputo derivatives (corresponding to taking the limit c→ −∞) such that the
process (4) may be viewed as the solution to a stochastic differential equation of the form DYt = σtḂ+βσ2

t .

Note 3 Introducing the operator Iνλ by

Iνλφ = M−1
λ D0,ν−1Mλφ,

we may reexpress formula (13) as
f = Iνλφ

and the calculation above shows that
D1,ν−1
λ Iνλ = I (15)

where I denotes the identity operator. Thus D1,ν−1
λ is the left inverse of Iνλ .

The operator Iνλ also has a right inverse (where, again, 1 < ν < 3
2
). To determine that, let

J1,γ
λ = M−1

λ D1,γMλ

(where γ ∈ (0, 1)). Then

IνλJ
1,γ
λ f (x) = M−1

λ D0,ν−1MλΓ (γ)−1 e−λx
∫ x

c

(x− ξ)−γ
(
eλξf (ξ)

)′
dξ

= Γ (γ)−1 e−λxD0,ν−1

∫ x

c

(x− ξ)−γ
(
eλξf (ξ)

)′
dξ

=
1

Γ (γ) Γ (ν − 1)
e−λx

∫ x

c

(x− ξ)1−ν
∫ ξ

c

(ξ − η)−γ
(
eληf (η)

)′
dηdξ

=
1

Γ (γ) Γ (ν − 1)
e−λx

∫ x

c

(
eληf (η)

)′
dη

∫ x

η

(x− ξ)1−ν (ξ − η)−γ dξ

=
1

Γ (γ) Γ (ν − 1)
e−λx

∫ x

c

(x− η)2−ν−γ
(
eληf (η)

)′
dη

×
∫ 1

0

(1− w)2−ν−1 w1−γ−1dw

=
B (2− ν, 1− γ)

Γ (γ) Γ (1− ν)
e−λx

∫ x

c

(x− η)2−ν−γ
(
eληf (η)

)′
dη.
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So, for γ = 2− ν we have
IνλJ

1,γ
λ f (x) = f (x) ,

i.e. J1,2−ν
λ is the right inverse of Iνλ .

Remark 1 In view of the link to fractional differentiation established in the present Section it
is pertinent briefly to refer to the broad range of studies of the relevance of (multi)fractional calculus
to turbulence modelling existing in the literature. Some links between that literature and the ambit
modelling approach are given in [52].

Another related line of study is that of space-time fractional diffusion equations and the possibility of
interpreting the associated Green’s functions as probability densities, see [46] and [55].

4 Autocorrelation

The autocorrelation function r of the Gaussian base process (3) is

r (u) =

∫∞
0
g (u+ s) g (s) ds∫∞

0
g2 (s) ds

(16)

and

E
{

(Gt+u −Gt)2} =

∫ ∞
0

ψu (v) dv = 2

∫ ∞
0

g2 (s) dsr̄ (u) (17)

where
r̄ (u) = 1− r (u) (18)

is the complementary autocorrelation function of G.
When g is the gamma kernel (5) the autocorrelation function is expressible in terms of the type K

Bessel functions. Specifically

r (u) = 2−ν+ 3
2 Γ

(
ν − 1

2

)−1

K̄ν− 1
2

(λu) (19)

where, for all real ν, K̄ is defined as K̄ν (x) = xνKν (x). This function (19) equals the Whittle-Matérn
autocorrelation function which is widely used in geostatistics and other areas of spatial statistics as the
autocorrelation between two points a distance u apart in d-dimensional Euclidean space, see [37].

The asymptotic behaviour of r as u tends to 0 is of special interest and this is given by

2−2ν+1 Γ( 3
2
−ν)

Γ( 1
2

+ν)
u2ν−1 +O(u2) for 1

2
< ν < 3

2

r̄ (u) ∼ 1
2
u| ln u

2
|+O(u3| ln(u)|) for ν = 3

2

1
2

Γ(ν− 5
2

)

Γ(ν− 1
2 )
u2 +O(u3| ln(u)|) for 3

2
< ν

(20)

In a paper from 1948 [40] von Karmann discussed the behaviour of the double correlation functions
in three dimensional homogeneous and isotropic turbulence. These functions are defined by

φ (r) =
u (x1, x2, x3)u (x1 + r, x2, x3)

u2
(21)

and

ψ (r) =
u (x1, x2, x3)u (x1, x2 + r, x3)

u2
(22)

where u denotes the main component of the three-dimensional velocity vector (i.e. the component in
the mean wind direction) and the overbar indicates mean value. Due to the continuity equation for
incompressible fluids the functions ψ and φ are related by

ψ (r) = φ (r) +
r

2
φ′ (r) , (23)

see [41], cf. also Section 6.2.1 of [32]. Von Karmann sets up a series of physically based assumptions
concerning this type of turbulence and supplementing these assumptions with some speculative reasoning
he arrived at the following proposal for the functional form of φ
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φ (r) =
22/3

Γ (1/3)
r1/3K1/3 (r) . (24)

A main point in von Karmann’s argument was that the spectral density corresponding to this functional
form interpolates smoothly between behaving as a fourth power near the origin and decaying at expo-
nential rate −5/3 for large frequencies3. Both of these traits correspond to well documented empirical
behaviour, and the 5/3 rate is the spectral counterpart to Kolmogorov’s 2/3 law. In the same paper von
Karmann compared this form, or rather that of the transversal correlation function ψ, to wind tunnel
data obtained at California Institute of Technology and found a fair agreement between the observations
and ψ, as determined from (23).

We note that if φ has the form (19) then ψ as determined from (23) is given by

ψ (r) = 2−ν+ 3
2 Γ

(
ν − 1

2

)−1(
K̄ν− 1

2
(r) +

1

2
rK̄′ν− 1

2
(r)

)
. (25)

It follows from elementary properties of the Bessel functions K that we have the simple relation

K̄′ν(x) = −xK̄ν−1(x). (26)

Hence

ψ (r) = 2−ν+ 3
2 Γ

(
ν − 1

2

)−1(
K̄ν− 1

2
(r)− 1

2
r2K̄ν− 3

2
(r)

)
= 2−ν+ 3

2 Γ

(
ν − 1

2

)−1(
K̄ν− 1

2
(r)− 1

2
rν+ 1

2Kν− 3
2
(r)

)
= 2−ν+ 3

2 Γ

(
ν − 1

2

)−1(
K̄ν− 1

2
(r)− 1

2
rν+ 1

2K 3
2
−ν(r)

)
i.e.

ψ (r) = 2−ν+ 3
2 Γ

(
ν − 1

2

)−1(
K̄ν− 1

2
(r)− 1

2
r2ν−1K̄ 3

2
−ν(r)

)
. (27)

One sees that r (u) = φ̄ (u) where φ̄ (u) = 1−φ (u); thus the asymptotic behaviour of φ̄ (u) as u→ 0 is
determined by (20). As regards the asymptotic properties of the complementary autocorrelation function
ψ̄ (u) = 1− ψ (u) of the transversal velocities it follows immediately from the Table that, for 1

2
< ν < 3

2

and u→ 0, the leading terms of the expansions of φ̄ (u) and ψ̄ (u) are both of order u2ν−1.
Formula (24) is a special case, obtained for ν = 5

6
, of the general form of autocorrelation function (19).

von Karmann’s derivation was not based on any specified probability structure or model. The general
form (19), obtained by a Fourier inversion, was proposed as correlation function by [53] (Russian Edition
1959). As mentioned above, that form is also known as the Whittle-Matérn correlation function. Note
that the von Karmann-Tatarski specification refers to spatial correlations whereas that of (19) concerns
timewise correlation. However, the Taylor Frozen Field Hypothesis4 provides a direct physical link be-
tween the two results.

Note 4 Expressed in terms of φ (r) itself, rather than the spectrum of φ, the basis for von Karmann’s
proposal was that φ̄ (r) provides a good fit to the behaviour of the second order structure function both
over the inertial subrange (the 2/3 law) and at large lags. It follows from the table (20) that the 2/3
behaviour in fact extends all the way down to 0. Turning this observation around, the indication is that,
by the nature of the gamma kernel, the asymptotic behaviour of the third order structure function near
0, which is linear, extends to the inertial subrange.

Note 5 Moving average processes with bi-gamma kernel The results in (20) may also be used for
describing the small scale behaviour of the following moving average process with a gamma type kernel.

Consider the stationary Gaussian moving average process given by

Yt =

∫ ∞
−∞

g (t− s; ν, λ, µ, κ) dBs (28)

3The −5/3 behaviour is very manifest in the socalled inertial range but, as documented by later, extensive and accurate
measurements, for the largest frequencies (the dissipation range) the spectral density decreases at a much faster rate. The total
behaviour of the spectral density is accurately described by a formula due to Skharofsky, see for instance Figure 5 in [35].

4The Hypothesis states that spatial and temporal increments of the main component of the velocity vector are equivalent in
law up to a proportional change of time. Cf. for instance [43].
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where B is Brownian motion on R and

g (t; ν, λ, µ, κ) =

{
tν−1e−λt for t > 0

|t|µ−1 e−κ|t| for t < 0

We refer to this as the bi-gamma kernel. In case µ = ν and κ = λ the kernel is symmetric around 0 and
may be written as g (|t| ; ν, λ). The process Y is well defined provided both ν and µ are greater than 1

2
,

and it may be rewritten as

Yt =

∫ t

−∞
(t− s)ν−1 e−λ(t−s)dBs +

∫ ∞
t

(s− t)µ−1 e−κ(s−t)dBs.

Here

E {Y0Yu} =

∫ ∞
0

g (s; ν, λ) g (u+ s; ν, λ) ds

+

∫ u

0

g (s;µ, κ) g (u− s; ν, λ) ds

+

∫ ∞
u

g (s;µ, κ) g (s− u;µ, κ) ds.

By formula 3.383.1 in [36] we find∫ u

0

g (s;µ, κ) g (u− s; ν, λ) ds =

∫ u

0

sµ−1e−κs (u− s)ν−1 e−λ(u−s)ds

= e−λu
∫ u

0

sµ−1 (u− s)ν−1 e−(λ+κ)sds

= e−λuB (ν, µ) 1F1 (µ; ν + µ;λ+ κ)uλ+κ−1

where 1F1 is the general hypergeometric function, and we have ([36], formula 9.14.1)

1F1 (µ; ν + µ; (λ+ κ)) =

∞∑
k=0

(µ)k
(ν + µ)k

(λ+ κ)k

k!
.

All in all this implies that for u→ 0 the second order structure function of (28) is of the form

S2 (u) = cu2ν−1 + c′u2µ−1 − c′′uν+µ−1

where c, c′ and c′′ are positive constants. Thus, in particular, if 1
2
< ν < 3

2
and 1

2
< κ < 3

2
then

S2 (u) ∼


cu2ν−1 for ν < µ;

(c+ c′ − c′′)u2ν−1 for ν = µ;
c′u2µ−1 for ν > µ.

(29)

5 Pathwise behaviour

The fine structure of BSS and LSS processes is discussed in [47] and [49].
In [47] the authors establish a connection between the path behaviour of the BSS process

Yt =

∫ t

−∞
(t− s)ν−1 e−λ(t−s)dBs (30)

and that of the fractional Ornstein-Uhlenbeck process Y H with index H, that is

Y Ht =

∫ t

−∞
e−λ(t−s)dBHs (31)

under the assumption that H = ν − 1
2

and ν ∈
(

1
2
, 1
)
∪
(
1, 3

2

)
so that we are in the nonsemimartingale

case. While both of these are stationary Gaussian processes, the former is in many situations more
realistic in regard to applications,.particularly for ν = 5/6 which corresponds to von Karmann’s spectral
density function. This is the case in particular for turbulence modelling. The key difference lies in the
tail behaviour of the increments for large lags.
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The following result is established in [47].

Theorem 1 For all t > 0
Yt = Y Ht −Dt (32)

where D ∈ C1 ([0,∞)). A concrete representation of the process D is available:

Dt =

∫ t

−∞

∫ t

s

(
e−λ(t−u) − e−λ(t−s)

) ∂

∂u
KH (u, r) dudBs

where KH denotes the kernel for the fractional Brownian motion, i.e.

KH (t, s) = (t− s)H−
1
2

+ − (−s)H−
1
2

+ .

Similarly Y may be represented as
Yt = BHt − Vt

where V is an absolutely continous process.

The stochastic analysis for volatility modulated Lévy-driven Volterra processes, developed in [5], [4],
[13], is an important tool in the derivation of these results. Together these three papers constitute a
foundation for an Ito calculus for BSS and LSS processes.

6 Recovery and Inference

Once a BSS or LSS model has been formulated the question arises as to what can be learned about
the components of the model, either in law or pathwise. In discussing this we will, unless otherwise
mentioned, assume that the skewness terms are absent.

Thus let

Yt =

∫ t

−∞
g(t− s)σsdLTs (33)

where LT denotes a Lévy process L time changed by a chronometer T (i.e. a cadlag increasing process
such that T (t) → −∞ for t → −∞ and T (t) → ∞ for t → ∞). The question has several aspects: (i)
In case the process has been observed continuously over an interval, can any of the model components
be exactly determined (ii) Under what conditions does the law of Y uniquely determine the kernel
g or the laws of σ or L or T (iii) If the data available consists of high frequency observations, what
inference procedures for assessing some or all of the components might be available; in particular, what
can be said about the volatility/intermittency process σ2.

Below we exemplify these aspects. For additional results, proofs and references see [50], [51].

(i) The following example presents a case where concrete pathwise recovery of LT over the interval
(−∞, t) is possible if Y has been observed continuously over the same interval

Example 2 Suppose that g is the gamma kernel and that σ ≡ 1 and T = t, that is

Yt =

∫ t

−∞
g (t− s; ν, λ) dLs.

By the stochastic Fubini theorem (cf. [2]) we find for ν ∈
(

1
2
, 1
)

and letting

Zt =

∫ t

−∞
g (t− u; 1− ν, λ)Yudu

that

Zt =

∫ t

0

∫ u

−∞
g (t− u; 1− ν, λ) g (u− s; ν, λ) dLsdu

=

∫ t

−∞

∫ t

s

g (t− u; 1− ν, λ) g (u− s; ν, λ) dudLs

=

∫ t

−∞

∫ t−s

0

g (w; 1− ν, λ) g (t− s− w; ν, λ) dwdLs

=

∫ t

−∞
g (t− s; 1, λ) dLTs = c

∫ t

−∞
e−λ(t−s)dLs

10



for a constant c. Hence

Z+
t =

∫ t

0

Zsds =

∫ t

0

∫ s

−∞
e−λ(s−u)dLuds

=

∫ t

−∞

∫ t

u

e−λ(s−u)dsdLu

= λ−1

∫ t

−∞

(
1− e−λ(t−u)

)
dLu = λ−1 (Lt − Zt)

or
L = λZ+ + Z.

It is noteworthy here that L is explicitly recoverable in spite of the fact that with ν ∈
(

1
2
, 1
)

the kernel
g (t; ν, λ) tends to ∞ for t→ 0.

Note 6 Under a minor regularity condition on the time change T , the same argument goes through,
giving that LT = λZ+ + Z.

Note 7 For general moving average processes driven by Lévy noise

Yt =

∫ ∞
−∞

g (t− s)L (ds)

recovery of L from complete knowledge of the realisation of Y on R is, subject to regularity restrictions
on g and L, possible in terms of linear limit operations. This applies in particular for the gamma kernel
and in that case {Ls : s ≤ t} is recoverable from {Xs : s ∈ R}, see [50].

Consider the class G of kernels g such that g is integrable with non-vanishing Fourier transform. This
is the case in particular for the gamma kernel who’s Fourier transform is

ĝ (ζ; ν, λ) =
λν

Γ (ν)
(λ− iζ)−ν .

It is shown in [51] that if g ∈ G and

Yt =

∫ t

−∞
g(t− s)dLTs ,

with T a subordinator independent of L, then the law of T is completely determined by the laws of L
and Y . This is thus, in particular, the case when g is of the gamma type.

(ii) The paper [39], cf. also [26], introduces a powerful nonparametric procedure for estimation of
the kernel function for BSS processes

Yt =

∫ t

−∞
g (t− s)σsdBs

with kernel function g in G. This is done through determining g from the autocorrelation function

r (u) =

∫ ∞
0

g (s+ |u|) g (s) ds.

Numerically the gamma kernel is used as a test case. (Earlier approaches to the estimation of the kernel
are presented in [26].)

(iii) A key question of inference for BSS and LSS models is how to assess the inherent volatility σ2.
More specifically, the wish will typically be to draw accurate inference on the accumulated volatility

σ2+
t =

∫ t

0

σ2
sds.

The realised quadratic variation is a natural initial tool to this end and for BSS processes Y , as given by
(1), that will under mild conditions yield a consistent estimator of σ2+

t provided Y is a semimartingale,
i.e. it will hold that

[Yδ]t
p→ σ2+

t as δ → 0.
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However, suppose that

Yt =

∫ t

−∞
g (t− s; ν, λ)σsdBs

with ν ∈
(

1
2
, 1
)
∪ (1, 3

2
]. Then Y is not a semimartingale and the realised quadratic variation [Yδ]t

converges to ∞ for ν ∈
(

1
2
, 1
)

and to 0 for ν ∈ (1, 3
2
]. The rate of these convergences is determined by ν.

For instance, when ν ∈
(

1
2
, 1
)

we have

cδ2(1−ν) [Yδ]t
p→ σ2+

t as δ → 0

where c = λ22(1−ν)Γ (2ν − 1) /Γ (ν)2.
Obtaining estimates of ν as a way to inference on σ2+

t , in particular through stable central limit
theorems, requires advanced reasoning. The papers [9], [10] and [29] develop the theory of multipower
variations for this and related purposes. In particular, the latter two papers discuss the use of COF
(change-of-frequency) statistics. Similar points for LSS processes are discussed in [49].

So far we have, for simplicity of discussion, assumed that the skewness terms in the BSS/LSS processes
are 0. When this is not the case it is still possible, under certain conditions, to establish stable central
limit theorems, as shown in the above-mentioned papers. However, consider the case.where Y is of the
form (4) and g and q are given respectively as g (t; ν, λ) and g

(
t; ν − 1

2
, λ
)

for ν ∈
(

1
2
, 1
)
, cf. (6). Then

the skewness term contain information on the volatility/intermittency process. In fact, it can be shown
that then

δ2(1−ν) [Yδ]t
p→ c

∫ t

0

σ2
sds+ c′

∫ t

0

σ4
sds

for certain constants c and c′ and where [Yδ]t is the quadratic variation of Y over the interval (0, t) at lag
δ.

Recently a powerful procedure for simulation of BSS processes is presented in [20], under the assump-
tion that the kernel function is regularly varying at 0, as is the case for the gamma kernel with ν ∈

(
1
2
, 1
)
,

and the method is applied successfully for inference on ν (referred to as the roughness parameter). Ap-
proximation of LSS processes by Fourier methods is discussed in [21].

As long as the interest is solely in regard to relative volatility, inference on ν can be avoided by using
the realised relative volatility, defined as [Yδ]t / [Yδ]T for 0 < t < T . This yields

[Yδ]t / [Yδ]T
p→ σ2+

t /σ2+
T as δ → 0.

Associated confidence intervals based on a stable central limit theorem have been developed in [12].
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[35] Hedevang, E. and Schmiegel, J. (2014): A Lé vy based approach to random vector fields: With a
view towards turbulence J. Nonlinear Sci. Numer. Simul. 15, 411-436.

[36] Gradshteyn, I.S. and Ryzhik, I.M. (1996): Table of Integrals, Series and Products (Fifth Ed.)
London: Academic Press.

[37] Guttorp, P. and Gneiting, T. (2005): On the Whittle-Matérn correlation family. NrCSE Technical
report Series NrCSE-TrS No. 080.

[38] Jurek, Z.J. and Veraat, W. (1983): An integral representation for self-decomposable Banach space
valued random variables. Z. Wahrsch.Verw. Gebiete. 62, 247-262.

[39] Kanaya, S., Lunde, A. and Sauri, O. (2015): Nonparametric estimation of kernel functions of
Brownian semi-stationary processes. (To appear.)

[40] von Karman, T. (1948): Progress in the statistical theory of turbulence. J. Marine Res. 7, 252-264.

[41] von Karman, T. and Howarth, L. (1938): On the statistical theory of isotropic turbulence. Proc.
Roy. Soc. Lond. A 164, 192-215.

[42] Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006): Theory and Applications of Fractional
Differential Equations. Amsterdam: North-Holland

[43] Márquez, J.U. and Schmiegel, J. (2015): Modelling turbulent time series by BSS-processes. In
Podolskij M., Stelzer R., Thorbjørnsen, S. and Veraart, A. (Eds.): The Fascination of Probability,
Statistics and their Applications; in Honour of Ole E. Barndorff-Nielsen Heidelberg: Springer (To
appear).

[44] Li, C., Qian, D. and Chen, Y. (2011): On Riemann-Liouville and Caputo derivatives. Discrete
Dynamics in Nature and Society. Vol. 2011, Article ID 562494.

[45] Mainardi, F. (2010): Fractional Calculus and Wawes in Linear Visocelasticity. London: Imperial
College Press.

[46] Mainardi, F, Pagnini, G. and Gorenflo, R. (2002): Probability distributions as solutions to fractional
diffusion equations. Mini-proceedings: 2nd MaPhySto Conference on Lévy Processes: Theory and
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