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Abstract

We consider the issue of modeling and forecasting daily electricity spot prices on the Nord Pool Elspot

power market. We propose a method that can handle seasonal and non-seasonal persistence by modelling

the price series as a generalized exponential process. As the presence of spikes can distort the estimation of

the dynamic structure of the series we consider an iterative estimation strategy which, conditional on a set

of parameter estimates, clears the spikes using a data cleaning algorithm, and reestimates the parameters

using the cleaned data so as to robustify the estimates. Conditional on the estimated model, the best

linear predictor is constructed. Our modeling approach provides good fit within sample and outperforms

competing benchmark predictors in terms of forecasting accuracy. We also find that building separate

models for each hour of the day and averaging the forecasts is a better strategy than forecasting the daily

average directly.

Keywords: Robust estimation, long-memory, seasonality, electricity spot prices, Nord Pool power

market, forecasting, robust Kalman filter, generalized exponential model

JEL: C1, C5, C53, Q4

1. Introduction

The daily spot prices from the Nord Pool market exhibit persistent (long memory) features combined

with a periodic behaviour, related to weekly, monthly and yearly seasonality, which is also rather persis-

tent. The fractional noise model (see Granger, Joyeux, 1980, and Hosking, 1981) is suitable for capturing

the persistence of the series at the long run frequency. Periodic patterns reverting slowly to determinis-

tic cycles can be for instance modelled by the class of generalized fractional, or Gegenbauer, processes,

introduced by Hosking (1981) in his seminal paper, and analyzed by Gray, Zhang and Woodward (1989).

After applying a cascade of (generalized) fractional filters, a popular approach is to assume that the

filtered series is a short memory autoregressive moving average (ARMA) process.
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These processes have been used widely in many empirical applications. Ferrara and Guegan (2001)

used Gegenbauer processes to analyze cointegration in the Nikkei spot index. Smallwood and Beaumont

(2003) analyzed IBM trading volume. Woodward, Cheng, and Grey (1998) considered atmospheric CO2

data. There is also evidence of fractional seasonal integration in macroeconomic time series (Arteche,

Robinson (2000), Gil-Alana, Robinson (2001).

Gegenbauer processes have also been used in the energy market data analysis. Soares and Souza

(2006) used Gegenbauer ARMA (GARMA) processes with explanatory variables to forecast electricity

demand. Diongue et al. (2004) introduced the k-factor Gegenbauer integrated generalized autoregressive

conditional heteroskedasticity (GIGARCH) for modelling energy prices and subsequently Diongue et al.

(2009) considered this process for forecasting EEX electricity spot market prices in Germany.

An alternative semiparametric approach is based on the generalized exponential model for the spec-

trum, as in Hsu and Tsai (2009). According to this approach, the logarithm of the spectrum of the short

memory filtered series is represented by a finite trigonometric polynomial. Bloomfield (1973) introduced

the exponential (EXP) model and discussed its maximum likelihood estimation, relying on the distribu-

tional properties of the periodogram of a short memory process, based on Walker (1964) and Whittle

(1953). The model was then generalised to processes featuring long range dependence by Robinson (1991)

and Beran (1993), originating the fractional EXP model (FEXP). Janacek (1982) proposed a method of

moments estimator of the long memory parameter based on the log-periodogram. Maximum likelihood

estimation of the FEXP model has been dealt with recently by Narukawa and Matsuda (2011). Hurvich

(2002) addressed the issue of predicting with it.

Electricity spot prices are very complex data. They exhibit strong seasonality at the annual, weekly

and daily levels and very high volatility and abrupt, short-lived and generally unanticipated extreme

price changes, known as spikes (or jumps); (see Janczura et al. 2013, Weron, 2006, Serati et al., 2008,

De Jong, 2006, among others). Characteristics of spot electricity prices include also mean-reversion and

(seasonal) long memory; see Haldrup and Nielsen (2006a, 2006b), Weron (2008), Diongue, Guegan and

Vingal (2004, 2009), Koopman et al. (2007).

The unique characteristics of electricity prices and related derivatives contracts have boosted the

demand on econometric models that can precisely capture their dynamics (see Benth and Koakebakker,

2008, Möst and Keles, 2010, Raviv, Bouwman and van Dijk, 2015). Electricity price models are of huge

importance in areas such as forecasting, derivative pricing and risk management. The recent reviews on

forecasting electricity prices in Zareipour (2012) and Weron (2014) document the huge interest in that

topic.

Most of the models are built for daily average prices, which play a key role in the electricity market.

The average daily price is widely used to approximate other spot electricity prices and is used as a

reference price for derivatives contracts e.g. futures and forwards. In electricity markets such as the

Nord Pool Spot system, the average price is determined on a day-ahead market. Therefore, forecasts of
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these prices are highly relevant for market participants, as they can help in more efficient trading and

consequently increase profits and control risk.

The paper contributes to the above literature by proposing a time series regression which relates

prices to a set of explanatory variables with errors that follow a generalized exponential model, which

accounts for the most prominent features, such as long range dependence in the mean and the weekly cycle.

Differently from related research on Nord Pool daily electricity spot price modelling (see Weron, Simonsen

and Wilman, 2004), we build our model directly for the levels, rather than for the first differences. We

also conduct a rolling forecasting exercise in order to compare the daily average electricity spot prices

forecasts arising from our model with several benchmarks.

Estimation is carried out in the frequency domain by maximising an asymptotic approximation to the

likelihood function, known as the Whittle likelihood. The paper also introduces a new robust estimation

procedure for dealing with price spikes, based on a robustification of the Kalman filter, which takes into

account possible long-memory as well as the presence of outliers in the data.

The article is organized as follows. Section 2 describes the data and provides motivation for our

modeling approach. Section 3 introduces the seasonal fractional exponential model and presents the

concept of generalized long-memory and relevant theory on Gegenbauer processes. Section 4 discusses

robust inference and forecasting with this model. Section 5 presents empirical results for modelling and

forecasting daily average electricity spot prices from the Nord Pool power market. Section 6 concludes.

2. Data and time series descriptives of electricity spot prices from Nord Pool

Our data set refers to the Nordic power exchange, Nord Pool Spot, owned by the Nordic and Baltic

transmission system operators, one of the leading power markets in Europe. About 380 companies from

20 countries trade on the Nord Pool Spot’s markets, with participants including both producers and

large consumers, for a trading volume of approximately 500 terawatt hours in 2014. The market includes

Norway, Sweden, Finland, Denmark (since 2000), Estonia (since 2010), Lithuania (since 2012) and Latvia

(since 2013). A detailed review of the operation of the market is given in NordPool (2015).

Within the Nord Pool Spot, Elspot is the auction market for day-ahead electricity delivery. The Nord

Pool Spot web-based trading system enables participants to submit bids and offers for each individual

hour of the next day. Orders can be made between 08:00 and 12:00 a.m. Central European Time (CET).

The aggregated buy and sell orders form demand and supply curves for each delivery hour of the next

day. The intersection of the curves constitutes the system price for each hour (quoted for megawatt

hour, MWh) and is the equilibrium price that would exist in the absence of transmission constraints

within the grid. We will use the words system and spot prices interchangeably to indicate this price. The

hourly prices are announced to the market at 12:42 CET and contracts are invoiced between buyers and

sellers between 13:00 and 15:00. All 24 prices on day t+ 1 are determined on a given day t and released

simultaneously (Weron, 2004, Raviv et al. 2015). The system price is not necessarily the price that
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is paid in the single areas of the power grid since the areas can be subject to transmission congestion.

Hence, different area spot prices are likely to be determined as well as part of the day ahead auction.

The reason why the (daily average) system price is important is that it serves as the reference price and

clearing of most financial contracts and hence it is crucial for derivatives pricing and risk management.

The data set consists of the twenty-four hourly spot electricity system prices from the Nord Pool

Elspot power exchange for each day from January 1, 2000 - January 30, 2014 covering 5144 observation

days. In 2006 the trading currency in Nord Pool has changed from local (Nordic) currencies into the

euro. Therefore, all prices are exchanged into the same currency.

Figure 1 plots the daily electricity log system price, yt = lnYt, where Yt is the average of 24 hourly

prices, which is the main object of interest in our empirical modelling and forecasting exercises. While

the daily average (based on hourly prices) represents our target variable, we will also consider building

separate models for the hourly prices, with the purpose of forecasting the daily average by aggregating

the forecasts of the individual hours. We adopt the logarithmic transformation in order to stabilize the

variation of the series. Looking at the data, we observe potentially nonstationary and persistent behavior

which might be caused by long-memory features of the electricity spot prices. System prices vary over

the week and over the year and are characterized by persistent level changes and spikes.

Figure 1: Daily log average spot system price for Nord Pool power market (Norwegian kroners (NOK) per MWh), yt.

Sample: January 1, 2000 - January 30, 2014

Table 1 contains descriptive statistics for the hourly and daily average log spot prices yt. Log electricity

spot prices are on average higher during the day than during the night. The highest values are in the

morning for the hours from 08:00 to 12:00 CET and early evening, 17:00-19:00 CET. Those peak hours

also have relative high skewness and kurtosis reflecting that these hours experience more extreme prices

and price spikes. This also explains the relative high volatility during peak hours caused by a very elastic

power supply curve and high marginal costs during peak hours. For each hour we have negative skewness

and positive kurtosis, suggesting an empirical distribution which is skewed to the left with heavy tails

and outliers caused by price spikes and drops.
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Table 1: Descriptive statistics for log spot prices yt in Nord Pool

Minimum Maximum 1. Quartile 3. Quartile Mean Median Stdev Skewness Kurtosis

1 3.08 6.72 5.21 5.77 5.45 5.51 0.49 -0.85 1.43

2 2.94 6.70 5.17 5.73 5.41 5.48 0.52 -0.96 1.73

3 2.14 6.71 5.13 5.71 5.37 5.45 0.54 -1.03 1.94

4 1.47 6.69 5.10 5.70 5.35 5.44 0.56 -1.10 2.23

5 -1.71 6.70 5.11 5.71 5.35 5.45 0.57 -1.40 6.23

6 1.14 6.74 5.17 5.74 5.40 5.48 0.55 -1.18 2.89

7 1.14 6.80 5.23 5.80 5.47 5.54 0.52 -1.19 3.23

8 2.51 7.39 5.30 5.87 5.55 5.60 0.50 -0.84 1.83

9 3.20 7.81 5.35 5.91 5.60 5.63 0.48 -0.55 1.45

10 3.51 7.78 5.37 5.91 5.60 5.64 0.46 -0.54 1.09

11 3.59 7.44 5.38 5.90 5.61 5.64 0.45 -0.57 0.88

12 3.60 7.22 5.36 5.89 5.60 5.63 0.44 -0.59 0.82

13 3.59 7.11 5.35 5.88 5.58 5.61 0.45 -0.62 0.81

14 3.56 7.06 5.33 5.87 5.57 5.60 0.45 -0.65 0.83

15 3.58 7.04 5.31 5.86 5.55 5.59 0.45 -0.66 0.86

16 3.56 6.87 5.30 5.85 5.55 5.59 0.46 -0.67 0.90

17 3.56 7.12 5.31 5.86 5.55 5.59 0.47 -0.61 0.94

18 3.58 7.45 5.33 5.89 5.58 5.61 0.48 -0.50 1.05

19 3.62 7.38 5.33 5.89 5.58 5.61 0.47 -0.58 0.97

20 3.59 7.17 5.32 5.86 5.57 5.60 0.46 -0.68 1.02

21 3.58 6.94 5.31 5.83 5.55 5.59 0.45 -0.72 1.04

22 3.56 6.76 5.30 5.82 5.54 5.58 0.45 -0.72 1.05

23 3.58 6.73 5.28 5.82 5.52 5.57 0.45 -0.69 0.90

24 3.17 6.73 5.23 5.78 5.47 5.52 0.47 -0.78 1.21

Average price 3.46 6.99 5.29 5.83 5.52 5.57 0.46 -0.69 0.96

Figure 2 presents the sample autocorrelation function (ACF) and log periodogram of the logarithm

of the daily average spot electricity price and its first differences. The log periodogram of electricity log

prices has characteristics often found for time series processes with long memory. There are evident peaks

around the harmonic frequencies: 0, 2π/7, 4π/7, 6π/7 corresponding to the long run and weekly cycles

present in the data. The persistence of the autocorrelation function at the seasonal lags 7, 14 and so on

is also pronounced as can be seen from Figure 2. The seasonal persistence is more pronounced when we

look at the first differences. In order to model the persistence it is reasonable to choose a model which

allows for fractional integration at the zero as well as the seasonal frequencies.
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Figure 2: Autocorrelation function and log periodogram for daily average log-prices yt and their first differences ∆yt.

Sample: January 1, 2000 - January 30, 2014

3. The seasonal fractional exponential model

The crucial step in constructing a model for electricity price dynamics consists of finding an appro-

priate description of the seasonal pattern. There are different suggestions for that task in the literature.

In order to account for seasonality we build our model on the Gegenbauer processes as in Hsu and Tsai

(2009). We extend their approach by proposing a time series regression model with generalized FEXP

disturbances, which is particularly well suited to account for most features characterizing electricity prices

and allows to incorporate additional explanatory variables as covariates in the analysis. Our model is

similar to the time series regression model based on Gegenbauer ARMA (GARMA) processes proposed

by Soares and Souza (2006) for electricity demand prediction, but we take a flexible semiparametric

approach.

3.1. Model specification

Let yt denote a daily time series referring to the logarithmic prices of a particular hour of the day, or

the daily average. We consider the following times series regression model:

yt = x′tβ + ut, (1)

where xt is a k × 1 vector of explanatory variables and ut is a zero mean random process. Denoting by

B the lag operator, ut is generated by the following fractionally integrated process

(1−B)d0
3∏
j=1

(1− 2 cos$jB +B2)djut = zt, $j =
2π

7
j, j = 0, 1, 2, 3, (2)

6



where dj , j = 0, 1, 2, 3, are the fractional integration parameters at the Gegenbauer frequencies and zt is a

short memory process characterized by the spectral density fz(ω), that will be defined below. The factor

(1 − B)d0 accounts for the long range dependence at the long run frequency, whereas the Gegenbauer

polynomials (1− 2 cos$jB +B2), j = 1, 2, 3, account for the persistent seasonal behavior of the process

at the frequencies $j = 2π
7 j, which correspond to cycles with period 7 days (j = 1), 3.5 days (j = 2, two

cycles in a week) and 2.3 days (j = 3, three cycles per week). The process is stationary if d0 ∈ (0, 0.5) and

dj ∈ (0, 0.25) (see Woodward, Gray, Elliott (2011), pg. 418, Theorem 11.5a). The Gegenbauer process

was introduced by Hosking (1981) and formalized by Gray, Zhang and Woodward (1989).

The spectrum of the short memory component, zt, follows Bloomfield’s exponential model (see Bloom-

field, 1973) of order q:

fz(ω) =
1

2π
exp

(
cz0 + 2

q∑
k=1

czk cos(ωk)

)
, (3)

where cz0, czk, k = 1, . . . , q are real-valued parameters, known as the cepstral coefficients of zt (Bogert,

Healy and Tukey, 1963).

An important implication of the model specification is that the logarithm of the spectral generating

function of ut, denoted 2πf(ω), is linear in the memory coefficients and in the (short-run) coefficients

czk:

ln[2πf(ω)] = c0 +2

q∑
k=1

czk cos(ωk)−2d0 ln |2 sin(ω/2)|−2

3∑
j=1

dj ln

∣∣∣∣4 sin

(
ω +$j

2

)
sin

(
ω −$j

2

)∣∣∣∣ . (4)

The inverse Fourier transform of the logarithmic spectrum in (4) provides the cepstral coefficients of

the process ut:

ck =
1

2π

∫ π

−π
ln[2πf(ω)] exp(ıωk)dω, k = 0, 1, 2, . . . . (5)

By trigonometric identities, see Gradshteyn and Ryzhik (2007) (formulae 1.441.2 and 1.448.2), for k ≥ 1,

ck = I(k ≤ q)czk +
1

k

d0 + 2

3∑
j=1

dj cos($jk)

 , k = 0, 1, 2, . . . . (6)

The sequence {ck}k=0,1,... is referred to as the cepstrum (Bogert, Healy and Tukey, 1963) and carries all

the relevant information that is needed for the linear prediction of the process ut, and yt thereof.

In the sequel we will refer to the specification consisting of (2) and (4), as the model for the logarithmic

spectral density of ut, as the Gegenbauer Exponential (GEXP) model.

3.2. Wold representation and linear prediction

Let Ft denote the information available up to time t, consisting of the past values of yt and the current

and past values of xt. If the model is correctly specified, the one-step ahead prediction error variance

(p.e.v.) of yt, σ
2 = V ar(yt|Ft−1), is obtained by the Szegö-Kolmogorov formula as

σ2 = exp

[
1

2π

∫ π

−π
ln[2πf(ω)]dω

]
,
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from which it follows that cz0 = lnσ2. Moreover, if the stationarity condition is satisfied, we can obtain

the Wold and autoregressive representations of the system,

yt = x′tβ + ψ(B)ξt, φ(B)(yt − x′tβ) = ξt, ξt ∼WN(0, σ2) (7)

where ψ(B) = 1 + ψ1B + ψ2B
2 + . . . ,

∑
j ψ

2
j < ∞, and φ(B) =

∑∞
j=0 φjB

j = ψ(B)−1,
∑
j φ

2
j < ∞.

The moving average coefficients of the Wold representation are obtained recursively from the cepstral

coefficients by the formula

ψj = j−1

j∑
r=1

rcrψj−r, j = 1, 2, . . . , (8)

with ψ0 = 1. See Janacek (1982), Pourahmadi (1983) and Hurvich (2002) for a derivation of (8). The

autoregressive coefficients are obtained according to the recursive formula

φj = −j−1

j∑
r=1

rcrφj−r, j = 1, 2, . . . , (9)

with starting value φ0 = 1.

4. Robust Estimation

4.1. Approximate (Whittle) Likelihood Estimation

Given a time series realization of length n, {(yt, xt), t = 1, 2, . . . , n}, and letting ωj = 2πj
n denote the

Fourier frequencies, for j = 1, . . . , bn−1
2 c, where b·c is the largest integer not greater than the argument,

estimation of the regression parameters, β, the memory parameters, dj , j = 0, 1, 2, 3, and the cepstral

coefficients czk, k = 0, 1, . . . , q, is carried out in the frequency domain.

Denoting the periodogram of yt by Iy(ω), that of xt by Ix(ω) and the cross-periodogram of xt and yt

by Ixy(ω), where

Iy(ω) =
1

2πn

∣∣∣∣∣
n∑
t=1

yte
−ıωt

∣∣∣∣∣
2

, Ix(ω) =
1

2πn

∣∣∣∣∣
n∑
t=1

xte
−ıωt

∣∣∣∣∣
2

, Ixy(ω) =
1

2πn

∣∣∣∣∣
n∑
t=1

xtyte
−ıωt

∣∣∣∣∣
2

,

the periodogram of ut = yt−x′tβ can be written as I(ω) = Iy(ω)− 2β′Ixy(ω) +β′Ix(ω)β. If it is assumed

that ut is a stationary long memory process characterised by the spectral density f(ω), as implied by (4),

the Whittle approximation to the likelihood is

L = −
T−1∑
j=1

[
ln f(ωj) +

I(ωj)

f(ωj)

]
. (10)

The maximiser of (10) is the Whittle pseudo maximum likelihood estimator of (β, d0, d1, d2, d3, cz0, cz1, . . . , czq).

The parameter β can be concentrated out of the likelihood function, yielding the frequency domain gen-

eralised least squares estimate

β̂ =

T−1∑
j=1

1

f(ωj)
Ix(ωj)

−1
T−1∑
j=1

1

f(ωj)
Ixy(ωj).
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After replacing into (10), the profile likelihood can be maximized with respect to the memory and cepstral

parameters.

We refer to Dahlhaus (1989), Velasco and Robinson (2000), Giraitis, Koul and Surgailis (2012) and

Beran et al. (2013) for the properties of the estimator in the long memory case.

4.2. Tapering

For estimation we use the tapered periodogram. Tapering aims at reducing the estimation bias that

characterises the periodogram ordinates in the nonstationary case. Velasco (1999) and Velasco and

Robinson (2000) show that that with adequate data tapers, the Whittle estimator of the parameters

of classes of fractional integrated models, encompassing the FEXP and is consistent and asymptotically

normal, when the true memory parameter is in the nonstationary region. The adoption of a data taper

makes the estimates invariant to the presence of certain deterministic trends.

The tapered discrete Fourier transform of ut is defined as the squared modulus of

w (ωj) =

(
2π

n∑
t=1

h2
t

)−1/2 n∑
t=1

htute
iωjt (11)

where {ht}nt=1 is a taper sequence, i.e. a sequence of nonnegative weights that downweights the extreme

values of the sequence on both sides, leaving the central part almost unchanged. Note that the raw

periodogram arises in the case ht = 1. As in Velasco and Robinson (2000), the {ht}nt=1 sequence is

obtained from the coefficients of the polynomial(
1− z[n/p]

1− z

)p
.

Typical choices are p = 2, 3. The tapered periodogram is then I(ωj) = |w(ωj)|2.

4.3. Robust filtering and forecasting

As documented in section 2, electricity prices are characterized by abnormally high or low values,

called price spikes. Their effect on the periodogram, and thus on the Whittle estimates depends on

their size, pattern and recurrence. Assume that there is no periodicity (for the daily series, while their

occurrence during the day may be more systematic), and recall that the frequency response function

of a pulse dummy, It(t = τ), is constant across the frequency range. The results of the presence of a

single outlier at time t = τ are the bias downwards of the memory parameters estimates and inflation of

the estimate of the conditional and the unconditional variance of the series. There are several strategies

for robustifying the estimates of the parameters and thus of the spectrum. Hill and McCloskey (2015)

propose to replace the sample spectrum I(ω) in (10) by a robust periodogram, constructed from the

Fourier transform of a robust autocovariance estimate. Our alternative strategy is based on an iterative

data cleaning method extended by the robust Kalman filter introduced by Martin and Thomson (1982).

The proposed procedure entails iterating the following steps:
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1. Estimate the parameters of the GEXP time series regression model of section 3.1 by approximate

Whittle likelihood estimation, by maximising (10).

2. Obtain the AR or MA approximation of the GEXP model as described in Section 3.2.

3. Cast the approximating AR or MA model in state space form and apply the robust Kalman filter

outlined in Appendix A. In order to eliminate the influence of outliers (price spikes), the filter

shrinks yt towards its one-step-ahead prediction, depending in the size of the innovation.

4. Replace the series yt by its cleaned version (using the robust Kalman filter) and go to step 1.

5. Repeat steps 1-4 until no further outlier is found.

5. Empirical results

5.1. A time series model for Nord Pool electricity spot prices

In this section we present the empirical results for the daily Nord Pool data, whose characteristics were

summarized in Section 2, with particular reference to the logarithm of the daily spot average price time

series. A generalized exponential model based time series regression model like (2) may be adequate to

capture the dynamics in the conditional mean of the series. The explanatory variables that we considered

are the water reservoir level and dummy variables for holiday effects and week-of day effects. We set off by

presenting and discussing the maximum likelihood estimates of the model parameters and by assessing its

empirical adequacy. We also examine the influence of outliers (price spikes) on the parameter estimates,

and with special attention to the memory parameter estimates.

Figure 3 presents the original and the transformed log electricity daily average spot prices with the

use of tapering after removing the mean. As it can be seen from the plot, tapering brings the series closer

to stationarity and removes potential trends from the data.
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Figure 3: Original and tapered log daily average electricity spot prices

The results of fitting the GEXP model to the considered data on the log average electricity spot prices

are presented in Tables 2-4. In each table we set together classical and robust estimates of the parameters

in order to evaluate the influence of robustification for the parameter estimates. Table 2 presents the

estimates of the memory parameters at the zero and seasonal frequencies: 0, 2π/7, 4π/7, 6π/7. Electricity

spot prices seem to be non-stationary, although still mean reverting, at the zero frequency, as the estimated

d is significantly above 0.5. There is also a clear evidence of seasonal long-memory (di > 0, i = 1, 2, 3).

The (seasonal) memory estimates are different depending on the estimation method: classic or robust.

The robust estimates of memory parameters are usually higher than the classical ones. Normally the

influence of outliers on memory parameters estimates will typically be a downward bias when outliers

are present. It is seen, however, that robustification only affects the memory estimates to a minor extent.

Table 2: The estimates of memory parameters for the zero (d) and harmonic frequencies (d1 − d3)

d d1 d2 d3

Classical 0.7653 0.2121 0.1242 0.0848

(0.0784) (0.0486) (0.0500) (0.0506)

Robust 0.7984 0.1063 0.1024 0.1216

(0.0767) (0.0472) (0.0493) (0.0505)

Note: Standard errors in brackets. The statistically significant parameters at the 5% significance level appear in bold.
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Table 3 contains the estimated short-run cepstral coefficients describing the short run dynamics of

the series. The number of short run cepstral coefficients is chosen according to the Akaike Information

Criterion (AIC). For both estimation methods the optimal number according to AIC of the coefficients

is 24. However, most of the short-run cepstral coefficients are statistically insignificant. The estimated

intercept, ĉ0, is the estimate of the logarithm of the prediction error variance. We might observe that

the prediction error variance, σ̂2 = exp(ĉ0), is lower for the robust estimation method.

Table 3: The estimates of the short-run cepstral coefficients

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

Classical -13.7946 -0.0140 0.0817 0.1045 0.0581 0.0182 0.0136 0.0797 -0.0050 0.0164 0.0096 -0.0101 -0.0017

(0.0197) (0.1373) (0.0697) (0.0468) (0.0363) (0.0306) (0.0266) (0.0304) (0.0220) (0.0206) (0.0193) (0.0185) (0.0179)

Robust -14.5875 0.2439 0.0636 0.0669 0.0532 0.0516 0.1064 0.0246 0.0304 -0.0007 0.0142 0.0023 -0.0003

(0.0197) (0.1373) (0.0697) (0.0439) (0.0341) (0.0306) (0.0266) (0.0304) (0.0220) (0.0205) (0.0187) (0.0179) (0.0179)

c13 c14 c15 c16 c17 c18 c19 c20 c21 c22 c23 c24

Classical -0.0210 0.1191 -0.0113 0.0117 -0.0112 0.0195 -0.0262 -0.0074 0.1123 -0.0119 -0.0307 0.0254

(0.0174) (0.0194) (0.0166) (0.0163) (0.0160) (0.0158) (0.0157) (0.0155) (0.0166) (0.0152) (0.0151) (0.0150)

Robust 0.0492 0.0545 0.0273 0.0016 0.0016 0.0162 -0.0242 0.0354 0.0866 -0.0203 -0.0542 -0.0286

(0.0174) (0.0194) (0.0166) (0.0163) (0.0157) (0.0155) (0.0156) (0.0155) (0.0166) (0.0152) (0.0151) (0.0150)

Note: Standard errors in brackets. The statistically significant parameter estimates at 5% significance level appear in bold.

Table 4 shows the estimation results concerning the explanatory variables. Most of the considered

explanatory variables are statistically insignificant. Holidays and Sunday appear to be statistically sig-

nificant when the classical estimator is used for estimation.

Table 4: The estimates of explanatory variables coefficients

Holidays Tuesday Wednesday Thursday Friday Saturday Sunday Water reservoir

Classical -0.0722 0.0026 0.0039 -0.0045 -0.0200 -0.0265 -0.0644 -0.0051

(0.0143) (0.0307) (0.0459) (0.0521) (0.0521) (0.0478) (0.0334) (0.0054)

Robust 0.0096 0.0002 -0.0015 0.0003 0.0012 -0.0039 0.0067 -0.0003

(0.0095) (0.0132) (0.0183) (0.0201) (0.0201) (0.0203) (0.0158) (0.0052)

Note: The brackets contain standard errors. The statistically significant parameters at 5% significance level appear in bold.

Figure 4 displays the log-periodogram of the series and the estimated logarithmic spectrum. It is

visible on the plot that the model effectively captures the spectral peaks at the seasonal frequency and

at the zero frequency.
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Figure 4: Goodness of fit in spectral domain for the cleaned log electricity prices

Figure 5 displays the ’cleaned’ residuals from the model. The latter result from the iterative procedure

outlined in section 4.3. After convergence, we obtain the coefficients of the AR representation and we

truncate them at m = 50; the AR approximation is cast in state space form (see the appendix) and

the pseudo-innovations are computed by the Kalman filter. As it can be noticed from their plot, the

residuals display some volatility clustering, but are otherwise unaffected by the spike feature. In Figure 6

we plot the sample autocorrelation function of the cleaned residuals. We may conclude that the proposed

modelling strategy involving tapering and robust estimation provides a reasonable fit of the series by the

model.

Figure 5: Cleaned residuals
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Figure 6: Sample autocorrelation for cleaned residuals

5.2. Forecasting

This section deals with predicting daily average electricity log-prices. We compare several forecasting

strategies using a range of univariate time series models. The forecasts using the generalized exponential

model are obtained with the finite autoregressive approximation of the model and the use of the Kalman

filter as it is described in Appendix A.1.

We also address the question of whether the prices for the individual hours contain useful predictive

information compared to the daily average price. We compare the forecasts obtained from separate models

for each 24 hours of the day which are then averaged and compared with the forecasts from the aggregate

model which is modeled directly for the daily average prices. Raviv et. al (2015), using a different model

class, demonstrate that forecast averaging may be superior to direct modelling and forecasting of the

(average) daily observations.

The comparative assessment of the predictive accuracy is based on a rolling forecasting experiment:

starting from 30.01.2014, we estimate the model and forecast the next day average price; we then proceed

by updating the sample by adding one observation, and deleting the one at the beginning of the sample,

re-estimating the parameters and forecasting the next day prices, until the end of sample is reached. The

evaluation sample is based on 365 one-step-ahead forecasts.

Following Raviv et al. (2015), we consider the ARX model as benchmark model1. The ARX(p) model

of order p is specified as follows:

yt =

p∑
j=1

φjyt−j +

K∑
k=1

ψkdkt + εt, εt ∼WN(0, σ2),

where dkt are dummies for Saturdays, Sundays, and for each month of the year. The order p is chosen

at every point in time according to the Akaike Information Criterion.

1The comparison has been also made with the best seasonal ARIMA benchmark, as it is reported in Sores, Sauza (2006).

However this benchmark was outperformed by the ARX model.
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The second model used for comparative purposes is the seasonal random walk with seasonal period 7

days, yt = yt−7 + εt, according to which the next day prediction is ŷt+1|t = yt−6.

Another relevant predictor is the seasonal Holt-Winters method (see Holt, 1957, Winters, 1960, and

Hyndman et al., 2008); we have considered its additive formulation:

ŷt+1|t = lt + bt + st−6

lt = α (yt − st−7) + (1− α) (lt−1 + bt−1)

bt = β∗ (lt − lt−1) + (1− β∗) bt−1

st = γ (yt − lt−1 − bt−1) + (1− γ) st−7,

where α, β∗ and γ denote smoothing parameters, taking values in [0,1], estimated by minimizing the

one-step-ahead mean square prediction error within the training sample.

The statistics that are used for assessing the forecasting accuracy of the different methods and models

are the mean absolute error (MAE) and the root mean squared error (RMSE),

RMSE =

√√√√ 1

N

H−1∑
t=T

(
ŷt+1|t − yt+1

)2
, (12)

MAE =
1

N

H−1∑
t=T

∣∣ŷt+1|t − yt+1

∣∣, (13)

see Hyndman and Athanasopoulos (2012), where H is the total number of observations, T is the length

of the estimation window, and N = H − T is the number of out-of-sample forecasts.

Hence, our rolling forecast experiment compares four different predictors, including the one arising

from our seasonal fractional exponential model, applied to the daily average price series. The four

predictors are then applied to the 24 individual time series referring to the single hours of the day and

the one-step-ahead forecasts are later aggregated into a daily average forecast. This yields a total of 8

models to be compared.

Table 5 contains different measures of forecasting accuracy for the models considered. Analogously

to the work of Raviv et al. (2015), we provide the exact values of the forecasting accuracy measures only

for the ARX model (benchmark). The performance of the other models is presented in relative terms,

that is as the ratio of the accuracy measure for a specific model and that of the benchmark.

The results clearly show that the GEXP model outperforms the competing models, as the lowest value

of MAPE and RMSE is for the GEXP model. The prices for individual hours contain useful predictive

information for the daily average price. The forecasts based on sample averaging the forecasts from the

GEXP model estimated separately for each particular hour are the most accurate. Moreover the GEXP

model provides more accurate results than the univariate models considered in Raviv et al. (2015, page

236, Table 2). Some further improvements of daily average price forecasting might be achieved by playing

with the weights when computing the average, see Raviv et al. (2015) for further details.
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Table 5: Forecasting accuracy measures

RMSE MAE

ARX* 0.0666 0.0475

Seasonal HW 1.0339 1.0056

Seasonal RW 1.6209 1.6746

GEXP 0.9351 0.9421

ARX: averaging 0.9962 1.0050

Seasonal HW: averaging 1.0433 1.0286

Seasonal RW: averaging 1.6209 1.6746

GEXP: averaging 0.9115 0.9277

Note: The first row contains the values of forecasting accuracy measures for ARX

model (benchmark), the remaining rows contain the ratio of the accuracy measure

for a specific model and for the benchmark. The smaller the value the better the

forecasting performance of a given model.

We test also for the significance of the difference in forecasting performance of the models with the

use of the Giacomini and White test (see Giacomini and White, 2006, for details).

Table 6 includes the test results based on the absolute error loss, which corresponds to testing the null

hypothesis of equal predictive ability in terms of MAE. The absolute error loss function was chosen for

comparison with the work of Raviv et al (2015) and also to decrease the influence of the outliers on the

final results. Similar results can be obtained with the square error loss function. A positive value means

that the MAE of the model in the column is larger than that of the row model. The results confirm that

the GEXP modelling approach outperforms competing models in terms of absolute error. Also, it can be

seen that averaging of forecasts from different GEXP models for each hour of the day is better in terms

of the forecasting performance strategy than forecasting the average electricity price directly with the

GEXP model.

Table 6: Giacomini-White test statistics based on the absolute error loss function

ARX Seasonal HW Seasonal RW GEXP ARX: averaging Seasonal HW: averaging Seasonal RW: averaging

Seasonal HW -0.30

Seasonal RW -7.31 -7.06

GEXP 2.15 1.99 8.72

ARX: averaging -0.33 0.02 7.62 -2.37

Seasonal HW: averaging -1.00 -0.88 7.30 -2.82 -0.93

Seasonal RW: averaging -7.31 -7.06 0.22 -8.72 -7.62 -7.30

GEXP: averaging 2.14 2.13 9.25 0.55 2.65 3.26 9.25

Note: The test statistic is computed such that a positive value means that the MAE of the row model is smaller than the MAE of

the column model.
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In addition to the previous analysis, we also estimated the model confidence set (MCS), according

to the methodology proposed by Hansen, Lunde and Nason (2011). A MCS is the set of models that

contains the best model with a given level of confidence. The procedure consists of a sequence of tests

which permits to construct a Superior Set of Models (SSM), where the null hypothesis of Equal Predictive

Ability is not rejected at a given confidence level.

Given the initial set of models, M0, comprising the 8 predictors, denote the prediction error arising

from method k as vkt = yt − ŷk,t|t−1, and by dkl,t = |vkt| − |vlt| the loss differential at time t between

predictors k and l, for all k, l ∈M0, and define

d̄kl =
1

n− n0

n∑
t=n0+1

dkl,t, d̄k =
1

K

K∑
l=1

d̄kl.

The t-statistics associated with the null H0 : E(d̄kl) = 0 (equal forecast accuracy) versus the alternative

H0 : E(d̄kl) > 0, is tkl = d̄kl
ˆVar(d̄kl)

, where V̂ar(d̄kl) is an estimate of Var(d̄kl). Also, the t-statistics

associated with the null H0 : E(d̄k.) = 0 (equal forecast accuracy) versus the alternative H0 : E(d̄k.) > 0,

is tk = d̄k.
ˆVar(d̄k.)

, where V̂ar(d̄k.) is an estimate of Var(d̄k.). If M is the current set of model under

assessment, to test the hypotheses H0,M : E(d̄kl) = 0,∀k, l ∈ M or H0,M : E(d̄k.) = 0,∀k ∈ M , i.e.

all the models have the same predictive accuracy, we use the test statistics TR,M = maxkl∈M |tkl| and

Tmax,M = maxk∈M tk. We initially set M = M0, and test H0,M using the above statistics at the

significance level α = 0.10. The critical values are obtain by the block-bootstrap method. If H0,M is

accepted, then the MCS at level 1−α is M̂∗1−α = M ; otherwise, we proceed to eliminate from the set the

predictor for which the tk. statistic is a maximum, k ∈ M , and iterate the procedure with the surviving

predictors.

The MCS p-values of the TR,M and Tmax,M statistics, are reported in Table 7. The estimated SSMs

differ for the number of the eliminated models as well as for their compositions. We can observe that

only 2 forecasting strategies: seasonal random walk and seasonal random walk averaging were eliminated

by the MCS procedure and hence the superior set of models contains 6 models. This empirical finding

highlights the statistical equivalence of forecasting future daily electricity spot prices with the GEXP

model and simple ARX or seasonal Holt-Winter model. However, the rankings of the models based on

the two test statistics are highly in favor of the GEXP model. The GEXP models has taken the two first

places for both considered test statistics. The results confirm that the best forecasting strategy is the

one involving averaging of forecasts from different GEXP models for every hour of the day. The second

place is taken by the approach based on direct forecasting average electricity price with the GEXP model.
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Table 7: Superior Set of Models on 99% confidence level (2 models eliminated)

RankR,M TR,M p− valueR,M Rankmax,R Tmax,R p− valuemax,R Loss

ARX 3 0.4127 1 3 1.2651 1 0.0475

Seasonal HW 5 0.5658 1 5 1.3623 1 0.0477

GEXP 2 -1.1610 1 2 0.2533 1 0.0447

ARX: averaging 4 0.5498 1 4 1.3540 1 0.0477

HW: averaging 6 1.1889 1 6 1.7612 0.0024 0.0488

GEXP: averaging 1 -1.5468 1 1 -0.2533 1 0.0440

Note: Comparison of the superior set of models. The p–values of the TR,M and Tmax,M statistics, are reported in the fourth and

seventh columns, respectively. The p–value of the test statistic, is equal to the minimum of the overall p–values. The columns

RankR,M and Rankmax,M report the ranking over the models belonging to the SSMs. The last column Loss is the average loss

across the considered period.

6. Conclusions

This paper has proposed a model for daily electricity spot prices from the Nord Pool power exchange.

It can be applied also to other utilities presenting similar seasonal and long-memory pattern, eg. elec-

tricity demand or loads. The model is formulated in the frequency domain and captures the long range

dependence and the persistent seasonal pattern of prices as well as the effect explanatory variables (eg.

calendar effects component and water reservoir levels). One of the most challenging tasks when modelling

electricity prices is to deal with extreme observations such as price spikes. To handle this problem we

have proposed a novel estimation strategy based on a robust Kalman filter. The GEXP model provides

a statistically coherent representation of the price dynamics. Price spikes significantly influence param-

eter estimates and robustifying the estimates can prove valuable. Whether using classical and robust

estimates, the effect on the estimated memory appears to be minor, however.

A forecasting exercise was conducted to put the predictive ability of our model under test. The

empirical evidence suggests that the best strategy for daily average spot electricity price forecasting is

to construct separate models for each hour and average the forecasts, in line with findings of Raviv et al

(2015).
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Appendix A. Robust filtering and forecasting

Robust spectrum estimation and robust forecasting are based on the AR(m) or MA(m) approximation

of the GEXP process. In general, an ARMA(p, q) time series model for ut = yt − x′tβ,

ut + φ1ut−1 + · · ·+ φput−p + ξt + θ1ξt−1 + · · ·+ θqξt−q, ξt ∼WN(0, σ2),

can be written in state space form with measurement equation,

ut = Zαt +Gξt, t = 1, . . . , n, (A.1)

where αt is a random vector with m = max(p, q) elements, Z = [1, 0, . . . , 0], G = 1. The evolution of the

states is governed by the transition equation:

αt+1 = Tαt +Hξt, t = 1, 2, . . . , n, (A.2)

where

T =



−φ1 1 0 · · · 0

−φ2 0 1
. . . 0

...
...

. . .
. . . 0

... · · · · · · 0 1

−φm 0 · · · · · · 0


, H =



θ1 − φ1

θ2 − φ2

...

...

θm − φm


.

The initial state vector, α1, assuming stationarity (the eigenvalues of T are inside the unit circle), has

a distribution with mean E(α1) = 0 and variance Var(α1) = σ2P1|0, satisfying the matrix equation

P1|0 = TP1|0T
′ +HH ′.

The above state space representation is due to Pearlman (1980), and encompasses both the pure AR

and MA case.
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Appendix A.1. The Kalman filter

Assume that the process is Gaussian, define Ft = {u1, u2, . . . , ut}, the information set up to and

including time t, α̃t|t−1 = E(αt|Ft−1), and Var(αt|Ft−1) = σ2Pt|t−1.

The Kalman filter (KF) is the following recursive algorithm: for t = 1, . . . , n,

νt = ut − Zα̃t|t−1, ft = ZPt|t−1Z
′ +GG′,

Ct = Pt|t−1Z
′f−1
t ,

α̃t|t = α̃t|t−1 + Ctνt, Pt|t = Pt|t−1 − CtftC ′t,

Qt = HG′f−1
t ,

α̃t+1|t = T α̃t|t +Qtνt, Pt+1|t = TPt|tT
′ +HH ′ − (QtftQ

′
t +QtftC

′
tT
′ + TCtftQ

′
t).

(A.3)

The above equations compute the innovations νt = ut − E(ut|Ft−1), and σ2ft is the prediction error

variance at time t, that is Var(ut|Ft−1); α̃t|t are the updated, or real time, estimates of the state vector,

and Ct is the gain, Ct = Cov(αt, yt|Yt−1)[Var(yt|Yt−1)]−1 and we can prove the following result: αt|Yt ∼

N(α̃t|t, σ
2Pt|t). The vector Qt represents Cov(ξt, ut|Ft−1)[Var(ut|Ft−1)]−1, so that α̃t+1|t is the one-step-

ahead state prediction and we can write αt+1|Ft ∼ N(α̃t+1|t, σ
2Pt+1|t).

Appendix A.2. The robust filter

Masreliez, Martin (1977) and Martin, Thomson (1982) proposed to obtain a robust filter is to modify

the Kalman filter updating and prediction equations (A.3) by using a bounded and continuous function of

the standardised innovations that so as to control the effects of outliers on the conditional mean estimates.

Let us denote ν̃t = νt
f
1/2
t

. The above KF is modified as follows: for t = 1, . . . , n,

νt = ut − Zα̃t|t−1, ft = ZPt|t−1Z
′ +GG′,

Ct = Pt|t−1Z
′f−1
t ,

α̃t|t = α̃t|t−1 + Ctf
1/2
t ψ(ν̃t), Pt|t = Pt|t−1 − w(ν̃t)CtftC

′
t,

Qt = HG′f−1
t ,

α̃t+1|t = T α̃t|t +Qtf
1/2
t ψ(ν̃t), Pt+1|t = TPt|tT

′ +HH ′ − w(ν̃t)(QtftQ
′
t +QtftC

′
tT
′ + TCtftQ

′
t).

(A.4)

Here ψ(u) is the Hampel’s two-part redescending function:

ψ(u) =


u, |u| ≤ a,

sign(u) a
b−a (b− |u|), a < |u| ≤ b,

0, |u| > b,

for a < b. The weight function is w(u) = ψ(u)/u. Note that if ψ(u) = u, the identity function, w(u) = 1

and the above recursions yield the Kalman filter (A.3).

A clean estimate of yt is then

ũt|t = Zα̃t|t +GG′f
−1/2
t ψ(ν̃t). (A.5)
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Noticing that ut = Zα̃t|t + GG′f−1
t νt, we can write ũt|t = ut − GG′f−1

t νt[1 − w(ν̃t)], which shows that

ũt|t = ut when w(u) = 1, which occurs for |u| < a, i.e. when the standardized innovations are small. On

the contrary, w(u) = 0, which takes place for |u| > b, simple manipulations show that in the presence of

a large residual, the cleaned observations is shrunk towards the one step ahead prediction:

ũt|t = [1−GG′f−1
t ]ut +GGf−1

t ũt|t−1, ũt|t−1 = Zα̃t|t−1.

It can be shown that the steady state Kalman filter for the AR or MA model considered has limt→∞ ft =

GG′, and thus, after processing a large number of observations, the occurrence of a large outlier causes

ũt|t → ũt|t−1. Finally, when a < |ν̃t| ≤ b, ũt|t arises a weighted linear combination of ut and ũt|t−1.

The theoretical underpinnings of the robust KF are provided in Masreliez and Martin (1977).
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