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Abstract

We propose a novel way to assess information processing in a complex environment
of market fragmentation. We take a different angle from the price discovery literature,
and investigate information processing in the stochastic process driving stock’s volatility
(volatility discovery). We show that our volatility discovery framework successfully identifies
the leading market in the volatility process, whereas price discovery measures are unable to
capture the dynamics of the market-specific volatilities. We compute volatility discovery for
30 stocks and find significant differences in how exchanges impound information into the
efficient volatility, as ARCA and NYSE are more important than NASDAQ. Interestingly,
price discovery measures suggest different results for nearly half the sample.
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I. Introduction

The proliferation of trading venues within many developed security markets has been a

new trend in the financial equity market. The U.S., for instance, features eleven exchanges,

eighty-five alternative trading systems (ATS) and more than two-hundred dealers.1 The

market fragmentation phenomenon experienced in the U.S. highlights the importance of

the microstructure of trading venues, as traditional listing exchanges have created markets

within markets, changed markets’ pricing structures, and set up specialized microstructures

to attract specific trading clienteles (Menkveld (2014), O’Hara (2015), and Menkveld (2016)).

Retail brokers have responded to this new market setting by routing their orders to multiple

trading platforms (Battalio, Corwin, and Jennings (2016)). Consequently, the way traders

and markets learn and disseminate information is also dispersed across markets, as O’Hara

(2015) points out: “Even more important is to recognize that these data must be looked at

across markets, and not just within individual markets. High-frequency algorithms operate

across markets, and if order books are linked, then so, too, must be order flows and price

behavior”.

In this context of a decentralized system in which there are multiple prices for one ho-

mogenous security, the study of information processing among trading venues becomes highly

complex and, at the same time, of great significance for both market participants and reg-

ulators. To date, the literature has focused on the stochastic process that drives a stock’s

price (price discovery). In this paper, we take a different angle and investigate information

processing in the stochastic process driving stock’s volatility.2 We call this analysis ‘volatility

discovery’.

The price discovery literature has identified the unobserved efficient price by extracting

1https://www.sec.gov/news/statement/us-equity-market-structure.html
2The information contained in the volatility process has compelled traders to use derivative markets to

trade volatility (Ni, Pan, and Poteshman (2008) study equity volatility information trading), and the finance
and econometrics literature has long viewed volatility as a separate stochastic process (see the excellent
surveys on stochastic volatility models in Ghysels, Harvey, and Renault (1996) and Shephard and Andersen
(2009)).
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commonalities within the transaction prices of a homogeneous security. In this context, prices

are cointegrated, and the vector error correction (VEC) model has become the workhorse

of price discovery analyses. We rely on a similar intuition and exploit evidence that the

realized variances are long memory processes and cointegrated in order to identify the latent

efficient stochastic volatility using the fractionally cointegrated vector autoregressive (FC-

VAR) model of Johansen and Nielsen (2012).3 We then investigate how different markets

impound information into the efficient stochastic volatility. We evaluate volatility discovery

by examining the adjustment coefficients of the FCVAR. Our first result comes from an illus-

tration of our theoretical framework. We use an example of a price process designed so that

price and volatility discovery processes occur in distinct markets. Our volatility discovery

framework successfully identifies the leading market in the volatility process, whereas price

discovery measures are unable to capture the dynamics of the market-specific volatilities.

With this novel methodology in hand, we investigate the volatility discovery mechanism

for 30 of the most actively traded stocks in the U.S. The tick-by-tick quotes sample consists

of firms from different industries that are listed on the NYSE or the NASDAQ and also

traded on the ARCA from January 2007 to December 2013. Our results reveal that trading

venues incorporate new information into the stochastic volatility process in an individual

manner. We find that the NYSE is more important than the NASDAQ for 68% of the assets

and contributes, on average, 60% to the efficient volatility, while the NASDAQ is responsible

for the remaining 40%. When using stocks traded on the ARCA and NASDAQ, the ARCA

also appears to be more important than the NASDAQ, as it leads in 68% of the stocks,

making a 54% contribution to volatility discovery, in contrast to the 46% contributed by the

NASDAQ. Interestingly, when we compute price discovery measures, we find distinct market

leaders. The NASDAQ appears to be more important for 74% of the assets when compared

to the NYSE and for 79% of the assets when compared to the ARCA. Our methodology and

3Well-documented evidence is found in the literature to show that estimates of integrated variance (e.g.,
realized variance) depict long memory features, i.e., these estimates are characterized as highly persistent
and presenting an autocorrelation function that decays at a hyperbolic rate (Andersen and Bollerslev (1997),
Andersen, Bollerslev, Diebold, and Labys (2003a), Corsi (2009), among others).
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results represent a significant step toward the understanding of information processing in a

fragmented market context.

Our study relates to different strands in the literature. For instance, multivariate mod-

els of volatility have considered the role that information arrival plays in determining the

dynamics of the volatility process. Tauchen and Pitts (1983) and Andersen (1996)’s bi-

variate mixture models use trading volume to identify the effect of information arrival on

the persistence of the volatility process. Liesenfeld (2001) generalizes the previous bivariate

mixture models to allow two latent processes within the volatility dynamics: information

arrival and the market participant’s sensitivity to new information. More recently, Berger,

Chaboud, and Hjalmarsson (2009) show that both information flow and market sensitivity

to information are long memory processes and that the latter is at least as relevant as the

former in explaining the persistence of volatility. We relate the volatility and price discovery

mechanisms to this framework and show that the price discovery mechanism is related only

to the portion of information that permanently affects asset prices (information arrival),

while volatility discovery is also be able to capture market sentiment towards information.

A more recent strand of literature (Andersen, Bollerslev, Diebold, and Vega (2003b)

and Andersen, Bollerslev, Diebold, and Vega (2007)) investigates the role played by pub-

lic news announcements and macroeconomic variables in explaining high-frequency returns,

jumps and realized measures (RMs) of integrated volatility. A well-established body of lit-

erature relates news to high-frequency returns and jumps; however, results considering the

specific case of RMs of volatility have only recently begun to emerge. These recent results

show that public and firm-specific news, measures of disagreement in belief between market

participants, and macroeconomic uncertainty help to explain the dynamics of the volatil-

ity process. Specifically, Paye (2012) finds that macroeconomic uncertainty Granger-causes

volatility, while Engle, Hansen, and Lunde (2012) reinforce the role of private information

processing in explaining volatility variations. Finally, Bollerslev, Li, and Xue (2016) doc-

ument that intraday volume-volatility elasticity is lower at times of high uncertainty and
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of disagreement among market participants. Our study relates to this literature because it

addresses the issue of how financial markets process the information that drives stochastic

volatility processes in the context of fragmented markets, and it ultimately provides answers

on the direction of Granger causality among markets.

The remainder of the paper proceeds as follows. Section II presents the theoretical

setting and Section III explains the methodology. Section IV details the high-frequency

intraday data and the RMs used in the empirical analysis. Section V presents the empirical

analysis of the volatility discovery process. Section VI relates the volatility discovery measure

with price discovery and presents empirical results for price discovery. Section VII offers

concluding remarks. Appendix A contains a simulation study that provides evidence on the

effectiveness of the volatility discovery framework, Appendix B provides additional tables

that complement our empirical analysis, and Appendix C provides technical details regarding

simulations, a review of the estimation of FCVAR models, and technical background on the

efficient volatility representation.

II. Theoretical Setting

In a financial setting where markets are fragmented, a single firm’s stocks are traded in

multiple venues and incorporate new information into prices in a distinct fashion. These

market prices should not drift apart since they reflect the intrinsic value of the firm. In

econometric terms, they are cointegrated and share a stochastic trend, which is seen as the

efficient price. Suppose that the continuous efficient price follows a Brownian semimartingale

process:

mt =

∫ t

0

audu+

∫ t

0

σudWu +m0,

where a is a predictable locally bounded drift, σ is a càdlàg volatility process denoted as

the efficient stochastic volatility process and, without loss of generality, W is a Brownian

motion. Transaction prices of a homogenous security in S markets share the efficient price
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mt and possess market-specific stochastic processes, σs and Ws, for s = 1, 2, ..., S, as

ps,t =

∫ t

0

as,udu+

∫ t

0

σs,udWs,u + ps,0, s = 1, 2, ...S, (1)

The difference between mt and ps,t has two components: the well-known market microstruc-

ture noise plus any lagged adjustment to new information and price smoothing (see partial

adjustment models, as in Hasbrouck and Ho (1987)). Notably, mt is driven by two stochastic

processes: W and σ.4 The latter is related to the integrated variance (IV), defined as

IVm =

∫ t

0

σ2
udu.

The IV is central to the pricing of financial instruments, portfolio allocation, and risk man-

agement. In a fragmented market context, not only market prices but also their stochastic

volatilities are expected to gather information at different speeds, following market charac-

teristics such as market design, trading costs, liquidity, and the presence of informed traders,

among other things. Similarly to transaction prices that share an efficient price, we expect

these market-specific stochastic volatility processes not to diverge over time and hence to

share the efficient stochastic volatility. Therefore, we extend the price discovery concept to

the stochastic volatility processes and investigate the contribution of different markets to the

dynamics of the efficient price’s IV.

To exemplify in a pricing model how markets can be affected by two sources of infor-

mation, we design a example in which markets adjust to the efficient price and volatility.

Therefore, there are two channels of information flow: the usual price discovery process and

the novel volatility discovery mechanism. Consider a homogenous asset that is traded in two

markets; hence, these prices cointegrate and share the efficient price. Assume that market

one is the equivalent of a random walk process in discrete time and market two tracks the first

4The exact parametric functional form of σ is not relevant to the present analysis. We stress only that σ
is driven by a Brownian motion different from W and that σ and W may be correlated.
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market in an error correction fashion (see the zero coefficients in the drift term of (2)). Also

suppose that the stochastic volatilities in the two markets are tied to a long-run equilibrium

and hence do not diverge.5 These volatilities are generated by a stationary error correction

model in which market one does not Granger-cause market two (see the zero coefficient in

the drift term of (3)). In turn, while investors in market one impound all relevant informa-

tion to the efficient price, market two is exclusively responsible for determining the efficient

stochastic volatility process. It follows that price discovery occurs exclusively in market one,

whereas volatility discovery takes place only in market two. The price process reads

dp(t) =

 0 0

−π π

(µp − p(t)
)

dt+

 σ1(t) 0

0 σ2(t)

 dW (t) (2)

dV (t) =

 −θ1 θ1

0 −θ2

(µV − V (t)
)

dt+ CdB(t), (3)

where pt = (p1,t, p2,t)
′ and V (t) = (V1 (t) , V2 (t))′ are 2×1 vectors containing the observed log

prices and the logarithm of the instantaneous stochastic volatilities, respectively; µp and µV

are 2×1 vectors of mean parameters; C is 2×2 matrix such that the instantaneous covariance

matrix of the log-volatility process is given by Λ = CC ′; σs(t) = exp [ϕ0 + ϕ1Vs(t)] with

s = 1, 2; and W and B are 2× 1 vectors of Brownian motions with Corr (dWs(t)dB`(t)) = ρ

for s, ` = 1, 2. Without loss of generality, the off-diagonal elements of the spot volatility

matrix in (2) are set to zero. In Section III, we revisit the above example and document that

the volatility discovery measure we introduce correctly identifies market two as the leader in

the volatility process, whereas the price discovery measure is able to capture information only

from market one. We refer the reader to Appendix A for the full analysis of the simulation

study conducted using the price process above.

5We follow the standard practice in the RM literature and model the stochastic volatilities in (3) as a
stationary OrnsteinUhlenbeck (OU) process.
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III. Methodology

A. Econometric Models for Price and Volatility Discovery

The price discovery literature typically adopts the VEC models to approximate the dy-

namics of cointegrated prices observed on different markets and to identify the latent efficient

price. The general VEC model then reads

∆pti = γβ′pti−1
+

q∑
j=1

Υj∆pti−j
+ eti , (4)

where ti is the intraday observation i at day t, with i = 0, 1, ..., N and t = 1, 2, ...., T , N and

T denote the number of intraday observations and the total number of days, respectively,

pti is a S × 1 vector that collects the log prices on the S different trading venues, γ and

β are the speed of adjustment coefficients and the cointegrating vector, respectively, and

eti is a sequence of uncorrelated innovations with a covariance matrix Σ. Price discovery

measures are then based on the estimates of the parameters in (4) and Σ (see further details

in Sections III.B and VI.A).

To investigate the dynamics of the market IVs, we first need to define feasible estimates

of these latent variables. We generically denote these estimates as RMs, which are consistent

estimators computed with ultra-high-frequency data. Second, unlike security prices, which

are known to be integrated of order one, I (1), processes, there is well-documented evidence

that RMs are persistent and characterized by a long memory. The long memory feature of

RMs follows from early work on the conditional volatility of daily financial returns (Ding,

Granger, and Engle (1993), Baillie, Bollerslev, and Mikkelsen (1996)) and more recently on

modeling RMs (Andersen and Bollerslev (1997), Andersen, Bollerslev, Diebold, and Labys

(2001), Andersen et al. (2003a), Corsi (2009)). In particular, Andersen et al. (2003a) note

that “The slow hyperbolic autocorrelation decay symptomatic of long memory is evident ...”.

This stylized fact of RMs implies that these series are fractionally integrated of some order
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d.6 One way to accommodate this characteristic is to approximate the dynamics of RMs

using the fractionally cointegrated vector autoregressive (FCVAR) model of Johansen (2008)

and Johansen and Nielsen (2012),

∆dRt = αβ′∆d−bLbRt +
κ∑
j=1

Γj∆
dLjbRt + εt, t = 1, ..., T, (5)

where Rt is a S × 1 vector that concatenates the daily market-specific log RMs, Lb =

1− (1− L)b is the usual lag operator for fractional processes, d and b are the fractional order

of the RMs and the degree of fractional cointegration, respectively, and εt is independently

and identically distributed (i.i.d.) with a mean zero and variance Ω.7 It is relevant to note two

important aspects of the approximation in (5). First, we expect the rank of αβ′ to be equal

to S−1 in that the RMs share a common fractional stochastic trend: the efficient stochastic

volatility. This structural feature follows from the fact that the efficient stochastic volatility

is a property of the asset, not the trading venue. Second, we expect deviations between the

RMs in the different markets to be transient, i.e., a short memory (covariance stationary)

process driven by the trading-venue-specific characteristics, such as cost structure, different

degrees of transparency, the speed of order execution and different trader groups, among

other features. This stylized fact is accommodated by assuming d = b in (5), which implies

that β′Rt is an I (0) process. Finally, we allow the RMs to present a fractional order in

the range of 0.5 ≤ d < 1, implying that these measures may be nonstationary but mean

reverting.8

6A process zt is said to be fractionally integrated of order d if (1− L)
d
zt = ηt, where ηt is an integrated

of order zero (stationary) process. It follows that ∆d := (1− L)
d

is the fractional difference operator defined

in terms of the binomial expansion ∆d =
∑∞
i=0 ( di ) (−L)

i
=
∑∞
i=0 ζi,dL

d.
7The parameters in the FCVAR framework have the same common interpretation as the parameters

in the standard VEC model in that α contains the loading coefficients that correspond to the speed of
adjustment and β is the cointegrating vector so that β′Rt is integrated of order d − b and represents the
long-run equilibrium relation. Moreover, the FCVAR framework is general enough to nest the standard VEC
model when d = b = 1.

8This is consistent with previous empirical findings, such as those of Rossi and de Magistris (2014), among
others, who find estimates of d greater than 0.5.
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B. Price and Volatility Decompositions

Multivariate random walk decompositions are central to constructing any price discovery

measure, as they decompose observed prices into two components: the I (1) efficient price

and an I (0) process that is associated with the portion of information that has no perma-

nent impact on prices. Among the several different decompositions, the Granger representa-

tion theorem has the advantage of ensuring that the common efficient price is a martingale

(Hansen and Lunde (2006)),

pti = β⊥

[
γ′⊥

(
I −

q∑
j=1

Υj

)
β′⊥

]−1

γ′⊥

i∑
j=1

etj +
∞∑
j=0

Ξjeti−j
+ pt0 , (6)

where β⊥ = (1, 1, ..., 1)′ in the price discovery context, and γ⊥ is the orthogonal projection

of the speed of adjustment parameter that satisfies γ′γ⊥ = 0. Because the first term of

(6) is seen as the common efficient price, the elements of γ⊥ are seen as the weights at

which market innovations affect the efficient price. This concept has been widely applied to

price discovery analysis (Booth, So, and Tseh (1999), Chu, Hsieh, and Tse (1999), Harris,

McInish, and Wood (2002), Figuerola-Ferretti and Gonzalo (2010), among others), where

the market associated with the highest element of γ⊥ is the most important in the price

discovery process (see Jong (2002) for a precise discussion of γ⊥ and its relation with price

discovery measures).

In the same way that the random walk decomposition constitutes the basic building block

of price discovery analysis, the fractional counterpart of the Granger representation theorem

serves as a building block for volatility discovery analysis. By decomposing the RMs into a

long memory term common to all markets and market-specific I (0) terms, we can identify

the efficient stochastic volatility process and investigate how different venues incorporate

information and adjust to the long-run equilibrium. Johansen (2008) and Johansen and

Nielsen (2012) provide the fractional counterpart of the Granger representation theorem and
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decompose the process Rt into I (d) and I (0) components:

Rt = Ψ∆−d+ εt +Xt, t = 1, ..., T, (7)

where Ψ = β⊥

[
α′⊥

(
IS −

∑κ
j=1 Γj

)
β⊥

]−1

α′⊥, ∆−d+ is a truncated version of the fractional

difference operator of order d; Xt = Yt+µt is an I (0) stochastic term; and α⊥ and β⊥ are the

orthogonal projections of α and β, respectively, with α′α⊥ = 0, α′⊥ιS = 1, and ιS denoting

a S-dimensional vector of ones. As discussed in Hasbrouck (1995), in the price discovery

case, if β = (IS−1, ιS−1)
′ and rk (αβ′) = S − 1, the matrix Ψ has common rows. Section V.B

provides strong empirical support for the cointegrating vector akin to β = (IS−1, ιS−1)
′ in the

FCVAR setup. Hence, a similar interpretation as that for the price discovery analysis holds

in the volatility discovery setup, implying that Rt shares a single fractional stochastic trend

that is integrated of order d, given by

Rm,t = ψ∆−d+ εt =

[
α′⊥

(
IS −

κ∑
j=1

Γj

)
β⊥

]−1

α′⊥∆−d+ εt, (8)

where ψ accounts for the common row of Ψ. Notably, Rm,t possesses the long-term persistence

and slow hyperbolic decay discussed in Andersen et al. (2003a), and it can be seen as the

natural efficient stochastic volatility. Given that the efficient volatility can be recovered by

ψ∆−d+ εt, we can investigate how the efficient stochastic volatility is tied to innovations to

the RMs of the different markets. In this setting, α⊥ plays a key role, and we define it as a

measure of volatility discovery. The elements of α⊥ show how innovations from the market-

specific RMs contribute to the efficient volatility. As in the price discovery analysis, as the

elements of α⊥ for a given market increase, the importance of this market for the volatility

discovery process increases. We carry out simulations using the price process in (2) and

(3). The results confirm that α⊥ is a valid measure and successfully identifies the volatility

discovery mechanism, whereas γ⊥ is able to capture only information from the price discovery

channel (see Tables A.1 and A.2 in the Appendix A). Specifically, we first confirm that the
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FCVAR model approximates well the dynamics of the RMs and thus opens room to assess the

validity of the volatility discovery framework developed in this section. Furthermore, we find

that the RMs are characterized by nonstationary and mean reverting long memory, which is

in line with the usual hyperbolic decay of the empirical autocorrelation function associated

with RMs. Secondly, we document that the FCVAR model is able to correctly identify

the structural features associated with the volatility discovery dynamics. The estimates of

the speed of adjustment parameters verify the Granger causality structure in (3), i.e., α1

is negative and significantly different from zero (RM in market one adjusts to changes in

the RM of market two), whereas α2 is not statistically different from zero, implying that

the RM in the first market does not Granger-cause the RM in market two. Estimates of

α are also fairly stable across all replications. Therefore, the use of the FCVAR model to

approximate the dynamics of the RMs and the use of the orthogonal projection of the speed

of adjustment parameters to quantify how the different markets impound information to the

fractional common stochastic trend (efficient volatility) enable inference about the volatility

discovery mechanism.

IV. Data

Our data consist of 30 of the most actively traded assets in the U.S. extracted from the

TAQ database. All stocks are simultaneously traded in at least two of the three markets

covered in this analysis (the NASDAQ, ARCA and NYSE) and represent a broad set of

industries. Although these assets are also traded in other exchanges, we restrict our focus

to the listed venues (NASDAQ and NYSE) and ARCA. The ARCA is particularly relevant

because it is a trading platform with high levels of liquidity and contains practically all

the assets in our sample. We use quotes from a sample period of 7 years, from January

2007 to December 2013, which captures the implementation of the National Market System
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regulation (Reg NMS) and the market fragmentation phenomenon.9 The use of quotes

instead of transaction prices has two relevant advantages. It adds a significant number of data

points to our analysis and provides further information that is not present at the transaction

level of data. Market makers update their quotes based on the available information in the

market, and this may not be fully realized in the transaction price at every single point in

time.

Before computing the RMs, it is necessary to filter the raw data for outliers. We imple-

ment the filter rules suggested in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009)

for data on TAQ high-frequency quotes. In particular, we discard observations with a time

stamp outside the main trading hours (9:30am-4:00pm), and we delete the observations

where either the bid or ask is equal to zero or the bid-ask spread is negative; we also discard

any entries for which either the spread is more than 50 times the median spread on the day

or the mid-quote deviates by more than 10 mean absolute deviations from a rolling centered

median of 50 observations. For the cases with a large number of entries with the same

time stamp (second), we substitute these observations with their median bid and ask prices.

These cleaning steps considerably reduce the sample size primarily because of multiple bid

and ask prices in the same second. Table I details the cleaning process and the final number

of observations. We begin with a database that contains 19.9 billion entries, and this de-

creases to 1.9 billion entries after the cleaning process, corresponding to an average of 14.7

thousand observations per day per exchange (one quote every 1.6 seconds on average), which

is enough to guarantee good finite sample estimates of the market-specific IV measures.

[Place Table I about here]

We compute the daily RMs using Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2011)’s univariate realized kernel estimator because it provides consistent estimates of the

market IV measures under rather mild assumptions. More specifically, the realized kernel

9The Reg NMS in 2007 allows the entry of new trading venues that are linked together and compete for
order flow, liquidity, and trades.
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estimator has a number of benefits that suit our analyses particularly well. First, the re-

alized kernel consistently estimates the IV measure in the presence of time-dependent and

endogenous market microstructure noise; this type of noise is usually found in tick-by-tick

data, as discussed in Hansen and Lunde (2006) and Aı̈t-Sahalia and Yu (2009), and is more

pronounced for mid-quotes (Barndorff-Nielsen et al. (2011)).10 Second, it is robust to ac-

commodating irregularly spaced data, which is the case of the data that we adopt. Third,

it can use all the available tick-by-tick data, helping to obtain more precise estimates in the

finite sample.11 Finally, as discussed in Barndorff-Nielsen et al. (2008) and Barndorff-Nielsen

et al. (2011), the realized kernel estimator remains consistent even in the presence of jumps,

provided that some regularity conditions hold. The use of mid-quotes (the average between

the bid and ask prices) observed at a tick-by-tick frequency is crucial to our volatility dis-

covery analysis because we want to gather all the possible information about the evolution

of IV variance among the different markets. Hence, by using the realized kernel estimator,

we do not lose any information that is embedded in the bid and ask prices.

For the price discovery analyses, we use mid-quotes aggregated at 10 seconds to balance

out the negative effect of market microstructure noise (measurement error) on the model

parameters’ estimates and the positive effect of having information at the highest possible

frequency. Because a typical trading day lasts for 6.5 hours, sampling at a 10-second fre-

quency yields 2340 observations per day and a total of 4.12 million observations for a sample

of 1762 days (typical stock in our sample). Finally, Figure 1 displays a summary of the time

series properties of high-frequency prices and realized kernel estimates of the market-specific

10By time-dependent and endogenous market microstructure noise, we mean that the noise is autocor-
related and correlated with the efficient price, respectively (see Assumption U in Barndorff-Nielsen et al.
(2011)).

11The rate of convergence of the realized kernel estimator, N1/5, is slower than those of the kernel estimator
of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) and the two time scale estimators of Aı̈t-Sahalia,
Mykland, and Zhang (2005), N1/4. The latter two estimators, however, require stronger assumptions that do
not allow the use of all the available tick-by-tick data. Hence, as identified in Barndorff-Nielsen et al., 2011,
p. 150, a much larger number of observations compensates for the slower convergence rate, implying that
3901/4 < 140001/5, where 390 is the typical number of observations obtained when sampling at a 1-minute
frequency, and 14000 is the average of the daily number of quotes in our sample.
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integrated variances for AA (Alcoa) stock.12 Both time series evolution and scatter plots

confirm that log prices and log RMs from different trading venues do not drift apart, which

is in line with both price and volatility discovery frameworks that postulate that observed

prices and RMs in fragmented markets should track the efficient price and integrated vari-

ance, respectively. Finally, the sample autocorrelation function of the RMs (the last column

of Figure 1) is highly persistent and presents a hyperbolic decay, which are stylized facts

associated with long memory processes.

[Place Figure 1 about here]

V. Empirical Results

A. Model Specification

We use the log RMs to estimate bivariate FCVAR models with a level parameter, which

imposes a restricted constant and accommodates a non-zero starting point for the RMs (see

the discussion in Johansen and Nielsen (2015)).13 We consider three market combinations:

NASDAQ-ARCA, NASDAQ-NYSE, and ARCA-NYSE. This choice accommodates assets

that are not simultaneously traded on the three exchanges (11 of the 30 firms in our sam-

ple) and ultimately yields a richer and broader sample, which is particularly important for

handling firms that are listed on the NASDAQ but are not traded on the NYSE. A robust-

ness exercise also considers the three markets jointly. We choose the lag length, κ, as the

minimum value that makes the LM test for serial correlation on the residuals at the first 10

lags nonsignificant at the 5% significance level (Table B.1). For all the assets in our sample

but four, the optimal lag length chosen is zero, which eliminates the identification problem

12To conserve space, we report only plots for AA. Similar figures for the remaining 29 stocks are available
upon request.

13Estimation results for the FCVAR models are obtained using the computer program by Nielsen and
Popiel (2014).
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raised in Carlini and de Magistris (2017).14

To evaluate whether the RMs at different trading venues are fractionally cointegrated,

we implement the sequential likelihood ratio (LR) test for the cofractional rank of Johansen

and Nielsen (2012), which is discussed in Appendix C.2. For each two-market combination,

the RMs are fractionally cointegrated and share a single common fractional stochastic trend

if rk (αβ′) = 1. Table II presents the p-values associated with the LR cofractional rank

test when the null hypothesis is rk (αβ′) ≤ 1.15 The null is not rejected in all but four

stocks, suggesting that the RMs are fractionally cointegrated and should share the efficient

stochastic volatility as a common fractional stochastic trend. Moreover, in line with the

price discovery literature, Table II provides evidence that β̂ = (1,−1)′ holds for all assets

and market combinations, indicating that the market stochastic volatilities are expected to

be equal in equilibrium.

[Place Table II about here]

Regarding the long memory feature of the RMs, Table III shows that d̂ is highly significant

and usually greater than 0.5, confirming the RMs’ long memory characteristic (nonstationary

and mean reverting). The d̂ estimates are remarkably similar across the different market

combinations, which suggests that the fractional trend’s degree of long memory is virtually

the same. Hence, the results in Table III further demonstrates that the estimates of Rm,t are

robust across the different market combinations, following their very similar long memory

degree. In summary, Tables II and III provide the necessary preliminary results to ensure

that the volatility discovery framework formulated in Section III suits the data well and

approximates the dynamics of the RMs of a homogenous security traded on multiple markets.

[Place Table III about here]

14In addition to the requirement that residuals should be a white noise process, we choose κ so that the
roots of the characteristic polynomials lie outside the transformed unit circle, Cb̂ (see Johansen (2008) for
a theoretical discussion on this identification). We set κ = 0 for the NOK asset in both NASDAQ-NYSE
and ARCA-NYSE systems because the roots of the characteristic polynomial lie inside the transformed unit
circle for any κ > 0.

15We do not report the p-values when the null hypothesis is rk (αβ′) = 0 because we strongly reject the
null (p-values are zero, even considering three decimal places) for the 30 assets in all markets.
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B. Volatility Adjustment

We now turn our attention to the parameter estimates that determine the volatility

discovery mechanism. The speed of adjustment parameters reflects the adjustment imple-

mented in each market such that the RMs do not deviate from the latent Rm,t. Hence, as

αs approaches zero, the extent to which market s must adjust to Rm,t decreases. In the

limit, when αs = 0, market s does not need to adjust to shocks in the Rm,t, implying that

it is the efficient market. Table B.3 in Appendix B reports that the adjustment parameter

associated with one of the markets is statistically significant for most assets, implying that

market leadership in the volatility discovery mechanism can be inferred.16 We also conclude

that the FCVAR model fits the data well, since their residuals are serially uncorrelated (see

Table B.2 in Appendix B).

To investigate market leadership in the volatility discovery mechanism, it is easier to

look at the estimates of the orthogonal projection of the α parameters, α̂⊥. The market with

the highest α̂⊥ has the lowest need to adjust towards the efficient stochastic volatility, and

hence, it is the one that leads the volatility discovery process. This measure also implies

the proportion of each market’s importance to the volatility discovery process, given that

α̂⊥,1+α̂⊥,2 = 1. Furthermore, the use of α⊥ has an important benefit: by means of an LR test,

it allows us to test whether a given market contributes to the volatility discovery mechanism.

Testing zero restrictions on the elements of α⊥ is equivalent to testing for the weak exogeneity

of one of the RMs with respect to the cointegrating vector β. More importantly, when κ = 0

in (5), testing for weak exogeneity implies testing for Granger causality (strong exogeneity).

Because we find κ = 0 for most stocks in our empirical analysis, the hypothesis tests below

can be most often interpreted as Granger causality tests.17 A linear hypothesis for α⊥ can

be tested directly on either α⊥ or α (Dolatabadi, Nielsen, and Xu (2015)). Inspired by these

16Estimating α is particularly challenging within the FCVAR framework, and high standard errors are
expected.

17Notably, for all stocks but IBM, KO, NOK and XOM, results from the weak exogeneity tests can be
understood as Granger causality tests.
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authors, we formulate the following null hypotheses:

H.1 H0: α1 = 0 or, equivalently, α⊥,2 = 0. Volatility discovery occurs exclusively in market 1;

H.2 H0: α2 = 0 or, equivalently, α⊥,1 = 0. Volatility discovery occurs exclusively in market 2.

The rejection of both null hypotheses suggests that volatility discovery occurs mutually in

the two markets. The rejection of only one null hypothesis (either H.1 or H.2) indicates that

volatility discovery occurs exclusively in one market. If this is the case – say, we reject H.1

and do not reject H.2 – then R2,t is said to be weakly exogenous, and hence, the second

market appears to be the sole driver of the volatility discovery process. Moreover, if κ = 0,

these results would also suggest that R1,t does not Granger-cause R2,t. Finally, the non-

rejection of both null hypotheses does not allow us to conclude whether any market is the

single driver of the volatility discovery mechanism.

[Place Table IV about here]

Table IV presents the estimates of α⊥ for each market combination and displays the

p-values associated with the tests for weak exogeneity, H.1 and H.2. Considering the first

market combination (NASDAQ-ARCA), pointwise analyses show that α̂⊥,1 < α̂⊥,2 holds for

68% of the assets (where 1 stands for the NASDAQ and 2 for the ARCA). This suggests

that the ARCA is more important than the NASDAQ for the volatility discovery process.

Additionally, the ARCA has average importance for the volatility discovery process of 54%

compared to 46% for the NASDAQ, suggesting that on average, the ARCA contributes

more to the volatility discovery process than the NASDAQ does. A more precise analysis

is obtained when considering the hypothesis tests outlined above. Inferences based on the

hypothesis tests suggest that the volatility discovery mechanism occurs exclusively in the

ARCA for 11 of the 19 assets for which the ARCA leads; hence, the NASDAQ should not

Granger-cause the ARCA (i.e., we reject H.1, (α⊥,2 = 0), and do not reject H.2, (α⊥,1 = 0)

at 10% significance level).18 Similar analyses offer statistical evidence that the NASDAQ is

18The ticker symbols are BRKB, F, GE, GM, GOOG, HPQ, JCP, MRVL, PFE, WMT, and YHOO.
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the single driver for 5 assets and that volatility discovery occurs in both the NASDAQ and

the ARCA for 4 assets.19 Overall, our results support the conclusion that the ARCA is more

informative than the NASDAQ in the volatility discovery process.

Results from the second market combination (NASDAQ-NYSE) also suggest that the

NASDAQ is less important. We find that 68% of the assets present α̂⊥,1 < α̂⊥,2 (where 1

stands for the NASDAQ and 2 for the NYSE), indicating that the NYSE leads the volatility

discovery process. In terms of the markets’ relative importance, the NYSE contributes, on

average, to 60% of the volatility discovery mechanism, whereas the NASDAQ contributes

only 40%. Using the null hypotheses H.1 and H.2, we find that the NASDAQ does not

Granger-cause the NYSE for 9 assets, which reinforces the possible secondary role this ex-

change plays in the volatility discovery process.20

Finally, when comparing the results obtained from the ARCA-NYSE market combination

(the last four columns in Table IV), there are mixed results considering market leadership

and Granger causality. The NYSE and ARCA lead for the same number of assets, although,

on average across stocks, the NYSE contributes 58% to the volatility process, compared to

the ARCA’s 42%. Using the hypothesis tests H.1 and H.2 does not provide strong evidence

regarding overall market leadership. More precisely, we document that the NYSE does not

Granger-cause the ARCA for 6 assets, whereas the ARCA does not Granger-cause the NYSE

for 8 assets.21 Note that although the ARCA and NYSE are part of the same holding (In-

tercontinental Exchange, Inc. - ICE), they possess very different characteristics in terms of

their regulatory, operational and fee/rebate structures. In particular, the NYSE is a list-

ing exchange, whereas the ARCA is a fully electronic trading platform that makes use of

competing market makers and a smart order-routing algorithm. The latter communicates to

19The ticker symbols for which the NASDAQ is the single driver of the volatility discovery mechanism
are CSCO, JPM, MSFT, ORCL, and PG. The ticker symbols for which volatility discovery occurs in both
markets are JNJ, MO, MRK, and VZ.

20The ticker symbols are AA, HPQ, JCP, JNJ, KO, MO, MRK, PFE, and VZ.
21The ticker symbols for which the NYSE does not Granger-cause the ARCA are BAC, C, F, GE, GM,

and JPM. The ticker symbols for which the ARCA does not Granger-cause the NYSE are HPQ, JCP, JNJ,
MO, MRK, PFE, PG, and VZ.
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alternative trading platforms (the NASDAQ, regional exchanges and Electronic Communica-

tion Networks (ECNs)), providing displayed and dark liquidity. Considering market quality

measures such as the average quoted spread and the NBBO (national best bid and offer),

the ARCA is ranked first with respect to its competitors.22 The combination of the usual

market quality measures with the volatility discovery results suggests that the NYSE may

capture a different attribute of market quality that may not be reflected in the standard

measures: information on the efficient stochastic volatility. This finding is consistent with

the results from our simulation study, which demonstrates that the usual price discovery

framework cannot identify the volatility discovery channel, whereas the volatility discovery

machinery does so successfully.

C. Robustness

As a robustness exercise, we estimate α in (5) with d and b as free parameters. The main

theoretical implication from relaxing d = b is that deviations from the common fractional

stochastic trend are now allowed to be a long memory process of order d − b. Table B.4

reports estimates of both α⊥ and α̃⊥, where the latter denotes the orthogonal projection of

the α parameters obtained when d and b are treated as free parameters. We find that our

results are robust to this more flexible specification. In particular, the volatility discovery

measures in the NASDAQ-ARCA market combination remain virtually unchanged. With

regard to the other two market specifications, we observe that despite a nominal change in

α̃⊥ compared to α⊥, the market leadership hierarchy remains the same.

Economic intuition demands that the volatility discovery measures presented in Table

IV are transitive. Transitiveness holds if, for example, the following pattern is observed:

the ARCA is more important than the NASDAQ; the NASDAQ is more important than

the NYSE; and the ARCA is more important than the NYSE. By comparing the results

in Table IV across the different market combinations, we find that transitivity holds in 18

22All data are as of March 2015 and available on https://www.nyse.com/markets/nyse-arca.
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of the 19 assets that are simultaneously traded on the NASDAQ, ARCA and NYSE. It is

possible, however, to estimate the volatility discovery measures from a higher dimensional

FCVAR model that contains the three markets. Estimating a three-dimensional FCVAR

model is, in fact, the most appropriate approach to assessing whether transitivity holds.

Table B.5 presents the results of this exercise. To be in accordance with our volatility

discovery framework, we expect to find two cointegrating vectors so that the three RMs

share a single fractional stochastic trend. Results support our theoretical framework in that

there are two cointegrating vectors, estimates of d are highly significant and most often

greater than 0.5, and residuals are uncorrelated.23 Furthermore, because α is a 3×2 matrix,

α⊥ is a 3 × 1 vector, implying that, as in the bivariate case, the elements of α⊥ are the

volatility discovery measures. We find that market leadership is consistent with the results

in Table IV for 17 of the 19 assets.

VI. Relation to previous literature

A. Information Share of Prices and Volatility

In addition to γ⊥ presented in Section III.B, another prominent way to measure price

discovery is given by Hasbrouck’s 1995’s Information Share (IS) measure. To verify how the

IS measure is related to the volatility discovery mechanism, we slightly modify the IS to

account for the stochastic volatility. Consider a version of the standard IS measure in which

the covariance matrix of the VEC residuals is replaced by the realized covariance matrix, Rt.

This change allows us to write the IS as function of the RMs and the FCVAR parameters.24

For simplicity of exposition, assume that Rt is a diagonal matrix that contains the elements

of Rt. By assuming that the correlation among markets is zero, we avoid the issue of dealing

with the upper and lower bounds associated with the factorization of Rt. The IS measure of

23The complete set of results is available upon request.
24Formulating the IS in terms of RMs also delivers a price discovery measure in continuous time (Dias,

Fernandes, and Scherrer (2016)).
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market s ∈ (1, 2, ..., S) then reads

ISs,t =
ϑ2

sRs,t

ϑRtϑ′
, t = 1, ..., T, (9)

where ϑs denotes the sth element of ϑ =
[
γ′⊥

(
I −

∑q
j=1 Υj

)
β′⊥

]−1

γ′⊥. From (7) and (8), we

can write the market-specific RMs in terms of Rm,t (common to all RMs) and Xt (market-

specific short memory terms) such that Rt = β⊥Rm,t + Xt, and the IS measure of market s

reads

ISs,t =
ϑ2
s (Rm,t +Xs,t)∑S

s=1 ϑ
2
s (Rm,t +Xs,t)

, t = 1, 2, ..., T. (10)

The ISs,t measure depends on three components: ϑ, Rm,t, and Xs,t. Specifically, ϑ captures

the permanent effect of market innovations on prices and originates from the VEC parame-

ters; hence, it is not affected by the volatility discovery mechanism. The Rm,t term plays the

role of a normalization factor because it is not informative to identify how the innovations

to the stochastic market volatilities affect Rm,t, i.e., the α⊥ parameter does not load on this

term. The market-specific terms, Xs,t for s ∈ (1, 2, ..., S), summarize the transitory effects

of shocks in the volatility processes and have no effect on the efficient stochastic volatility.

These terms can be seen as a source of contamination of the IS measure because they do

not carry relevant information for either the price or the volatility discovery mechanisms.

Overall, two conclusions emerge from (10). First, taking into account stochastic volatility

processes contaminates the IS measure. Second and most important, the IS measure cannot

answer questions regarding the volatility discovery mechanism because it cannot separate

the contribution of each market innovation to the market-specific stochastic volatilities on

Rm,t. Simulations carried out using the price process in (2) and (3) corroborate these con-

clusions, as although the IS correctly identifies market one as the unique contributor to the

price discovery process, it remains uninformative about the volatility discovery mechanism

(see Appendix A).
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B. Information Arrival and Sensitivity

A further step in our analyses is to formally relate the price and the volatility discovery

mechanisms to the extant literature that associates the persistence of the volatility pro-

cess with the rate of information arrival and market participants’ sensitivity to information.

The so-called Liesenfeld’s 2001 generalized bivariate mixture model relates the volatility and

volume dynamics to two latent variables (information arrivals and market participants’ sen-

sitivity to information) and ultimately allows the volatility and volume processes to respond

differently to distinct pieces of information (see Tauchen and Pitts (1983) and Andersen

(1996) for earlier work on the bivariate mixture model and Epps and Epps (1976) for a first

attempt to formally relate volatility and information flow). On the basis of these earlier

works, Berger et al. (2009) associate returns and variance in prices to information flow and

the market’s sensitivity to information, respectively, such that we can write

∆mti = ξtof ti , (11)

ln (RVm,t) = ln

(
N∑
i=1

of 2
ti

)
+ 2 ln (ξt) , (12)

where mti is the latent efficient price; RVm,t is the realized variance defined as the sum of the

squared intraday returns; ξt is interpreted as the sensitivity of the price to the information

flow (market sensitivity); and of ti is the detrended order flow that proxies the information

flow. Equation (12) has ln (RVm,t) as a function of
∑N

i=1 of
2
ti

and ξt, where the former reflects

the information that is permanently impounded to prices, while the latter captures how the

market participants process and react to new information (market sensitivity).25 Berger

et al. (2009) find that the degree of persistence of the two elements on the right-hand side

of (12) is characterized by a long memory, with d ranging from 0.31 to 0.60.

To relate the price and volatility discovery mechanisms to this literature, we write RVm,t

25This is also consistent with the work of Engle et al. (2012), which delivers the concept of the private
processing of public information loading significantly on changes in volatility and helping to explain the
volatility’s persistence.

23



in (12) as a function of the VEC and FCVAR parameters in (4) and (5), respectively, so it

reads

RVm,t = α′⊥

{
ιS

N∑
i=1

(
γ′⊥etie

′
ti
γ⊥
)}

+ α′⊥

N∑
i=1

Ai + initial value, (13)

where Ai =
([

2γ′⊥etiA1,i + A2
1,i

]
, ...,

[
2γ′⊥etiAS,i + A2

S,i

])′
is a (S × 1) vector with As,i =∑∞

j=0 Ξs,j∆eti−j
, s = 1, 2, ..., S, and Ξs,j denoting the sth row of the Ξj parameter matrix

from the I(0) component of the Granger representation theorem in (6).26

As the efficient volatility in (13) contains two long memory terms, it is natural to re-

late them to market sensitivity and order flow as in (12). The first component of RVm,t,∑N
i=1

(
γ′⊥etie

′
ti
γ⊥
)
, is the denominator in Hasbrouck’s 1995’s IS measure (see Section VI.A)

and therefore delivers a straightforward association with this price discovery measure. We

relate this term to the order flow in (12), since
(∑N

i=1 of 2
ti

)
proxies the rate of information

arrival that affects the efficient price. The relationship between price discovery and order

flow, trading volume and liquidity is consistent with the empirical price discovery litera-

ture (see Eun and Sabherwal (2003), Frijns, Gilbert, and Tourani-Rad (2015)). Specifically,

Figuerola-Ferretti and Gonzalo (2010) formulate an equilibrium model in which γ⊥ is asso-

ciated with the number of market participants (proxied by trading volume). We relate the

second component in (13), α′⊥
∑N

i=1Ai, to the market’s sensitivity to information because the

Ai term contains the terms associated with short-run deviations from equilibrium. It should

be noted that as the deviations from the equilibrium become larger, the impact on efficient

volatility strengthens, ultimately reflecting how market participants agree on incoming news.

Finally, (13) also allows us to understand why α⊥ is a good choice of measure to evaluate

volatility discovery, as it loads on both components of RVm,t, unlike γ⊥.

26The steps to obtain (13) are detailed Appendix C.3. The representation in (13) can be readily extended
to the case in which the log RV are approximated by a FCVAR model so that ln (RVm,t) assumes the form

ln (RVm,t) = α′⊥ ln

(
ιS

N∑
i=1

(
γ′⊥etie

′
tiγ⊥

)
+

N∑
i=1

Ai

)
+ initial value.
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C. Price Discovery vs. Volatility Discovery

Our theoretical setting shows that the price and volatility discovery mechanisms gather

two distinct sources of information. Having documented that the NASDAQ is usually less

important for the volatility discovery mechanism, we next examine whether the ARCA and

NYSE are also the leading markets in the price discovery analysis. For this purpose, we

follow the price discovery literature and adopt the VEC model in (4) as a discrete approx-

imation of the observed prices in the three market combinations discussed previously. We

find one cointegrating vector and estimate the adjustment coefficients γ in (4) using the

OLS estimator, as it yields consistent and asymptotically normally distributed estimates

when β is assumed to be known.27 Our preferred choice of price discovery measure is the

orthogonal projection of γ in (4), γ⊥, which is normalized such that γ⊥,1 + γ⊥,2 = 1. Hence,

as in the volatility discovery analysis, γ⊥,1 > γ⊥,2 implies that market 1 is more important

for the price discovery process. This approach is convenient because the competing IS mea-

sure is found to be virtually equal to 0.5 for all stocks in our sample even at a frequency

as high as 10 seconds. Unfortunately, this feature of the IS measure does not come as a

surprise because there is mounting empirical evidence that markets have become faster and

more tightly inter-connected, which ultimately increases the correlation among them (see

Menkveld (2014), O’Hara (2015), and Menkveld (2016)).

Table V reports the results for the price discovery analysis. In general, the results suggest

that the NASDAQ leads the price discovery mechanism when compared to both the ARCA

and NYSE trading venues. Considering the NASDAQ-ARCA market combination, we find

that γ̂⊥,1 > γ̂⊥,2 for 79% of the assets in our sample, suggesting that the NASDAQ dominates

the ARCA in terms of price discovery.28 Comparing the NASDAQ to the NYSE, we find

27We fix β = (1,−1)
′

as is the standard practice in the literature and choose the lag length in the VEC
specification in (4) as the minimum value that makes the LM test for serial correlation on the residuals at
lag 15 not statistically significant at the 5% level. The choice of rk (γβ′) = 1 follows the results from the
Johansen cointegration rank test. The p-values associated with the Johansen and serial correlation tests are
available upon request.

28The ticker symbols are AA, AAPL, BAC, BRKB, CSCO, F, GE, GM, GOOG, HPQ, JNJ, JPM, KO,
MRK, MRVL, MS, MSFT, ORCL, PFE, VZ, WMT, and YHOO.
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that the NASDAQ leads the price discovery process in 74% of the cases.29 Next, the ARCA-

NYSE market combination shows results slightly in favor of the ARCA, with leadership in

62% of the stocks.30 It is important to highlight that we reject, at a 5% significance level,

both the H.1 and H.2 null hypotheses for the vast majority of assets in the three market

combinations. When both null hypotheses are simultaneously rejected, there is evidence that

price discovery occurs simultaneously in both markets.

Having separately analyzed the volatility discovery and price discovery measures in the

three markets combinations, we now make a more direct comparison of the results in Ta-

bles IV and V. In general, evidence suggests that distinct trading venues lead the price

and volatility discovery processes. For the NASDAQ-ARCA case, the price and volatility

discovery processes occur in different markets in 54% of the stocks in our sample. For in-

stance, in the cases of BRKB, F, GE, GM, GOOG, HPQ, JNJ, KO, MRK, MRVL, PFE,

VZ, WMT, and YHOO, the NASDAQ is more important for the price discovery process,

whereas the ARCA leads the volatility discovery mechanism. Interestingly, the NASDAQ

presents higher quoting activity than the ARCA for all these stocks.31 Similarly, our results

for the NASDAQ-NYSE combination suggest that the NASDAQ is more important for the

price discovery process whereas the NYSE is more important for the volatility discovery

process in half of our sample (AA, HPQ, JNJ, KO, MO, MRK, VZ, WMT, and XOM).

Again here, the NASDAQ shows higher quoting activity than the NYSE for virtually all

these stocks. Overall, the leading market in the price discovery analysis is often also the

one with the highest quoting activity (75% and 63% of the stocks for ARCA-NASDAQ and

NYSE-NASDAQ market combinations, respectively). This result is in line with the link

between price discovery, order flow and the rate of information arrival developed in Section

VI.B, as well as with previous studies that associate price discovery with different measures

of liquidity (Eun and Sabherwal (2003) and Frijns et al. (2015)). For the volatility discovery

29The ticker symbols are AA, BAC, F, GE, GM, HPQ, JNJ, JPM, KO, MO, MRK, VZ, WMT, and XOM.
30The ticker symbols are AA, BAC, C, F, GE, GM, HPQ, JPM, KO, MO, MRK, WMT, and XOM.
31We define quoting activity as the daily average of quotes. It can be computed by dividing the number

of quotes before any cleaning filter by the total number of days in Table I.
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measure, these ratios are much lower, 29% and 42%, indicating that, possibly, liquidity more

strongly affects price discovery than it does volatility discovery. Finally, the ARCA-NYSE

combination shows generally more balanced results. We observe a difference in the venue

where price discovery and volatility discovery mechanisms occur for only 32% of the stocks.

To offer a more precise analysis of the relationship between quoting intensity and price

and volatility discovery, we perform a simple probit regression analysis. We regress a binary

variable that takes the value of 1 if a given market leads the price (volatility) discovery

process and 0 otherwise on quote intensity, volatility (price) discovery measures and a dummy

variable that returns 1 if the stock is listed in a given market. Consistent with our previous

explanation, it appears that price discovery is more influenced by quoting activity than

volatility discovery is, as the probability of leading the price discovery process is positively

(statistically significant) related with quote intensity and the volatility discovery measure

(see Table B.6).

Overall, our results suggest that the volatility and price discovery mechanisms do not

necessarily occur in the same trading venue. This finding reinforces our theoretical motiva-

tion that the price and volatility discovery measures capture how markets incorporate news

into two distinct efficient stochastic processes: the efficient price and the efficient stochas-

tic volatility. These results suggest that market quality should be analyzed using broader

measures that consider how information is incorporated into prices and risk.

VII. Conclusions

In the current context of market fragmentation, we develop a novel theoretical framework

to investigate how distinct markets contribute to the efficient stochastic volatility process: the

volatility discovery mechanism. The economic rationale supporting the volatility discovery

analysis rests on the premise that the efficient volatility process is a separate stochastic

process and that trading venues possess different characteristics and market designs and
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hence are populated by different trader groups or clientele. The price discovery literature

has examined how different markets impound new information into the latent efficient price.

Because economic agents may also differ in terms of their risk assessment, it is natural to

investigate how markets impound information into the efficient stochastic volatility process.

The volatility discovery framework builds on evidence that the RMs of a homogenous

asset cointegrate and share a common factor: the efficient stochastic volatility. We exploit

RMs’ long memory feature and adopt the recently developed fractionally cointegrated vector

autoregressive (FCVAR) model of Johansen and Nielsen (2012) to estimate how innovations

to market volatilities contribute to the efficient volatility process.

We compute volatility discovery for 30 of the most actively traded stocks in three U.S.

markets: the NASDAQ, ARCA and NYSE. We find that markets indeed incorporate new

information into the stochastic volatility process in a distinct way. In particular, our results

suggest that the NYSE and the ARCA are the most efficient venues, i.e., they incorporate

changes into the efficient volatility most quickly. We confirm this less prominent role of

the NASDAQ in the volatility discovery process using Granger causality tests. Comparing

price and volatility discovery, our results indicate that these mechanisms do not necessarily

occur in the same trading venue, suggesting significant differences in how exchanges impound

information into the efficient price and volatility processes.

We further investigate the differences between the price and volatility discovery measures

and formally show that the IS measure cannot identify market leadership in the volatility

process and becomes contaminated when stochastic volatility is allowed in the price process.

This finding is confirmed in a simple example in which we show that while the standard price

discovery framework fails to identify the volatility discovery channel, the methodology put

forward in this article successfully identifies this information channel. Berger et al. (2009)

highlight the role of market participants’ sensitivity to information in driving volatility per-

sistence and show that it is at least as important as the rate of information arrival. We write

the efficient price volatility as a function of the parameters that evaluate price and volatil-
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ity discovery and hint that price discovery summarizes only information regarding the rate

of information arrival, whereas the volatility discovery measure loads on both information

arrival and market sensitivity.

Finally, we believe that future research will study the drivers of volatility discovery and

their relation to market characteristics and structure. The methodology developed in this ar-

ticle allows room to test a number of empirical questions that involve the volatility dynamics

in fragmented markets. Further empirical findings on the volatility process of a homogeneous

asset in the context of multiple markets should also be expected.
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Paye, Bradley S., 2012, ‘Déjà vol’: Predictive regressions for aggregate stock market volatility

using macroeconomic variables, Journal of Financial Economics 106, 527 – 546.

Rossi, Eduardo, and Paolo Santucci de Magistris, 2014, Estimation of long memory in inte-

grated variance, Econometric Reviews 33, 785–814.

Shephard, Neil, and Torben G. Andersen, 2009, Stochastic volatility: Origins and overview,

in Handbook of Financial Time Series , 233 – 254 (Springer).

Tauchen, G, and M Pitts, 1983, The price variability-volume relationship on speculative

markets, Econometrica 51, 485–505.

34



Figure 1. Prices and Realized Measures at Nasdaq, Arca and Nyse markets: AA (Alcoa)

The figure consists of three panels with plots of intraday log-prices and daily log-RMs at different market combinations for AA (Alcoa). The first
row presents plots for the Nasdaq-Arca market combination, while the second and third panels refer to the Nasdaq-Nyse and Arca-Nyse market
combinations. The first column displays plots for the intraday log-prices in the different market combinations. The second column presents scatter
plots around the 45 degrees line of intraday log-prices. Specifically, we denote Nasdaq as ‘T’, Arca as ‘P’, and Nyse as ‘N’. The third column presents
plots of daily logarithmic estimates of integrated variance using the realized kernel estimator of Barndorff-Nielsen et al. (2011). The fourth column
shows scatter plots around the 45 degrees line of daily logarithmic RMs. Finally, the fifth column displays three plots with sample autocorrelation
function of the logarithmic realized kernel estimates for Nasdaq, Nyse, and Arca.
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Table I Data Description

We report summary statistics for raw and cleaned data considering Nasdaq, Arca, and Nyse. The first three columns present
the number of quotes (in millions) for each stock before any cleaning filter (raw data). The following three columns (Clean
obs) display the total number of quotes (in millions) after the implementation of the cleaning procedure. The following three
columns (Avg obs per day) stand for the daily average (in thousands) of quotes. The last three columns report the total
number of days we have for each stock for the time span 01/01/2007 to 31/12/2013.

Initial Obs (Million) Clean Obs (Million) Avg obs per day (Thousand) Number of days
Nasdaq Arca Nyse Nasdaq Arca Nyse Nasdaq Arca Nyse Nasdaq Arca Nyse

AA 237 138 247 25 23 27 14.32 13.27 15.14 1735 1762 1762
AAPL 459 256 - 31 30 - 17.50 17.24 - 1762 1762 -
BAC 523 292 503 31 30 34 17.85 17.28 19.05 1735 1762 1762
BRKB 98 68 - 11 10 - 9.12 8.35 - 1183 1142 -
C - 319 549 - 30 32 - 16.93 18.39 - 1762 1762
CSCO 210 67 - 14 11 - 17.72 14.79 - 777 777 -
F 137 70 172 13 12 15 13.24 11.77 14.91 982 1009 1009
GE 363 214 427 29 27 31 16.53 15.58 17.78 1735 1762 1762
GM 202 90 174 16 15 19 11.81 10.83 13.34 1364 1391 1391
GOOG 149 124 - 19 19 - 10.77 10.79 - 1762 1762 -
HPQ 326 167 277 26 24 28 14.84 13.67 15.86 1735 1762 1762
IBM 122 102 149 21 20 25 11.96 11.50 14.13 1735 1762 1762
JCP 175 113 149 20 20 22 11.55 11.14 12.26 1735 1762 1762
JNJ 280 137 251 25 22 27 18.37 15.84 19.76 1364 1391 1391
JPM 696 345 542 32 31 33 18.43 17.52 18.64 1735 1762 1762
KO 244 123 205 23 21 25 13.27 11.90 14.44 1735 1762 1762
MO 178 95 204 22 19 26 12.40 10.83 14.90 1735 1762 1762
MRK 271 151 244 25 23 27 14.19 13.01 15.47 1735 1762 1762
MRVL 252 101 - 24 19 - 13.46 11.03 - 1762 1762 -
MS 233 416 - 28 27 - 16.03 15.40 - 1735 1762 -
MSFT 669 228 - 33 28 - 18.59 16.13 - 1762 1762 -
NOK 199 120 187 22 21 23 12.46 11.70 12.99 1735 1762 1762
ORCL 494 181 - 30 26 - 17.15 14.49 - 1762 1762 -
PFE 309 159 342 27 25 30 15.29 13.92 17.12 1735 1762 1762
PG 283 136 198 25 22 26 14.41 12.54 14.77 1735 1762 1762
VZ 264 141 257 25 23 29 14.44 13.03 16.19 1735 1762 1762
WFC - 305 427 - 29 31 - 16.67 17.81 - 1762 1762
WMT 269 144 251 25 23 28 14.40 12.98 16.01 1735 1762 1762
XOM 503 337 417 31 31 33 18.10 17.56 18.84 1735 1762 1762
YHOO 367 121 - 26 22 - 14.87 12.27 - 1762 1761 -
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Table II Cofractional Rank Test and Estimates of the Cointegrating vector

We report results for 30 assets considering the Nasdaq and Arca, Nasdaq and Nyse, and Arca and Nyse market combinations.
For each set of results, the first column (rk (αβ′)) displays the number of cointegrating relations used in the estimation of
the FCVAR model. The second column has the p-value of the likelihood-ratio (LR) cofractional rank test when the null

hypothesis is rk (αβ′) ≤ 1. Finally, the last two columns display the estimated cointegrating vector, β̂′ = (β̂1, β̂2). There
are few assets where the null of rk (αβ′) ≤ 1 in the LR cofractional rank test is rejected. The FCVAR parameters are
computed using the MLE estimator of Johansen and Nielsen (2012) where κ is chosen according to Table B.1, and d = b.
“-” implies that the stock is not traded in at least one of the two trading venues during the entire sample.

Nasdaq-Arca Nasdaq-Nyse Arca-Nyse

rk (αβ′) LR β̂′ rk (αβ′) LR β̂′ rk (αβ′) LR β̂′

AA 1 0.38 1.00 -1.00 1 0.36 1.00 -1.00 1 0.42 1.00 -1.00
AAPL 1 0.99 1.00 -1.00 - - - - - - - -
BAC 1 0.70 1.00 -1.00 1 0.59 1.00 -1.00 1 0.71 1.00 -1.00
BRKB 1 0.04 1.00 -1.01 - - - - - - - -
C - - - - - - - - 1 0.94 1.00 -1.00
CSCO 1 0.72 1.00 -1.00 - - - - - - - -
F 1 0.83 1.00 -1.00 1 0.80 1.00 -1.01 1 0.80 1.00 -1.01
GE 1 0.51 1.00 -1.00 1 0.26 1.00 -1.00 1 0.22 1.00 -1.00
GM 1 0.71 1.00 -1.00 1 0.73 1.00 -1.01 1 0.60 1.00 -1.01
GOOG 1 0.71 1.00 -1.00 - - - - - - - -
HPQ 1 0.88 1.00 -1.00 1 0.89 1.00 -1.00 1 0.96 1.00 -1.00
IBM 1 0.99 1.00 -1.00 1 0.95 1.00 -1.00 1 0.95 1.00 -1.01
JCP 1 0.02 1.00 -1.01 1 0.01 1.00 -1.00 1 0.01 1.00 -0.99
JNJ 1 0.70 1.00 -1.00 1 0.57 1.00 -1.01 1 0.46 1.00 -1.01
JPM 1 0.76 1.00 -1.00 1 0.74 1.00 -1.00 1 0.81 1.00 -1.00
KO 1 0.85 1.00 -0.99 1 0.87 1.00 -1.01 1 0.85 1.00 -1.01
MO 1 0.16 1.00 -1.00 1 0.14 1.00 -1.02 1 0.04 1.00 -1.02
MRK 1 0.72 1.00 -1.00 1 0.57 1.00 -1.02 1 0.56 1.00 -1.01
MRVL 1 0.00 1.00 -1.00 - - - - - - - -
MS 1 0.86 1.00 -1.00 - - - - - - - -
MSFT 1 0.92 1.00 -1.00 - - - - - - - -
NOK 1 0.64 1.00 -1.00 1 0.34 1.00 -1.00 1 0.69 1.00 -1.00
ORCL 1 0.58 1.00 -1.00 - - - - - - - -
PFE 1 0.53 1.00 -1.00 1 0.48 1.00 -1.00 1 0.49 1.00 -1.00
PG 1 0.57 1.00 -1.00 1 0.62 1.00 -1.00 1 0.47 1.00 -1.00
VZ 1 0.44 1.00 -1.00 1 0.39 1.00 -1.01 1 0.24 1.00 -1.00
WFC - - - - - - - - 1 0.58 1.00 -1.00
WMT 1 0.04 1.00 -1.00 1 0.06 1.00 -1.00 1 0.01 1.00 -1.00
XOM 1 0.45 1.00 -1.00 1 0.44 1.00 -1.00 1 0.89 1.00 -1.00
YHOO 1 0.15 1.00 -1.00 - - - - - - - -
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Table III Long Memory Estimates

We report the long memory estimates, d̂, for 30 assets considering the Nasdaq and Arca, Nasdaq
and Nyse, and Arca and Nyse market combinations. The long memory parameter, d, belongs to
the set of free parameters in the FCVAR model, which are computed using the MLE estimator of
Johansen and Nielsen (2012) where rk (αβ′) = 1, κ is chosen according to Table B.1, and d = b. For
each set of market combinations, the first column displays the estimates of the the long memory
degree, d̂, while the second column presents its standard errors in parentheses. The symbols *, **
and *** denote rejection at the 10%, 5% and 1% levels of the null hypothesis of d̂ = 0. “-” implies
that the stock is not traded in at least one of the two trading venues during the entire sample.

Nasdaq-Arca Nasdaq-Nyse Arca-Nyse
AA 0.52∗∗∗ (0.02) 0.52∗∗∗ (0.02) 0.53∗∗∗ (0.02)
AAPL 0.52∗∗∗ (0.02) - - - -
BAC 0.60∗∗∗ (0.02) 0.60∗∗∗ (0.02) 0.59∗∗∗ (0.02)
BRKB 0.52∗∗∗ (0.02) - - - -
C - - - - 0.59∗∗ (0.02)
CSCO 0.54∗∗∗ (0.02) - - - -
F 0.56∗∗∗ (0.02) 0.56∗∗∗ (0.02) 0.56∗∗∗ (0.02)
GE 0.55∗∗∗ (0.02) 0.54∗∗∗ (0.02) 0.53∗∗∗ (0.02)
GM 0.54∗∗∗ (0.02) 0.54∗∗∗ (0.02) 0.54∗∗∗ (0.02)
GOOG 0.51∗∗∗ (0.02) - - - -
HPQ 0.51∗∗∗ (0.02) 0.51∗∗∗ (0.02) 0.51∗∗∗ (0.02)
IBM 0.62∗∗∗ (0.03) 0.60∗∗∗ (0.03) 0.64∗∗∗ (0.04)
JCP 0.49∗∗∗ (0.02) 0.49∗∗∗ (0.02) 0.47∗∗∗ (0.02)
JNJ 0.53∗∗∗ (0.02) 0.52∗∗∗ (0.02) 0.52∗∗∗ (0.02)
JPM 0.61∗∗∗ (0.02) 0.60∗∗∗ (0.02) 0.59∗∗∗ (0.02)
KO 0.67∗∗∗ (0.04) 0.51∗∗∗ (0.02) 0.51∗∗∗ (0.02)
MO 0.49∗∗∗ (0.02) 0.49∗∗∗ (0.02) 0.48∗∗∗ (0.02)
MRK 0.51∗∗∗ (0.02) 0.51∗∗∗ (0.02) 0.51∗∗∗ (0.02)
MRVL 0.44∗∗∗ (0.02) - - - -
MS 0.61∗∗∗ (0.02) - - - -
MSFT 0.51∗∗∗ (0.02) - - - -
NOK 0.62∗∗∗ (0.03) 0.51∗∗∗ (0.02) 0.51∗∗∗ (0.02)
ORCL 0.51∗∗∗ (0.02) - - - -
PFE 0.52∗∗∗ (0.02) 0.51∗∗∗ (0.02) 0.51∗∗∗ (0.02)
PG 0.51∗∗∗ (0.02) 0.52∗∗∗ (0.02) 0.51∗∗∗ (0.02)
VZ 0.51∗∗∗ (0.02) 0.52∗∗∗ (0.02) 0.51∗∗∗ (0.02)
WFC - - - - 0.59∗∗∗ (0.02)
WMT 0.48∗∗∗ (0.02) 0.49∗∗∗ (0.02) 0.48∗∗ (0.02)
XOM 0.73∗∗∗ (0.05) 0.74∗∗∗ (0.05) 0.71∗∗∗ (0.06)
YHOO 0.47∗∗∗ (0.02) - - - -
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Table IV Volatility Discovery Measures

We report the volatility discovery measures for 30 assets considering the Nasdaq and Arca, Nasdaq and Nyse, and Arca and
Nyse market combinations. The FCVAR parameters are computed using the MLE estimator of Johansen and Nielsen (2012)
where rk (αβ′) = 1, κ is chosen according to Table B.1, and d = b. For each set of results, the first column shows the estimate
of the first element of the orthogonal projection of α, α̂⊥,1, while the second column (value inside the square brackets)
displays the p-value associated with the likelihood-ratio (LR) test with the null hypothesis defined in H.2, α̂⊥,1 = 0. The
third column presents α̂⊥,2, while the fourth column (value inside the square brackets) reports the p-value associated with
H.1, (α̂⊥,2 = 0). “-” implies that the stock is not traded in at least one of the two trading venues during the entire sample.

Nasdaq-Arca Nasdaq-Nyse Arca-Nyse
α̂⊥,1 α̂⊥,2 α̂⊥,1 α̂⊥,2 α̂⊥,1 α̂⊥,2

AA 0.57 [0.13] 0.43 [0.25] 0.45 [0.15] 0.55 [0.09] 0.52 [0.06] 0.48 [0.09]
AAPL 0.85 [0.11] 0.15 [0.78] - - - - - - - -
BAC 0.74 [0.11] 0.26 [0.58] 0.88 [0.01] 0.12 [0.74] 0.73 [0.06] 0.27 [0.49]
BRKB 0.34 [0.25] 0.66 [0.02] - - - - - - - -
C - - - - - - - - 1.20 [0.00] -0.20 [0.61]
CSCO 0.68 [0.01] 0.32 [0.22] - - - - - - - -
F -0.10 [0.87] 1.10 [0.07] 1.08 [0.01] -0.08 [0.85] 1.43 [0.00] -0.43 [0.32]
GE 0.00 [0.99] 1.00 [0.06] 0.87 [0.03] 0.13 [0.74] 1.27 [0.01] -0.27 [0.57]
GM -0.11 [0.81] 1.11 [0.01] 0.64 [0.02] 0.36 [0.19] 0.91 [0.01] 0.09 [0.80]
GOOG 0.27 [0.48] 0.73 [0.05] - - - - - - - -
HPQ -0.09 [0.83] 1.09 [0.01] 0.06 [0.86] 0.94 [0.00] 0.36 [0.28] 0.64 [0.06]
IBM 0.43 [0.24] 0.57 [0.12] 0.45 [0.33] 0.55 [0.24] 0.76 [0.13] 0.24 [0.65]
JCP 0.41 [0.15] 0.59 [0.04] 0.14 [0.65] 0.86 [0.01] 0.24 [0.47] 0.76 [0.03]
JNJ 0.45 [0.06] 0.55 [0.02] 0.29 [0.20] 0.71 [0.00] 0.24 [0.35] 0.76 [0.00]
JPM 0.66 [0.08] 0.34 [0.36] 0.83 [0.01] 0.17 [0.56] 0.65 [0.09] 0.35 [0.35]
KO 0.18 [0.77] 0.82 [0.17] 0.26 [0.24] 0.74 [0.00] 0.20 [0.37] 0.80 [0.00]
MO 0.44 [0.09] 0.56 [0.03] 0.27 [0.28] 0.73 [0.00] 0.24 [0.37] 0.76 [0.00]
MRK 0.44 [0.07] 0.56 [0.02] 0.02 [0.94] 0.98 [0.00] 0.04 [0.86] 0.96 [0.00]
MRVL 0.22 [0.56] 0.78 [0.03] - - - - - - - -
MS 0.63 [0.15] 0.37 [0.39] - - - - - - - -
MSFT 1.15 [0.01] -0.15 [0.76] - - - - - - - -
NOK -0.28 [0.75] 1.28 [0.14] 0.57 [0.06] 0.43 [0.16] 0.58 [0.19] 0.42 [0.35]
ORCL 0.93 [0.00] 0.07 [0.77] - - - - - - - -
PFE 0.13 [0.75] 0.87 [0.03] 0.31 [0.29] 0.69 [0.02] 0.35 [0.26] 0.65 [0.03]
PG 0.69 [0.02] 0.31 [0.27] 0.37 [0.07] 0.63 [0.00] 0.25 [0.27] 0.75 [0.00]
VZ 0.40 [0.08] 0.60 [0.01] 0.30 [0.18] 0.70 [0.00] 0.24 [0.34] 0.76 [0.00]
WFC - - - - - - - - 0.47 [0.06] 0.53 [0.04]
WMT 0.29 [0.39] 0.71 [0.04] 0.49 [0.08] 0.51 [0.07] 0.63 [0.03] 0.37 [0.20]
XOM -1.64 [0.06] 2.64 [0.48] 0.03 [0.96] 0.97 [0.14] 1.77 [0.06] -0.77 [0.43]
YHOO -0.01 [0.98] 1.01 [0.01] - - - - - - - -
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Table V Price Discovery Measures

We report price discovery results for 30 assets considering Nasdaq and Arca, Nasdaq and Nyse, and Arca and Nyse market
combinations. The VEC parameters are computed using the OLS estimator where rk (γβ′) = 1, β = (1,−1)′, and the lag length
is chosen as the minimum value which makes the LM test for serial correlation on the residuals at lag 15 to be insignificant
at the 5% significance level. For each set of results, the first column shows the estimate of the first element of the orthogonal
projection of γ, γ̂⊥,1, while the second column (value inside the square brackets) displays the p-value associated with null
hypothesis γ̂⊥,1 = 0. The third column presents γ̂⊥,2, while the fourth column (value inside the square brackets) reports the
p-value associated with the null hypothesis α̂⊥,2 = 0. “-” implies that the stock is not traded in at least one of the two trading
venues during the entire sample.

Nasdaq-Arca Nasdaq-Nyse Arca-Nyse
γ̂⊥,1 γ̂⊥,2 γ̂⊥,1 γ̂⊥,2 γ̂⊥,1 γ̂⊥,2

AA 0.57 [0.00] 0.43 [0.00] 0.60 [0.00] 0.40 [0.00] 0.54 [0.00] 0.46 [0.00]
AAPL 0.51 [0.00] 0.49 [0.00] - - - - - - - -
BAC 0.63 [0.00] 0.37 [0.00] 0.67 [0.00] 0.33 [0.00] 0.62 [0.00] 0.38 [0.00]
BRKB 0.71 [0.00] 0.29 [0.00] - - - - - - - -
C - - - - - - - - 0.53 [0.00] 0.47 [0.00]
CSCO 0.67 [0.00] 0.33 [0.00] - - - - - - - -
F 0.55 [0.00] 0.45 [0.00] 0.69 [0.00] 0.31 [0.01] 0.65 [0.00] 0.35 [0.00]
GE 0.70 [0.00] 0.30 [0.00] 0.71 [0.00] 0.29 [0.00] 0.60 [0.00] 0.40 [0.00]
GM 0.50 [0.00] 0.50 [0.00] 0.53 [0.00] 0.47 [0.00] 0.53 [0.00] 0.47 [0.00]
GOOG 0.68 [0.00] 0.32 [0.00] - - - - - - - -
HPQ 0.53 [0.00] 0.47 [0.00] 0.60 [0.00] 0.40 [0.00] 0.59 [0.00] 0.41 [0.00]
IBM 0.37 [0.02] 0.63 [0.00] 0.37 [0.04] 0.63 [0.01] 0.49 [0.00] 0.51 [0.00]
JCP 0.45 [0.00] 0.55 [0.00] 0.44 [0.00] 0.56 [0.00] 0.48 [0.00] 0.52 [0.00]
JNJ 0.69 [0.00] 0.31 [0.00] 0.58 [0.00] 0.42 [0.00] 0.40 [0.00] 0.60 [0.00]
JPM 0.59 [0.00] 0.41 [0.00] 0.75 [0.00] 0.25 [0.00] 0.73 [0.00] 0.27 [0.00]
KO 0.52 [0.00] 0.48 [0.00] 0.59 [0.00] 0.41 [0.00] 0.57 [0.00] 0.43 [0.00]
MO 0.50 [0.00] 0.50 [0.00] 0.53 [0.00] 0.47 [0.00] 0.53 [0.00] 0.47 [0.00]
MRK 0.56 [0.00] 0.44 [0.00] 0.63 [0.00] 0.37 [0.00] 0.59 [0.00] 0.41 [0.00]
MRVL 0.60 [0.00] 0.40 [0.00] - - - - - - - -
MS 0.51 [0.00] 0.49 [0.00] - - - - - - - -
MSFT 0.56 [0.00] 0.44 [0.00] - - - - - - - -
NOK 0.42 [0.00] 0.58 [0.00] 0.41 [0.00] 0.59 [0.00] 0.39 [0.00] 0.61 [0.00]
ORCL 0.57 [0.00] 0.43 [0.00] - - - - - - - -
PFE 0.51 [0.00] 0.49 [0.00] 0.42 [0.00] 0.58 [0.00] 0.38 [0.00] 0.62 [0.00]
PG 0.22 [0.13] 0.78 [0.04] 0.47 [0.00] 0.53 [0.02] 0.46 [0.00] 0.54 [0.00]
VZ 0.70 [0.00] 0.30 [0.00] 0.63 [0.00] 0.37 [0.00] 0.40 [0.00] 0.60 [0.00]
WFC - - - - - - - - 0.44 [0.00] 0.56 [0.00]
WMT 0.64 [0.00] 0.36 [0.00] 0.64 [0.00] 0.36 [0.00] 0.52 [0.00] 0.48 [0.00]
XOM 0.45 [0.05] 0.55 [0.03] 0.67 [0.02] 0.33 [0.01] 0.73 [0.01] 0.27 [0.01]
YHOO 0.60 [0.00] 0.40 [0.00] - - - - - - - -
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Appendices

A. Simulation

To illustrate our theoretical setting and to verify whether the price and volatility discovery

measures correctly identify market leadership in both price and volatility discovery processes,

we revisit the price process in (2) and (3). Specifically, we simulate (2) and (3) for 1,700

days. We choose 1,700 days (approximately 7 years of data) because it is similar to the

sample size for the heavily traded stocks we consider in Section V. Recall that our simple

price and volatility discovery model implies that market one is the sole contributor to the

price discovery process, whereas market two contributes completely to the volatility discovery

mechanism. Our first goal is to assess the performance of the usual price discovery measure

in identifying market one as the leading market in the price discovery process. We compute

the mean and standard deviation of daily γ̂, γ̂⊥, and IS estimates across 1,000 replications

(see Appendix C.1 for details).

[Place Table A.1 about here]

Results in the upper panel of Table A.1 confirm that the speed of adjustment parameter

associated with the first market, γ1, is zero, which implies that the first market does not

adjust to changes in the second market. The lower panel in Table A.1 reports the mean

and standard deviations of daily estimates of γ⊥ and the Hasbrouck’s 1995 IS measure.

Because γ⊥ = (1, 0)′ in our example, the source of contamination Xs,t in (10) cancels out

in that estimates of the IS measure are virtually equal to γ⊥, as should be in the case

of constant volatilities. While both measures confirm that the price discovery mechanism

occurs exclusively in the first market, they are unable to recognize that market two is the

sole contributor to the efficient stochastic volatility process.

To assess the validity of the volatility discovery framework, we use the discrete prices sim-

ulated from (2) and (3) and compute daily consistent estimates of the integrated variance
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with the realized variance estimator.32 Each replication yields 1,700 daily realized variances.

We then fit a FCVAR model as in (5) and record estimates of d, α, β and α⊥.

[Place Table A.2 about here]

Table A.2 presents the mean and the standard deviations of these estimates across all replica-

tions. The theoretical framework developed in this section successfully identifies the volatility

discovery channel embedded in Example 1, and we highlight several results. First, we con-

firm that the FCVAR model approximates well the dynamics of the RMs and thus allows us

to assess the validity of the volatility discovery framework. Additionally, we find that the

RMs are characterized by nonstationary and mean-reverting long memory, which is in line

with the usual hyperbolic decay of the empirical autocorrelation function associated with

RMs. Second, we document estimates of α1 that are negative and significantly different

from zero (the RM in market one adjusts to changes in the RM of market two), whereas

estimates of α2 are not statistically different from zero, implying that the RM in the first

market does not Granger-cause the RM in market two. The estimates are also fairly stable

across all replications and the cointegrating vector corroborates the equilibrium relationship

implied by the error correction model used to generate the volatility factors because β2 is

not statistically different from −1. Therefore, we conclude that RMs are cointegrated with

cointegrating vector β = (1, −1)′. When considering the accuracy of the volatility discovery

measures, the results in the lower panel in Table A.2 confirm that the volatility discovery

process occurs exclusively in market two, as the 5%, mean and 95% percentiles of α⊥,2 com-

puted across all replications are 0.8626, 0.9941 and 1.1582, respectively. Therefore, the use

of the FCVAR model to approximate the dynamics of the RMs and the use of the orthogo-

nal projection of the speed of adjustment parameters to quantify how the different markets

impound information into the fractional common stochastic trend (efficient volatility) enable

us to draw inferences about the volatility discovery mechanism.

32Notably, the stationary multivariate Ornstein-Uhlenbeck (OU) model used to simulate the log-stochastic
volatilities is a special case of the single-factor log-linear stochastic volatility model commonly used in the
RMs literature (see Huang and Tauchen (2005), Barndorff-Nielsen et al. (2008), among others).
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Table A.1 Simulation Results: Example - Price Discovery

We report the mean and standard deviations (in brackets) of the estimates of the VEC parameters (γ and β) and the price
discovery measures (γ⊥) and IS computed across 1,000 replications from models simulated using the data generation process in
Example 1 ((2) and (3)). For each replication, intraday prices and stochastic volatilities are simulated via an Euler scheme over
the unit interval t ∈ [0, 1] with steps of size 1/2,340 which corresponds to 10 second frequency. In turn, the interval t ∈ [0, 1]
contains 6.5 hours. We simulate 1,700 days (about 7 years). Appendix C.1 presents a detailed explanation of the simulation
design. Because (2) is a continuous time VEC model (cointegrated multivariate OU process), the Euler discretization yields
true parameters that are comparable with the estimates of the discrete VEC model. It follows that γ = (0, 0.10)′, β = (1,−1)′

and γ⊥ = (1, 0)′.

VEC approximation of high-frequency log-prices

∆

([
p1,ti

p2,ti

])
=

 −0.00
(1.57×104)

0.10
(1.54×104)


︸ ︷︷ ︸

γ̂

[
1 −1

]︸ ︷︷ ︸
β′

[
p1,ti−1

p2,ti−1

]
+

[
e1,ti

e2,ti

]

Price discovery measures

γ̂⊥ =

(
1.00

(16×104)

, 0.00
(16×104)

)′

IS =

(
1.00

(1.82×104)

, 0.00
(1.82×104)

)′
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Table A.2 Simulation Results: Example - Volatility Discovery

We report the mean and standard deviations (in brackets) of the estimates of the FCVAR parameters (d, b, α and β) and
the volatility discovery measures (α⊥) computed across 1,000 replications from models simulated using the data generation
process in Example 1 ((2) and (3)). For each replication, intraday prices and stochastic volatilities are simulated via an Euler
scheme over the unit interval t ∈ [0, 1] with steps of size 1/2,340 which corresponds to 10 second frequency. In turn, the interval
t ∈ [0, 1] contains 6.5 hours. We simulate 1,700 days (about 7 years) and the daily realized measures are computed using the
realized variance estimator defined as the sum of the squared intraday returns. Appendix C.1 presents a detailed explanation
of the simulation design.

FCVAR approximation of daily realized measures

∆
0.88
(0.05)

([
R1,ti

R2,ti

])
=

 −0.11
(0.01)

0.01
(0.01)


︸ ︷︷ ︸

α̂

[
1 −1.04

(0.05)

]
︸ ︷︷ ︸

β̂′

[
R1,ti−1

R2,ti−1

]
+

κ∑
j=1

Γ̂j∆
0.88
(0.05)Lj0.88

(0.05)

Rt +

[
ε1,ti

ε2,ti

]

Volatility discovery measures

α̂⊥ =

(
0.01

(0.09)
, 0.99

(0.09)

)′
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B. Auxiliary Tables

45



Table B.1 Model Specification: Lag Length Selection

We report results for 30 stocks and the three market combinations discussed in Section
V, (Nasdaq and Arca, Nasdaq and Nyse, and Arca and Nyse). For each set of results, κ
accounts for the selected lag length in the FCVAR model; and LM1 and LM2 bring the
p-values associated with the heteroskedastic robust LM test for serial autocorrelation at lag
10 for the residuals in the first and second equations in the FCVAR model, respectively. The
null hypothesis of the LM test is that the process is serially uncorrelated. “-” implies that
the stock is not traded in at least one of the two trading venues during the entire sample.

Nasdaq-Arca Nasdaq-Nyse Arca-Nyse
κ LM1 LM2 κ LM1 LM2 κ LM1 LM2

AA 0 0.87 0.83 0 0.90 0.97 0 0.76 0.94
AAPL 0 0.18 0.19 - - - - - -
BAC 0 0.48 0.48 0 0.48 0.56 0 0.63 0.69
BRKB 0 0.29 0.23 - - - - - -
C - - - - - - 0 0.21 0.30
CSCO 0 0.33 0.18 - - - - - -
F 0 0.29 0.15 0 0.24 0.30 0 0.23 0.45
GE 0 0.23 0.19 0 0.24 0.29 0 0.18 0.25
GM 0 0.19 0.12 0 0.20 0.10 0 0.24 0.18
GOOG 0 0.01 0.01 - - - - - -
HPQ 0 0.16 0.10 0 0.15 0.19 0 0.10 0.23
IBM 1 0.15 0.12 1 0.13 0.13 2 0.20 0.20
JCP 0 0.43 0.27 0 0.44 0.39 0 0.22 0.36
JNJ 0 0.71 0.56 0 0.77 0.68 0 0.75 0.72
JPM 0 0.91 0.82 0 0.91 0.84 0 0.80 0.81
KO 3 0.31 0.14 0 0.14 0.24 0 0.02 0.15
MO 0 0.59 0.30 0 0.44 0.42 0 0.25 0.34
MRK 0 0.84 0.57 0 0.77 0.85 0 0.57 0.87
MRVL 0 0.30 0.23 - - - - - -
MS 0 0.41 0.31 - - - - - -
MSFT 0 0.44 0.38 - - - - - -
NOK 2 0.25 0.18 0 0.06 0.03 0 0.03 0.03
ORCL 0 0.33 0.32 - - - - - -
PFE 0 0.17 0.14 0 0.28 0.26 0 0.35 0.25
PG 0 0.21 0.15 0 0.22 0.23 0 0.17 0.25
VZ 0 0.37 0.35 0 0.41 0.42 0 0.39 0.43
WFC 0 0.43 0.40 - - - - - -
WMT 0 0.30 0.16 0 0.27 0.28 0 0.18 0.29
XOM 3 0.16 0.16 3 0.12 0.16 3 0.09 0.10
YHOO 0 0.73 0.64 - - - - - -
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Table B.2 Model Specification: Residuals Analysis

We report the residuals analysis for 30 stocks and the three market combinations
discussed in Section V, (Nasdaq and Arca, Nasdaq and Nyse, and Arca and
Nyse). For each set of results, LM1 and LM2 bring the p-values associated with
the heteroskedastic robust LM test for serial autocorrelation at lag 10 for the
residuals in the first and second equations in the FCVAR model, respectively.
The null hypothesis of the LM test is that the process is serially uncorrelated.
“-” implies that the stock is not traded in at least one of the two trading venues
during the entire sample.

Nasdaq-Arca Nasdaq-Nyse Arca-Nyse
LM1 LM2 LM1 LM2 LM1 LM2

AA 0.80 0.73 0.84 0.95 0.65 0.91
AAPL 0.03 0.01 - - - -
BAC 0.47 0.47 0.49 0.56 0.63 0.71
BRKB 0.26 0.25 - - - -
C - - - - 0.22 0.30
CSCO 0.28 0.14 - - - -
F 0.26 0.13 0.20 0.27 0.20 0.42
GE 0.19 0.15 0.20 0.24 0.13 0.19
GM 0.17 0.11 0.18 0.09 0.21 0.16
GOOG 0.01 0.01 - - - -
HPQ 0.16 0.10 0.15 0.19 0.10 0.23
IBM 0.15 0.13 0.13 0.12 0.21 0.20
JCP 0.33 0.20 0.39 0.30 0.20 0.28
JNJ 0.64 0.47 0.70 0.59 0.62 0.61
JPM 0.90 0.81 0.90 0.84 0.78 0.81
KO 0.33 0.16 0.10 0.18 0.01 0.11
MO 0.48 0.19 0.31 0.33 0.12 0.27
MRK 0.51 0.25 0.49 0.61 0.24 0.59
MRVL 0.11 0.07 - - - -
MS 0.39 0.30 - - - -
MSFT 0.46 0.46 - - - -
NOK 0.22 0.15 0.04 0.02 0.02 0.02
ORCL 0.24 0.22 - - - -
PFE 0.12 0.09 0.13 0.12 0.12 0.14
PG 0.15 0.10 0.16 0.18 0.11 0.19
VZ 0.28 0.25 0.30 0.33 0.27 0.36
WFC - - - - 0.51 0.42
WMT 0.11 0.05 0.10 0.12 0.06 0.13
XOM 0.12 0.13 0.10 0.12 0.07 0.07
YHOO 0.58 0.47 - - - -
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Table B.3 Speed of Adjustment

We report the speed of adjustments coefficients for 30 assets considering the Nasdaq and Arca, Nasdaq and Nyse, and Arca
and Nyse market combinations. The FCVAR parameters are computed using the MLE estimator of Johansen and Nielsen
(2012) where rk (αβ′) = 1, κ is chosen according to Table B.1, and d = b. For each set of of market combinations, we report
the estimates of the adjustment parameters α′ = (α1, α2) and their standard errors. More specifically, for each set of results,
the first column presents the point estimate of α1, while the second column displays the standard errors in parentheses. The
third column displays the point estimate of α2 while the fourth column brings its respective standard errors in parentheses.
The symbols *, ** and *** denote rejection at the 10%, 5% and 1% levels of the null hypothesis of α̂′i = 0, for i = 1, 2. “-”
implies that the stock is not traded in at least one of the two trading venues during the entire sample.

Nasdaq-Arca Nasdaq-Nyse Arca-Nyse
α̂1 α̂2 α̂1 α̂2 α̂1 α̂2

AA −0.42 (0.36) 0.55 (0.36) −0.46∗ (0.27) 0.38 (0.26) −0.43∗ (0.25) 0.47∗ (0.25)
AAPL −0.13 (0.47) 0.75 (0.47) - - - - - - -
BAC −0.26 (0.46) 0.73 (0.46) −0.10 (0.31) 0.76∗∗ (0.31) −0.23 (0.33) 0.63∗ (0.33)
BRKB −0.57∗∗ (0.24) 0.29 (0.25) - - - - - - - -
C - - - - - - - - 0.19 (0.38) 1.16∗∗ (0.38)
CSCO −0.32 (0.26) 0.68∗∗ (0.26) - - - - - - - -
F −1.07∗ (0.60) −0.10 (0.60) 0.08 (0.40) 1.02∗∗ (0.39) 0.40 (0.40) 1.34∗∗ (0.40)
GE −0.92∗ (0.49) 0.00 (0.49) −0.10 (0.30) 0.66∗∗ (0.30) 0.18 (0.31) 0.83∗∗ (0.31)
GM −1.12∗∗ (0.46) −0.11 (0.46) −0.35 (0.27) 0.62∗∗ (0.26) −0.07 (0.28) 0.75∗∗ (0.28)
GOOG −0.57∗ (0.30) 0.21 (0.30) - - - - - - - -
HPQ −1.03∗∗ (0.38) −0.08 (0.37) −0.77∗∗ (0.25) 0.05 (0.26) −0.51∗ (0.27) 0.29 (0.27)
IBM −0.53 (0.34) 0.40 (0.34) −0.39 (0.33) 0.32 (0.33) −0.17 (0.37) 0.55 (0.37)
JCP −0.58∗∗ (0.28) 0.41 (0.28) −0.73∗∗ (0.26) 0.12 (0.26) −0.58∗∗ (0.26) 0.19 (0.26)
JNJ −0.54∗∗ (0.24) 0.45∗ (0.24) −0.54∗∗ (0.17) 0.22 (0.17) −0.53∗∗ (0.18) 0.16 (0.18)
JPM −0.34 (0.36) 0.65∗ (0.37) −0.15 (0.26) 0.74∗∗ (0.26) −0.26 (0.28) 0.48∗ (0.28)
KO −0.65 (0.49) 0.14 (0.49) −0.61∗∗ (0.18) 0.21 (0.18) −0.58∗∗ (0.16) 0.14 (0.16)
MO −0.54∗∗ (0.24) 0.42∗ (0.24) −0.60∗∗ (0.21) 0.22 (0.21) −0.60∗∗ (0.20) 0.18 (0.20)
MRK −0.56∗∗ (0.25) 0.45∗ (0.25) −0.91∗∗ (0.20) 0.01 (0.19) −0.84∗∗ (0.19) 0.03 (0.19)
MRVL −0.78∗∗ (0.36) 0.21 (0.36) - - - - - - - -
MS −0.35 (0.41) 0.59 (0.41) - - - - - - - -
MSFT 0.14 (0.46) 1.12∗∗ (0.46) - - - - - - - -
NOK −1.18 (0.79) −0.25 (0.80) −0.42 (0.30) 0.57∗ (0.31) −0.37 (0.40) 0.52 (0.40)
ORCL −0.07 (0.24) 0.95∗∗ (0.24) - - - - - - - -
PFE −0.87∗∗ (0.40) 0.13 (0.40) −0.57∗∗ (0.23) 0.25 (0.23) −0.51∗∗ (0.24) 0.27 (0.24)
PG −0.29 (0.26) 0.63∗∗ (0.26) −0.59∗∗ (0.19) 0.35∗ (0.19) −0.63∗∗ (0.19) 0.21 (0.19)
VZ −0.61∗∗ (0.23) 0.40∗ (0.23) −0.63∗∗ (0.20) 0.27 (0.20) −0.64∗∗ (0.21) 0.20 (0.21)
WFC - - - - - - - - −0.44∗∗ (0.21) 0.39∗ (0.21)
WMT −0.68∗∗ (0.33) 0.29 (0.33) −0.49∗ (0.27) 0.47∗ (0.27) −0.33 (0.26) 0.57∗∗ (0.26)
XOM −2.45∗∗ (0.86) −1.52∗ (0.86) −0.77 (0.52) 0.03 (0.52) 0.49 (0.63) 1.12∗ (0.61)
YHOO −1.01∗∗ (0.41) −0.01 (0.41) - - - - - - - -
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Table B.4 Robustness: Volatility Discovery Measures with d and b as Free Pa-
rameters

We report results for 30 assets considering Nasdaq and Arca, Nasdaq and Nyse, and Arca and Nyse market combinations. The
FCVAR parameters are computed using the MLE estimator of Johansen and Nielsen (2012) where rk (αβ′) = 1 and κ is chosen
according to Table B.1. For each set of results, the first two columns show the elements of the orthogonal projection of α,
α′⊥ = (α⊥,1, α⊥,2), obtained when the restriction d = b is imposed on the MLE estimator. The third and fourth columns (α̃⊥)
display the elements of the orthogonal projection of α̃′, α̃′⊥ = (α̃⊥,1, α̃⊥,2), obtained when the d and b are assumed to be free
parameters in the MLE estimation. “-” implies that the stock is not traded in at least one of the two trading venues during the
entire sample.

Nasdaq-Arca Nasdaq-Nyse Arca-Nyse
α′⊥ α̃′⊥ α′⊥ α̃′⊥ α′⊥ α̃′⊥

AA 0.57 0.43 0.56 0.44 0.45 0.55 0.16 0.84 0.52 0.48 0.30 0.70
AAPL 0.85 0.15 0.85 0.15 - - - - - - - -
BAC 0.74 0.26 0.75 0.25 0.88 0.12 0.76 0.24 0.73 0.27 0.48 0.52
BRKB 0.34 0.66 0.33 0.67 - - - - - - - -
C - - - - - - - - 1.20 -0.20 1.07 -0.07
CSCO 0.68 0.32 0.68 0.32 - - - -
F -0.10 1.10 -0.11 1.11 1.08 -0.08 1.02 -0.02 1.43 -0.43 1.32 -0.32
GE 0.00 1.00 0.10 0.90 0.87 0.13 0.55 0.45 1.27 -0.27 0.71 0.29
GM -0.11 1.11 -0.11 1.11 0.64 0.36 0.61 0.39 0.91 0.09 0.81 0.19
GOOG 0.27 0.73 0.34 0.66 - - - - - - - -
HPQ -0.09 1.09 -0.10 1.10 0.06 0.94 0.08 0.92 0.36 0.64 0.34 0.66
IBM 0.43 0.57 0.43 0.57 0.45 0.55 0.18 0.82 0.76 0.24 -2.86 3.86
JCP 0.41 0.59 0.44 0.56 0.14 0.86 0.06 0.94 0.24 0.76 0.08 0.92
JNJ 0.45 0.55 0.48 0.52 0.29 0.71 0.20 0.80 0.24 0.76 0.14 0.86
JPM 0.66 0.34 0.65 0.35 0.83 0.17 0.68 0.32 0.65 0.35 0.40 0.60
KO 0.49 0.51 0.49 0.51 0.26 0.74 0.25 0.75 0.20 0.80 0.18 0.82
MO 0.44 0.56 0.46 0.54 0.27 0.73 0.16 0.84 0.24 0.76 0.05 0.95
MRK 0.44 0.56 0.43 0.57 0.02 0.98 0.01 0.99 0.04 0.96 0.01 0.99
MRVL 0.22 0.78 0.24 0.76 - - - - - - - -
MS 0.63 0.37 0.62 0.38 - - - - - - - -
MSFT 1.15 -0.15 1.14 -0.14 - - - - - - - -
NOK 0.53 0.47 0.53 0.47 0.57 0.43 0.58 0.42 0.58 0.42 0.60 0.40
ORCL 0.93 0.07 0.93 0.07 - - - - - - - -
PFE 0.13 0.87 0.01 0.99 0.31 0.69 0.28 0.72 0.35 0.65 0.27 0.73
PG 0.69 0.31 0.77 0.23 0.37 0.63 0.33 0.67 0.25 0.75 0.15 0.85
VZ 0.40 0.60 0.40 0.60 0.31 0.69 0.25 0.75 0.24 0.76 0.24 0.76
WFC 0.47 0.53 0.24 0.76 - - - - - - - -
WMT 0.30 0.70 0.34 0.66 0.49 0.51 0.42 0.58 0.63 0.37 0.54 0.46
XOM -1.64 2.64 -1.64 2.64 0.03 0.97 -0.36 1.36 1.77 -0.77 0.99 0.01
YHOO -0.01 1.01 0.02 0.98 - - - - - - - -
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Table B.5 Volatility Discovery Measures from Nasdaq-Arca-Nyse

We report the volatility discovery measures for 18 assets that are simultane-
ously traded at the Nasdaq, Arca and Nyse markets. The volatility discovery
measures are obtained by fitting an FCVAR model to the three markets with
rk (αβ′) = 2. The free parameters are estimated using the MLE estimator of
Johansen and Nielsen (2012). The first column displays the estimates of the
long memory parameter, d, while the second column presents its standard er-
rors in parentheses. The third, fourth and fifth columns display the volatility
discovery measures for Nasdaq, Arca and Nyse, respectively. More precisely,
these measures are the estimates of the elements of the orthogonal projection
of α, α̂⊥ = (α̂⊥,1, α̂⊥,2, α̂⊥,3)′.

Nasdaq-Arca-Nyse

d̂ α̂⊥,1 α̂⊥,2 α̂⊥,3
AA 0.52 (0.02) 0.25 0.29 0.47
BAC 0.59 (0.02) 0.72 0.24 0.04
F 0.56 (0.02) 0.09 1.34 -0.43
GE 0.54 (0.02) 0.07 1.29 -0.36
GM 0.54 (0.02) -0.12 1.08 0.05
HPQ 0.50 (0.02) -0.31 0.51 0.80
IBM 0.53 (0.02) 0.20 0.28 0.52
JCP 0.48 (0.02) 0.05 0.21 0.74
JNJ 0.52 (0.02) 0.20 0.15 0.65
JPM 0.60 (0.02) 0.66 0.32 0.03
KO 0.50 (0.02) 0.10 0.20 0.70
MO 0.49 (0.02) 0.13 0.20 0.67
MRK 0.50 (0.02) -0.04 0.08 0.96
NOK 0.71 (0.03) -0.39 1.08 0.31
PFE 0.51 (0.02) -0.06 0.51 0.56
PG 0.51 (0.02) 0.37 0.00 0.63
VZ 0.51 (0.02) 0.17 0.24 0.59
WMT 0.49 (0.02) 0.14 0.57 0.28
XOM 0.57 (0.02) 0.00 -0.25 1.25
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Table B.6 Price (Volatility) Discovery Measures and Quoting Intensity

We report results from probit regressions relating price and volatility discovery measures, Panels A and B,
respectively, to quoting intensity and control variables. We consider two market combinations: Nasdaq-Arca
and Nyse-Nasdaq. We omit the third market combination, as transitivity would violate the i.i.d. assumption
required for the estimation of probit models. The dependent variable in Panel A is an indicator variable that
takes the value of 1 if the price discovery measure associated with the first market is greater than 0.5, and
0 otherwise. There are three independent variables: ‘Quote Intensity ratio’ is the ratio of the daily average
of quotes in the first market over the sum of daily averages from both markets; ‘Listed Stock’ is a dummy
variable that takes the value of 1 if the stock is listed in the first market, and 0 otherwise; and ‘Volatility
Discovery’ is the element of α⊥ associated with the the first market. The dependent variable in Panel B is
an indicator variable that takes the value of 1 if the volatility discovery measure associated with the first
market is greater than 0.5, and 0 otherwise. There are three independent variables: ‘Quote Intensity ratio’,
‘Listed Stock’, and ‘Price Discovery’, that is the element of γ⊥ associated with the the first market. The
regression in column 1 uses only the first independent variable, ‘Quote Intensity ratio’, the regression in the
second column uses ‘Quote Intensity ratio’ and ‘Listed Stock’, and the regression in the third column uses
all the independent variables. The robust standard errors are in parentheses below the coefficient estimates
and ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. Wald-test gives the
p-value of the Wald statistic of the joint significance of the parameters associated with the independent
variables; Log Likelihood is the value of the log likelihood function attained at the parameter estimates;
R2 is the pseudo R2 goodness-of-fit-statistic in the context of probit models; and No. of obs. is the total
number of observations used in the regression analysis.

Panel A. Price Discovery
1 2 3

Explanatory Variables
Quote Intensity ratio 6.48∗∗∗

(2.23)
5.88∗∗
(2.82)

6.20∗∗
(2.79)

Listed Stock −0.20
(0.54)

−0.42
(0.57)

Volatility Discovery: α⊥,1 0.75∗
(0.44)

Wald-test 0.00 0.01 0.01
Log Likelihood -26.39 -26.30 -25.17
pseudo-R2 0.18 0.18 0.21
No. of obs. 47 47 47

Panel B. Volatility Discovery
1 2 3

Explanatory Variables
Quote Intensity ratio −3.52∗

(1.93)
−1.01
(2.32)

−1.14
(2.55)

Listed Stock 0.96∗∗
(0.47)

0.96∗∗
(0.47)

Price Discovery: γ⊥,1 0.26
(1.97)

Wald-test 0.07 0.02 0.05
Log Likelihood -30.60 -28.37 -28.36
pseudo-R2 0.06 0.13 0.13
No. of obs. 47 47 47

51



C. Technical Appendix:

This technical appendix provides a full description of the simulation study conducted in

Section A, covers the econometric theory supporting the FCVAR model adopted in Sections

III and V (Appendix C.2), and details the Rm,t decomposition studied in Section VI.A

(Appendix C.3).

1. Simulation Design

We simulate prices from the joint continuous time model for price and volatility discovery

in (2) and (3) for T = 1, 700 trading days (approximately 7 years). Specifically, each day is

simulated over the unit interval t ∈ [0, 1]. We normalize 10 seconds to be 1/2,340 so that the

interval [0, 1] contains 6.5 hours. In turn, we discretize [0, 1] into N = 2, 340 intervals with

size δ = 1/2, 340. The discretized prices are thus comparable to observed prices sampled at

10-second frequencies. While the bivariate price process is simulated via the Euler scheme,

V (t) is obtained using the exact discretization of the OU process. It follows that discrete

prices and stochastic volatilities are obtained using the following iterative scheme:

pti+1
= pti +

 0 0

−π π

(µp − pti)δ +

 σ1,ti 0

0 σ2,ti

√δ εWti+1
, (C.1.1)

σs,ti+1
= exp

[
ϕ0 + ϕ1Vs,ti+1

]
, s = 1, 2 (C.1.2)

Vti+1
= µ∗V + expm (Θδ)Vti + Cδε

B

ti+1
, (C.1.3)
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where the matrix exponential is defined as expm (A) =
∑∞

j=0 A
j
(

1
j!

)
, Θ =

 −θ1 θ1

0 −θ2

,

µ∗V = (I2 − expm (Θδ))µV ,

 εWti

εBti+1

 ∼ N





0

0

0

0


,



1 • • •

0 1 • •

ρ ρ 1 •

ρ ρ 0 1




, (C.1.4)

and Λδ = CδC
′
δ with Λδ =

∫ δ
0

expm (uΘ) Λ expm (uΘ′) du.

Finally, we choose the parameters in (2) and (3) to be in accordance with the RM

literature (Huang and Tauchen (2005), Barndorff-Nielsen et al. (2008), Barndorff-Nielsen

et al. (2011), among others), as the stationary error correction model in (3) is a special

case of the single-factor log-linear stochastic volatility model. Furthermore, the parameter

restrictions in the error correction model are imposed such that the equilibrium relationship

between the stochastic volatilities in the two markets is given by E (V1 (t)) = E (V2 (t)).
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Specifically, we set the free parameters in (2) and (3) as follows:



µp

π

ϕ0

ϕ1

µV

θ1

θ2

Λ1,1

Λ1,2

Λ2,2

ρ



=



0.003

223

0

0.125

0

0.150

0.025

1

0

1

−0.30



, (C.1.5)

where Λ1,1, Λ1,2 and Λ2,2 are the elements of Λ. Notably, values assigned to µp, µV , ϕ1,

θ2 Λ and ρ follow from Barndorff-Nielsen et al. (2008) and Barndorff-Nielsen et al. (2011),

while ϕ0 = 0 follows from Huang and Tauchen (2005). We choose θ1 so that the volatility

process in the first market (satellite market) is less persistent than the volatility process

associated with the leading market. It follows that because the satellite market does not

contribute to the volatility discovery, a less persistent stochastic volatility process increases

the speed of adjustment to the efficient stochastic volatility given by the second market. For

each replication, VEC and FCVAR models are fitted to intraday prices and daily realized

variances, respectively, so that price and volatility discovery measures are recorded. We

report the mean and standard deviations computed across 1,000 replications.

2. Estimation and Inference

This section summarizes the theoretical results in Johansen and Nielsen (2012) relative

to the estimation and inference of the FCVAR model. Our main focus is discussing the
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consistency and the asymptotic normality of the maximum likelihood estimator and the way

in which these results can be used to make inferences on the parameter estimates in our

baseline model

∆dRt = αβ′∆d−bLbRt +
κ∑
j=1

Γj∆
dLjbRt + εt, t = 1, ..., T, (C.2.1)

where εt in (5) is an i.i.d. process with E (εt) = 0, V ar (εt) = Ω and E |εt|8 <∞. Johansen

(2008) and Johansen and Nielsen (2015) define the properties of the solution of (C.2.1) in

terms of the characteristic polynomials

Π (z) = (1− z)d I − αβ ′
(

1− (1− z)b
)

(1− z)d−b−
κ∑
j=1

Γj

(
1− (1− z)b

)j
(1− z)d (C.2.2)

Ψ (u) = αβ
′
u− (1− u)

κ∑
j=0

ψj (1− u)uj, (C.2.3)

where u = 1 − (1− z)b,
∑κ

j=1 ψj = I, ψ0 = I −
∑κ

j=1 Γj, ψκ = (−1)κ+1 Γκ and Π (z) =

(1− z)d−b Ψ (u) = (1− z)d−b Ψ
(

1− (1− z)b
)

for |z| ≤ 1. Using (C.2.2) and (C.2.3), the

FCVAR model in (C.2.1) can be written as

Π (L)Rt = ∆d−bΨ (Lb)Rt = εt, (C.2.4)

such that ∆d−bΨ (Lb)Rt satisfies a VAR in the lag operator Lb. It follows that the conditional

log-likelihood function is given by

LT (λ) = −T
2

[
log det (Ω) + tr

(
Ω−1T−1

T∑
t=1

εt (λ) εt (λ)′
)]

, (C.2.5)

55



where λ = (d, b, α, β,Γ1, ...,Γκ,Ω)′ concatenates the free parameters in (C.2.1), and εt (λ)

is defined as in (C.2.2) conditioned to a set of initial values so that εt (λ) = Π (L)Rt.
33

As discussed in Johansen and Nielsen (2012), for a fixed λ∗ = (d, b)′, the conditional MLE

estimator based on (C.2.5) reduces to a reduced rank regression similar to the standard VEC

case. Following this, the set of parameters λ? = (α, β,Γ1, ...,Γκ,Ω)′ can be concentrated out

of the likelihood function, and the fractional parameters in λ∗ can be estimated through the

numerical optimization of the profile likelihood function.

Johansen and Nielsen (2012) formulate the asymptotic theory for the conditioned MLE

estimator considering two different cases: 0 < b < 1/2 and b > 1/2. Both results hold under

some technical conditions.34 In particular, it is assumed that the initial values are uniformly

bounded with R−t 6= 0 for 0 ≤ t < n̄ and R−t = 0 for t ≥ n̄, where n ≥ T ν and ν < 1/2. If

0 < b < 1/2 and E |εt|8 < ∞, then the MLE estimate of λ is consistent and asymptotically

normally distributed. When b > 1/2, which happens to be the general case found in Section

V, the MLE is a consistent estimator for λ but has a nonstandard distribution. In fact,

if E |εt|q̄ < ∞ with q̄ > (b− 1/2)−1, the asymptotic distribution of
(
d̂, b̂, α̂, Γ̂1, ..., Γ̂κ

)′
is

asymptotically normally distributed, while β̂ is asymptotically mixed normal.

The limiting distribution of the MLE estimator for λ determines the asymptotic distri-

bution underlining the LR-based cointegration rank test, which is used to determine the

number of cointegrating vectors in the FCVAR model. Johansen and Nielsen (2012) show

that in the case where 0 < b < 1/2, the LR cointegration rank test has the usual χ2 distri-

bution, whereas its distribution is not standard when b > 1/2. With regard to the inference

on the α estimates, a standard LR-based hypothesis test can be adopted. Because the MLE

estimates of α are asymptotically normally distributed for all b > 0, LR hypothesis tests can

be conducted in the usual way. It follows that the LR test statistics will have the standard

asymptotic χ2 distribution.

33Johansen and Nielsen (2012) define the log-likelihood function depending on λ =

(d, b, α, β, ψ1, ..., ψκ−1,Ω)
′

where ψκ = I −
∑κ−1
j=0 ψj . Using this definition, the residuals are defined

in a similar manner as in (C.2.3) (see Johansen and Nielsen, 2012, p. 2681)
34See Johansen and Nielsen, 2012, pp. 2678 and 2696 for more details
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3. Technical Background on the Efficient Volatility Representation

In the absence of market microstructure noise, Andersen et al. (2003a) show that

RVs,t =
N∑
i=1

(
ps,ti − ps,ti−1

)2
, s = 1, 2, ..., S (C.3.1)

is a consistent estimator of the integrated variance of market s as N → ∞. Assume that

the dynamics of the S-dimensional processes pti and RVt are approximated by a VEC(q)

and a FCVAR(κ) model, respectively. Without loss of generality, further assume that q = 0,

κ = 0, and β = (IS−1,−ιS−1)
′ in that β⊥ = ιS. The VEC and FCVAR models then read

∆pti = γβ′pti−1
+ eti , i = 1, 2, ..., N, (C.3.2)

∆dRVt = αβ′LbRVt + εt, t = 1, ..., T. (C.3.3)

From the Granger representation theorem in (6), returns from market s are given by

∆ps,ti = γ′⊥eti +
∞∑
j=0

Ξs,j∆eti−j
, (C.3.4)

where Ξs,j is the sth row of the (S × S) matrix Ξj. Define As,i :=
∑∞

j=0 Ξs,j∆eti−j
and

combine (C.3.4) with (C.3.1) such that

RVs,t =
N∑
i=1

(
γ′⊥etie

′
ti
γ⊥ + 2γ′⊥etiAs,i + A2

s,i

)
. (C.3.5)

Next, using the fractional counterpart of the Granger representation theorem as in (7), the

s element of the RVt vector in (C.3.3) reads

RVs,t =
[
(α′⊥β⊥)

−1
α′⊥

]
∆−d+ +Xs,t. (C.3.6)
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Recall from (8) that RVm,t =
[
(α′⊥β⊥)−1 α′⊥

]
∆−d+ εt. Using α′⊥α = 0, ∆−d+ ∆d = 1+ + ∆−d+ ∆d

−

and rearranging terms, we express RVm,t in terms of the market-specific realized variances

RVm,t = α′⊥RVt +
{
α′⊥∆−d+ ∆d

−RVt
}
, (C.3.7)

where the last term of (C.3.7) is a linear combination of infinitely many initial values. Finally,

to write RVm,t as a function of price innovations, eti , and the price discovery measures, γ⊥,

substitute (C.3.5) into (C.3.7) so that

RVm,t = α′⊥ιS

N∑
i=1

(
γ′⊥etie

′
ti
γ⊥
)

+ α′⊥

N∑
i=1

Ai + initial value, (C.3.8)

where Ai =
([

2γ′⊥etiA1,i + A2
1,i

]
, ...,

[
2γ′⊥etiAS,i + A2

S,i

])′
is a (S × 1) vector containing the

market-specific components that are a function of both the long- and short-term components

of the Granger representation theorem of prices.
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