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Abstract

A general dynamic panel data model is considered that incorporates individual and in-
teractive fixed effects allowing for contemporaneous correlation in model innovations. The
model accommodates general stationary or nonstationary long-range dependence through
interactive fixed effects and innovations, removing the necessity to perform a priori unit-
root or stationarity testing. Moreover, persistence in innovations and interactive fixed
effects allows for cointegration; innovations can also have vector-autoregressive dynamics;
deterministic trends can be featured. Estimations are performed using conditional-sum-
of-squares criteria based on projected series by which latent characteristics are proxied.
Resulting estimates are consistent and asymptotically normal at standard parametric
rates. A simulation study provides reliability on the estimation method. The method is
then applied to the long-run relationship between debt and GDP.
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1 Introduction

In economics, long-range dependence can arise due to aggregation. It is common practice to

assume that laws of motion of capital, consumption and borrowing rates follow an autoregres-

sive process in economic modelling under a heterogeneous-agents setting. However, economic

theories are described for a representative agent whose behaviour reflects the aggregation of

individual characteristics. Robinson (1978), Granger (1980) and Chambers (1998) show that

aggregating autoregressive models can lead to fractionally integrated models that have dramat-

ically different correlation structures for both dependent and independent individual series. On

the empirical side, Gil-Alaña and Robinson (1997) show that unemployment rate, CPI, indus-

trial production and money stock (M2) exhibit non-integer values of integration, and similar

conclusions arise for many financial series such as real exchange rates, equity and stock mar-

ket realized volatility, see e.g. Bollerslev et al. (2013). Furthermore, Michelacci and Zaffaroni

(2000) find that aggregate GDP shocks exhibit long memory and show that output convergence

to steady state is intertwined with this property. Recently, Pesaran and Chudik (2014) show

that aggregation of linear dynamic panel data models can lead to long memory and use this

property to investigate the source of persistence in aggregate inflation.

Based on the evidence in the literature that many economic and financial time series ex-

hibit fractional long-range dependence (possibly due to aggregation) and many macroeconomic

and financial indicators are presented in the form of panels, panel data models should also

account for such characteristics. To the best of our knowledge, only few papers study frac-

tional long-range dependence in panel data models. Hassler et al. (2011) propose a test for

memory in fractionally integrated panels. Robinson and Velasco (2015) employ different esti-

mation techniques to obtain efficient inference on the memory parameter in a fractional panel

setting with fixed effects. Extending the latter, Ergemen and Velasco (2015) incorporate cross-

section dependence and exogenous covariates to estimate slope and memory parameters in a

single-equation setting, which enables disclosing possible cointegrating relationships between

the unobserved independent idiosyncratic components.

In this paper, we consider a fractionally integrated panel data model with individual and

interactive fixed effects that allows for contemporaneous correlations between the innovations

of the panel dependent variable and covariates. The model nests stationary I(0) and nonsta-

tionary I(1) autoregressive panel data models that are extensively used in economic modelling,
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but unlike autoregressive ones, it has smoothness in the unit-root case (and elsewhere), thus

the parameter estimates and related test statistics have standard asymptotic distributions, see

also Robinson and Velasco (2015) for a discussion. The allowance for general long-range depen-

dence through model innovations and the common factor structure is mainly motivated by a

desire to avoid a priori unit-root or stationarity testing as is currently carried out in empirical

studies dealing with possibly nonstationary variables. Furthermore, parameter heterogeneity

is allowed in the model so that unit-specific inference can be obtained while latent individual

characteristics and possible interactions of the units are also taken into account through fixed

effects and common factor structures. Heterogeneity in the memory parameters allows for each

unit to exhibit different persistence characteristics. This contrasts with the standard approach

in the literature in that a nonstationary variable is assumed to be I(1) for all cross-section

units merely based on unit-root testing.

This paper contributes to the literature in many ways. First, unlike in Hassler et al.

(2011) and Robinson and Velasco (2015), we explicitly model cross-section dependence and

allow for cointegrating relationships in the unobserved components. However, under our setup,

there is no cointegration requirement for obtaining valid inference, which removes the necessity

of a priori cointegration testing as required by Robinson and Hualde (2003) and Hualde and

Robinson (2007). Second, unlike in Ergemen and Velasco (2015), we allow for contemporaneous

correlations in the idiosyncratic innovations, which calls for system estimation on the defactored

observed series. Allowing for endogeneity via the idiosyncratic innovations leads the model to

achieve wider empirical applicability, particularly in cases where endogeneity induced by the

unobserved common factor may not be the only source of contemporaneous correlation, e.g.

in the analysis of debt and GDP relationship in an economic union where feedback effects

between these indicators depend also on country-specific innovations, such as a change in

government spending. Third, our model can successfully address the cases in which a time

series cointegration approach would lead to invalid results. The observable series can display

the same memory level when the integration order of the common factors is greater than those

of the idiosyncratic innovations. Thus a pure time-series approach, which would automatically

incorporate a latent factor structure in the error term, may fail to detect possible cointegrating

relationships. In this case, possible cointegrating relationships can only be disclosed after the

factor structure is projected out, implying that accounting for individual unit characteristics

and cross-section interactions is essential in obtaining valid inference, as is the case under our
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setup.

The methodology that we develop in this paper can be used, for instance, as a country-

specific inference tool for analysis of economic unions. In our econometric framework, country-

specific characteristics are captured by individual and interactive fixed effects. To get hetero-

geneous inference in an economic union, we allow for long-range dependence in both idiosyn-

cratic innovations and the common factor structure capturing possible interactions between

countries, while letting the country-specific innovations be also contemporaneously correlated.

These properties in turn introduce the possibility of cointegrated system estimation in the

classical sense, by which an equilibrium analysis can be carried out in macroeconomic terms.

In the estimation of the slope and long-range dependence parameters, we use an equation-

by-equation conditional-sum-of-squares (CSS) approach, in a similar way to Hualde and Robin-

son (2007). The estimation procedure is based on the defactored variables obtained after pro-

jections on the sample means of fractionally differenced data, leading to GLS-type estimates

for slope parameters. The resulting individual slope and long-range dependence estimates are
√
T consistent with a centered asymptotic normal distribution, and the mean-group slope es-

timate is
√
n consistent and asymptotically normally distributed, irrespective of cointegrating

relationships, where n is the number of cross-section units and T is the length of time series.

We explore the small-sample behaviour of our estimates by means of Monte Carlo experiments

both when autocorrelations and/or endogeneity are absent and present, and find that the esti-

mates behave well even in relatively small panels. We then apply the method to the long-run

relationship between log-debt and log-GDP for 20 high-income OECD countries.

The remainder of the paper proceeds as follows. Next section presents the model and the

conditions imposed to study it. Section 3 details the estimation procedures for linear and

fractional integration parameters and contains the main results. Section 4 briefly discusses

the inclusion of deterministic trends. Section 5 presents a finite-sample study based on Monte

Carlo experiments, and Section 6 presents the empirical application. Section 7 contains the

final comments.

Throughout the paper, “(n, T )j” denotes joint asymptotics in which both the cross-section

size and time-series length are growing; “ →p ” denotes convergence in probability; “ →d ”

denotes convergence in distribution; and ‖A‖ = (trace(AA′))1/2. All mathematical proofs and

intermediate technical results are collected in an appendix at the end of the paper.
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2 Model

We consider the following triangular array describing a type-II fractionally integrated panel

data model of the observed series (yit, xit) :

yit = αi + β′i0xit + λ′ift + ∆−di0t ε1it, (1)

xit = µi + γ′ift + ∆−ϑi0t ε2it,

where the scalar yit and k × 1 vector of covariates xit are observable with idiosyncratic inno-

vations that have unknown true integration orders di0 and ϑi0, respectively, for i = 1, . . . , n

and t = 1, . . . , T. All idiosyncratic components of xit have the same integration order ϑi0. In

this model, imposing βi0 6= 0 for identification, yit is treated as the dependent variable while

xit consists of possibly endogenous control, or explanatory, variables. In practice the choice of

which variable to call the dependent variable is generally made based on the specific empirical

target pursued, and in this regression-based framework a dependent variable is selected that

ensures βi0 6= 0. Furthermore in (1), ft is the m × 1 vector of unobserved common factors

that may be integrated of a common unknown order δ, i.e. ft ∼ I(δ), and m × 1 vector λi

and m× k matrix γi contain the corresponding factor loadings. This multi-factor structure is

in line with the factor structure used by Pesaran (2006) and generalizes the model for use in

practice. Throughout the paper, the subscript at the fractional differencing operator attached

to a vector or scalar εit (i.e. a type-II process) has the meaning

∆−dt εit = ∆−dεit1(t > 0) =
t−1∑
j=0

πj(−d)εit−j, πj(−d) =
Γ(j + d)

Γ(j + 1)Γ(d)
, (2)

where 1(·) is the indicator function, and Γ(·) denotes the gamma function such that Γ(d) =∞

for d = 0,−1,−2, . . . , but Γ(0)/Γ(0) = 1. With the prime denoting transposition, εit =

(ε1it, ε
′
2it)
′ is a covariance stationary process, allowing for Cov(ε1it, ε2it) 6= 0, whose short-

memory vector-autoregressive (VAR) dynamics are described by

B(L; θi)εit ≡

(
Ik+1 −

p∑
j=1

Bj(θi)L
j

)
εit = vit, (3)

where L is the lag operator, θi the short-memory parameters, Ik+1 the (k+1)× (k+1) identity

matrix, Bj the (k + 1) × (k + 1) upper-triangular matrices, and vit is a (k + 1) × 1 sequence
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that is identically and independently distributed across i and t with zero mean and variance-

covariance matrix Ωi > 0. The arrays {αi, i ≥ 1} and {µi, i ≥ 1} are unobserved individual

fixed effects; {ft, t > 0} is the I(δ) vector of unobserved common factors that induces cross-

section dependence and possibly further endogeneity in the system; {λi, i ≥ 1} and {γi, i ≥ 1}

are vectors and matrices of unobserved factor loadings indicating how much each cross-section

unit is affected by ft.

Set

ϑmax = max
i
ϑi0 and dmax = max

i
di0,

and let d∗ be a prewhitening parameter that is chosen by the econometrician. Also denote the

lower bounds of the allowed range of ϑi0 and di0 by ϑ and d, respectively. Then we introduce

the following conditions to analyze the system in (1).

Assumption 1 (Long-range dependence and common-factor structure). Persistence

and cross-section dependence are introduced according to the following:

1. The fractional integration parameters, with true values ϑi0 6= di0, satisfy max{ϑmax,

dmax, δ} − min{ϑ, d} < 1/2, and either max{ϑmax, dmax, δ} < 5/4 with d∗ = 1, or

d∗ > max{ϑmax, dmax, δ} − 1/4.

2. The common factor vector satisfies ft = αf + ∆−δt zft , where zft =
∑∞

k=0 Ψf
kε
f
t−k with∑∞

k=0 k
∥∥∥Ψf

k

∥∥∥ <∞, and εft ∼ iid(0,Σf ), E
∥∥∥εft ∥∥∥4 <∞.

3. ft and ε·it are independent, and independent of factor loadings λi and γi for all i and t.

4. Factor loadings λi and γi are independent across i, and rank(C) = m ≤ k + 1 where

C =

(
γβ + λ̄ γ̄

)

with γ̄ = n−1
∑n

i=1 γi, λ̄ = n−1
∑n

i=1 λi and γβ = n−1
∑n

i=1 γiβi.

Assumption 1.1 is a fairly general version of the assumptions used by e.g. Hualde and

Robinson (2011) and Nielsen (2014), additionally ensuring that the projection errors asymp-

totically vanish with the prescribed choice of d∗. To simplify the presentation, we consider a

large enough d∗ prescribed in Assumption 1.1 without singling out a fixed value although for
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most applications d∗ = 1 would suffice anticipating ϑi0, δ, di0 < 5/4. The requirement on the

lower bounds of the allowed range of memory values is necessary to ensure consistency of the

parameter estimates while not being too restrictive since they can move to contain the true

memory values in a radius of 1/2. This further implies that ϑi0 − di0 < 1/2, i.e. at most weak

fractional cointegration. That ϑi0 6= di0 is required to circumvent perfect collinearity in the

regression equation is not restrictive because the methodology still allows for the observable

series to have the same integration orders when δ > ϑi0, di0.

Assumption 1.2 allows for long-range dependence in the common factors that may also have

short-memory dynamics, where the I(0) innovations of ft are not collinear. The restriction on

the number of factors can be explained as follows: in general, if there are k covariates, the

maximum number of factors that can be featured is k + 1 so that the factor space can be

spanned when the number of factors m ≤ k + 1. The non-zero mean possibility in common

factors, i.e. when αf 6= 0, allows for a drift.

Assumptions 1.3 and 1.4 are standard in the factor models literature and have been used by

e.g. Pesaran (2006) and Bai (2009). The full rank condition on the factor loadings matrix sim-

plifies the identification of factors with no loss of generality requiring that there be sufficiently

many covariates whose sample averages can span the factor space.

Assumption 2 (System errors). In the representation

B(L; θi)εit ≡

(
Ik+1 −

p∑
j=1

Bj(θi)L
j

)
εit = vit,

1. Bj(·) are upper-triangular matrices that satisfy
∑∞

j=1 j ‖Bj‖ < ∞, det {B(s; θi)} 6= 0,

|s| = 1 for θi ∈ Θ;

2. the vit are identically and independently distributed vectors across i and t with zero mean

and positive-definite covariance matrix Ωi, and have bounded fourth-order moments.

Assumption 2.1 rules out possible collinearity in the innovations imposing a standard

summability requirement and ensures well-defined functional behaviour at zero frequency, al-

lowing for invertibility. The upper-triangularity assumption on the short-memory matrices,

Bj, implies that yit depends on yit−1, xit, yit−2, xit−1, . . . while each component of xit depends

only on its past values. This condition permits the use of univariate nonlinear optimizations,

which introduces a great deal of parsimony further developing the triangular structure of the
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system, and it is in line with the long-run VAR restriction of Blanchard and Quah (1989) and

the short-run VAR restriction of Sims (1987). In practice, the choice of a dependent variable

should be made accordingly.

The moment requirement in Assumption 2.2 is very standard and in general easily satisfied

under Gaussianity. The iid requirement therein may be relaxed to martingale difference inno-

vations whose conditional and unconditional third and fourth order moments are equal, which

indicates iid behaviour up to fourth moments.

3 Parameter Estimation

3.1 Prewhitening and Projection of the Common Factor Structure

In a standard way, we first-difference (1) to remove the fixed effects,

∆yit = β′i0∆xit + λ′i∆ft + ∆1−di0
t ε1it, (4)

∆xit = γ′i∆ft + ∆1−ϑi0
t ε2it,

for i = 1, . . . , n and t = 2, . . . , T. After this transformation, it becomes clear that there is

a mismatch between the sample available and the lengths of the fractional filters ∆1−di0
t and

∆1−ϑi0
t , which involve ε1i1 and ε2i1, i.e. the initial conditions, while in practice only the filter

∆t−1 can be used. We argue that initial conditions in the idiosyncratic innovations are negligible

since the second-order bias caused by initial conditions asymptotically vanishes in time-series

length under a heterogeneous setup; see Ergemen and Velasco (2015).

The first-differenced model in (4) can be prewhitened from idiosyncratic long-range depen-

dence for some fixed exogenous differencing choice, d∗ as prescribed in Assumption 1.1, using

which all variables become asymptotically stationary with their sample means converging to

population limits.

Let us introduce the notation ait(τ) = ∆τ−1
t−1 ∆ait for any τ. Then the prewhitened model is

given by

yit(d
∗) = β′i0xit(d

∗) + λ′ift(d
∗) + ε1it(d

∗ − di0), (5)

xit(d
∗) = γ′ift(d

∗) + ε2it(d
∗ − ϑi0).
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Thus, using the notation zit(τ1, τ2) = (yit(τ1), x
′
it(τ2))

′ , (5) can be written in the vectorized

form as

zit(d
∗, d∗) = ζβ′i0xit(d

∗) + Λ′ift(d
∗) + εit (d∗ − di0, d∗ − ϑi0) , (6)

where ζ = (1, 0, . . . , 0)′, and Λi = (λi γi).

The structure Λ′ift(d
∗) in (6) induces cross-section correlation between units i through

ft(d
∗). The common factors may also be allowed to feature breaks both at levels and in per-

sistence under higher order assumptions, which we do not explore in this paper. Several

techniques for eliminating or estimating I(0) common-factor structures have been proposed

in the literature. Pesaran (2006) suggests using cross-section averages of the observed series

as proxies to asymptotically replace the common factor structure. A different version of this

procedure has been recently adopted in case of persistent common factors by Ergemen and

Velasco (2015). There has also been some focus on estimating the factor loadings and common

factors up to a rotation, in I(0) or I(1) cases, which enables their use as plug-in estimates. The

well-known principal components (PC) approach has been greatly extended in factor analysis

by e.g. Bai and Ng (2002) and Bai and Ng (2013). While factor structure estimates, obtained

by principal components analysis, can be used as plug-in estimates thus allowing for the ex-

ploitation of more information in forecasting studies, they cause size distortions leading to lower

finite-sample performance in testing as pointed out by Pesaran (2006). Moreover, PC estima-

tion of factors with fractional long-range dependence has not been explored in the literature

yet. Bearing in mind this fact, we project out the common factor structure using the cross-

section averages of prewhitened data, by which the projection errors vanish asymptotically in

cross-section size.

The estimation methodology is primarily based on proxying the latent common factor

structure using projections. To give the details about projection, let us denote z̄t(d
∗, d∗) =

n−1
∑n

i=1 zit(d
∗, d∗) to write (6) in cross-section averages as

z̄t(d
∗, d∗) = ζβ′0xt(d

∗) + Λ̄′ft(d
∗) + ε̄t (d∗ − d0, d∗ − ϑ0) , (7)

where ε̄t (d∗ − d0, d∗ − ϑ0) is Op(n
−1/2) for large enough d∗. Thus, z̄t(d

∗, d∗) and ζβ′0xt(d
∗)

asymptotically capture all the information provided by the common factor provided that Λ̄
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is full rank. Note that x̄t(d
∗) is readily contained in z̄t(d

∗, d∗) and the βi0 do not have any

contribution in terms of dynamics in ζβ′0xt(d
∗) since they are fixed for each i. This is why,

z̄t(d
∗, d∗) alone can span the factor space.

Let us write the time-stacked observed series as xi(d
∗) = (xi2(d

∗), . . . , xiT (d∗))′ and zi(d
∗, d∗) =

(zi2(d
∗, d∗), . . . , ziT (d∗, d∗))′ for i = 1, . . . , n. Then, for each i = 1, . . . , n,

zi(d
∗, d∗) = xi(d

∗)βi0ζ
′ + F(d∗)Λi + Ei (d

∗ − di0, d∗ − ϑi0) , (8)

where Ei (d
∗ − di0, d∗ − ϑi0) = (εi2 (d∗ − di0, d∗ − ϑi0, ) , . . . , εiT (d∗ − di0, d∗ − ϑi0))′ and

F(d∗) = (f2(d
∗), . . . , fT (d∗))′ .

The common factor structure, for T1 = T −1, can asymptotically be removed by the T1×T1

projection matrix

M̄T1(d
∗) = IT1 − z̄(d∗, d∗)(z̄′(d∗, d∗)z̄(d∗, d∗))−z̄′(d∗, d∗), (9)

where z̄(d∗, d∗) = n−1
∑n

i=1 zi(d
∗, d∗), and P− denotes the generalized inverse of a matrix P.

When the projection matrix is built with the original (possibly nonstationary) series, it is

impossible to ensure the asymptotic replacement of the latent factor structure by cross-section

averages because the noise in (6) may be too persistent when d∗ = 0. On the other hand, using

some d∗ > max{ϑmax, dmax, δ} − 1/4 for prewhitening guarantees that the projection errors

vanish asymptotically.

Introduce the infeasible projection matrix based on unobserved factors,

MF (d∗) = IT1 − F(d∗)(F(d∗)′F(d∗))−F(d∗)′.

Then adopting Pesaran (2006)’s argument under the rank conditions in Assumption 1.2 and

1.4, we have as (n, T )j →∞ that

M̄T1(d
∗)F(d∗) ≈MF (d∗)F(d∗) = 0, (10)

implying that both projection matrices can be employed interchangeably for factor removal in

the asymptotics provided that the rank condition holds.
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Based on (8) and using (10), the defactored observed series for each i = 1, . . . , n,

z̃i(d
∗, d∗) ≈ x̃i(d

∗)βi0ζ
′ + Ẽi (d

∗ − di0, d∗ − ϑi0) , (11)

where z̃i(d
∗, d∗) = M̄T1(d

∗)zi(d
∗, d∗), x̃i(d

∗) = M̄T1(d
∗)xi(d

∗) and Ẽi(d
∗) = M̄T1(d

∗)Ei(d
∗).

The projection error given in (10) is of order Op

(
n−1 + (nT )−1/2

)
as shown in Appendix A.1.

3.2 Estimation of Linear Model Parameters

Writing (11) for i = 1, . . . , n, and t = 2, . . . , T we now integrate the defactored series back

by d∗ to their original integration orders, disregarding the projection errors that are negligible

under Assumption 1.1 as n→∞, see Ergemen and Velasco (2015), to perform estimations as

z̃∗it(di, ϑi) = ζβ′i0x̃
∗
it(di) + ε̃∗it (di − di0, ϑi − ϑi0) , (12)

where the first and second equations of (12) are obtained, respectively, by

ỹ∗it(di) = ∆di−d∗
t−1 ỹit(d

∗) and x̃∗it(ϑi) = ∆ϑi−d∗
t−1 x̃it(d

∗),

where we omit the dependence on d∗ in the notation and assume away the initial conditions.

To explicitly show the short-memory dynamics in the model based on (3), (12) can be

written as

z̃∗it(di, ϑi)−
p∑
j=1

Bj(θi)z̃
∗
it−j(di, ϑi) (13)

= ζβ′i0x̃
∗
it(di)−

p∑
j=1

Bj(θi)ζβ
′
i0x̃
∗
it−j(di) + ṽ∗it (di − di0, ϑi − ϑi0) ,

whose second equation, noting that z̃∗it(di, ϑi) = (ỹ∗it(di), x̃
∗
it(ϑi)

′)′, is

x̃∗it(ϑi)−
p∑
j=1

B2j(θi)z̃
∗
it−j(di, ϑi) = −

p∑
j=1

B2j(θi)ζβ
′
i0x̃
∗
it−j(di) + ṽ∗2it (ϑi − ϑi0) (14)

and the first equation can be organized to account for the contemporaneous correlation if we
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write ỹ∗it(di)− ρ′ix̃∗it(ϑi) as

ỹ∗it(di) =β′i0x̃
∗
it(di) + ρ′ix̃

∗
it(ϑi) +

p∑
j=1

(B1j(θi)− ρ′iB2j(θi)) z̃
∗
it−j(di, ϑi) (15)

−
p∑
j=1

(B1j(θi)− ρ′iB2j(θi)) ζβ
′
i0x̃
∗
it−j(di) + ṽ∗1it (di − di0)− ρ′iṽ∗2it (ϑi − ϑi0)

with B1j denoting the first row of Bj constituting the 1× (k + 1) vector and B2j denoting the

remaining k × (k + 1) matrix that correspond to the first and second equations of z̃∗it(di, ϑi),

respectively, and ρi = E[ṽ∗2itṽ
∗
2it
′]−1E[ṽ∗2itṽ

∗
1it].

Under (15), cointegration (i.e. when ϑi0 > di0) is useful in the estimation of βi0 since

the signal that can be extracted from x̃∗it(di) is stronger than that from x̃∗it(ϑi). However,

identification of βi0 is still possible in a setting in which di0 > ϑi0 since the error term in

(15) is orthogonal to ṽ∗2it(·) given that vit are identically and independently distributed so that

ṽ∗1it (·)− ρ′iṽ∗2it (·) is uncorrelated with ṽ∗2it(·). The only exclusion we have to impose is ϑi0 6= di0

because when ϑi0 = di0, this leads to collinearity in (15) thus rendering the identification of βi0

and ρi impossible. The case in which di0 > ϑi0 is evidently more relevant when the interest is

in the estimation of contemporaneous correlations between series more than in the estimation

of slope parameters. While the triangular array structure of the system readily leads to the

identification of βi0 and ρi so long as ϑi0 6= di0, some Bkj may still be left unidentified. In

that case, imposing an upper-triangular structure in Bj(·) to further develop the triangular

structure of the system leads to identification of Bkj.

The case in which ρi ≡ 0, corresponding to exogenous regressors, has been developed by

Ergemen and Velasco (2015), where estimation is carried out for the parameters only in the

first equation and ϑi are treated as nuisance parameters. In the present paper, while the main

parameter of interest is still βi0, we can also obtain the estimates of di0, ϑi0, ρi and Bj(θi).

In this paper, short-memory dynamics are not our main concern so we treat Bj(·) as nui-

sance parameters. First, we use a q × [2k(p + 1) + p] restriction matrix Q that is I2k(p+1)+p

when there are no prior zero restrictions on Bj, and a q < 2k(p+ 1) + p matrix with prior zero

restrictions that is obtained by dropping rows of Q corresponding to restrictions, which may

improve efficiency by eliminating some lagged values of the series. Then, write (15) as

ỹ∗it(di) = ω′iQZ̃
∗
it(di, ϑi) + ṽ∗1it (di − di0)− ρ′iṽ∗2it (ϑi − ϑi0) (16)
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with

Z̃∗it(di, ϑi) =
(
x̃∗it
′(di), x̃

∗
it
′(ϑi), ũ

∗′
it−1(di, ϑi), . . . , ũ

∗′
it−p(di, ϑi)

)′
,

ũ∗it−k(di, ϑi) =
(
x̃∗it−k

′(di), x̃
∗
it−k

′(ϑi), ỹ
∗
it−k(di)

)′
, k = 1, . . . , p,

and ωi being the vector of coefficients that are functions of βi, ρi and B·j(θi) whose least-squares

estimate is given by

ω̂i(τ1, τ2) := Mi(τ1, τ2)
−1mi(τ1, τ2) (17)

with

Mi(τ1, τ2) = Q
1

T

T∑
t=p+1

Z̃∗it(τ1, τ2)Z̃
∗′
it (τ1, τ2)Q

′ and mi(τ1, τ2) = Q
1

T

T∑
t=p+1

Z̃∗it(τ1, τ2)ỹ
∗
it(τ1)

where (τ1, τ2) denotes the infeasible cases of (di0, ϑi0), (d̂i, ϑi0), (di0, ϑ̂i) and the feasible case of

(d̂i, ϑ̂i).

In most empirical work, the main parameter of interest is βi0, for which the estimate can

simply be obtained from (17) as

β̂i(τ1, τ2) = ψ′βω̂i(τ1, τ2), ψβ =

 k−many︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0

′ . (18)

While β̂i in (18) is less efficient than the Gaussian maximum likelihood estimate in the VAR

εit case, it is computationally much simpler in practice. Ergemen and Velasco (2015) discuss

the case in which β̂i is efficient when Cov(ε1it, ε2it) = 0.

When the interest is in the estimation of contemporaneous correlation between the idiosyn-

cratic innovations, the vector ψ can be adjusted accordingly so that

ρ̂i(τ1, τ2) = ψ′ρω̂i(τ1, τ2), ψρ =

 k−many︷ ︸︸ ︷
0, . . . , 0,

k−many︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0

′ .
Short-memory matrices Bj(θi) and, in case of knowledge on the mappings Bj(·), thereof

short-memory parameters can be estimated similarly taking e.g. ψθ =

0, . . . , 0︸ ︷︷ ︸
2k−many

, 1, . . . , 1

′ .
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Finally, in case of interest, fixed effects αi and µi in (1) can also be consistently estimated

after estimating other model parameters and applying proper whitening to the time-varying

model components. We do not explore this further in this paper since first differencing as part

of our methodology removes fixed effects with the advantage of not requiring any restrictions

on them.

3.3 Estimation of Long-Range Dependence Parameters

For the estimation of long memory or fractional integration parameters, we only consider

the empirically relevant case of unknown di0 and ϑi0. Estimation of long-range dependence

parameters in the panel data context is a relatively new topic. Robinson and Velasco (2015)

propose several techniques for estimating a pooled fractional integration parameter under a

fractional panel setting with no covariates or cross-section dependence. Extending their study,

Ergemen and Velasco (2015) propose fractional panel data models with fixed effects and cross-

section dependence in which the long-range dependence parameter is estimated, also when

their general model features exogenous covariates, in first differences.

In order to estimate both long-range dependence parameters under our setup, we use an

equation-by-equation CSS approach. First, we estimate the second equation of (13). Assuming

an upper-triangular structure for Bj(θi) in (3), we write (14) as

x̃∗it(ϑi)− φ′iRX̃∗it(ϑi) = ṽ∗2it(ϑi − ϑi0)

with

X̃∗it(ϑi) =
(
x̃∗′it−1(ϑi), . . . , x̃

∗′
it−p(ϑi)

)′
,

the r × kp matrix R = Ikp for r = kp, but for r < kp, R is obtained by dropping rows from

Ikp, and φi collecting the B22j that are nonzero a priori. Then an estimate of φi,

φ̂i(ϑ) := Gi(ϑ)−1gi(ϑ) (19)
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where

Gi(·) = R
1

T

T∑
t=p+1

X̃∗it(·)X̃∗′it (·)R′ and gi(·) = R
1

T

T∑
t=p+1

X̃∗it(·)x̃∗′it(·).

Having obtained (19), ϑi0 can be estimated, from any of the k equations of xit since the

model assumes a common ϑi0 for all components of xit, based on the criterion whose multivari-

ate version is given by

ϑ̂i = arg min
ϑ∈V

T∑
t=p+1

{
x̃∗it(ϑ)− φ̂i(ϑ)′RX̃∗it(ϑ)

}′ {
x̃∗it(ϑ)− φ̂i(ϑ)′RX̃∗it(ϑ)

}
,

with V = [ϑ, ϑ̄]k ⊂
(
0, 3

2

)k
.

Then di0 can be estimated from (16) by

d̂i = arg min
d∈D

T∑
t=p+1

{
ỹ∗it(d)− ω̂i(d, ϑ̂i)′QZ̃∗it(d, ϑ̂i)

}2

,

with D = [d, d̄] ⊂
(
0, 3

2

)
.

The lower-bound restrictions on the sets V and D, i.e. d, ϑ > 0, ensure that the initial-

condition terms are asymptotically negligible because they are of size Op(T
−d) and Op(T

−ϑ).

The upper-bound restrictions are a consequence of the first-differencing transformation, which

is mirrored by working with d∗ ≥ 1.

The estimates ϑ̂i and d̂i are not efficient since they are not jointly estimated. To update

the estimates to efficiency, a single Newton step may be taken from these
√
T -consistent initial

estimates, τ̂i = (d̂i, ϑ̂i), as

τi = τ̂i −H−1T (τ̂i)hT (τ̂i), (20)

where

HT (τ) =
1

T

T∑
t=1

(
∂ ˆ̃v∗it(τ)

∂τ ′

)′(
1

T

T∑
t=1

ˆ̃v∗it(τ)ˆ̃v∗it(τ)′

)−1
∂ ˆ̃v∗it(τ)

∂τ ′
,
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and

hT (τ) =
1

T

T∑
t=1

(
∂ ˆ̃v∗it(τ)

∂τ ′

)′(
1

T

T∑
t=1

ˆ̃v∗it(τ)ˆ̃v∗it(τ)′

)−1
ˆ̃v∗it(τ)

with

ˆ̃v∗it(d̂i, ϑ̂i) = z̃∗it(d̂i, ϑ̂i)−
p∑
j=1

B̂j(θi)z̃
∗
it−j(d̂i, ϑ̂i)− ζβ̂′i(d̂i, ϑ̂i)x̃∗it(d̂i)−

p∑
j=1

B̂j(θi)ζβ̂
′
i(d̂i, ϑ̂i)x̃

∗
it−j(d̂i).

3.4 Asymptotic Results for Slope and Long-Range Dependence Pa-

rameters

Under our setup, the common-factor structure that accounts for cross-sectional dependence

is projected out, and this adds the extra complexity of dealing with projection errors. In a

pure time-series context, Hualde and Robinson (2007) derive joint asymptotics for memory and

slope parameters without accounting for individual or interactive characteristics of the series.

Although the results by Hualde and Robinson (2007) are similar to ours, showing our results

relies heavily on the projection algebra due to the allowance of cross-section dependence.

The next theorem presents the consistency of slope and long-range dependence parameter

estimates that are mainly of interest in structural estimation.

Theorem 1. Under Assumptions 1-3, as (n, T )j →∞,


β̂i(d̂i, ϑ̂i)− βi0

d̂i − di0

ϑ̂i − ϑi0

→p 0.

This result does not require a rate condition on n and T so long as they jointly grow in

the asymptotics, and it can be readily extended to include other model parameters. This

contrasts with the results derived by Robinson and Velasco (2015), where only T is required

to grow and n can be fixed or increasing in the asymptotics. An increasing T is needed therein

since it yields the asymptotics, as is needed here, but projection on cross-section averages for

factor structure removal further requires that n grow because the projection errors are of size

Op

(
n−1 + (nT )−1/2

)
as shown in Appendix A.1.
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Next, we show the joint asymptotic distribution of the parameters, where a rate condition

on n and T is imposed to remove the projection error.

Theorem 2. Under Assumptions 1-3, and if
√
T/n→ 0 as (n, T )j →∞,

√
T


β̂i(d̂i, ϑ̂i)− βi0

d̂i − di0

ϑ̂i − ϑi0

→d N (0, AiBiA
′
i) .

The variance-covariance matrix AiBiA
′
i has a highly involved analytic expression, but def-

initions of the estimates Âi and B̂i, thus forming the positive semi-definite covariance matrix

estimate ÂiB̂iÂ
′
i, are provided in Appendix A.4.

This joint estimation result differs from the one by Robinson and Hualde (2003) but is sim-

ilar to that by Hualde and Robinson (2007) in that there can at most be weak cointegration

under our setup. Removal of common factors that allow for cross-section dependence brings the

extra condition that Tn−2 → 0 along with more involved derivations, leading to substantially

different proofs from those only outlined in Hualde and Robinson (2007). Under lack of au-

tocorrelation and endogeneity induced by the idiosyncratic innovations, Ergemen and Velasco

(2015) establish the
√
T -convergence rate in the joint estimation of both slope and fractional

integration parameters under weak cointegration, with which our results are also parallel.

3.5 Common Correlated Mean-Group Slope Estimate

In many empirical applications, there is also an interest in obtaining inference on the panel

rather than individual series alone. Given the linearity of the model in βi, we consider the

common-correlation mean-group estimate,

β̂CCMG

(
d̂, ϑ̂

)
:=

1

n

n∑
i=1

β̂i

(
d̂i, ϑ̂i

)
(21)

where bold denotes the parameter vectors.

This estimate is essentially a GLS mean-group estimate based on the average of individual

feasible slope estimates. For the asymptotic analysis of the mean-group estimate, it is standard
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to use a random coefficients model as in

βi = β0 + wi, wi ∼ iid (0,Ωw) ,

with wi independent of all other model variables.

For the analysis of the mean-group estimate, we introduce the following extra condition.

Assumption 3 (Rank condition). Based on the time-stacked version of the vector of ob-

servables Z̃∗it, Z̃
∗
i , the following conditions are satisfied:

1. T−1Z̃
∗
i Z̃
∗′
i is full rank;

2.
(
T−1Z̃

∗
i Z̃
∗′
i

)−1
has finite second order moments.

Assumption 3.1 is a regularity condition ensuring the existence of the least-square estimate

in (17) and thus of the slope estimate in (18) while Assumption 3.2 is used in the derivation

of asymptotic results of the common-correlation mean group estimate defined in (21). These

conditions are also used by Pesaran (2006), but based on stationary I(0) variables.

We finally establish the asymptotic behaviour of the common correlated mean-group slope

estimate in the next theorem.

Theorem 3. Under Assumptions 1-3, as (n, T )j →∞,

√
n
(
β̂CCMG

(
d̂, ϑ̂

)
− β0

)
→d N (0,Ωw) .

This theorem extends the results by Pesaran (2006) and Kapetanios et al. (2011) on I(0) and

I(1) variables, where this GLS-type estimate now converges at the
√
n rate without requiring

any restrictions on the relative growth of n to T. The asymptotic variance-covariance matrix,

Ωw, can be estimated nonparametrically based on the GLS slope estimates by

Ω̂w

(
d̂, ϑ̂

)
=

1

n− 1

n∑
i=1

(
β̂i

(
d̂i, ϑ̂i

)
− β̂CCMG

(
d̂, ϑ̂

))(
β̂i

(
d̂i, ϑ̂i

)
− β̂CCMG

(
d̂, ϑ̂

))′
since variability only depends on the heterogeneity of the βi.
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4 Deterministic Trends

While our model in (1) can accommodate both deterministic and stochastic unobserved trends

via the common factor vector ft, this imposes that the trending behaviour be shared by some

cross-section units, in particular by those with nonzero factor loadings. This then indicates

that among those cross-section units sharing the same trend, the difference is only up to a

constant, based on the elements of λi and γi. To relax such a restriction and allow for separate

time trends, we extend the model in (1) as

yit = αi + α1
i q(t) + β′i0xit + λ′ift + ∆−di0t ε1it, (22)

xit = µi + µ1
i r(t) + γ′ift + ∆−ϑi0t ε2it,

where now q(t) and r(t) are known time trends.

The case in which q(t) and r(t) in (22) are linear, possibly with drifts, can be studied

in second differences, at whose first and second differences the time trends are reduced to

constants and removed, respectively. Alternatively, projections can be carried out in first

differences using an augmented version of the projection matrix described in (9) to include

ones at its first column, which then mirrors fixed-effects estimation in first differences. In both

of these approaches, possibly with additional rate restrictions on n and T, asymptotics remain

the same: although the series may be overdifferenced in the beginning, they are integrated back

by the order of their initial differencing orders after projections to their original integration

orders, e.g. for double differencing, as in

∆d−2
t−1∆2yit ≈ ∆d

t−1yit and ∆ϑ−2
t−1 ∆2xit ≈ ∆ϑ

t−1xit.

In cases of (possibly fractional) nonlinearity in q(t) and r(t), such as t2, t3, log t and ∆−ϕ1

with ϕ > 1/2, removal or estimation of trends become more complicated as opposed to the

linear case. When the orders of trend polynomials are known, the first column of the projection

matrix in (9) can be augmented accordingly to remove the trending behaviour. Even when q(t)

and r(t) are functional trends of known orders, such projection matrix augmentation may prove

useful. However, when the orders of trend polynomials are unknown, removal of trends based

on projection is not straightforward, though some nonparametric GLS detrending approach

might be used. This case is beyond the scope of the present paper and is not further explored.
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Furthermore, structural breaks can be featured in the common factors under additional

assumptions that control the size of F(d∗)′F(d∗)/T . Such common breaks could be dealt with

by projections and the asymptotic results would not change. Additionally, local or global

breaks in trends with stationary or nonstationary errors can be studied cf. Perron and Zhu

(2005), but under more restrictive assumptions, which we do not explore in this paper.

5 Simulations

In this section, we investigate the finite-sample behaviour of our estimates, β̂i(di0, ϑi0), d̂i,

ϑ̂i and β̂i(d̂i, ϑ̂i), by means of Monte Carlo experiments, considering a scalar yit and xit for

simplicity. While we estimate the parameters for each i separately, we can only report the

average characteristics. We draw the mean zero Gaussian idiosyncratic innovations vector vit

with covariance matrix

Ω =

a11 a12

a21 a22

 ,

where we allow for variations in the signal-to-noise ratio, τ = a22/a11, and the correlation

ρ = a12/(a11a22)
1/2. We take a11 = 1 with no loss of generality, and introduce the short-memory

dynamics taking Bj(θi) = diag {θ1i, θ2i} to generate εit.

We draw the factor loadings as U(−0.5, 1), and then generate serially correlated common

factors based on iid innovations drawn as standard normal. The fixed effects are left unspecified

since projections and estimations are carried out in first differences. Considering different

cross-section sizes and time-series lengths, we fix the parameter values ϑ = 0.75, 1, 1.25, d =

0.5, 0.75, 1, covering both cointegration and noncointegration cases, and θ1 = θ2 = 0, 0.5 with

ρ = 0, 0.5 for δ = 0.4, 1. For this study, we fix βi0, τ, d
∗ = 1. Simulations are carried out via

1,000 replications.

For n = 10 and T = 50, Tables 1 and 2 present the bias and RMSE profiles of our

estimates for θ1 = θ2 = ρ = 0 and θ1 = θ2 = ρ = 0.5, respectively. Both the feasible and

infeasible versions of β̂MG have considerably small biases under absence of autocorrelation and

endogeneity, with the biases further decreasing in ϑ although their magnitudes increase in δ

since increasing δ introduces further noise for the estimation. In the second setup, where both

endogeneity and autocorrelation are present, biases of all parameter estimates show an increase
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in magnitude due to the simultaneous equation bias stemming from prevalent contemporaneous

correlations. Biases of slope estimates are decreasing in the order of cointegration, i.e. ϑ− d.

The fractional parameter estimate ϑ̂ remains robust in terms of bias for a given ϑ, and the

estimate d̂ has a bias generally decreasing in d.

In terms of performance, slope estimates behave well both under absence and presence of

autocorrelation and endogeneity, in most cases standard deviations dominating biases in terms

of contribution to root mean square errors (RMSE). The fractional parameter estimates ϑ̂ and

d̂ also perform well.

In order to investigate the contributions of endogeneity and short-memory dynamics sepa-

rately, we next consider θ1 = θ2 = 0 with ρ = 0.5 as well as θ1 = θ2 = 0.5 with ρ = 0. Table

3 presents the case of endogeneity without short-memory dynamics. Compared to the results

in Table 1, slope estimates mainly suffer from the simultaneous equation bias caused by ρ 6= 0

while the performance of fractional integration parameters are slightly ameliorated. When au-

tocorrelation is introduced instead of endogeneity in Table 4, slope estimates perform similarly

to the results in Table 1. The performance of fractional parameter estimates ϑ̂ and d̂, how-

ever, are slightly worsened compared to the results in Table 1. A further comparison between

Tables 2 and 3 reveals that under endogeneity, short-memory dynamics help both the feasible

and infeasible slope estimates in terms of performance in some cases which we conjecture to

be due to the availability of lagged-variable instrumentation. Introducing endogeneity when

short-memory dynamics are already present improves the performance of fractional integration

parameter estimates to some extent as can be concluded from the comparison of Tables 2 and

4.

We also explore the behaviour of the estimates under autocorrelation and endogeneity

taking n = 20 and T = 54, which matches the sample size of the panel data set used in the

empirical application in Section 6, as well as n = 50 and T = 100, which is generically used

in simulation designs in panel data literature. These results are reported in Tables 5 and 6,

respectively. In both cases, bias profiles of the estimates generally improve with the long-range

dependence parameters being estimated with much less bias. The performance of the estimates

is ameliorated compared to the results in Table 2 as a reflection of the increase in the sample

size.

Finally, in Figure 1, we show that heterogeneous slope estimates individually behave quite

well taking ϑi0 = 1, di0 = 1, δ = 1, θ1 = θ2 = 0.5, ρi = 0.5 under the sample size n = 20 and
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T = 54, which is used in the empirical application presented in the next section. Also for

different parameter values, the behaviour of heterogeneous slope parameters are similar so we

do not report extensive results due to space considerations.

6 An Analysis of the Long-Run GDP and Debt Rela-

tionship

In structural estimation, using comparable level data, such as GDP and debt, leads to easy-

to-interpret results. An additional advantage of using such level data is that the estimation

results have clear interpretations. With this in mind, in this empirical application we study

the long-run relationship between real GDP and debt in logs, whose persistence characteristics

we expect to be similar.

There is a vast literature on the nature of the relationship between GDP and debt studying

whether it is just correlation between the series or there is causality from one to the other. As

one recent reference, Panizza and Presbitero (2014) show that there is a negative correlation

between GDP growth and public debt but there is no causal relationship between the two

in OECD countries. On the other hand, Puente-Avojin and Sanso-Navarro (2015) present

evidence for causality from debt to GDP, GDP to debt or in both directions for some of the

OECD countries. While it would certainly be interesting to delve more into the question

of whether or not there is causality between these indicators, in this empirical application

we will only focus on cointegration between GDP and debt, which suits our methodology.

Also following the literature, we treat log-GDP as the dependent variable and log-debt as the

endogenous explanatory variable.

In the analysis, we use post-war yearly data on debt-to-GDP ratios from Reinhart’s database

and real GDP data from Angus Maddison’s website spanning the time period 1955-2008 for

20 high-income OECD countries: Australia, Austria, Belgium, Canada, Denmark, Finland,

France, Germany, Greece, Ireland, Italy, Japan, Netherlands, New Zealand, Norway, Portugal,

Spain, Sweden, United Kingdom and United States. To construct the debt data, we use the

PPP-based GDP data for the sample period.

We find that both real GDP and debt levels exhibit different cross-section mean and volatil-

ity characteristics, which we take into account so that valid comparisons can be made. We
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plot log-GDP and log-debt in Figures 2 and 3, respectively. For both series, there is a clear

trending behaviour, leading us to think that they are both nonstationary series. To verify this,

we carry out memory estimations based on a parametric conditional-sum-of-squares criterion

used in Ergemen and Velasco (2015)’s basic model, and report the results in Table 7. The

estimation results show that log-GDP and log-debt are integrated of an order around unity,

which is in line with the literature in that they are treated as I(1) variables.

Furthermore, we note that in the analysis of log-GDP and log-debt, our method can nest

two unobserved common factors that on average capture other relevant indicators for the study.

Allowance for these common factors can be considered a more flexible way of modelling the

relationship between log-GDP and log-debt as opposed to adding separate observable series, e.g.

inflation as in Chudik et al. (2013). Having allowed for persistence in the common factors, we

can estimate the maximum integration order of the two. The maximum memory of the common

factors of log-GDP and log-debt, which is estimated based on the cross-section averages of

the time-stacked series, is found to be of order 1.0079 indicating that removing the common

factors is essential for disclosing possible cointegrating relationships. To justify this, we provide

benchmark estimation results based on the pure time-series estimation approach, which can

contain the factor structure only in the error term, by Hualde and Robinson (2007) assuming

a VAR(1) structure. Along this line, we are interested in identifying nontrivial cointegrating

relationships: such relationships between log-GDP and log-debt exist if a) estimated slope

coefficients are significantly different from zero; b) estimated integration orders of debt in

log-levels are significantly larger than those of the estimation residuals, i.e. ϑ̂i > d̂i. These

benchmark estimation results are collected in Table 8.

According to the results in Table 8, parameter estimates are significant for all countries

except Australia and Canada, with mixed signs. From these results, it is further indicated

that log-GDP and log-debt do not have a cointegrating relationship for any of the countries,

which can be simply checked by means of a t−test constructed as t = (ϑ̂i − d̂i)/s.e.(ϑ̂i − d̂i)

in the direction ϑ̂i > d̂i. This result can be explained as follows. A time-series regression

conceptually omits the common-factor structure accounting for cross-section dependence and

when the common factor is the main source of persistence, the resulting regression residuals turn

out to be persistent thus hindering the identification of a possible cointegrating relationship.

Now, estimating our model in (22), we check the long-run relationship between log-GDP

and log-debt, again assuming a VAR(1) structure. These estimation results are reported in
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Table 9.

A positive (or negative) slope estimate indicates that a unit-percent change in debt leads

to an increase (decrease) in real GDP by β̂i%. According to the estimation results in Table

9, we find that log-GDP and log-debt have a significant relationship for all countries except

New Zealand and the United States. The significant effect of debt on GDP is positive for

Belgium, Canada, Finland, France, Germany, Ireland, Japan, Spain and Sweden, and it is

negative and significant for the remaining countries. While a negative and significant effect of

debt on real GDP is generally reported in the literature, see Elmendorf and Mankiw (1999),

Reinhart and Rogoff (2010) and Chudik et al. (2013), a positive effect can be, for example,

due to the debt increasing because of government spending while also fuelling real GDP, see

DeLong and Summers (2012).

The relationship between real GDP and debt does not have a cointegration nature for

Australia, Belgium, Canada, Finland, Netherlands, Norway and the United Kingdom, which

suggests that the significant interplay between the variables has a short-term nature. On

the other hand, we find a cointegrating relationship between real GDP and debt for Austria,

Denmark, France, Germany, Greece, Ireland, Italy, Japan, Portugal, Spain and Sweden. While

it cannot exactly be claimed that real GDP and debt have a long-term equilibrium relationship

in the strict macroeconomic terms when ϑi0 − di0 > 1/2, there still is a clear co-movement

between these indicators.

A further comparison between the estimation results in Tables 8 and 9 shows the reversal

of the slope estimates for several countries. This can be explained by the fact that the results

in Table 8 are obtained under a time-series setup that neglects country-specific heterogeneity

(institutions, geographical location, etc.) as well as cross-country dependence (OECD mem-

bership, high income, etc.) whereas the results in Table 9 are obtained incorporating those.

To conclude, using our methodology we find that real GDP and debt have a cointegrat-

ing relationship for several high-income OECD countries while the impact can be positive or

negative across countries. These cointegration findings contrast well to the benchmark esti-

mation results in Table 8 where we could not find any cointegration due to the negligence of

individual country characteristics and cross-country dependence. That is to say, if heterogene-

ity and interdependencies across countries are not taken into account in analyses of economic

organizations or unions, as in a pure time-series estimation, identifying the true nature of the

relationships between these variables will not be possible.
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7 Final Comments

We have considered a fractionally integrated panel data system with individual stochastic com-

ponents and cross-section dependence, which allows for a cointegrated system analysis in the

defactored observed series. Although the present paper is quite general in that it incorporates

long-range dependence and short-memory dynamics with the allowance of deterministic time

trends, it nevertheless can be extended nontrivially in the following directions. The parametric

factor structure inducing cross-section dependence in our model may be assumed to have been

approximated by weak factors thus capturing spatial dependence in the idiosyncratic innova-

tions; see Chudik et al. (2011). While this is a theoretical possibility in (1) with additional

conditions on the common factor vector, ft, we do not analyze spatial dependence explicitly,

only allow for contemporaneous correlations in the innovations to partially account for it.

Parametric modelling of spatial dependence, see e.g. Pesaran and Tosetti (2011), may provide

further insights. Moreover, the multiple regression framework can be extended to allow for xit

whose elements display different degrees of persistence. The treatment of unit-varying persis-

tence is likely to complicate the uniformity arguments shown in this paper. This extension,

however, may allow for the identification of multiple cointegrating relationships. Finally, the

fractionally integrated latent factor structure may be estimated and those estimates may be

used as plug-in estimates in drawing inference on other model parameters, thus allowing the

model to be used in forecasting studies. PC estimation of fractionally integrated factor models

is yet to be explored in the literature.

A Technical Appendix

A.1 Proof of Theorem 1

Projections are carried out based on (9). Denoting z̄(d∗, d∗) ≡ z̄(d∗), let us write

x′i(d
∗)M̄T1(d

∗)F(d∗) = x′i(d
∗)IT1F(d∗)− x′i(d

∗)z̄(d∗)(z̄′(d∗)z̄(d∗))−z̄′(d∗)F(d∗), (23)

with

z̄(d∗) = F(d∗)C̄ + Ē (d∗ − d,d∗ − ϑ) (24)
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where bold indicates the vector of parameters with the critical parameter values being dmax

and ϑmax, and

C̄ =

(
γβ + λ̄ γ̄

)
and Ē (d∗ − d,d∗ − ϑ) = Ē (d∗ − d,d∗ − ϑ) + Ē2 (d∗ − ϑ) β̄ζ ′.

Suppressing the notation as Ē (d∗ − d,d∗ − ϑ) ≡ Ē , the elements of the second term on the

RHS of (23) can be expressed as

T−11 x′i(d
∗)z̄(d∗) = T−11 x′i(d

∗)F(d∗)C̄ + T−11 x′i(d
∗)Ē

T−11 z̄′(d∗)z̄(d∗) = T−11 C̄
′
F′(d∗)F(d∗)C̄ + T−11 C̄

′
F′(d∗)Ē + T−11 Ē ′F(d∗)C̄ + T−11 Ē ′Ē

T−11 z̄′(d∗)F(d∗) = T−11 C̄
′
F′(d∗)F(d∗) + T−11 Ē ′F(d∗).

By Assumption 2,

B(L; θi)εit ≡

(
Ik+1 −

p∑
j=1

Bj(θi)L
j

)
εit = vit,

with
∑∞

j=1 j ‖Bj‖ < K, where K is a positive constant. Thus, projections based on v̄t and ε̄t

incur errors of the same asymptotic size, and we will show the results in the simpler case to

motivate the main ideas.

By Lemma 1, as n→∞, the projection error, which is the sum of the terms containing Ē ,

is of size

Op

(
1

n
+

1√
nT

)
= op(1).

Then, by the idempotence of the projection matrix, this result implies that

x′i(d
∗)M̄T1(d

∗)F(d∗) = x′i(d
∗)MFF(d∗) +Op

(
1

n
+

1√
nT

)
, (25)

indicating that M̄T1 can replace MF as n → ∞, which is useful for the asymptotic analysis.

Furthermore,

T
1/2
1 x′i(d

∗)M̄T1(d
∗)F(d∗) = T

1/2
1 x′i(d

∗)MFF(d∗) +Op

(√
T

n

)
. (26)
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After prewhitening by d∗, the assumptions imposed by Robinson and Hidalgo (1997) are

satisfied so the case in which finite p 6= 0 can be established using their method with the only

difference being the details of our method’s projection algebra that we detail in the p = 0 case

to emphasize the contributions by using our method. Along this line, Ergemen and Velasco

(2015) show the asymptotic behaviour of their estimates when p 6= 0 so we do not repeat those

details in the proofs as they loom largely on this already lengthy paper.

Using the projection arguments above, we first show the consistency of β̂i(di0, ϑi0), taking

for simplicity p = 0 together with the notation d = di0 and ϑ = ϑi0, corresponding to the

unfeasible LS estimate with no short-memory dynamics. Then in (15), denoting
∑

t =
∑T

t=2,

β̂i(d, ϑ) =

∑
t x̃
∗
it(d)ỹ∗it(d)

∑
t x̃
∗
it(ϑ)′x̃∗it(ϑ)−

∑
t x̃
∗
it(ϑ)ỹ∗it(d)

∑
t x̃
∗
it(d)′x̃∗it(ϑ)∑

t x̃
∗
it(d)′x̃∗it(d)

∑
t x̃
∗
it(ϑ)′x̃∗it(ϑ)− (

∑
t x̃
∗
it(d)′x̃∗it(ϑ))

,

from which we can write

β̂i(d, ϑ)− βi0 =

∑
t x̃
∗
it(d)ṽ∗1.2it

∑
t x̃
∗
it(ϑ)′x̃∗it(ϑ)−

∑
t x̃
∗
it(ϑ)ṽ∗1.2it

∑
t x̃
∗
it(d)′x̃∗it(ϑ)∑

t x̃
∗
it(d)′x̃∗it(d)

∑
t x̃
∗
it(ϑ)′x̃∗it(ϑ)− (

∑
t x̃
∗
it(d)′x̃∗it(ϑ))

, (27)

where ṽ∗1.2it = ṽ∗1it − ρ′iṽ
∗
2it. Now noting that Cov (ṽ∗2it, ṽ

∗
1.2it) ≡ 0, and using the projection

arguments above,

β̂i(d, ϑ)− βi0 = Op

(
1√
T

+
1

n

)
= op(1).

We then show the consistency of ϑ̂i taking p = 0 because the proof follows exactly the same

steps for other p values. Write the time-stacked CSS as

Li,T (ϑ) =
1

T
x̃∗i (ϑ)′x̃∗i (ϑ). (28)

Now,

x̃∗i (ϑ) = ∆ϑ−d∗∆d∗−1∆x̃i,

where ∆d∗−1∆x̃i = ∆d∗−1∆xi − z̄(d∗)ς̂x with ς̂x = (z̄(d∗)′z̄(d∗))−1z̄(d∗)′∆d∗−1∆xi so that

∆ϑ−d∗∆d∗−1∆x̃i = ∆ϑ−1∆xi − z̄(ϑ)ς̂x.
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Next, to be able to make use of (25), let us write

∆ϑ−1∆x̃i = Ix + Jx

with

Ix = ∆ϑ−ϑi0v2i − F(ϑ) (F(d∗)′F(d∗))
−1

F′(d∗)∆d∗−ϑi0v2i,

Jx =
{

F(ϑ) (F(d∗)′F(d∗))
−1

F′(d∗)− z̄(ϑ)(z̄(d∗)′z̄(d∗))−1z̄′(d∗)
}

∆d∗−ϑi0v2i

where F(d∗) = (f2(d
∗), . . . , fT (d∗))′ . Then using the notation

Mf := Mf (ϑ) = F(ϑ) (F(d∗)′F(d∗))
−1

F′(d∗),

Mz := Mz(ϑ) = z̄(ϑ)(z̄(d∗)′z̄(d∗))−1z̄′(d∗),

we can write (28) as

1

T

{
∆ϑ−ϑi0v2i −Mf∆

d∗−ϑi0v2i + (Mf −Mz) ∆d∗−ϑi0v2i

}
×
{

∆ϑ−ϑi0v2i −Mf∆
d∗−ϑi0v2i + (Mf −Mz) ∆d∗−ϑi0v2i

}′
,

where it suffices to check only the squared terms since the cross terms are bounded from above

by the Cauchy-Schwarz inequality. The first squared term,

1

T
∆ϑ−ϑi0v′2i∆

ϑ−ϑi0v2i,

converges uniformly in ϑ to the variance of ∆ϑ−ϑi0v2i and is minimized for ϑ = ϑi0 as in the

proof of Theorem 3.3 of Robinson and Velasco (2015) and Theorem 1 of Ergemen and Velasco

(2015). To show that the second squared term is negligible, write

1

T
∆d∗−ϑi0v′2iM

′
fMf∆

d∗−ϑi0v2i
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where

M ′
fMf = F(d∗) (F(d∗)′F(d∗))

−1
F(ϑ)′F(ϑ) (F(d∗)′F(d∗))

−1
F(d∗)′ (29)

satisfying under Assumption 1 that

F(d∗)′F(d∗)

T
→p Σf > 0

sup
ϑ∈V

∣∣∣∣F(ϑ)′F(ϑ)

T

∣∣∣∣ = Op

(
1 + T 2(δ−ϑ)−1) = Op(1)

which is shown by Lemma 2. Now since, by Lemma 3,

∆d∗−ϑi0v′2iF(d∗)

T
= Op

(
T−1/2 + T ϑmax+δ−2d∗−1

)
= op(1),

and applying (29), we have that

sup
ϑ∈V

∣∣∣∣ 1

T
∆d∗−ϑv′2iM

′
fMf∆

d∗−ϑv2i

∣∣∣∣ = op(1).

The third squared term

sup
ϑ∈V

∣∣∣∣ 1

T
∆d∗−ϑv′2i (Mf −Mz)

′ (Mf −Mz) ∆d∗−ϑv2i

∣∣∣∣ = op(1)

because

F(d∗)′M ′
zMzF(d∗) = F(d∗)′z̄(d∗)(z̄(d∗)′z̄(d∗))−1z̄(ϑ)′z̄(ϑ)(z̄(d∗)′z̄(d∗))−1z̄(ϑ)′F(d∗)

for which it is shown in Lemma 4 that

sup
ϑ∈V

∣∣∣∣F(d∗)′M ′
zMzF(d∗)

T

∣∣∣∣ = Op

(
1

n
+

1√
nT

+
T 2(ϑmax−ϑ)−1
√
n

+
T ϑmax+δ−2ϑ−1

√
n

)
= op(1).

The proof of consistency for ϑ̂i is then complete.

The consistency of d̂i in the time-stacked CSS

d̂i = arg min
d∈D

1

T

(
ỹ∗i (d)− ω̂i(d, ϑ̂i)′QZ̃

∗
i (d, ϑ̂i)

)(
ỹ∗i (d)− ω̂i(d, ϑ̂i)′QZ̃

∗
i (d, ϑ̂i)

)′
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can be shown using exactly the same line of reasoning as above additionally incorporating the

estimation effects of ω̂i that are uniformly Op(T
−1/2) in d based on the arguments in Hualde

and Robinson (2007), and thus the proof is omitted.

Finally, establishing

β̂i(d̂i, ϑ̂i)− βi0 = op(1)

follows from the Mean Value Theorem writing

β̂i(τ̂)− βi0 = β̂i(τ̂)− β̂i(τ) + β̂i(τ)− βi0 with τ = (di0, ϑi0), (30)

where

β̂i(τ̂)− β̂i(τ) = op(1)

using that τ̂ − τ = Op

(
T−1/2

)
, which is stronger than the one used in Theorem 1 of Robinson

and Hualde (2003) cf. their Lemmas 4 and 5. �

A.2 Proof of Theorem 2

Asymptotic normality of the slope estimates can readily be established based on (30), (27) and

(26)

√
T
(
β̂i(d̂i, ϑ̂i)− βi0

)
= N(0,Σβ) +Op

(√
T

n

)

where Σβ is the variance-covariance matrix obtained from (27) in the usual way, and the Op

term on the RHS appears due to projection error, which is removed if
√
T/n→ 0 as n→∞.

Showing the asymptotic normality of ϑ̂i and d̂i follows the same steps, which is why we

only prove the result for ϑ̂i to focus on the main ideas. The
√
T−normalized score evaluated
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at the true value, ϑi0, is given by

√
T
∂Li,T (ϑ)

∂ϑ

∣∣∣∣
ϑ=ϑi0

=
2√
T

{
v2i −Mf,0∆

d∗−ϑi0
t v2i + (Mf,0 −Mz,0) ∆d∗−ϑi0

t v2i

}
×
{

(log ∆t) v2i − Ṁf,0∆
d∗−ϑi0
t v2i +

(
Ṁf,0 − Ṁz,0

)
∆d∗−ϑi0
t v2i

}′
where

Mf,0 := Mf (ϑi0) = F(ϑi0) (F(d∗)′F(d∗))
−1

F(d∗)′,

Mz,0 := Mz(ϑi0) = z̄(ϑi0)(z̄(d∗)′z̄(d∗))−1z̄(d∗)′,

Ṁf,0 := Ṁf (ϑi0) = Ḟ(ϑi0) (F(d∗)′F(d∗))
−1

F(d∗)′,

Ṁz,0 := Ṁz(ϑi0) = ˙̄z(ϑi0)(z̄(d∗)′z̄(d∗))−1z̄(d∗)′,

and Ḟ(ϑ) = (∂/∂ϑ) F(ϑ). Taking n = 1, as T →∞, the term

2√
T

v′2i [(log ∆t) v2i]→d N(0, 4σv2)

applying a central limit theorem for martingale difference sequences as shown by Robinson and

Velasco (2015).

Next, we show that the remaining terms are negligible. To do so, we only check the

dominating terms since the other terms containing d∗ have smaller sizes. The expression

2√
T

v′2iṀf,0∆
d∗−ϑi0
t v2i =

2√
T

v′2iḞ(ϑi0) (F(d∗)′F(d∗))
−1

F′(d∗)∆d∗−ϑi0
t v2i = op(1)

based on the results in Lemma 5.

The term dealing with the projection approximation,

2√
T

v′2i

(
Ṁf,0 − Ṁz,0

)
∆d∗−ϑi0
t v2i

can easily be shown as in Ergemen and Velasco (2015) to be op(1) following the same steps

described earlier. All other cross terms are negligible using similar arguments so the result

follows.

Finally, uniform convergence of the Hessian can be shown following the arguments in The-
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orem 2 of Hualde and Robinson (2011), and the proof is then complete. �

A.3 Proof of Theorem 3

The asymptotic behaviour of the mean-group slope estimate is readily shown in Pesaran (2006)

under the rank condition and the random coefficients model we described. The long-range

dependence parameter estimation effects are Op(T
−1/2), for which we need that T → ∞ (as

well as n → ∞ that yields the asymptotics), but no further condition on the relative growth

of n or T is needed. �

A.4 Covariance Matrix Estimate ÂiB̂iÂ
′
i

Definitions of the variance-covariance matrix components are comparable to those obtained by

Hualde and Robinson (2007). The main exception under our setup is that these matrices must

be constructed based on the projected series, which is clearly not a concern in the pure time

series setup of Hualde and Robinson (2007).

Denote M̂i ≡Mi(d̂i, ϑ̂i), ω̂i ≡ ω̂i(d̂i, ϑ̂i), Ĝi ≡ Gi(ϑ̂i), and φ̂i ≡ φ̂i(ϑ̂i). Then,

Âi =


â′i1 âi2 âi3

(0, . . . , 0)′ âi4 âi5

(0, . . . , 0)′ 0 âi6

 ,

with

â′i1 = (1, 0, . . . , 0)′M̂−1
i , âi2 = −(1, 0, . . . , 0)′ω̂iτ1 ŝ

−1
iτ1τ1

,

âi3 = (1, 0, . . . , 0)′ω̂iτ1 ŝ
−1
iτ1τ1

ŝiτ1τ2 ŝ
−1
iτ2τ2
− (1, 0, . . . , 0)′ω̂iτ2 ŝ

−1
iτ2τ2

,

âi4 = −ŝ−1iτ1τ1 , âi5 = ŝ−1iτ1τ1 ŝiτ1τ2 ŝ
−1
iτ2τ2

, âi6 = −ŝ−1iτ2τ2 ,
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where

ω̂iτ1 = M̂−1
i

(
m̂iτ1 − M̂−1

iτ1
ω̂i

)
, ω̂iτ2 = M̂−1

i

(
m̂iτ2 − M̂−1

iτ2
ω̂i

)
,

m̂iτ1 = Q
1

T

T∑
t=p+1

{
Z̃∗itτ1(d̂i)ỹ

∗
it(d̂i) + Z̃∗it(d̂i, ϑ̂i)ỹ

∗
itτ1

(d̂i)
}
,

M̂iτ1 = Q
1

T

T∑
t=p+1

{
Z̃∗itτ1(d̂i)Z̃

∗′
it (d̂i, ϑ̂i) + Z̃∗it(d̂i, ϑ̂i)Z̃

∗′
itτ1

(d̂i)
}
Q′,

m̂iτ2 = Q
1

T

T∑
t=p+1

Z̃∗itτ2(ϑ̂i)ỹ
∗
it(d̂i),

M̂iτ2 = Q
1

T

T∑
t=p+1

{
Z̃∗itτ2(ϑ̂i)Z̃

∗′
it (d̂i, ϑ̂i) + Z̃∗it(d̂i, ϑ̂i)Z̃

∗′
itτ2

(ϑ̂i)
}
Q′

with the parameter subscripts denoting the first partial derivative as in

ỹ∗itτ1(d̂i) = (log ∆)ỹ∗it(d̂i),

Z̃∗itτ1(d̂i) = (log ∆)
{
x̃∗it(d̂i)

′, 0, . . . , 0, x̃∗it−1(d̂i)
′, 0, . . . , 0, ỹ∗it−1(d̂i), . . . , x̃

∗
it−p(d̂i)

′, 0, . . . , 0, ỹ∗it−p(d̂i)
}′
,

Z̃∗itτ2(ϑ̂i) = (log ∆)
{

0, . . . , 0, x̃∗it(ϑ̂i)
′, 0, . . . , 0, x̃∗it−1(ϑ̂i)

′, 0, . . . , 0, . . . , 0, x̃∗it−p(ϑ̂i)
′, 0, . . . , 0,

}′
and also

ŝiτ1τ1 =
1

T

T∑
t=p+1

υ̂∗itτ1
2, ŝiτ1τ2 =

1

T

T∑
t=p+1

υ̂∗itτ1 υ̂
∗
itτ2
, ŝiτ2τ2 =

1

T

T∑
t=p+1

ŵ∗
′

itτ2
ŵ∗itτ2 ,

υ̂∗itτ1 = ỹ∗itτ1(d̂i)− ω̂
′
iτ1
QZ̃∗it(d̂i, ϑ̂i)− ω̂′iQZ̃∗itτ1(d̂i),

υ̂∗itτ2 = −ω̂′iτ2QZ̃
∗
it(d̂i, ϑ̂i)− ω̂′iQZ̃∗itτ2(ϑ̂i),

ŵ∗itτ2 = x̃∗itτ2(ϑ̂i)− φ̂
′
iτ2
RX̃∗it(ϑ̂i)− φ̂′iRX̃∗itτ2(ϑ̂i),

x̃∗itτ2(ϑ̂i) = (log ∆)x̃∗it(ϑ̂i), X̃∗itτ2(ϑ̂i) = (log ∆)X̃∗it(ϑ̂i),

φ̂iτ2 = Ĝ−1i

(
ĝiτ2 − Ĝiτ2φ̂i

)
,

ĝiτ2 = R
1

T

T∑
t=p+1

{
X̃∗itτ2(ϑ̂i)x̃

∗
it(ϑ̂i)

′ + X̃∗it(ϑ̂i)x̃
∗
itτ2

(ϑ̂i)
′
}
,

Ĝiτ2 = R
1

T

T∑
t=p+1

{
X̃∗itτ2(ϑ̂i)X̃

∗
it(ϑ̂i)

′ + X̃∗it(ϑ̂i)X̃
∗
itτ2

(ϑ̂i)
′
}
R′.
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Finally,

B̂i =
1

T

T∑
t=p+1


QZ̃∗it(d̂i, ϑ̂i)v̂

∗
1.2,it(d̂i, ϑ̂i)

v̂∗1.2,it(d̂i, ϑ̂i)υ̂
∗
itτ1

ŵ∗itτ2 v̂
∗
1.2,it(d̂i, ϑ̂i)



QZ̃∗it(d̂i, ϑ̂i)v̂

∗
1.2,it(d̂i, ϑ̂i)

v̂∗1.2,it(d̂i, ϑ̂i)υ̂
∗
itτ1

v̂∗2,it(ϑ̂i)
′ŵ∗itτ2


′

,

where

v̂∗1.2,it(d̂i, ϑ̂i) = v̂∗1it(d̂i)− ρ′iv̂∗2it(ϑ̂i),

v̂∗2it(ϑ̂i) = x̃∗it(ϑ̂i)− φ̂′iRX̃∗it(ϑ̂i).

B Lemmas

Lemma 1. For some d∗ > max{ϑmax, dmax, δ}− 1/4, following are the stochastic orders of the

projection components:

a.

T−11 Ē ′Ē = Op

(
1

n
+

1√
nT

)
,

b.

T−11 Ē ′F(d∗) = Op

(
1√
nT

)
,

c.

T−11 ε̄′2(d
∗ − ϑmax)Ē = Op

(
1

n
+

1√
nT

)
,

where Ē = (ε̄2, . . . , ε̄T )′ .

Proof of Lemma 1. A detailed proof for all three subparts is given in the proof of Theorem

1 by Ergemen and Velasco (2015).
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Lemma 2. Under Assumption 1,

sup
ϑ∈V

∣∣∣∣F(ϑ)′F(ϑ)

T

∣∣∣∣ = Op

(
1 + T 2(δ−ϑ)−1) = Op(1)

Proof of Lemma 2. The result follows from the arguments in the proofs of Theorems 4-6 by

Ergemen and Velasco (2015).

Lemma 3. Under Assumption 1,

∆d∗−ϑi0v′2iF(d∗)

T
= Op

(
T−1/2 + T ϑmax+δ−2d∗−1

)
= op(1),

Proof of Lemma 3. The result follows from the arguments in the proofs of Theorems 4-6 by

Ergemen and Velasco (2015).

Lemma 4. Under Assumption 1,

sup
ϑ∈V

∣∣∣∣F(d∗)′M ′
zMzF(d∗)

T

∣∣∣∣ = Op

(
1

n
+

1√
nT

+
T 2(ϑmax−ϑ)−1
√
n

+
T ϑmax+δ−2ϑ−1

√
n

)
= op(1).

Proof of Lemma 4. The result follows from the arguments in the proofs of Theorems 4-6 by

Ergemen and Velasco (2015).

Lemma 5. Under Assumption 1,

v′2iF(d∗)

T
= Op

(
T−1/2 + T δ−d

∗−1/2)
Ḟ(ϑi0)

′∆d∗−ϑi0v2i
T

= Op

(
T−1/2 + T δ−d

∗−1 log T
)
.

Proof of Lemma 5. The result follows from the arguments in the proof of Theorem 7 by

Ergemen and Velasco (2015).
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Table 1: Bias and RMSE Profiles with n = 10 and T = 50 (θ1 = θ2 = 0 and ρ = 0)

ϑ = 0.75 ϑ = 1 ϑ = 1.25

d = 0.5 d = 0.75 d = 1 d = 0.5 d = 0.75 d = 1 d = 0.5 d = 0.75 d = 1

δ = 0.4 :

Bias β̂MG(d, ϑ) -0.0015 -0.0016 -0.0015 -0.0007 -0.0011 -0.0015 0.0001 -0.0002 -0.0009

β̂MG(d̂, ϑ̂) -0.0017 -0.0018 -0.0016 -0.0007 -0.0012 -0.0016 0.0001 -0.0001 -0.0007

ϑ̂ 0.0194 0.0187 0.0160 -0.0072 -0.0070 -0.0075 -0.0056 -0.0055 -0.0056

d̂ 0.0052 -0.0092 -0.0201 0.0107 -0.0131 -0.0259 0.0222 -0.0188 -0.0375

RMSE β̂MG(d, ϑ) 0.0497 0.0526 0.0510 0.0421 0.0495 0.0527 0.0364 0.0408 0.0497

β̂MG(d̂, ϑ̂) 0.0496 0.0526 0.0511 0.0419 0.0493 0.0527 0.0350 0.0408 0.0495

ϑ̂ 0.0320 0.0316 0.0303 0.0256 0.0255 0.0257 0.0133 0.0131 0.0132

d̂ 0.0435 0.0435 0.0466 0.0489 0.0445 0.0495 0.0605 0.0483 0.0567
δ = 1 :

Bias β̂MG(d, ϑ) -0.0018 -0.0018 -0.0016 -0.0015 -0.0016 -0.0018 -0.0008 -0.0009 -0.0014

β̂MG(d̂, ϑ̂) -0.0020 -0.0019 -0.0017 -0.0018 -0.0018 -0.0019 -0.0008 -0.0009 -0.0014

ϑ̂ 0.0526 0.0519 0.0495 -0.0025 -0.0027 -0.0032 -0.0047 -0.0047 -0.0049

d̂ 0.0704 0.0184 -0.0118 0.0708 0.0133 -0.0177 0.0745 0.0062 -0.0285

RMSE β̂MG(d, ϑ) 0.0629 0.0547 0.0514 0.0536 0.0514 0.0530 0.0448 0.0427 0.0498

β̂MG(d̂, ϑ̂) 0.0570 0.0542 0.0515 0.0489 0.0510 0.0530 0.0400 0.0425 0.0496

ϑ̂ 0.0644 0.0638 0.0620 0.0249 0.0250 0.0253 0.0120 0.0120 0.0123

d̂ 0.0906 0.0487 0.0431 0.0921 0.0479 0.0455 0.0969 0.0485 0.0517
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Table 2: Bias and RMSE Profiles with n = 10 and T = 50 (θ1 = θ2 = 0.5 and ρ = 0.5)

ϑ = 0.75 ϑ = 1 ϑ = 1.25

d = 0.5 d = 0.75 d = 1 d = 0.5 d = 0.75 d = 1 d = 0.5 d = 0.75 d = 1

δ = 0.4 :

Bias β̂MG(d, ϑ) -0.0150 -0.0171 -0.0132 -0.0122 -0.0216 -0.0198 -0.0097 -0.0286 -0.0414

β̂MG(d̂, ϑ̂) -0.0088 -0.0168 -0.0239 -0.0071 -0.0137 -0.0193 -0.0086 -0.0215 -0.0320

ϑ̂ 0.0368 0.0364 0.0336 0.0234 0.0250 0.0252 -0.0004 -0.0003 -0.0002

d̂ -0.0016 -0.0189 -0.0407 -0.0009 -0.0203 -0.0430 -0.0077 -0.0243 -0.0464

RMSE β̂MG(d, ϑ) 0.0450 0.0486 0.0468 0.0379 0.0481 0.0505 0.0301 0.0462 0.0608

β̂MG(d̂, ϑ̂) 0.0440 0.0485 0.0513 0.0374 0.0455 0.0502 0.0308 0.0432 0.0550

ϑ̂ 0.0423 0.0420 0.0397 0.0290 0.0303 0.0307 0.0123 0.0124 0.0120

d̂ 0.0357 0.0408 0.0551 0.0349 0.0405 0.0564 0.0378 0.0414 0.0589
δ = 1 :

Bias β̂MG(d, ϑ) -0.0162 -0.0168 -0.0106 -0.0107 -0.0189 -0.0150 -0.0088 -0.0256 -0.0349

β̂MG(d̂, ϑ̂) -0.0138 -0.0166 -0.0215 -0.0122 -0.0131 -0.0149 -0.0132 -0.0218 -0.0273

ϑ̂ 0.0437 0.0432 0.0403 0.0246 0.0254 0.0248 -0.0003 -0.0003 -0.0003

d̂ 0.0277 -0.0072 -0.0336 0.0244 -0.0097 -0.0369 0.0149 -0.0143 -0.0405

RMSE β̂MG(d, ϑ) 0.0486 0.0482 0.0449 0.0414 0.0467 0.0474 0.0331 0.0445 0.0555

β̂MG(d̂, ϑ̂) 0.0473 0.0482 0.0492 0.0417 0.0452 0.0475 0.0353 0.0437 0.0514

ϑ̂ 0.0497 0.0493 0.0468 0.0300 0.0306 0.0303 0.0122 0.0121 0.0120

d̂ 0.0493 0.0373 0.0498 0.0465 0.0373 0.0520 0.0435 0.0374 0.0544
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Table 3: Bias and RMSE Profiles with n = 10 and T = 50 (θ1 = θ2 = 0 and ρ = 0.5)

ϑ = 0.75 ϑ = 1 ϑ = 1.25

d = 0.5 d = 0.75 d = 1 d = 0.5 d = 0.75 d = 1 d = 0.5 d = 0.75 d = 1

δ = 0.4 :

Bias β̂MG(d, ϑ) -0.0109 -0.0158 -0.0155 -0.0033 -0.0125 -0.0162 0.0008 -0.0092 -0.0187

β̂MG(d̂, ϑ̂) -0.0115 -0.0155 -0.0200 -0.0130 -0.0133 -0.0156 -0.0106 -0.0116 -0.0156

ϑ̂ 0.0202 0.0197 0.0165 -0.0072 -0.0070 -0.0073 -0.0061 -0.0058 -0.0056

d̂ 0.0211 0.0007 -0.0153 0.0267 -0.0019 -0.0195 0.0412 0.0016 -0.0202

RMSE β̂MG(d, ϑ) 0.0443 0.0477 0.0463 0.0381 0.0443 0.0481 0.0345 0.0369 0.0466

β̂MG(d̂, ϑ̂) 0.0449 0.0477 0.0485 0.0403 0.0450 0.0480 0.0345 0.0385 0.0458

ϑ̂ 0.0334 0.0332 0.0317 0.0248 0.0248 0.0251 0.0132 0.0129 0.0127

d̂ 0.0432 0.0369 0.0400 0.0479 0.0358 0.0410 0.0619 0.0350 0.0402
δ = 1 :

Bias β̂MG(d, ϑ) -0.0230 -0.0276 -0.0215 -0.0053 -0.0165 -0.0188 0.0006 -0.0098 -0.0189

β̂MG(d̂, ϑ̂) -0.0261 -0.0247 -0.0274 -0.0284 -0.0210 -0.0184 -0.0255 -0.0190 -0.0180

ϑ̂ 0.0540 0.0534 0.0505 -0.0021 -0.0021 -0.0025 -0.0052 -0.0051 -0.0050

d̂ 0.0917 0.0352 0.0014 0.0867 0.0267 -0.0085 0.0925 0.0275 -0.0093

RMSE β̂MG(d, ϑ) 0.0664 0.0567 0.0494 0.0541 0.0490 0.0494 0.0456 0.0407 0.0471

β̂MG(d̂, ϑ̂) 0.0593 0.0539 0.0526 0.0556 0.0505 0.0493 0.0468 0.0443 0.0472

ϑ̂ 0.0654 0.0649 0.0627 0.0240 0.0241 0.0243 0.0119 0.0119 0.0117

d̂ 0.1048 0.0538 0.0369 0.1003 0.0478 0.0373 0.1069 0.0478 0.0370
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Table 4: Bias and RMSE Profiles with n = 10 and T = 50 (θ1 = θ2 = 0.5 and ρ = 0)

ϑ = 0.75 ϑ = 1 ϑ = 1.25

d = 0.5 d = 0.75 d = 1 d = 0.5 d = 0.75 d = 1 d = 0.5 d = 0.75 d = 1

δ = 0.4 :

Bias β̂MG(d, ϑ) -0.0008 -0.0017 -0.0021 0.0001 -0.0004 -0.0014 0.0004 0.0003 -0.0002

β̂MG(d̂, ϑ̂) -0.0006 -0.0018 -0.0023 0.0004 -0.0001 -0.0013 0.0006 0.0005 0.0002

ϑ̂ 0.0347 0.0345 0.0321 0.0232 0.0242 0.0238 -0.0002 -0.0002 -0.0002

d̂ -0.0487 -0.0585 -0.0716 -0.0523 -0.0712 -0.0855 -0.0565 -0.0861 -0.1053

RMSE β̂MG(d, ϑ) 0.0586 0.0660 0.0641 0.0455 0.0585 0.0658 0.0333 0.0447 0.0587

β̂MG(d̂, ϑ̂) 0.0612 0.0702 0.0693 0.0473 0.0623 0.0720 0.0344 0.0474 0.0642

ϑ̂ 0.0403 0.0402 0.0382 0.0290 0.0299 0.0297 0.0115 0.0114 0.0117

d̂ 0.0659 0.0730 0.0838 0.0704 0.0840 0.0964 0.0757 0.0979 0.1152
δ = 1 :

Bias β̂MG(d, ϑ) -0.0010 -0.0018 -0.0023 -0.0003 -0.0009 -0.0018 0.0000 -0.0001 0.0007

β̂MG(d̂, ϑ̂) -0.0009 -0.0018 -0.0024 -0.0003 -0.0007 -0.0017 0.0002 0.0001 -0.0003

ϑ̂ 0.0420 0.0416 0.0390 0.0239 0.0243 0.0233 -0.0002 -0.0001 -0.0002

d̂ -0.0208 -0.0496 -0.0684 -0.0255 -0.0609 -0.0806 -0.0316 -0.0746 -0.0985

RMSE β̂MG(d, ϑ) 0.0657 0.0677 0.0651 0.0511 0.0596 0.0662 0.0373 0.0456 0.0585

β̂MG(d̂, ϑ̂) 0.0667 0.0714 0.0700 0.0518 0.0630 0.0718 0.0378 0.0479 0.0635

ϑ̂ 0.0479 0.0476 0.0453 0.0297 0.0301 0.0293 0.0115 0.0114 0.0117

d̂ 0.0523 0.0656 0.0807 0.0566 0.0756 0.0919 0.0618 0.0884 0.1089
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Table 5: Bias and RMSE Profiles with n = 20 and T = 54 (θ1 = θ2 = 0.5 and ρ = 0.5)

ϑ = 0.75 ϑ = 1 ϑ = 1.25

d = 0.5 d = 0.75 d = 1 d = 0.5 d = 0.75 d = 1 d = 0.5 d = 0.75 d = 1

δ = 0.4 :

Bias β̂MG(d, ϑ) -0.0150 -0.0168 -0.0133 -0.0122 -0.0210 -0.0196 -0.0101 -0.0275 -0.0399

β̂MG(d̂, ϑ̂) -0.0085 -0.0167 -0.0241 -0.0071 -0.0133 -0.0192 -0.0096 -0.0211 -0.0313

ϑ̂ 0.0394 0.0392 0.0366 0.0242 0.0255 0.0260 -0.0001 -0.0000 -0.0000

d̂ 0.0003 -0.0164 -0.0366 0.0010 -0.0175 -0.0390 -0.0049 -0.0213 -0.0421

RMSE β̂MG(d, ϑ) 0.0324 0.0347 0.0328 0.0277 0.0357 0.0369 0.0221 0.0373 0.0504

β̂MG(d̂, ϑ̂) 0.0309 0.0347 0.0385 0.0270 0.0326 0.0367 0.0230 0.0338 0.0440

ϑ̂ 0.0423 0.0421 0.0399 0.0268 0.0280 0.0285 0.0205 0.0207 0.0211

d̂ 0.0247 0.0293 0.0441 0.0254 0.0297 0.0462 0.0276 0.0316 0.0487
δ = 1 :

Bias β̂MG(d, ϑ) -0.0163 -0.0167 -0.0112 -0.0118 -0.0190 -0.0156 -0.0099 -0.0254 -0.0342

β̂MG(d̂, ϑ̂) -0.0129 -0.0167 -0.0225 -0.0122 -0.0132 -0.0157 -0.0138 -0.0216 -0.0270

ϑ̂ 0.0480 0.0477 0.0451 0.0252 0.0255 0.0249 -0.0000 -0.0000 -0.0000

d̂ 0.0265 -0.0065 -0.0307 0.0226 -0.0092 -0.0343 -0.0140 -0.0135 -0.0373

RMSE β̂MG(d, ϑ) 0.0350 0.0347 0.0313 0.0295 0.0347 0.0341 0.0239 0.0358 0.0451

β̂MG(d̂, ϑ̂) 0.0339 0.0348 0.0369 0.0308 0.0326 0.0342 0.0269 0.0342 0.0403

ϑ̂ 0.0518 0.0515 0.0493 0.0277 0.0279 0.0275 0.0213 0.0214 0.0217

d̂ 0.0405 0.0263 0.0396 0.0368 0.0268 0.0427 0.0328 0.0278 0.0449
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Table 6: Bias and RMSE Profiles with n = 50 and T = 100 (θ1 = θ2 = 0.5 and ρ = 0.5)

ϑ = 0.75 ϑ = 1 ϑ = 1.25

d = 0.5 d = 0.75 d = 1 d = 0.5 d = 0.75 d = 1 d = 0.5 d = 0.75 d = 1

δ = 0.4 :

Bias β̂MG(d, ϑ) -0.0094 -0.0112 -0.0094 -0.0060 -0.0127 -0.0128 -0.0036 -0.0150 -0.0259

β̂MG(d̂, ϑ̂) -0.0051 -0.0112 -0.0162 -0.0042 -0.0082 -0.0127 -0.0053 -0.0121 -0.0211

ϑ̂ 0.0267 0.0267 0.0254 0.0143 0.0153 0.0165 -0.0000 -0.0000 -0.0000

d̂ 0.0030 -0.0072 -0.0187 0.0062 -0.0077 -0.0201 0.0072 -0.0095 -0.0221

RMSE β̂MG(d, ϑ) 0.0160 0.0180 0.0167 0.0121 0.0182 0.0193 0.0087 0.0183 0.0295

β̂MG(d̂, ϑ̂) 0.0143 0.0180 0.0213 0.0118 0.0158 0.0192 0.0101 0.0165 0.0254

ϑ̂ 0.0277 0.0277 0.0265 0.0151 0.0160 0.0172 0.0110 0.0105 0.0112

d̂ 0.0113 0.0127 0.0215 0.0148 0.0128 0.0226 0.0189 0.0140 0.0243
δ = 1 :

Bias β̂MG(d, ϑ) -0.0093 -0.0111 -0.0082 -0.0051 -0.0115 -0.0105 -0.0034 -0.0143 -0.0225

β̂MG(d̂, ϑ̂) -0.0070 -0.0112 -0.0164 -0.0079 -0.0082 -0.0104 -0.0082 -0.0132 -0.0185

ϑ̂ 0.0408 0.0406 0.0391 0.0150 0.0149 0.0148 -0.0000 -0.0000 -0.0000

d̂ 0.0247 0.0003 -0.0143 0.0231 -0.0029 -0.0182 -0.0225 -0.0040 -0.0192

RMSE β̂MG(d, ϑ) 0.0170 0.0180 0.0157 0.0129 0.0175 0.0174 0.0195 0.0178 0.0262

β̂MG(d̂, ϑ̂) 0.0162 0.0180 0.0213 0.0151 0.0159 0.0174 0.0129 0.0175 0.0230

ϑ̂ 0.0439 0.0437 0.0424 0.0158 0.0157 0.0156 0.0113 0.0111 0.0119

d̂ 0.0310 0.0117 0.0180 0.0293 0.0115 0.0210 0.0302 0.0122 0.0219
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Table 7: Parametric CSS Estimates of the Integration Orders

Log(GDP) Log(Debt)

Australia 1.0101 0.9979
Austria 1.0128 1.0142
Belgium 1.0080 1.0059
Canada 1.0112 1.0034
Denmark 1.0093 1.0076
Finland 1.0111 1.0138
France 1.0098 1.0107
Germany 1.0101 1.0063
Greece 1.0169 1.0206
Ireland 1.0087 1.0106
Italy 1.0105 1.0106
Japan 1.0161 1.0156
Netherlands 1.0090 1.0039
New Zealand 1.0105 1.0026
Norway 1.0114 1.0097
Portugal 1.0130 1.0132
Spain 1.0139 1.0044
Sweden 1.0090 1.0090
UK 1.0049 0.9959
US 1.0058 1.0007

Note: This table reports the parametric conditional-sum-of-squares (CSS) estimation results of the
indicators across countries. Standard error of these estimates is 0.1061.

Figure 1: Feasible Heterogeneous Slope Estimates, n = 20 and T = 54.
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Table 8: Benchmark Estimation Results for Slope and Memory Parameters based on Hualde
and Robinson (2007)

Australia Austria Belgium Canada Denmark Finland France

β̂i 0.0070 -0.0845 -0.1427 0.0072 0.0706 -0.2099 -0.0133

s.e.(β̂i) (0.0075) (0.0061) (0.0061) (0.0055) (0.0088) (0.0138) (0.0054)

ϑ̂i 1.4900 1.3114 1.4900 1.1980 1.4899 1.4899 1.3220

s.e.(ϑ̂i) (0.3833) (0.0834) (0.0459) (0.2112) (0.1023) (0.1310) (0.1108)

d̂i 1.4999 1.4999 1.4670 1.4999 1.4110 1.3830 1.4999

s.e.(d̂i) (0.0495) (0.0443) (0.0440) (0.0415) (0.0606) (0.0838) (0.0350)

Italy Japan Netherlands New Zealand Norway Portugal Spain

β̂i 0.0596 0.0191 0.0519 0.0478 0.0140 0.0613 -0.0219

s.e.(β̂i) (0.0062) (0.0063) (0.0066) (0.0136) (0.0043) (0.0070) (0.0060)

ϑ̂i 1.3982 1.4899 1.3458 1.3144 1.1701 1.1871 1.4512

s.e.(ϑ̂i) (0.0530) (0.0546) (0.1157) (0.2474) (0.2311) (0.1329) (0.1092)

d̂i 1.4999 1.4999 1.4910 1.3130 1.4999 1.4610 1.4999

s.e.(d̂i) (0.0436) (0.0358) (0.0452) (0.0885) (0.0381) (0.0513) (0.0385)

Germany Sweden Greece Ireland UK US

β̂i -0.1778 -0.0667 0.1017 -0.0917 0.0441 0.1131

s.e.(β̂i) (0.0098) (0.0069) (0.0060) (0.0079) (0.0193) (0.0056)

ϑ̂i 1.3256 1.4899 1.2705 1.3687 1.2739 1.4899

s.e.(ϑ̂i) (0.0950) (0.0835) (0.0850) (0.1285) (0.3629) (0.0536)

d̂i 1.4350 1.4999 1.4999 1.4999 1.3800 1.4720

s.e.(d̂i) (0.0628) (0.0447) (0.0472) (0.0575) (0.1267) (0.0443)

Note: This table reports the estimation results of the individual slope and memory parameters across
countries based on the pure time-series estimation technique by Hualde and Robinson (2007) that
disregards individual country characteristics and cross-country dependence. Robust standard errors
are reported in parentheses. Bold indicates significance up to the 5% level.

Figure 2: Real GDP in Logs, 1955-2008.
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Table 9: Estimation Results for Slope and Memory Parameters based on (22)

Australia Austria Belgium Canada Denmark Finland France

β̂i -0.0439 -0.1072† 0.0228 0.0423 -0.0258† 0.3100 0.0155†

s.e.(β̂i) (0.0030) (0.0040) (0.0033) (0.0036) (0.0048) (0.0045) (0.0024)

ϑ̂i 1.4160 1.0281 1.4900 1.0992 1.4900 1.2860 1.1394

s.e.(ϑ̂i) (0.2766) (0.0713) (0.0388) (0.2037) (0.0946) (0.1026) (0.1054)

d̂i 1.1680 0.4040 1.4999 0.7260 1.0820 1.1830 0.9740

s.e.(d̂i) (0.0298) (0.0276) (0.0212) (0.0255) (0.0380) (0.0360) (0.0180)

Italy Japan Netherlands New Zealand Norway Portugal Spain

β̂i -0.0846† 0.0388† -0.2530 -0.0158 -0.1023 -0.0800† 0.0920†

s.e.(β̂i) (0.0039) (0.0037) (0.0038) (0.0099) (0.0028) (0.0046) (0.0041)

ϑ̂i 1.1774 1.4789 1.1380 1.2312 1.1339 1.0690 1.2614

s.e.(ϑ̂i) (0.0451) (0.0519) (0.1086) (0.2044) (0.2047) (0.1302) (0.1002)

d̂i 0.9710 0.6110 1.2220 0.9100 1.0300 0.8590 0.7520

s.e.(d̂i) (0.0295) (0.0258) (0.0264) (0.0677) (0.0241) (0.0333) (0.0296)

Germany Sweden Greece Ireland UK US

β̂i 0.2521† 0.1203† -0.0247† 0.6950† -0.2115 0.0044

s.e.(β̂i) (0.0050) (0.0032) (0.0048) (0.0047) (0.0042) (0.0036)

ϑ̂i 1.0540 1.4900 0.9648 1.1796 1.2656 1.4900

s.e.(ϑ̂i) (0.0898) (0.0748) (0.0777) (0.1194) (0.3260) (0.0432)

d̂i 0.2470 0.9620 0.1800 0.3430 1.2630 1.3210

s.e.(d̂i) (0.0345) (0.0242) (0.0364) (0.0337) (0.0335) (0.0306)

Note: This table reports the estimation results of the individual slope and memory parameters across

countries. Estimations are performed based on (22) where the projections are carried out with d∗ = 1.

Robust standard errors are reported in parentheses. Bold indicates significance up to the 5% level. †
indicates a cointegrating relationship between real GDP and debt in logs at the 5% level.

Figure 3: Debt in Logs, 1955-2008.
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