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Abstract

A dynamic factor model is considered that contains stochastic time

trends allowing for stationary and nonstationary long-range dependence.

The model nests standard I(0) and I(1) behaviour smoothly in common

factors and residuals, removing the necessity of a priori unit-root and sta-

tionarity testing. Short-memory dynamics are allowed in the common factor

structure and possibly heteroskedastic error term. In the estimation, a gen-

eralized version of the principal components (PC) approach is proposed to

achieve efficiency. Asymptotics for efficient common factor and factor load-

ing as well as long-range dependence parameter estimates are justified at

standard parametric convergence rates. The use of the method for the se-

lection of number of factors and testing for latent components is discussed.

Finite-sample properties of the estimates are explored via Monte-Carlo ex-

periments, and an empirical application to U.S. economy diffusion indices

is included.
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1 Introduction

Consider the factor model for an observable array {xit, i ≥ 1, t ≥ 1} :

xit = ψi(L)′gt + eit (1)

where gt is a k × 1 vector of dynamic unobservable common factors, and ψi(L) =

ψ0i + ψ1iL+ . . .+ ψmiL
m is a k × 1 polynomial of factor loadings, with k initially

unknown. In (1), the idiosyncratic errors are modeled as

eit = ∆−ϑit ρi(L)εit

where ρi(L) = 1− ρ1,iL− . . .− ρpi,iLpi and ϑi introduce short-memory dynamics

and fractional long-range dependence, respectively, that may differ across cross-

section units. The vector of common factors can also display fractional long-range

dependence,

gt = ∆−δ0t zt,

where δ0 is common for all factors and when δ0 > ϑmax, xit is essentially an I(δ0)

series.

With ∆ = 1 − L, L denoting the lag operator such that Ljyt = yt−j, ∆ξ has

the expansion

∆ξ =
∞∑
j=0

πj(ξ)L
j, πj(ξ) =

Γ(j − ξ)
Γ(−ξ)Γ(j + 1)

for ξ > 0, and ∆ξ
t truncates this expansion to

∆ξ
t =

t∑
j=0

πj(ξ)L
j.

The fractional differencing operator ∆ξ introduces possible stationary (when

0 < ξ < 1/2) and nonstationary (when ξ ≥ 1/2) long memory and the trunca-

tion of this filter is motivated by the allowance for ξ ≥ 1/2, when ∆−ξ does not

converge.

The structures on the error and the common factor vector allow for short-

memory dynamics and general long-range dependence that removes the necessity

of a priori unit-root or stationarity testing. This is particularly important because
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it is impossible to identify the source of persistence via unit-root testing when

data is solely generated by unobservables as in (1). With the allowance of general

persistence characteristics, the model in (1) also generalizes Bai and Ng (2004)’s

framework in which they model observable series assuming I(1) common factors

while the idiosyncratic errors can be either I(0) or I(1).

Several commonly used alternative specifications are readily nested under (1).

For instance, the model corresponds to a fractionally integrated panel data model

with fixed effects as proposed by Robinson and Velasco (2015) when ft = (1, . . . , 1)′

and ψi(L) = ψi. Similarly, ft might correspond to deterministic trends in which

case, (1) corresponds to the model employed by Gao and Robinson (2014) when

ψi(L) = ψi.

In the literature, generalized principal components estimation has been con-

sidered to obtain efficient factor structure estimates, possibly among many oth-

ers, by Breitung and Tenhofen (2011), Choi (2011) and Choi (2012). In these

recent works, the attention was restricted to tackling serial dependence and het-

eroskedasticity in factor models. Breitung and Tenhofen (2011) and Choi (2012)

have stationary I(0) setups while Choi (2011) allows for I(1) common factors. Tra-

ditionally, only I(0) and I(1) cases are considered, see also Bai and Ng (2004) and

Bai and Ng (2013), but the possibility of fractional long-range dependence is over-

looked although empirical studies show evidence for it. For example, Luciani and

Veredas (2012) and Ergemen and Velasco (2015) find that financial-market real-

ized volatility serving as a common factor in a panel of industry realized volatilities

is fractionally integrated.

The primary interest in using (1) is in the efficient estimation of the common

factor structure when there is not only serial dependence and heteroskedastic-

ity but also possible fractional long-range dependence in the model. This paper

contributes to the literature in many ways. First, generalized PC estimation for

fractionally integrated factor models is introduced for the first time. Second, ef-

ficient estimation of the common factor structure components is shown, which

will lead to better forecasts, more precise policy analysis and higher local power

in hypothesis testing. Third, the model can be used parsimoniously in empirical

analyses, in contrast to the available ones in the literature that require indicator-

by-indicator a priori transformations.

Among others, Bai and Ng (2004) first-difference their model containing I(1)

common factors alongside I(0) or I(1) idiosyncratic errors to obtain consistent PC

estimates of the common-factor structure and thus of the error term under large

N and T . We propose a three-step procedure to obtain efficient factor structure
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estimates. We first get initial estimates of the common factor structure adopting

Bai and Ng (2004)’s method and then estimate the memory of the common factors

parametrically from them, which we use at the last step to obtain the efficient fac-

tor structure estimates. We establish the asymptotics for these estimates. We also

include a simulation study based on Monte Carlo experiments and an empirical

application to US diffusion indices to highlight the parsimony of the method.

Throughout the paper, the notation “(N, T )j” denotes joint asymptotics under

which both cross-section size N and time-series length T are increasing; “ →d ”

denotes convergence in distribution, and ‖A‖ = (trace(AA′))1/2. All mathematical

proofs and intermediate technical results are collected in an appendix at the end

of the paper.

2 First Differences Estimation of Common Fac-

tors

We first-difference (1) to obtain

∆xit = ψi(L)′∆gt + ∆eit. (2)

The differenced model in (2) has a static factor representation. First let us

write

∆Xt = Ψ∆Gt + ∆et

where Xt = (x1t, . . . , xNt)
′ , Ψ = (Ψ0, . . . ,Ψm) that is obtained from Ψ(L) = Ψ0 +

Ψ1L+ . . .+ ΨmL
m with Ψj = (ψj1, . . . , ψjN)′ (j = 0, . . . ,m), Gt = (g′t, . . . , g

′
t−m)′,

and et = (e1t, . . . , eNt)
′. Let r ≤ (m + 1)k be the rank of Ψ. Then there exists

an N × r matrix Λ such that Ψ∆Gt = Λ∆Ft, where ∆Ft = R∆Gt and R is a

nonsingular r × (m + 1)k matrix. The model in (2) can then be written in the

static representation using full matrix notation as

∆X = ∆FΛ′ + ∆e (3)

where X = (X2, . . . , XT )′ and e = (e2, . . . , eT )′ are T ×N matrices. The columns

of the T × r matrix F = (F2, . . . , FT )′ collect the observations of the r static

4



factors. For each i and t, equation (3) can be written as

∆xit = λ′i∆Ft + ∆eit. (4)

Let M denote a generic positive constant, and set ϑmax = maxi ϑi0. Then, we

introduce the following conditions to study (4).

Assumption 1. δ0 ∈ D = [δ, δ̄] ⊆ [0, 1] and ϑmax ≤ δ0 < δ + 1/2.

Assumption 2. λi are either deterministic satisfying ‖λi‖ ≤M or they are ran-

dom and satisfy E‖λi‖4 ≤M, and N−1
∑N

i=1 λiλ
′
i →p ΣΛ > 0.

Assumption 3. zt ∼ iid(0,Σz), Σz > 0, and E‖zt‖4 < M.

Assumption 4. (i) εit ∼ iid(0, σ2
i ), E |εit|

8 ≤ M,
∑∞

j=0 j |ρij| < M, ω2
i =

ρi(1)σ2
i > 0;

(ii) E(εitεjt) = τij with
∑N

i=1 |τij| ≤M for all j;

(ii) For all (t, s), E
∣∣∣N−1/2

∑N
i=1 [εisεit − E(εisεit)]

∣∣∣4 ≤M.

Assumption 5. εit, zt and λi are mutually independent groups.

Assumption 6. E ‖F0‖ ≤M, and for all i, E |ei0| ≤M.

Assumption 1 restricts the allowed range of factor memory parameter values

so that the first-differenced model is stationary and allows for both cointegrated

(when δ0 > ϑmax) and spurious cases (when δ0 = ϑmax). So for example, Bai and

Ng (2004)’s nonstationary setup is nested when δ0 = ϑi = 1, and the stationary

setups of Stock and Watson (2002) and Bai and Ng (2002) are nested when δ0 =

ϑi = 0 for all i. The condition δ0 − δ < 1/2 together with δ0 ≥ ϑmax implies that

the maximum error memory not be too apart from the lower bound of the allowed

range of values for δ0 and is necessary to establish consistency of the memory

parameter at the standard
√
T convergence rate. It could be dispensed with

but then the convergence rate would depend on unknown memory parameters,

rendering the use of the method in practice impossible.

The remaining conditions, i.e. Assumptions 2-6, are standard in the PC esti-
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mation of common factor structures. Assumption 2 ensures the identification of

the factor structure. Assumption 3 imposes a standard moment condition on the

iid innovations of common factors. Assumption 4(i) allows for weak serial corre-

lation, and 4(ii) and 4(iii) allow for weak cross-section correlation so (1) has an

approximate factor model structure. Assumption 5 imposes independence among

model components, which might be stronger than needed but it makes the proofs

much more tractable. Finally, Assumption 6 bounds the initial conditions, which

is commonly used in the analysis of nonstationary I(1) variables whose study

generally requires a priori differencing.

Let

ft := ∆Ft,

then from (3), the principal component estimate of ft, say f̂t, is obtained as
√
T − 1 times the r eigenvectors corresponding to the r largest eigenvalues of

(∆X)(∆X)′/N(T − 1) because the minimization problem

V (r) = min
Λ,F

1

N(T − 1)

N∑
i=1

T∑
t=2

(∆xit − λ′ift)2

is identical to maximizing tr(f ′(∆X)(∆X)′f) concentrating out Λ and using the

identifying restriction

f
′
f/(T − 1) = Ir.

Then the loadings matrix Λ is estimated by

Λ̂ = (∆X)′f̂/(T − 1).

These estimates span the factor space and the corresponding factor loadings space,

respectively, only up to a rotation. That is, f̂ estimates fHf and Λ̂ estimates

ΛH
′−1
f where the transpose of the r × r rotation matrix, Hf , is defined as

H ′f = V̂ −1(f̂
′
f/(T − 1))(Λ′Λ/N) (5)

with V̂ = Λ̂′Λ̂/N.

We have the following result that establishes the consistency of first-differenced

common factor estimates.
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Theorem 1. Under Assumptions 1-6 and if Λ′Λ/N is diagonal with distinct en-

tries,

min
{√

N, T
}

(f̂t − ft) = Op(1), for a fixed t.

The convergence rate for common factor estimates is min
{√

N, T
}

because the

factor loadings are also unknown and need to be estimated. If the factor loadings

were known, the convergence rate would be just
√
N . The result contrasts with

those established by Bai (2003) and Bai and Ng (2004) in that the extra condition

we have on Λ′Λ/N asymptotically identifies ft, not just a rotation of the factor

space. This is because the rotation matrix Hf boils down to Ir as (N, T )j → ∞,
as we show in the appendix.

3 Consistent Factor Memory Estimation

Estimation of a memory parameter has traditionally been carried out directly on

observable series. Although the common factor structure is unobservable in (4),

the estimates f̂t are observable and in this section, we will use them to estimate the

integration orders of common factors. Given that the factor estimates are consis-

tent at a parametric rate, we show that the memory parameter can be estimated

as though the factors were observable and subsequently justify its consistency

uniformly in the allowed set of memory values given in Assumption 1.

Based on the previously obtained common factor estimates, we estimate δ0

based on a conditional-sum-of-squares criterion using which, the estimate is only

implicitly defined as

δ̂ = arg min
δ

1

T

(
∆δ−1
t f̂t

)′ (
∆δ−1
t f̂t

)
. (6)

We then establish the
√
T−consistency of the memory parameters in the next

theorem.

Theorem 2. Under the conditions of Theorem 1, as (N, T )j →∞,

δ̂ − δ0 = Op

(
T−1/2

)
.

As we show in the appendix, this result is established replacing the common

factor estimates by unobserved true common factors, given the result in Theorem

1, as though they were observable and additionally treating the estimation errors
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that are negligible imposing δ0 − δ < 1/2 and as N → ∞. Note, however, that

there is no restriction on the relative growth rates of N and T .

4 Generalized Principal Components Estimation

of Common Factors

In this section, we show how efficient estimation of the common factor structure

can be carried out based on the previously obtained consistent estimates. Let us

introduce the notation ωit(τ) = ∆τ−1
t ωit.

We consider the optimization problem

min tr

[(
X(δ̂)− f(δ̂)Λ′

)′ (
X(δ̂)− f(δ̂)Λ′

)]
(7)

s .t . f(δ̂)′f(δ̂)/T = Ir

Λ′Λ is diagonal with distinct entries ,

which allows for the direct (asymptotic) identification of common factors and thus

their corresponding loadings as discussed in Section 2.

Define for a fixed t,

Γt(δ0) = lim
N→∞

N∑
i,j=1

E
(
λ

′

iλjeit(δ0)ejt(δ0)
)
,

and for a fixed i,

Φi(δ0) = lim
T→∞

T∑
s,t=1

E
(
f

′

s(δ0)ft(δ0)eis(δ0)eit(δ0)
)
.

We have the following result that establishes the asymptotic behaviour for the

efficient common factor structure estimates.

Theorem 3. Under the conditions of Theorem 2, the optimization problem in (7)

and if N = o(T ζ) with 1/2 < ζ < 1,

• for a fixed t,

√
N(f̂t(δ̂)− ft(δ0))→d N

(
0,Σ−1

Λ Γt(δ0)Σ−1
Λ

)
;
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• for a fixed i,

√
T (λ̂i − λi)→d N (0,Φi(δ0)) .

Consistent estimates for covariance matrices can be envisaged along the lines

of Bai and Ng (2006). The relative growth rate of N to T requires that T grow

faster than N but also that N grow faster than
√
T , which is because as NT−1 →

0 the common factor estimate f̂t(δ̂) is asymptotically normally distributed but

asymptotic normality of λ̂i further requires that
√
TN−1 → 0 as (N, T )j →∞.

5 Estimation of the Number of Factors

The analysis in previous sections has assumed the number of factors to be known

although this generally is not the case in practice. In this section, we consider the

estimation of the number of common factors based on the efficient common factor

estimates obtained earlier.

In order to estimate the number of common factors, r, we consider

xit(δ̂) = λ′ift(δ̂) + eit(δ̂), (8)

to write down the NT -normalized sum of squared residuals

V (k, f̂k(δ̂)) = min
Λ

1

NT

N∑
i=1

T∑
t=1

(
xit(δ̂)− λki ′f̂kt (δ̂)

)2

(9)

for k factors, where k < min {N, T} . We then consider penalty functions, g(N, T ),

such that criteria of the form

PC(k) = V (k, f̂k(δ̂)) + kg(N, T ),

or equivalently the information criteria

IC(k) = ln(V (k, f̂k(δ̂))) + kg(N, T ),

will consistently estimate r.

Considering the fact that δ̂ is a
√
T -consistent estimate of δ0, using which

common factors are asymptotically exactly whitened, it can be shown adopting
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Bai and Ng (2002) that for r ≤ kmax and k̂ = argmin0≤k≤kmax
IC(k),

lim
N,T→∞

Prob[k̂ = r] = 1

if

g(N, T )→ 0 and C2
NTg(N, T )→∞

as (N, T )j → ∞ where CNT = min
{√

N,
√
T
}
. We can then make use of the

following widely used specifications for g(N, T ),

g1(N, T ) =

(
N + T

NT

)
ln

(
NT

N + T

)
,

g2(N, T ) =

(
N + T

NT

)
lnC2

NT ,

to determine the number of factors.

Other approaches can also be adopted. Hallin and Liska (2007) propose infor-

mation criteria based on a frequency-domain approach where the penalty function

contains a lag-window estimate of the spectral density matrix. A recent study by

Ahn and Horenstein (2013) show that the use of information criteria that requires

that the maximum number of common factors that allowed in the analysis be

known leads to performance distortions in finite samples. So they propose using

ratios of adjacent eigenvalues of the covariance matrix of the data. Although their

methodology is developed for static factor models, under the static representation

we described earlier, the eigenvalue ratio test can also be used to determine the

number of factors. We do not develop such theory in this paper and our main aim

is to assess how (possibly neglected) long memory properties affect the number of

common factors, which we study based on Monte Carlo simulations in Section 7.

6 Testing for Latent Components

In applied economic analysis, there is an interest in obtaining statistical inference

on the estimates of latent structures. Although the model in (1) has a simplistic

nature, many useful specification tests can be performed on it. For example, it is

possible to test if λi or some components of it are zero using a q × r restriction

matrix Ξ, with q ≤ r, such that under the null Ξλi = λ̄i. Then under the null
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hypothesis,

T
(

Ξλ̂i − λ̄i
)′ (

ΞΦ̂i(δ̂)Ξ
′
)−1 (

Ξλ̂i − λ̄i
)
→d χ

2
q,

which is essentially an efficient Wald test. This approach can be directly used

for testing for the existence of individual fixed effects or cross-section dependence

both in stationary and nonstationary panel data models since failing to reject the

null of λi ≡ 0 would imply redundancy of latent heterogeneity terms in the model.

On the other hand, when the null is rejected, constancy of the common factors

could be tested using the same approach, which essentially corresponds to a test

for individual fixed effects in panel data models. Finally, rejecting both of these

nested hypotheses implies there is only dynamic cross-section dependence but no

individual fixed effects in a panel data model.

To simply illustrate these ideas, let us assume there is only one common factor.

Then, for instance, individual fixed effects or cross-section dependence can be

tested using the null hypothesis,

HCSD
0 : λi = 0,

which implies that the latent common factor structure does not exist. The test

statistic can then be constructed as

t =
λ̂i

s.e.(λ̂i)
→d N (0, 1)

under the conditions of Theorem 3.

When HCSD
0 cannot be rejected, (1) does not have fixed effects or cross-section

dependence. However, when HCSD
0 is rejected, there are two possibilities: fixed

effects only or both fixed effects and cross-section dependence. If HCSD
0 is rejected,

fixed effects only hypothesis can be tested based on testing whether ft is time

invariant, for example fitting a time polynomial as

ft =
m∑
k=0

akt
k + uf , uf ∼ iid(0, υ)

where ak are real valued and possibly unknown, which can be estimated along the

lines of Robinson (2012). Then, the constancy of the common factor can be tested
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by

HFE
0 : ak = 0, k = 1, . . . ,m,

using an F test in which the test statistic is compared to the Fm,∞ critical value.

If HCSD
0 is rejected and HFE

0 cannot be rejected, the model features only fixed

effects. If both null hypotheses are rejected, then only cross-section dependence is

incorporated into the model.

7 Simulation Study

In this section, we carry out Monte Carlo simulations to assess the finite-sample

behaviour of the factor structure estimates and the impact of efficient factor es-

timation on the selection of the number of factors. The shocks are drawn as

εit ∼ N(0, σ2
i (1− ρ2

i )) to generate the idiosyncratic series

eit =
∆−ϑi0εit
1− ρiL

where ρi ∼ U [0.5, 0.9]. Factor loadings, λi, are drawn from U(−0.5, 1) not to

restrict the sign, and serially correlated common factors are generated by

gt =
∆−δ0zt
1− ψL

where zt ∼ iidN(0, (1 − ψ2)). We focus on different cross-section and time-series

sizes, N and T; as well as different values of δ0 and ϑi0. Simulations are based on

1,000 replications.

7.1 Factor Structure Estimation

To assess the behaviour of the estimates under different specifications, we initially

assume that there is only one factor. We then take σi =
√

2 in the homoskedastic

case and assume σi ∼ iidN(
√

2, 0.25) in the heteroskedastic case, while also using

ψ = 0, 0.5 to study pure fractional dynamics and allow for serial correlation,

respectively, in the factor. We consider the cross-section sizes and time-series

lengths, respectively, of N = 32, 64 and T = 64, 128. For the factor memory

parameter, we consider the values of δ0 = 0.4, 0.8, and the idiosyncratic error

memory parameter takes the values of ϑi = 0.2, 0.3. For the estimation of the
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memory parameter, we consider both (6) and the widely used exact local Whittle

approach by Shimotsu (2010) to set contrasts.

We first consider the case in which short memory and autocorrelation are

allowed in the idiosyncratic errors but there is no heteroskedasticity. Table 1

collects these results. According to the results in Table 1, increasing T for a fixedN

reduces the bias magnitude in the factor estimates for all three cases while the same

is generally true for factor loadings when N increases for a fixed T , as suggested by

Theorems 1 and 2. Having normalized the variance of the common factor to unity,

most efficient factor loadings estimates are obtained employing the δ̂-whitened

factor, where δ̂ is obtained from (6). In practice, sometimes a semiparametric

approach, e.g. the two-step exact local Whittle method by Shimotsu (2010), is

used but as expected, δ̂elw leads to larger variance distortions in the factor loadings

estimate rendering it less efficient.

Once heteroskedasticity is also allowed in the idiosyncratic errors, whose results

are shown in Table 2, magnitudes of the bias in factor estimates is reduced. Bias

magnitudes for factor loadings are slightly inflated as opposed to the homoskedas-

tic case and the performance of the estimates is slightly exacerbated although

λ̂i(f̂t(δ̂)) remains to be the most efficient estimate.

Table 3 shows the case in which idiosyncratic errors are homoskedastic and the

common factor is not in its static representation with it being allowed to carry

serial correlation. Bias in factor estimates is roughly twice as much for all N, T

combinations although for factor loadings estimates, bias is not affected much, in

particular for larger N and T . As for the performance, the allowance for serial

correlation appears to lead to efficiency gains in the factor loadings estimates.

When heteroskedasticity is introduced in addition to factor serial correlation,

in Table 4, bias in factor estimates is reduced. Bias in factor loadings estimates

does not respond much to the allowance for idiosyncratic heteroskedasticity al-

though compared to the results in Table 3, performance of the estimates is slightly

worsened.

We finally show that the negligence of even mild (stationary) long memory in

data leads to a large bias in the factor and loadings estimates, possibly rendering

their consistent estimation impossible. For this study, we fix δ0 = 0.4 and ϑi = 0.2

and run the simulations in the easiest case in that there is no serial correlation

in the common factor and idiosyncratic errors are homoskedastic. Table 5 shows

the bias contrast of factor-structure estimates obtained under the negligence of

long memory in the common factor versus efficient estimates of them. According

to these results, normalization of factor variance to unity does not work when
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T = 64, and the factor estimate is highly biased when long memory is overlooked

although efficient estimation circumvents these problems. Therefore, it would be

wise not to overlook the possibility for mild persistence, even in cases in which a

unit root may be rejected by a standard test.

Table 1: Bias and SE Profiles of Factor Structure Estimates (δ0 = 0.8, ϑi0 =
0.3, σi =

√
2, ψ = 0)

Common Factor Factor Loadings

f̂t f̂t(δ̂) f̂t(δ̂elw) λ̂i(f̂t) λ̂i(f̂t(δ̂)) λ̂i(f̂t(δ̂elw))
n=32

T=64 -0.0338 -0.0341 -0.0312 0.0011 -0.0003 0.0025
(1.0000) (1.0000) (1.0000) (0.3800) (0.3757) (0.4063)

T=128 0.0078 0.0075 0.0068 0.0013 0.0008 -0.0035
(1.0000) (1.0000) (1.0000) (0.3631) (0.3565) (0.3669)

n=64
T=64 0.0814 0.0794 0.0856 -0.0001 0.0022 -0.0013

(1.0000) (1.0000) (1.0000) (0.3527) (0.3470) (0.3807)
T=128 -0.0182 -0.0212 -0.0227 -0.0021 -0.0019 -0.0024

(1.0000) (1.0000) (1.0000) (0.3391) (0.3319) (0.3381)

Note. In the estimation, factor variance is normalized to 1.0000. Memory parameter
estimate δ̂elw is obtained based on the two-step exact local Whittle procedure by
Shimotsu (2010). Standard errors of the estimates are reported in parentheses.
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Table 2: Bias and SE Profiles of Factor Structure Estimates (δ0 = 0.8, ϑi0 =
0.3, σi ∼ iidN(

√
2, 0.25), ψ = 0)

Common Factor Factor Loadings

f̂t f̂t(δ̂) f̂t(δ̂elw) λ̂i(f̂t) λ̂i(f̂t(δ̂)) λ̂i(f̂t(δ̂elw))
n=32

T=64 -0.0007 0.0036 0.0100 0.0014 -0.0026 0.0034
(1.0000) (1.0000) (0.9999) (0.3982) (0.3947) (0.4540)

T=128 -0.0086 -0.0050 -0.0117 -0.0039 0.0012 0.0012
(1.0000) (1.0000) (1.0000) (0.3754) (0.3692) (0.3918)

n=64
T=64 -0.0288 -0.0281 -0.0235 0.0029 -0.0007 0.0007

(1.0000) (1.0000) (1.0000) (0.3648) (0.3623) (0.4247)
T=128 -0.0317 -0.0297 -0.0311 0.0018 -0.0008 0.0000

(1.0000) (1.0000) (1.0000) (0.3426) (0.3363) (0.3480)

Note. In the estimation, factor variance is normalized to 1.0000. Memory parameter
estimate δ̂elw is obtained based on the two-step exact local Whittle procedure by
Shimotsu (2010). Standard errors of the estimates are reported in parentheses.

Table 3: Bias and SE Profiles of Factor Structure Estimates (δ0 = 0.8, ϑi0 =
0.3, σi =

√
2, ψ = 0.5)

Common Factor Factor Loadings

f̂t f̂t(δ̂) f̂t(δ̂elw) λ̂i(f̂t) λ̂i(f̂t(δ̂)) λ̂i(f̂t(δ̂elw))
n=32

T=64 -0.0608 -0.0596 -0.0610 0.0028 0.0019 0.0011
(1.0000) (1.0000) (1.0000) (0.3583) (0.3553) (0.3816)

T=128 0.0160 0.0157 0.0179 0.0028 -0.0028 -0.0011
(1.0000) (1.0000) (1.0000) (0.3387) (0.3352) (0.3556)

n=64
T=64 0.1377 0.1404 0.1424 -0.0013 -0.0008 0.0004

(1.0000) (1.0000) (1.0000) (0.3269) (0.3225) (0.3536)
T=128 -0.0317 -0.0332 -0.0335 -0.0002 -0.0009 -0.0012

(1.0000) (1.0000) (1.0000) (0.3116) (0.3070) (0.3228)

Note. In the estimation, factor variance is normalized to 1.0000. Memory parameter
estimate δ̂elw is obtained based on the two-step exact local Whittle procedure by
Shimotsu (2010). Standard errors of the estimates are reported in parentheses.
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Table 4: Bias and SE Profiles of Factor Structure Estimates (δ0 = 0.8, ϑi0 =
0.3, σi ∼ iidN(

√
2, 0.25), ψ = 0.5)

Common Factor Factor Loadings

f̂t f̂t(δ̂) f̂t(δ̂elw) λ̂i(f̂t) λ̂i(f̂t(δ̂)) λ̂i(f̂t(δ̂elw))
n=32

T=64 -0.0033 -0.0013 0.0107 0.0025 0.0032 -0.0012
(1.0000) (1.0000) (0.9999) (0.3783) (0.3757) (0.7735)

T=128 -0.0147 -0.0162 -0.0152 0.0002 -0.0005 0.0028
(1.0000) (1.0000) (1.0000) (0.3523) (0.3483) (0.3938)

n=64
T=64 -0.0490 -0.0510 -0.0413 -0.0020 -0.0001 0.0008

(1.0000) (1.0000) (0.9999) (0.3422) (0.3405) (0.4236)
T=128 -0.0549 -0.0552 -0.0511 0.0019 0.0030 0.0001

(1.0000) (1.0000) (1.0000) (0.3166) (0.3119) (0.3403)

Note. In the estimation, factor variance is normalized to 1.0000. Memory parameter
estimate δ̂elw is obtained based on the two-step exact local Whittle procedure by
Shimotsu (2010). Standard errors of the estimates are reported in parentheses.

Table 5: Bias and SE Profiles under Neglected Factor Long Memory (δ0 =
0.4, ϑi0 = 0.2, σi =

√
2, ψ = 0)

Common Factor Factor Loadings

F̂t f̂t(δ̂) λ̂i(F̂t) λ̂i(f̂t(δ̂))
n=32

T=64 0.4365 -0.0060 0.0080 0.0004
(0.8962) (1.0000) (1.0715) (0.4128)

T=128 0.1212 -0.0022 0.0028 -0.0028
(0.9924) (1.0000) (0.9348) (0.3874)

n=64

T=64 0.4092 0.0176 0.0029 0.0012
(0.9192) (1.0000) (1.0291) (0.3929)

T=128 0.0804 -0.0024 -0.0018 -0.0024
(0.9965) (1.0000) (0.8762) (0.3656)

Note. In the estimation, the factor variance is normalized to 1.0000 at the usual T
rate. Standard errors of the estimates are reported in parentheses.
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7.2 Estimating the Number of Factors

In this section, we explore how the efficient estimation of the factor structure

affects the number of common factors chosen. Without loss of generality, we fix

the number of factors to r = 3 and consider the combinations of δ0 = 0, 0.4, 0.8, 1

and ϑmax = 0, 0.2, 0.3, 1. We take (N, T ) = (40, 100) and (130, 648) with the latter

representing the sample size in the empirical application presented in Section 8.

We begin by considering the cases in which persistence is neglected and first

differencing is carried out following Bai and Ng (2004)’s suggestion. Table 6

presents these simulation outcomes.

According to these results, negligence of persistence in common factors does not

affect the number of factors selected. However, ignoring even mild long memory in

the error term leads to the overestimation of the number of factors. This finding

contrasts with the results in Table 7 in that the number of factors is robustly

estimated so long as δ0 ≥ ϑmax.

Bai and Ng (2004) suggest taking first differences to estimate the common

factor structure when there is suspicion of I(1) behaviour in data and claim that

overdifferencing would also be fine. This is true for consistent estimation of the

factor structure. However, as the last two columns of Table 6 show, the number

of factors is correctly selected only when errors are I(1) and it is overestimated

in all other cases. This is not the case in Table 7 which shows that the number

of factors are correctly estimated in all cases but when (δ0, ϑmax) = (0, 1) that

renders common factor estimates inconsistent.

Tables 6 and 7 also show the probability of selecting the correct number of

common factors in each cases. The results in Table 7 suggest that as long as

δ0 ≥ ϑmax, this probability is at least 0.936 with it being very close to one in most

of the cases, which contrasts with the results in Table 6 in that this probability is

close to one only when δ0 = ϑmax = 1 under first differencing.
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Table 6: Number of Common Factors under Negligence of Long Memory and First
Differencing (N = 40, T = 100 and kmax = 10)

Neglected Memory First Differencing

r δ0 ϑmax k̂ P (k̂ = r) k̂ P (k̂ = r)

3 0 0 2.8 0.708 5.1 0.188
3 0.4 0 2.9 0.824 4.9 0.282
3 0.4 0.2 3.7 0.933 4.5 0.512
3 0 0.2 3.6 0.944 4.7 0.393
3 0.8 0.3 4.8 0.306 4 0.758
3 1 1 9.9 0.000 2.8 0.996
3 1 0 3.1 0.911 4.6 0.434
3 0 1 9.9 0.000 3.1 0.883

Table 7: Estimation of the Number of Common Factors (kmax = 10)

N = 40, T = 100 N = 130, T = 648

r δ0 ϑmax k̂ P (k̂ = r) k̂ P (k̂ = r)

3 0 0 2.8 0.997 3 0.982
3 0.4 0 3.2 0.973 2.8 0.986
3 0.4 0.2 2.9 0.993 2.9 0.944
3 0 0.2 3.3 0.973 2.9 0.952
3 0.8 0.3 3.4 0.936 2.8 0.987
3 1 1 2.9 0.990 3 0.998
3 0 1 9.9 0.000 9.9 0.000

18



8 Diffusion Indices for US Economy

We analyze the US macroeconomic activity based on 130 monthly indicators for

the time span of January 1960 - December 2014 to create diffusion indices, which

may be later used for forecasting purposes. We downloaded the publicly available

data from Federal Reserve Economic Database (FRED) and removed the missing

values.

We note that earlier studies employing this dataset or that of Stock and Watson

(2005) all require a variable-by-variable treatment in that a priori differencing to

some of the data is necessary to make them stationary so that common factors

can be extracted. Using our methodology, on the other hand, all variables can be

treated at once because their persistence characteristics are altogether captured

at the memory estimation step.

Following our estimation steps, we find that there are 9 common factors se-

lected based on the criterion g1(N, T ) and 8 common factors based on the criterion

g2(N, T ) given in Section 5. The latter finding parallels the results obtained by

Jurado et al. (2015) and McCracken and Ng (2015). We plot the estimated original

common factors, after integrating them back to their original integration orders,

in Figure 1.

Figure 1: Estimated Diffusion Indices for the US Economy, 1960:1-2014:12
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Based on these common factor estimates, the main interest is in assessing

what fraction of the total variation each one of them explains. To compare our

findings to those obtained by McCracken and Ng (2015), we regress the i-th series

in the dataset on the set of r estimated common factors. For k = 2, . . . , r we

obtain R2
i (k) for each i. We then calculate mR2(k) = N−1

∑N
i=1mR

2
i (k) where

mR2
i (k) = R2

i (k)−R2
i (k − 1), k = 2, . . . , r with mR2

i (1) = R2
i (1). Our regressions
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also indicate on which indicators the factors heavily load. These findings are

collectively presented in Table 8 along with integration orders of the diffusion

indices that are estimated based on the parametric CSS criterion used in the basic

setup by Ergemen and Velasco (2015).

Table 8: Average Importance of Each Factor and Explained Indicators

mR2 Related Key Indicators CSS Memory Estimates

F̂1 0.1575 industrial production, employment 0.7169

F̂2 0.0655 term interest rate spreads, inventories 0.2446

F̂3 0.0535 inflation 0.5292

F̂4 0.0598 housing and interest rate 0.7732

F̂5 0.0551 housing and interest rate 0.6782

F̂6 0.0304 real activity, employment 0.3008

F̂7 0.0239 stock market 0.2796

F̂8 0.0316 exchange rates 0.7133
Total 0.4773 (0.0301)

According to these results, the first common factor explains 0.1575 of the vari-

ation in the data and loads heavily on industrial production and employment

variables so it can be seen as an real activity factor, just like the sixth factor that

contributes only by 0.0304 in explaining the total variation. The first factor ex-

hibits high persistence with the estimated memory parameter around 0.72 while

for the sixth factor, this estimate is 0.3 indicating that these two factors jointly

capture the nonstationary and stationary dynamics, respectively, in the real ac-

tivity. The second factor explains 0.0655 of the total variation in the data and

is related to forward-looking variables as it loads heavily on term interest rate

spreads and inventories. Its memory estimate is around 0.24 indicating stationary

behavior. The third factor captures price variables so it can be seen as an inflation

factor, which explains 0.0535 of the variation, and shows mildly nonstationarity

with a memory estimate of 0.53. The fourth and fifth common factors are related

to housing and interest rates explaining 0.0598 and 0.0551 of the total variation,

respectively, exhibiting high persistence with their respective estimated integra-

tion orders 0.77 and 0.68. The seventh factor is related to stock market variables

and covers 0.0239 whereas the eighth factor explains 0.0316 of the variation and is

related to exchange rates. While the seventh factor exhibits stationarity of order

0.28, the eighth factor is nonstationary with an estimated memory value of 0.71.
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The findings on where the estimated diffusion indices load heavily are in line

with the literature and are similar to the results obtained by Jurado et al. (2015)

and McCracken and Ng (2015). However, using our approach, we can also estimate

the integration orders of these indices, which is important in understanding the

dynamics in a more complete and accurate way, especially if a forecasting or

factor-augmented regression study is to be undertaken based on them. In contrast

with the literature, our findings show that the average importance of factors is

not decreasing in the number of factors used because each factor itself may have

different persistence characteristics and this leads to its capturing such dynamics

in the data as well. Last but not least, there is no need to treat each indicator

separately using our approach because different series do not require different a

priori transformations. So our approach is easier to use than those readily available

in the literature additionally providing a more accurate treatment.

9 Final Remarks

In this paper, we have studied a dynamic factor model that incorporates possibly

fractional long-range dependence also allowing for short-memory dynamics. We

have shown the consistency of first-differenced common factor estimates, and later

used these initial estimates to obtain
√
T -consistent memory estimate of the origi-

nal factors. This then allowed us to exactly whiten the factors and obtain efficient

estimates of them at the final step, whose asymptotic behavior we have justified.

We have also shown the use of efficient factor structure estimates in selecting

the number of factors and justified through Monte Carlo simulations that neglected

memory in common factors leads to inaccurate selection of the number of factors.

Furthermore, we have discussed how efficient factor structure estimates could be

used in designing efficient Wald tests to test for latent components in stationary

and nonstationary panel data models.

Finally, we have presented an empirical application to US diffusion indices

and found that those indices actually exhibit fractional long-range dependence,

which has not been shown in the literature before. We further discussed that our

approach is more parsimonious than the available ones in the literature providing

a more accurate treatment.
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Appendix

A Proof of Theorem 1

We begin by observing that first differencing leads the series xit to become asymp-

totically stationary under Assumption 1 because ∆xit ∼ I(δ0 − 1), with δ0 ≤ 1

and δ0 ≥ ϑmax so that

1

N

1

T − 1

N∑
i=1

T∑
t=2

(∆xit)
2 →p σ

2
x > 0

under Assumptions 2-4.

Therefore showing the result that

min
{√

N, T
}

(f̂t − ftHf ) = Op(1), for a fixed t,

can be shown proceeding the same way as in the proof of Lemma 2 by Bai and

Ng (2004) under the model assumptions.

Next, we want to establish, adopting Bai and Ng (2013), that

Hf = Ir +Op(ς
−2
NT ) (10)

with ςNT = min
{√

N,
√
T
}

if Λ′Λ is diagonal with distinct entries. With

H ′f = V̂ −1(f̂
′
f/(T − 1))(Λ′Λ/N),

we first check that

f̂
′
f

T − 1
=

(f̂ − fHf )
′
f

T − 1
+
H

′

ff
′
f

T − 1

=
H

′

ff
′
f

T − 1
+Op(ς

−2
NT ) (11)

since (f̂ − fHf )
′
f/(T − 1) = Op(ς

−2
NT ) by Lemma B.2 of Bai (2003). Right-

multiplying both sides of (11) by Hf gives

f̂
′
fHf

T − 1
=
H

′

ff
′
fHf

T − 1
+Op(ς

−2
NT ). (12)
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Then,

f̂
′
fHf

T − 1
=
f̂

′
(fHf − f̂ + f̂)

T − 1
= Op(ς

−2
NT ) + Ir (13)

because f̂
′
(fHf − f̂)/(T − 1) = Op(ς

−2
NT ) as above and f̂

′
f̂/(T − 1) = Ir under the

identifying restriction.

Equating 12 and 13,

Ir = H
′

f

=Ir︷ ︸︸ ︷
f

′
f

T − 1
Hf +Op(ς

−2
NT )

= H
′

fHf +Op(ς
−2
NT ),

so asymptotically Hf is an orthogonal matrix with eigenvalues equal to 1 or -1.

Next, we show that Hf is diagonal. From (11) and using f
′
f/(T − 1) = Ir, we

have that

H ′f = V̂ −1(f̂
′
f/(T − 1))(Λ′Λ/N),

= V̂ −1H
′

f (Λ
′Λ/N) +Op(ς

−2
NT ). (14)

Multiply (14) on both sides by V̂ and transpose to get

(Λ′Λ/N)Hf = Hf V̂ +Op(ς
−2
NT ), (15)

which shows that asymptotically Hf is a matrix containing the eigenvectors of

(Λ′Λ/N) that is diagonal with distinct eigenvalues by assumption. So then, each

eigenvalue is associated with a unique unitary eigenvector, and this establishes

that Hf is asymptotically diagonal. Without loss of generality, we can assume the

eigenvalues of Hf are 1’s and in that case, (10) is shown. Furthermore, from (15),

(Λ′Λ/N) = V̂ +Op(ς
−2
NT ).

�
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B Proof of Theorem 2

The CSS criterion in (6) can be written as

LN,T (δ) =
1

T

(
∆δ−1
t

(
f̂t − ftHf

)
+ ∆δ−1

t (ftHf )
)′ (

∆δ−1
t

(
f̂t − ftHf

)
+ ∆δ−1

t (ftHf )
)
.

(16)

We argue that the squared estimation-error term in (16),

1

T

(
∆δ−1
t

(
f̂t − ftHf

))′ (
∆δ−1
t

(
f̂t − ftHf

))
is negligible as (N, T )j → ∞ because under Assumptions 5 and 6, Assumption 4

is necessary and sufficient for the conditions imposed in Lemma A.1 of Bai and Ng

(2004). So the results in Lemma A.2 of Bai and Ng (2004) hold under Assumption

1 that imposes ϑmax − δ < 1/2 and δ0 − δ < 1/2, see similar arguments used in

the proofs of Theorems 4 and 5 of Ergemen and Velasco (2015). Therefore,

max
1≤k≤T

1

T

∥∥∥∥∥
k∑
t=1

(
f̂t − ftHf

)∥∥∥∥∥ = Op

(
(NT )−1/2 + T δ0−δ−1/2

)
.

Then the
√
T−consistency of the memory estimate can be established from

1

T

(
∆δ−1
t (∆1−δ0

t zt)
)′ (

∆δ−1
t (∆1−δ0

t zt)
)

=
1

T

(
∆δ−δ0
t zt

)′ (
∆δ−δ0
t zt

)
following exactly the same steps followed by Hualde and Robinson (2011).

Finally the cross-term in (16) is bounded and small by Cauchy-Schwarz in-

equality, and the proof is then complete. �

C Proof of Theorem 3

First, let us write

f̂t(δ̂)− ft(δ0) = f̂t(δ̂)− f̂t(δ0) + f̂t(δ0)− ft(δ0)

= f̂t(δ̂)− f̂t(δ0) + (f̂t − ft)(δ0)

= f̂t(δ̂)− f̂t(δ0) +Op

(
1√
N

+
1

T

)
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by the result established in Theorem 1. Furthermore, using the Mean Value The-

orem,

f̂t(δ̂)− f̂t(δ0) =
˙̂
ft(δ

†)(δ̂ − δ0)

= op
(
T−1/2

)
,

arguing as Robinson and Hidalgo (1997) with previously established δ̂ − δ0 =

Op(T
−1/2) in Theorem 2 that is stronger than needed but simplifies the proof.

Then,

f̂t(δ̂)− ft(δ0) = Op

(
1√
N

+
1

T

)
+ op(T

−1/2)

and

√
N
(
f̂t(δ̂)− ft(δ0)

)
= Op(1) +Op

(√
N

T

)
+ op

(√
N√
T

)
.

Thus the asymptotic normality of the common factor estimates requires that

NT−1 → 0 as (N, T )j → ∞ while for consistency of the estimate there is no

rate requirement.

Asymptotic normality can then be established writing

√
N
(
f̂t(δ0)− ft(δ0)

)
=

(
Λ′Λ

N

)−1
1√
N

N∑
i=1

λieit(δ0) +Op

(√
N

ς2
NT

)

if
√
N/T → 0 with ςNT = min

{√
N,
√
T
}
, leading to

√
N
(
f̂t(δ0)− ft(δ0)

)
→d N

(
0,Σ−1

Λ Γt(δ0)Σ−1
Λ

)
for a fixed t.

To show the results for λ̂i, let us write

√
T
(
λ̂i − λi

)
=

(
f(δ̂)′f(δ̂)

T

)−1
1√
T

T∑
t=1

f(δ̂)eit(δ̂) +Op

(√
T

ς2
NT

)

which establishes the asymptotic normal distribution using δ̂ − δ0 = Op(T
−1/2)

and the identifying restriction f(δ̂)′f(δ̂)/T = Ir if
√
T/N → 0 since ςNT =
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min
{√

N,
√
T
}

. In particular,

√
T
(
λ̂i − λi

)
→d N (0,Φi)

for a fixed i. �
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