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Sign-identified structural vector autoregressive (SVAR) models have recently be-
come popular. However, the conventional approach to sign restrictions only yields
set identification, and implicitly assumes an informative prior distribution of the
impulse responses whose influence does not vanish asymptotically. In other words,
within the set the impulse responses are driven by the implicit prior, and the like-
lihood has no significance. In this paper, we introduce a Bayesian SVAR model
where unique identification is achieved by statistical properties of the data. Our
setup facilitates assuming a genuinely noninformative prior and thus learning from
the data about the impulse responses. While the shocks are statistically identified,
they carry no economic meaning as such, and we propose a procedure for labeling
them by their probabilities of satisfying each of the given sign restrictions. The
impulse responses of the identified economic shocks can subsequently be computed
in a straightforward manner. Our approach is quite flexible in that it facilitates
labeling only a subset of the sign-restricted shocks, and also concluding that none
of the sign restrictions is plausible. We illustrate the methods by two empirical
applications to U.S. macroeconomic data.
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1 Introduction

The structural vector autoregressive (SVAR) model is one of the prominent tools in em-
pirical macroeconomics. While the reduced-form vector autoregression (VAR) is useful
for describing the joint dynamics of a number of time series and forecasting, it is only
when some structure is imposed upon it that interesting economic questions can be ad-
dressed. Typically structural VAR (SVAR) analysis involves tracing out the dynamic
effects (impulse responses) of economic shocks on the variables included in the model,
and these shocks are often identified by restricting their short-run or long-run effects (for
a survey on SVAR models, see Kilian (2013)). In addition, identification by sign restric-
tions, put forth by Faust (1998), Canova and De Nicol6 (2002), and Uhlig (2005), has
become an increasingly popular way of computing impulse responses of economic shocks
in the recent macroeconomic SVAR literature. Compared to approaches involving explicit
parametric identification restrictions, sign restrictions are less stringent, yet manage to
convey economic intuition. Therefore, they have a great appeal in empirical research,
where a sufficient number of plausible parametric restrictions may be difficult to come by.

However, identification by sign restrictions also involves a number of problems. First,
Baumeister and Hamilton (2015) recently showed that the conventional approach to im-
posing sign restrictions implicitly assumes an informative prior distribution of the impulse
responses, whose influence does not vanish asymptotically. In other words, the impulse
responses produced are only draws from the implicit prior distributions. Instead of the
conventional procedure, they recommended making explicit the prior information used in
the analysis. Second, as pointed out by Fry and Pagan (2011), sign restrictions fail to
identify a unique model as a large number of models fit the data equally well, i.e., only set
identification is achieved. From a Bayesian perspective, this need not be seen as a prob-
lem, but the uncertainty surrounding the impulse responses can be thought of as arising
from having a limited set of data as well as from doubts about the true model structure,
as Baumeister and Hamilton (2015) emphasize. Nevertheless, the lack of uniqueness im-
pedes reporting the results of impulse response analysis, especially as the identified set
may be very large. Third, it is not straightforward to assess the plausibility of given
sign restrictions, which is in contrast to SVAR models identified by explicit parameter
restrictions. Overidentifying restrictions in structural VAR models identified by paramet-

ric restrictions can be tested by usual classical tests or assessed by computing posterior



model probabilities. Moreover, recent advances in the so-called statistical identification
literature (see, e.g., Lanne et al. (2015), and the references therein) facilitate also testing
exactly identifying economic parameter restrictions.

In this paper we address all three concerns mentioned above. Our starting point is the
SVAR model where, following Lanne et al. (2015), unique identification is achieved by
means of statistical properties of the data. Specifically, we assume that the components of
the structural error vector are independent, each following some non-Gaussian univariate
distribution. Lanne et al. (2015) considered the properties of the maximum likelihood
estimator of this model, while we concentrate on Bayesian estimation that facilitates
explicitly incorporating any prior information and computing posterior model probabilites.
Because our model is uniquely identified instead of being just set identified, the posterior
distributions of the impulse responses need not be driven by the priors, which facilitates
learning about the impulse responses from the data. In addition, the model identification
problem emphasized by Fry and Pagan (2011) is completely sidestepped.

Our uniquely identified SVAR model also facilitates assessment of sign restrictions.
The posterior probabilities of the models restricted by them can be interpreted as the
probabilities of those restrictions, and used to assess their plausibility. Subsequently
those economic shocks that are found plausibly identified, can be given the economic
interpretation related to the corresponding restrictions. It may also turn out that only
a subset or none of the sign restrictions are in accordance with the data. The sign
restrictions deemed unlikely are “rejected”, and it is concluded that they are not useful
in identifying the economic shocks in question. Impulse response and related analyses of
the remaining shocks (if any) can then be conducted in a straightforward manner.

There are a few previous suggestions on how to assess the plausibility of sign re-
strictions. Straub and Peersman (2006) used the proportion of discarded models as an
indicator of how well the New Keynesian model that had generated the restrictions, fit
the data. This indicator is, however, ambiguous because a high rejection rate may just as
well indicate sharp identification (the set of acceptable models is small) or an inefficient
sampler as lack of fit. Piffer (2015) formalized this approach, but his procedure seems
difficult to generalize beyond the bivariate VAR model. Baumeister and Hamilton (2015)
illustrated how the effect of the tightness of priors on the posteriors yields information on
the plausibility of the restrictions, but this approach is applicable only when the priors are

explicitly spelled out. Furthermore, it does not work with the conventional approach to



sign restrictions because in the absence of point identification the posterior will continue
to be driven by these priors.

Closely related to our approach, Herwartz and Liitkepohl (2014), Liitkepohl and
Netsunajev (2014), and Lanne et al. (2015) have recently informally assessed the confor-
mity of sign restrictions with the data, and subsequently used the “accepted” restrictions
in labeling the shocks of statistically identified SVAR models. In the first two papers,
unique identification is achived by modeling the error term of the SVAR model as a
Markov-switching process (see Lanne et al. (2010)). The idea of this approach is to check
whether the impulse responses implied by the uniquely identified SVAR model satisfy
the sign restrictions. If the restrictions are satisfied, the shocks can be labeled accord-
ingly. The procedure put forth in this paper formalizes this approach and augments it by
quantifying the likelihood of the sign restrictions.

The rest of the paper is organized as follows. In Section[2] we describe the SVAR model
and discuss its identification along the lines of Lanne et al. (2015). Section |3| introduces
the procedure for computing the probabilities of the sign restrictions and finding the
plausible sign-identified shocks among all the statistically identified shocks. In Subsections
and [3.2 we propose stepwise procedures for the cases of a single and multiple sign-
identified shocks, respectively. In Section [4] the computation of impulse responses and
forecast error decompositions of the sign-identified shocks is discussed. Because we have
a uniquely identified SVAR model, the model identification problem is avoided, which
facilitates interpretation of forecast error variance decompositions. Morever, unlike the
conventional sign identification approach, the effects of shocks of a given size can be
examined. Section 5| contains two empirical applications that illustrate our procedure.
In Subsection [5.1] we consider the identification of the monetary policy shock in Uhlig’s
(2005) SVAR model of the U.S. economy, and in Subsection we revisit Peersman’s
(2005) fully identified macrocoeconomic SVAR model. Finally, Section [6] concludes.

2 Model

Consider the n-variate structural VAR(p) model
Yy =a+ A1y + -+ Apyr—p + Bey, (1)

where y; is a vector of time series of interest, a is an intercept term, A;,..., A, are n x n



coefficient matrices, and the matrix B summarizing the contemporaneous structural re-
lations of the errors is assumed nonsingular. In order to facilitate identification of matrix
B, we make two further assumptions. First, we assume that &; is a sequence of stationary
random vectors with each component €4, ¢ = 1,--- n, being serially uncorrelated and
having zero mean and finite positive variance. Second, it is assumed that the compo-
nents €;; are mutually independent, and at most one of them has a Gaussian marginal
distribution. In the empirical applications in Section [5], we specifically assume that each
component of the error vector individually follows a t distribution. Because a t-distributed
random variable converges to a Gaussian as the number of degrees of freedom approaches
infinity, this is more general than the usual (implicit) normality assumption and affords
more flexibility (see, for example, Koop (2003, p. 126) for a more detailed discussion).

If the process y; is stable, i.e.,
det ([, — Az —---—A,2") #0, |2| <1 (€ C),

the SVAR(p) model has a moving average representation

Yy = U+ Z V;Be,_j, (2)

§=0
where g is the unconditional expectation of y;, W, is the identity matrix, and ¥;, j =
1,2,..., are obtained recursively as ¥, = {:1 U;_;A;. The kth column of ¥,B = O,
7 =20,1,..., contains the impulse responses of the kth structural shock ¢;;, 2 =1,...,n,
and it is these impulse reponses that are the main object of interest in SVAR analysis.
An integrated VAR(p) process does not satisfy the stability condition above, and hence,
has no moving average representation. Nevertheless, the impulse responses are also in
this case given by the same recursion (see Liitkepohl (2005, Section 6.7)).

Under the non-Gaussianity and indepenence assumptions on the error term &; above,
matrix B is unique apart from permutation and scalings of its columns (see Proposition
1 and its proof in Lanne et al. (2015)). In other words, the model remains the same
after changing the order of the columns of B or multiplying them by constants once
the shocks €;; are reordered and scaled accordingly. Hence, the structural shocks and
their impulse responses are uniquely identified, but despite this ‘statistical’ identification,
the shocks cannot be labeled or given any economic interpretation without additional
restrictions. Recently, Lanne et al. (2015) showed how conventional short-run and long-

run identifying restrictions can be tested in this framework, and if not rejected, used for
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economic identification. Following Herwartz and Liitkepohl (2014), and Liitkepohl and
Netsunajev (2014), they also demonstrated how sign restrictions can be informally used
in this model to facilitate economic identification. In Section |3| below, we formalize their
approach and show how to assess the plausibility of given sign restrictions in a SVAR

model under our identifying restrictions.

3 Identification by Sign Restrictions

Because under the non-Gaussianity and independence assumptions the impact matrix B
in is uniquely identified (apart from permutation and scaling of its columns), also the
structural shocks and their impulse reponses are identified. The only difference between
the models corresponding to the different permutations of the columns of B is the ordering
of the shocks. Therefore, a model with any fixed permutation facilitates quantifying the
plausibility of any sign restrictions, and it is important to ensure that the entire analysis
is based on the same permutation. We first compute the (posterior) probabilities of each
combination of the shocks to be those identified by the sign restrictions. Subsequently, the
impulse reponses (and forecast error variance decompositions) of the shocks that are found
likely to satisfy the sign restrictions (if any), can be readily computed, and since they are
linked to the given restrictions, their interpretation is straightforward. In this section, we
concentrate on assessing the sign restrictions, while in the next section, we discuss the
computation of the impulse responses and forecast error variance decompositions.

We set out with the case of a single structural shock identified by sign restrictions that
restrict only the impact effect, which is probably the most common case in the empirical
literature, and then proceed to the more general case of restrictions on the first ¢ + 1

impulse responses. Subsection [3.2| covers the case of multiple structural shocks.

3.1 Identifying a Single Structural Shock

Suppose we are interested in finding the impulse reponses of a single shock, whose impact
effects on J of the variables in gy, are given. This might be, say, the monetary policy shock
with a non-positive impact effect on prices and nonborrowed reserves and a non-negative
impact effect on the Federal funds rate (cf. the empirical application in Section . Let

us collect these sign restrictions in a J X m matrix R, whose elements equal 1, —1, or 0,



and define a set () such that

Q = {00k : ROox > 0751}, (3)

where g is the kth column of Oy, or equivalently, of the impact matrix B, corresponding
to shock ;. The set () thus consists of the columns of B that satisfy the sign restrictions.
Although we are after a single shock, () may contain multiple columns of B, or it may be
empty, i.e., there may be more than one shock or no shock satisfying the sign restrictions.
This is in contrast to the conventional approach in the sign restriction literature, where
a single shock satisfying the restrictions, by construction, is found.

Since our assumptions only identify B up to permutation of its columns, any (or none)
of the n components of ; can be the structural shock satisfying the sign restrictions. In
order to assess the plausibility of one of the shocks being the shock of interest, we compute
for each shock ey, k = 1, ..., n, the conditional probability of being this shock (conditional
on the vector of data, y, obtained by stacking y, for t =1,...,T),

Pr (eﬂk € Q? 90,m;£k S QC |Y) ) (4>

where Q¢ denotes the complement of @), and m € {1,...,n}. For each k € {1,...,n}, the
quantity can be interpreted as the posterior probability of the restricted SVAR model,
where the sign restrictions embodied in R are imposed on the kth column of B only (cf.
Koop (2003, p. 81) in the context of the linear regression model). Among the n models,
we expect those that satisfy the restrictions in the (true) data-generating process (DGP)
(i.e., the models for which 6y, € @ in the DGP) to have high posterior probabilities, with
the likeliest model reaching the maximum. Thus, by ranking the restricted SVAR models
according to their posterior probabilities, we are able to locate the likeliest model and,
hence, the shock that is the likeliest to be the structural shock of interest.

It is, of course, possible that none of the shocks satisfies the sign restrictions. The prob-
ability of the SVAR model where the sign restrictions are violated for all k € {1,...,n},
can be readily computed by subtracting the sum of the probabilities in from one. If
this probability lies close to unity, the data do not lend support to the sign restrictions,
and therefore, they cannot be used to identify the structural shock of interest. In other
words, the sign restrictions are “rejected”.

An ambiguous situation arises if more than one of the shocks satisfy the restrictions

with (almost) equal high probability. In this case, additional information is needed to
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discriminate between the plausible shocks. It may come in the form of quantitative
information about the likely magnitude of the impulse responses (see, for example, Kilian
and Murphy (2009)). It is also rather common practice in the literature to add sign
restrictions on longer lags in the impulse responses beyond the impact effect, to which our
framework also lends itself in a straightforward manner. To that end, in order to impose
the same restrictions on a single shock embodied in matrix R on ©;, j = 0,1,...,¢q, we

redefine the set () as
Q={0: (Ls11®R) O, > 0j¢g+1)x1} (5)

where 6 denotes the kth column (corresponding to shock e;) of © = [ AT @;}/, a
matrix consisting of the first ¢ + 1 structural impulse responses. Analogously to , the

conditional probability of £;; being the structural shock of interest is then defined as

Pr (0 € Q,0msr € Q°ly), (6)

and the analysis proceeds as in the case of restrictions on 6y only.

Although less common in the empirical literature, our framework also accommodates
different sign restrictions on different lags (see, for instance, Inoue and Kilian (2013),
who imposed an additional sign restriction on the sixth lag in Uhlig’s (2005) SVAR
model, discussed also in Section , when identifying the monetary policy shock). In
that case, we would simply replace the matrix I,1; ® R in by a block-diagonal matrix
diag (R°, ..., RY), where R’ incorporates the restrictions on the jth lag. If not all impulse
responses with lags up to ¢, but only lags belonging to some set L are restricted, then
this block diagonal matrix has only the R’/ matrices with j € L on its main diagonal, and
the matrix © is adjusted accordingly.

The proposed procedure can be summarized as follows:

Step 1. Estimate the joint posterior distribution of the parameters of the unrestricted
SVAR model , and compute the posterior distribution of the reduced-form impulse
response matrices ¥;, j € L. If sign restrictions are imposed on all the ¢ + 1 first

lags of the impulse response function, L = {0,1,...,q}.

Step 2. Given the posterior output of B from Step 1, rearrange the columns of each B
to ensure that all the posterior draws of B represent the same permutation. This
is accomplished by first computing the transformed matrices B , whose each column

has Euclidean norm one, and then finding a permutation matrix P for which C' =



BP = (cij), satisfies |c;;| > |c; ] for all i < j Then, for each B and V;, the uniquely
identified structural impulse responses are given by ©;, = ¥,;BPD, j € L, where
D is a diagonal matrix with elements equal to either 1 of —1 that transforms the

diagonal elements of BP positive.

Step 3. Calculate the probabilities in (6) (or (4))) for all k£ € {1,...,n} using the poste-
rior distribution of the identified structural impulse responses. If the sum of these
probabilities lies close to zero, or, in other words, if the posterior probability of the
SVAR model satisfying none of the sign restrictions is high, conclude that the data
are not compatible with the restrictions, and they cannot thus be used for identifi-
cation. Otherwise label the structural shock of interest according to the calculated

posterior probabilities.

3.2 Identifying Multiple Structural Shocks

The procedure introduced in Subsection [3.1] generalizes in a straightforward manner to
the case of g > 1 structural shocks, each of which is restricted by J;, i = 1,..., ¢, sign
restrictions. Instead of a single R matrix, we then have g J; X n matrices R;, each

embodying the J; restrictions, and the set

Qi = {0k (Ly+1 ® Ry) O = Ogigenyxa } ")

contains the columns of the matrix of impulse responses © that satisfy the ¢th sign re-
strictions.

Analogously to the case of a single shock, computing the posterior probability of the
g shocks identified by the sign restrictions calls for going though all combinations of the
columns of ©. For example, the posterior probability of the restricted SVAR model in

which the sign restrictions concern two structural shocks (g = 2) is given by

Pr (0 € Q1,01 € Q2,0mzk1 € Q5ly) for k.l e{l,....n} k#1, (8)

!'Note that the procedure does not quarantee that all the permuted posterior draws of B come from

the same permutation. If the procedure completely failed to keep the chosen permutation between the
posterior draws, the resulting posterior probability estimates in @ (or ) would be equal for all the
elements of ;. However, in large samples, the procedure never fails (in probability) because the posterior
variances of the elements of B decrease with sample size (see Baumeister and Hamilton (2015), for a

detailed discussion concerning the asymptotic properties of Bayesian inference in SVARSs).



where Q) is the complement of the union Q1 UQs. In this case, we have n (n — 1) different
SVAR models to go through. For fixed k and [, is the posterior probability of e;; and €
being the two structural shocks, and the sum of these probabilities over all combinations
of k and [ subtracted from one can be interpreted as the posterior probability of the sign
restrictions not being satisfied.

In general, we have n! permutations of the columns of ©, on which the g restrictions can
be placed. However, once the positions of the g shocks have been fixed, the ordering of the
remaining unrestricted columns is irrelevant for the assessment of the plausibility of the
restrictions. Because there are (n — g)! permutations of these columns, the total number
of restricted SVAR models that contain the g shocks in fixed positions is n!/(n—g)!. This
suggests that the posterior probabilities of the restricted SVAR models, such as those in
(8), can be evaluated by first calculating the probabilities of the n! SVAR models where
the g restrictions are imposed on any g columns of ©, and then marginalizing over each
set of the (n — g)! models where they are imposed on same g columns of © to obtain the
probabilities of the n!/(n — g)! models.

Formally, all n! possible permutations of the columns of © can be obtained as the
products OP* for s € {1,...,n!}, where P*® is an n X n permutation matrix. The prob-
ability that the first ¢ columns of ©P* satisfy the ¢ sign restrictions can be expressed
as

Pr(0; € Qi,....05 € Q.0 cipi1. .my € Q5 ly), for s e {1,...,n!} 9)

where @f is the complement of the union ¢ U --- U Qgﬂ It can be readily checked that
the quantities in (9] are the posterior probabilities for all the n! restricted SVAR models.
As pointed out above, the probabilities of each of the restricted n!/(n — ¢)! SVAR models
of interest are then obtained by summing the probabilities of the (n — g)! models in which
the g sign restrictions are imposed on the same g columns of ©.

Each of these n!/(n — g)! models represents one ordering of the g structural shocks in
the vector ;. Thus, by ranking them by their posterior model probabilities, we are able
to single out in probability the likeliest ordering of the g structural shocks of interest. If
several orderings turn out equally likely, additional information is needed to discriminate
between the corresponding structural models. Analogously to the single shock case, the

probability of the sign restrictions failing to identify all g shocks, i.e., the probability of

2Notice that when all n shocks are identified, @ reduces to Pr (9f €Q1,...,0,€Qy |y), for s €

{1,...,nl}.



the SVAR model where all the sign restrictions are violated for all s € {1,...,n!}, can
be calculated by subtracting the sum of the probabilities in @D from one. Again, if this
probability lies close to one, there is little evidence in favor of the sign restrictions in the
data, and they can be “rejected”.

For notational convenience, we concentrate on the case of the same sign restrictions
on each of the g shocks at lags from 0 to q. However, as in the case of a single structural
shock, the approach generalizes in a straightforwad manner to the case where impulse
responses of all shocks are not restricted at all lags, or the restrictions on (some of)
the shocks are different across the lags. Peersman’s (2005) study discussed in Section
provides an example of the latter situation: the sign restrictions on two of the four
variables included are binding only instantaneously (¢ = 0), while for the two remaining
variables, the restrictions are binding up to four quarters (¢ = 4).

In the case of multiple structural shocks of interest, there are several ways to proceed
in checking for identification. We recommend the following procedure that is illustrated
by means of an empirical application in Section [5.2] A straightforward alternative is, of
course, to compute of the posterior probabilities of the n!/(n — g)! SVAR models directly,
and label the shocks according to the likeliest one, provided any model is deemed plausible.
However, this procedure has the downside that it overlooks the cases where only part of

the shocks are identififed.

Step 1. Follow Steps 1 and 2 described in Subsection [3.1], to obtain the identified struc-

tural impulse responses.

Step 2. Based on the posterior distribution of the identified structural impulse responses
©, calculate the probabilities given in (6) (or [@)) for all Qy, ..., Q, individually. If
the sum of the probabilities based on @); is close to zero, remove the ith sign restriction
(i € {1,...,g}). As already discussed in Subsection [3.1} such sign restrictions are
“rejected” by the data and, therefore, cannot be used to identify the structural shock

of interest.

Step 3. In order to label the shocks based on the probabilities given in @, find the
likeliest SVAR model identified by the remaining sets ;. If the posterior probability
of the sign restrictions failing to identify all the remaining shocks is high, proceed by
recursively removing the weakly identified shocks, i.e., those with respect to which

more than one ordering is almost equally likely, until unique labeling is reached with
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high probability. If the probability of failing to identify the remaining shocks is close
to one for all combinations of the sign restrictions, conclude that the data are not

compatible with the sign restrictions, and they are thus not useful in identification.

4 Impulse Response and Forecast Error Variance De-
composition Analysis

As already discussed in the Introduction, with sign-identified structural VAR models,
reporting the results of impulse response analysis can be problematic due to the so-
called model identification problem. In other words, the sign restrictions are consistent
with a wide range of statistical models, and the conventional approach thus generates a
large set of impulse reponses, each pertaining to a different model. Therefore, pointwise
medians of the impulse responses along with error bands are typically reported. Inoue and
Kilian (2013) recently considered the shortcomings of these quantities when the model is
identified by sign restrictions, and pointed out that the pointwise error bands fail to convey
the true uncertainty of the impulse response functions. As a solution, they derived the
joint posterior density of the impulse responses and recommended reporting their mode
and 100(1 — )% highest posterior density (HPD) credible set.

As our model produces unique impulse response functions, given the size and sign of
the shocks, it is not hampered by the model identification problem. Hence, conventional
pointwise posterior median impulse responses and error bands could be entertained in a
straightforward manner. It is however, well known that, while frequently applied, these
may also yield misleading conclusions. Therefore, we recommend employing an extension
of the joint posterior density approach of Inoue and Kilian (2013) also in our setup. It
is also worth emphasizing that our approach facilitates analyzing the effects of shocks
of a given size, and thus answering questions like “what would be the responses to a 25
basis point interest rate shock”. As pointed out by Fry and Pagan (2011), inter alia, the
conventional approaches to identification by sign restrictions do not lend themselves to
such questions, and, therefore, only quantities like peak responses are typically reported.

The posterior density of the structural impulse responses implied by our model can be
derived in a straightforward manner. For notational simplicity, let us ignore deterministic

terms, and collect the coefficient matrices of model (1)) in matrix A = [Ay .-+ Ay]. Because
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the model is exactly identified (statistically), there is a one-to-one mapping between the
first p + 1 structural impulse responses 0= [B’, (U,B),..., (\prB)’}/ and [B, A}, and
the nonlinear function © = f <B , K) is known. By a change of variable, the posterior
density of the first p + 1 structural impulse responses © = [B',(v:B) ..., (\prB)’]/ can
thus be written as

p ((:) \y> _ [Veca(ii &;G;(A)/} p (B, A !y)
B dvec (é) - N
N 0 [VG‘C (B)I,VGC(A)/] Y (B’ A |y>

= IB\_”pp<B,§!y)- (10)

where p <B,A |y) is the joint posterior density of B and ‘l, and the second equality
follows by the inverse function theorem. In the terminology of Inoue and Kilian (2013), the
model corresponding to a draw (B, ;i) from the posterior distribution of the parameters
of the SVAR model that maximizes is the modal model that produces the mode of
the structural impulse responses. Note that there is a one-to-one mapping from the joint
posterior density of B and A to only the p + 1 first impulse responses that thus govern
the selection of the modal model.

In addition to the mode, it is useful to have a measure of the uncertainty surrounding
the impulse responses, and, following Inoue and Kilian (2013), we define the 100(1 — )%
HPD credible set of the first p + 1 impulse responses as

S:{é:p<(:)\y>zca},

where ¢, is the largest constant such that Pr(S) > 1 — a. We then report the impulse
responses up to some prespecified horizon of models belonging to this set, in addition to
those of the modes. In the empirical literature it is customary to set a equal to 0.32,
i.e., to report the 68% credible sets. As Inoue and Kilian (2013) pointed out, there is
no reason for these crible sets to be dense, but they will typically exhibit a “shot-gun”
pattern.

As far as the forecast error variance decompositions are concerned, they can be cal-
culated in a standard fashion using the mode of the structural impulse responses as

defined above (see, for example, Liitkepohl (2005, Chapter 2.3)). Typically forecast error
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variance decompositions based on poinwise median impulse responsens are reported for
sign-identified models. However, as pointed out by Fry and Pagan (2011), they have the
problem that they are based on uncorrelated shocks, and may therefore be difficult to
interpret because the contributions of all shocks need not sum to unity for all variables.

In contrast, since our model is uniquely identified, this problem is avoided.

5 Empirical Illustrations

We illustrate the methods by means of two empirical applications, both involving the U.S.
economy. The first one, discussed in Subsection is concerned with the computationally
most straightforward case of only one shock identified by sign restrictions. In particular,
we focus on the monetary policy shock in Uhlig’s (2005) model. Our second application
in Subsection[5.2] in turn, involves Peersman’s (2005) model with multiple sign-identified
shocks, whose plausibility we set out to assess.

In both applications, we assume that the ith independent component of the error
vector of the structural VAR model follows a univiariate (standardized) Student’s ¢
distribution with \; degrees of freecom. This deviates from the Bayesian SVAR literature,
where the error vector is typically assumed multivariate normal with a diagonal covari-
ance matrix. It is important to realize that our distributional assumption encompasses
the Gaussian case because a t-distributed random variable approaches Gaussianity as the
number of degrees of freedom goes to infinity. It is also because of this property of the ¢
distribution that the estimates of \;, « = 1,...,n, indicate the strength of identification
(recall that B is uniquely identified only under non-Gaussianity of at least n — 1 compo-
nents). According to the results, the error distributions indeed seem to be fat-tailed. In
particular, the posterior means of the degree-of-freedom parameters lie between 2.1 and
6.1.

For each degree-of-freedom parameter \;, we assume an exponential prior distribution
with mean 5 and variance 25. As to the error impact matrix B, we operate on its inverse
vec(B™!) = b, and assume a Gaussian prior distribution, i.e., b ~ N (b,V}). The
reported results are based on the special case of V', V= ¢p1,2 with ¢, = 0, which results
in an uninformative (improper) prior for B, p(B~!) o 1. However, the results remain
intact irrespective of the (reasonably) informative priors used. Notice that because the

SVAR model is point-identified, the improper prior can be used (i.e., the inference can
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be based solely on the data). This is in contrast to the conventional approach in the sign
restriction literature, where the models are only set-identified, and the posterior of the
structural parameters within the identified set is proportional to the prior (see Baumeister
and Hamilton (2015)). As a result, only under an informative prior does there exist a
well-defined posterior for B.

Finally, we collect the deterministic terms and coefficient matrices of model in
matrix A = [a,A’l, o ,A;},, and assume a multivariate normal prior for vec (A) = a,
a~ N(aV,). Weset aand V, at 0 and 10000%],,2,,,, respectively. As a robustness
check, we also entertained a number of informative priors for vec (A), including close
variants of that proposed by Baumeister and Hamilton (2015), and found the results
intact irrespective of the priors used. We defer more detailed discussion on the priors and

the technical aspects of estimation to the appendix.

5.1 Single Monetary Policy Shock

Uhlig (2005) studied the effects of the U.S. monetary policy shock in a six-variable struc-
tural VAR(12) model with no intercept that we take as given. The monthly time series
included in the model are the interpolated real GDP, the interpolated GDP deflator, a
commodity price index, total reserves, nonborrowed reserves and the federal funds rate,
and, for comparability, the sample period is 1965:1-2003:12 as in Uhlig (2005). Save the
federal funds rate, all variables are expressed in logsE]

Following Uhlig (2005), we identify only the monetary policy shock. The sign restric-
tions from his Assumption A.1. state that the first six impulse responses of this shock to
prices and nonborrowed reserves are nonpositive and to the federal funds rate nonnegative
(i.e., ¢ = 5 in the notation of Section . However, we start by checking the validity of
the signs of the impact effects only (¢ = 0), and comment later on the case of restrictions
on multiple lags. In all cases, when the variables are included in vector y; in the order

given above, the 4 x 6 matrix R in (3]) or (5)) equals

3See Uhlig (2005) for a more detailed description of the data set. The data were downloaded from the

Estima website at https://estima.com/resources_indx.shtml.
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0 0 -1 0 0 O
0 0 0 0 —-120
0 0 0 0 0 1

As the first step, we compute the probabilities of each of the six columns of B
satisfying the sign restrictions. The sum of these probabilities is 0.29%, lending overall
support to the sign restrictions on the impact effects. As a matter of fact, only one shock
takes a high posterior probability, almost 0.29%, while the probabilities of the other
shocks are virtually zero. Thus the monetary policy shock can be considered uniquely
identified in probability. We also checked Uhlig’s (2005) original sign restrictions on the
six first impulse responses, and the probability of none of the shocks satisfying them
turned out to be virtually one. In other words, the data do not lend support to such a
highly restrictive model, which should not be too surprising given that each additional
restriction presumably narrows down the set of admissible models.

The modes of the impulse responses of a 25 basis point contractionary monetary policy
shock along with their 68% joint regions of high posterior density are depicted in Figure
. Compared to the results of Inoue and Kilian (2013) based on Uhlig’s (2005) original
sign restrictions our impulse responses seem more precisely estimatedﬁ As to the impulse
responses of the monetary policy shock on the real GDP that Uhlig (2005) was mostly
interested in, its mode is slightly positive only in the first three months and then turns
persistently negative, which is intuitively appealing. While there still remains uncertainty
about the effects of monetary policy in that the 68% HPD credible set contains positive
output responses, it is the negative values that dominate, in contrast to what Uhlig (2005)
and Inoue and Kilian (2013) found.This is likely to follow from the fact that our model
is exactly identified, whereas sign restrictions alone only reach set identification (cf. the
corresponding results of Inoue and Kilian (2013) based on sign and recursive restrictions).

Finally, in Table [T} we report the forecast error variance decomposition of the mon-

etary policy shock at a number of horizons.ﬂ As discussed in Section 4| the forecast

4Inoue and Kilian (2013) computed the 68% HPD credible set in the same way as we did, which
facilitates convenient comparison. However, it must be kept in mind that it is not possible to fix the size

of the shock in conventional SVAR models identified by sign restrictions.
5The forecast error variance decompositions are based on the modes of the impulse responses, and
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Figure 1: Impulse responses of a 25 basis point contractionary monetary policy shock.
The black lines depict the modes of the responses, and the shaded areas are the 68% joint

regions of high posterior density.

error variance decomposition is problematic in the case of sign restrictions because of
the model identification problem that our approach avoids. In line with Uhlig’s (2005)
findings, the monetary policy shock accounts for a very small fraction of the forecast error
variance of real output albeit this fraction increases slowly with the horizon. However,
while Uhlig (2005) found the fraction of the forecast error variance of the federal funds
rate accounted for by the monetary policy shock after six months negligible, our results

somewhat surprisingly suggest that it is of great importance also at longer horizons.

the variances of the Student’s ¢ structural shocks are set at the posterior means of A;/ (\; —2) for

ie{l,...n}.
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Table 1: Forecast error variance decomposition of the monetary policy

shock in Uhlig’s (2005) model.

Horizon (months)

Variable 1 2 6 12 24 36

Real GDP 0.004 0.005 0.005 0.029 0.063 0.080
GDP Deflator 0.000 0.000 0.002 0.003 0.005 0.006
Commondity Price Index 0.211 0.052 0.038 0.077 0.257 0.375
Total Reserves 0.008 0.021 0.106 0.174 0.209 0.194
Nonborrowed Reserves 0.029 0.062 0.124 0.165 0.192 0.189
Federal Funds Rate 0.998 0.977 0.863 0.691 0.496 0.451

The figures are the proportions of the forecast error variance at each horizon accounted

for by the monetary policy shock based on the modes of the impulse responses.

5.2 Multiple Economic Shocks

In this section, we demonstrate how the validity of sign restrictions can be checked in the
case of multiple identified shocks. We revisit Peersman’s (2005) structural VAR model
for the U.S. economy. The model has four variables: the first difference of log oil price
(Aoil;), output growth (Ag;), consumer inflation (Ap;), and the three-month nominal
interest rate (s;). The data are quarterly, and the sample period is 1980:Q1—2002:Q2ﬁ
We follow Peersman (2005) and estimate a VAR(3) model with a linear trend and a
constant.

Peersman (2005) identified four shocks that have the effects with signs given in Ta-
ble 2l For instance, following a contractionary monetary policy shock that has a non-
negative effect on the interest rate, there is no increase in prices, in accordance with
Uhlig’s (2005) identification in Section Collecting the variables in the vector y, =
(Aoily;, Agy, Apy, 5)', the R matrices embodying the sign restrictions identifying the oil

price, supply and demand shocks in @ can be written as

1 0 00 -1 0 00
01 0 O
0-100 0 -1 0 0
Ry = ,Ro=100-1 0| and Ry =
0 010 0 0 —-10
00 0-1
0 0 01 0 0 0 1

6The data were downloaded from the Journal of Applied Econometrics Data Archive at: http://qed.

econ.queensu.ca/jae/2005-v20.2/peersman/.
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respectively, while the matrix R3 corresponding to the demand shock is a 4 x 4 identity
matrix. Peersman (2005) set the time period over which the restrictions are binding four
quarters (¢ = 4) for output and consumer prices, while he only restricted the contem-
poraneous response of the oil price and the nominal interest rate (¢ = 0). However, we
restrict only the impact effects (i.e., the case of ¢ = 0), and in line with Peersman (2005),

find that the value of ¢ has little inﬂuence.m

Table 2: Sign restrictions for the four

shocks in Peersman’s (2005) model.

Shock oily gt Pt St
Oil price + - + +
Supply T+ = =
Demand + + + +
Monetary policy — — — -+

The + and — signs indicate that the
effect can be nonnegative or nonpositive,
respectively, while the 7 sign stands for an

unspecified effect.

As the first step, we assess the plausibility of each of the shocks separately. The sums
of the posterior probabilities of the oil price, supply, demand and monetary policy shocks
equal 0.56, 0.19, 0.53 and 0.01, respectively. As these can be interpreted as the posterior
probabilities of each set of sign restrictions related to one shock, we conclude that the
data lend support to the first three shocks, while the monetary policy shock is “rejected”.

The sum of the probabilities in @ for the remaining three shocks turns out to be 0.08,
indicating that there is some, but not very strong support in favor the sign restrictions
identifying them. We find two potential labelings of the shocks with nonnegligible poste-
rior probabilities @, 0.05 and 0.03, and both identify the same shocks as the oil price and
supply shocks, while the demand shock is different in each case. The impulse response
functions in Figure [2| and the forecast error decompositions in Table [3| are based on the
former labeling. There we call the remaining shock the monetary policy shock, but given

the results above, its effects should be interpreted with caution.

"The results based on Peersman’s (2005) identification are not reported to save space, but they are

available upon request.
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Given the small posterior probability, 0.05, of the identification of the three shocks,
it is of interest to check the identification of the oil price and supply shocks only. The
probability of their being identified (i.e., the sum of the probabilities ({8]) of any two shocks
satisfying the related sign restrictions) equals 0.27, and the probability of the particular
labeling found above is 0.26, with all other combinations taking negligible probabilities.
Hence, there is relatively strong evidence in favor of the identification of at least these
two shocks.

The modes of the impulse responses to unit shocks along with their 68% credible
sets are depicted in Figure . The effects of the oil price shock (with the strongest
identification) satisfy Peersman’s (2005) restrictions. There is also posterior evidence in
favor or the effect of this shock on oil prices and consumer inflation, as the 68% credible
sets of the associated responses do not include the zero line. Unfortunately, the rest of the
responses are a posteriori insignificant. The oil price response to the supply shock that
Peersman (2005) left unrestricted turns out slightly negative, and its output response is
positive in line with his restrictions. However, the modes of the responses of prices and
the interest rate to the supply shock are of the wrong sign, as are most of the responses
to the other two shocks.

The very wide credible sets of the impulse responses compared to Peersman’s (2005)
results probably in part reflect the fact that we are reporting the 68% joint credible sets,
while he reported the corresponding pointwise error bands of each individual impulse
response function. The latter are likely to undermine the true uncertainty, as pointed out
by Inoue and Kilian (2013)@ Furthermore, while Peersman’s (2005) results are strongly
driven by the prior restrictions imposed on the structural parameters, our results are
based solely on the data, and are also therefore likely to be wider. Nevertheless, our
credible sets have the advantage that they, at least in principle, facilitate learning about
the structural parameters from the data.

Insignificance of the impulse responses highlights the importance of our assessment

procedure, as obviously mere visual inspection of the impulse responses would not be

8We also checked the results using the likelihood preserving normalization rule of Waggoner and Zha
(2003) for the signs of the columns of B. The conclusion that most of the responses are a posteriori
insignificant remains intact irrespective of the normalization rule used. It is also worth noting that the
probabilities concerning the identification of the shocks are practically the same for the normalization

rules used in this paper.
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Figure 2: Impulse responses of the four shocks. The black lines depict the modes of the

responses, and the shaded areas are the 68% joint regions of high posterior density.

helpful in labeling the shocks. The overall conclusion from the results of this procedure
and the impulse responses seems to be that only the oil price shock can be safely be
considered identified.

In Table 3| we report the contributions of the oil price shock to the forecast error
variance of the different variables at selected horizons. They are based on the modes
of the impulse responses. Not surprisingly, the oil price shock accounts for the bulk of

the forecast error variance of oil price at all horizons, and it is also important for prices.
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In contrast, its importance for output and interest rate is relatively minor, with the
other shocks accounting for the majority of the forecast error variance, especially at short

horizons.

Table 3: Forecast error variance decomposition of the oil price

shock in Peersman’s (2005) model.

Horizon (quarters)

Variable 1 2 4 8 12 16

Oil Price 0.993 0.991 0.995 0.996 0.996 0.996
Output 0.004 0.012 0.038 0.162 0.224 0.248
Prices 0.390 0.478 0.503 0.496 0.482 0.467

Interest Rate 0.006 0.070 0.176 0.183 0.173 0.165

The figures are the proportions of the forecast error variance at each

horizon accounted for by the oil price shock based on the modes of the

impulse responses.

Our general conclusion is that all of Peersman’s (2005) sign restrictions are not sup-
ported by the data. While it seems that they quite succesfully identify the oil price shock
and potentially also the supply shock, the shocks labeled as the demand and monetary
policy shocks fail to accord with the data. Similar conclusion were reached by Herwartz
and Liitkepohl (2014), who analyzed these restrictions in the Markov-switching SVAR
model of Lanne et al. (2010). However, compared to that paper, our results are more
useful in that we were able to single out (in probability) the shocks that do conform with

the data.

6 Conclusion

We have introduced a new Bayesian procedure for checking sign restrictions in structural
VAR models. The procedure is based on the structural VAR model where, following
Lanne et al. (2005), non-Gaussian and mutually independent errors are assumed. Under
these assumptions, the structural shocks, and, hence, their impulse responses are (locally)
uniquely identified, which facilitates checking the validity of any set of sign restrictions
in a straightforward manner. Our contribution is twofold. First, we introduce a Bayesian

implementation of the SVAR model under the assumptions of Lanne et al. (2005). Second,
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and more importantly, we show how the plausibility of sign restrictions can be quantified,
and our methods can thus be seen as a formalization of the approaches proposed in the
previous statistical identification literature (see, in particular, Liitkepohl and Netsunajev
(2014)).

The impulse responses and forecast error variance decompositions of the economic
shocks that are found identified with high probability, can then be computed using any of
the conventional methods put forth in the literature. Having a uniquely identified SVAR
model brings about two great advantages. First, the computations are much simpler
than typically in the sign identifiication literature. Second, we avoid the so-called model
identification problem, which facilitates straightforward interpretation of forecast error
variance decompositions and reporting the results of impulse response analysis.

We illustrated the new methods by two empirical applications. We found support
for the sign restrictions employed by Uhlig (2005) to identify the monetary policy shock
in his U.S. data set. Moreover, while there was great uncertainty about the impact of
this shock on the real GDP, its effect was found negative after the first few quarters,
which is intuitively appealing. In Peersman’s (2005) U.S. macroeconomic model, we were
able to convincingly identify only two of the four shocks that he suggested to identify by
sign restrictions. Of these, the mode of the impulse responses of the oil price shock also
satisfied all the sign restrictions.

Our procedure could be extended to checking the validity of and discriminating be-
tween dynamic stochastic general equilibrium (DSGE) models. Recently, Canova and
Paustian (2011) suggested a two-step procedure where a set of robust (sign) restrictions
implied by a DSGE model (or multiple competitive DSGE models) is first imposed to
identify a SVAR model, and the plausibility of another set of restrictions is then checked
in this identified model. It is crucial that the first-step restrictions hold in the data,
and reliability of the procedure increases with the number of identified shocks in the first
step. Hence, our procedure could be employed to find the maximal set of robust restric-
tions. Furthemore, the probabilites of the second-step restrictions could subsequently be

computed conditional on the shocks identified in the first step.
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Appendix

In this appendix we provide a Metropolis-within-Gibbs algorithm for the estimation of
the posterior distribution of the parameters of the SVAR model given in .

Let us start by describing the conditional likelihood function. We assume that the ith
component (i € {1,...,n}) of the error ¢, follows Student’s ¢ distribution with \; degrees
of freedom. For computational convenience, we reparameterize ¢;; as h;tl/ 277it, where n;; is
a standard normal random variable, and A;h;; follows the chi-square distribution with \;
degrees of freedom. Then, ¢, = Ht_l/ 277::7 where 7, is a (n X 1) vector of standard normal

random variables, and H, = diag (hy, . .. hye). From , a change of variable yields
oL A
p(y|A,B,H) o |det (B7")] 1_[|Ht|1/2 exp —éz:u;B_l’HtB_lut : (A.1)
t=1 t=1

where A :[a,A’l, . ,Aﬁ,, H = diag (h11, .- hoty s hary o hor), wp =y —a— Ayyp—1 —
o — Ay, and y is a (T'n x 1) vector obtained by stacking y for t =1,...,T.

We operate on B~!, the inverse of B, and to facilitate unique identification, we make
two additional assumptions. First, we restrict the parameter space of B™' = (¢;;) such
that |cj;| > || for all ¢ > j. Second, we assume that the diagonal elements of B~*
are positive. In practice these conditions are imposed by multiplying the conditional
likelihood by an indicator function, which equals unity if B~! belongs to the defined
space, and zero otherwise. Notice that because the likelihood function (and therefore the
posterior) is invariant with respect to permutation of the rows of B! (columns of B), we
can reorder the columns of the restricted posterior B matrices produced by Markov chain
Monte Carlo simulation without changing the posterior model probabilities (see Geweke
(2006) for discussion).

A Gaussian prior distribution is assumed for vec(B™!) = b, b ~ N (b,V,), and we
simulate from the conditional posterior of B~! by an accept-reject Metropolis-Hastings
(ARMH) algorithm (see, for example, Chib and Greenberg (1995)). To obtain a good
proposal density for B!, we approximate the log conditional likelihood by the second

order Taylor expansion around some b:
logp(y |A,B,H) ~ logp (y ‘A, lN), H)
+(b-B)f-05(b-b) G (b-b),
where f and G are the gradient and the negative Hessian of the log conditional likelihood
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evaluated at B, respectively. Combining the above with the prior density yields
1 ~
logp (b|A, H,y) ~ —— [ (G+V;") b— 20’ (£+ Gb + V;'b) |,

which is a (log) kernel of a multivariate normal density. We construct the Taylor expansion
around the mode, b =b. At first, we make no additional assumptions concerning the
space of B!, and thus the (local) posterior mode can be quickly obtained by the Newton-
Raphson method, using explicit formulae for f and G, and the current draw of b as an
initial point (see, for example, Chan (2015))f]

If the resulting local mode does not satisfy the restrictions stated below the likeli-
hood function , we replace b and G (evaluated at B) with b = (I, ® DP)B and
G=(I,® (DP)_U) G (I, ® (DP)_l), respectively, where P is the permutation matrix
for which the matrix PB~1 = (¢ij) satisfies [¢j;| > [c;;] for all @ > j, and D is a diagonal
matrix with elements equal to either 1 of —1 that transforms the diagonal elements of
PB-1 positive.

Because the latter transformation may change the signs of the rows of E\—l, it may
result in a value of the proposal density which is virtually zero at the current draw of
b (causing the proposal, say b*, to be rejected). Therefore, to improve the performance

of the sampler, we use the following mixture of two multivariate normal densities as a

9For the derivation of the explicit formulae for f and G, it may be convenient to express the log

conditional likelihood as

logp (y ’A,Bil,H) x Tlog ’det (B*1)|

T
1
fivec(Bfl)’ <Z upuy @ Ht> vec (B71).

t=1

Then, it can be readily checked that

0 _
f = mlogp(y’A,B 17H)’b:t~)
= Tvec (B’ (Zutut@)Ht) vec (B 1)’
t=1
82 -1
G = - logp (y [A.B~", H) [,_5

Ovec(B~1)vec(B~1)
= TKnn B/ ® B (Z utut ® Ht> ,
2

where K, is a (n? x n?) commutation matrix (see, e.g., Liitkepohl (1996, p. 115)).
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proposal density in the ARMH algorithm:
1 ~ 1 —
a(b) = 5N (b ‘b,G) +5N(b[b,G).

In our pratical implementations of the algorithm, only a few draws from ¢ (b) are typically
required in the accept-reject (AR) steps. Furhermore, the Metropolis-Hastings (MH)
acceptance rates tend to vary between 0.85% and 0.99%. The reported results are based on
V! = cpl,2, where ¢, = 0, which results in an uninformative prior for B~ p (B™!) oc 1.
As a robustness check, we also considered some informative priors, and found no change
in the results.

As far as the full conditional posterior of A is concerned, it is easy to check that the

conditional likelihood (|A.1)) can also be expressed as
1
p(y|A.B,H) ocexp | =5 (y = Xvec (A)) Q (y — Xvee (A))|

where X is obtained by stacking (I, ® X;) for t =1,...,T, X; = (1,y£_1, o ,yft_p), and
Q= (Ir® B7')H (Ir ® B™'). Assuming a multivariate normal prior for vec (A) = a,
a~ N (a,V,), we then obtain

vec(A)|B,H,y ~N (Q,Va) ,

where V;l =V,'+X'QX, anda =V, (K;lg + X! Qy). The precision-based sampling
method of Chan and Jeliazkov (2009) can be used to simulate draws from N (5, Va)
efficiently. In this paper, we set a =0 and V, = 100002[pn2+n' However, we also checked
the results using some informative priors, including close variants of the prior proposed by
Baumeister and Hamilton (2015). The results remained intact irrespective of the priors
used.

We now turn to the sampling of the latent variables {hy, ... hnt}thl. The log condi-

tional likelihood is proportional to

T T
1
logp (v |A.B.H) o Y log|H["* — 2% w,B~"HB "u,
t=1

1

-+
I

] =

. .
Z log h;t/Q — 552Ht5t]
Li=1

- X
Z (108; h;t/Q - §hit€?t)] 3

Li=1

I
A

M=

i
I\
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where ¢, = By, and uy = yp — a — Ayyp—1 — - -+ — Ayyi—p. Recall that the (hierarchical)
prior of each A;h; is the chi-squared distribution with A; degrees of freedom. Then, by
multiplying p (y |A,B,H) by the product of the prior densities of hy for t € {1,...,T}
and 7 € {1,...,n} we obtain

p (h’lt ‘A7Ba )‘7 Y) X hgtAiil)/Q exXp {_ [)\z + 81215] hlt/Q} )

where A = (A1,...,A,). This implies that each hy (t € {1,...,T},i € {1,...,n}) can be

sampled from the chi-square distribution as follows:

[N +en] hi [AB, Ay ~x (A +1).

We assume an exponential prior distribution for each \;, A; ~ Exzp(});). From the
hierarchical prior density of hy (t € {1,...,T}) and the assumption \; ~ Exp(},), it

follows that the conditional posterior density of \; can be written as proportional to

p ()\i

T
{hit}tT:py) o[22 (\i/2)] A2 (H s 2)/2)
t=1
T
11
X €xXp [— <A_z + §;hit> )\z‘] )

It is the hierarchical prior structure in which each \; affects the data only through {hit}thl
that lies behind this result. Following Geweke (2005), we simulate from the conditional
posterior of the degree-of-freedom parameter ); using an independence-chain MH algo-
rithm. As a candidate distribution of \;, we use the univariate normal distribution with
mean equal to the mode of the log conditional posterior, and the precision parameter

equal to the negative of the second derivative of the log posterior density evaluated at the

mode.
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