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Abstract

The �xed-b asymptotic framework provides re�nements in the use of heteroskedasticity and

autocorrelation consistent variance estimators. The resulting limiting distributions of t-

statistics are, however, not pivotal when the unconditional variance changes over time. Such

time-varying volatility is an important issue for many �nancial and macroeconomic time

series. To regain pivotal �xed-b inference under time-varying volatility, we discuss three

alternative approaches. We (i) employ the wild bootstrap (Cavaliere and Taylor, 2008, ET),

(ii) resort to time transformations (Cavaliere and Taylor, 2008, JTSA) and (iii) consider

to select test statistics and asymptotics according to the outcome of a heteroskedasticity

test, since small-b asymptotics deliver standard limiting distributions irrespective of the so-

called variance pro�le of the series. We quantify the degree of size distortions from using

the standard �xed-b approach assuming homoskedasticity and compare the e�ectiveness of

the corrections via simulations. It turns out that the wild bootstrap approach is highly

recommendable in terms of size and power. An application to testing for equal predictive

ability using the Survey of Professional Forecasters illustrates the usefulness of the proposed

corrections.
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1 Introduction

Sound statistical inference takes properties of the data such as heteroskedasticity or serial depen-

dence into account. For weakly stationary series, the seminal contributions of Newey and West

(1987) and Andrews (1991) provide GMM (Hansen, 1982) hypothesis tests which are robust to

the potential presence of such features. Relying on a heteroskedasticity- and autocorrelation

consistent [HAC] estimator for the long-run variance, this framework permits to use critical val-

ues from standard distributions, like the standard normal or χ2-distribution. These asymptotic

distributions, however, turn out to be rather poor approximations to the actual �nite-sample

distributions. As a consequence, substantial size distortions may arise in applied work. In par-

ticular, test results turn out to be sensitive to the choice of bandwidth B and kernel k employed

for estimating the long-run variance. The poor performance of the asymptotic approximation

may be explained by the requirement that a vanishing fraction b := B/T → 0 of the number of

observations T be used for estimation. In actual applications, b must of course be positive. In

additon, the asymptotic approximation is independent of k.

To tackle these �nite-sample issues with HAC long-run variance estimation, a series of contribu-

tions, including Kiefer et al. (2000) and Kiefer and Vogelsang (2002a,b, 2005), proposes a new

asymptotic framework, labelled �xed-b asymptotics, in which it is not required that b→ 0. This

leads to nonstandard distributions (reviewed in more detail in Section 2) for the test statistics,

then called heteroskedasticity- and autocorrelation robust [HAR]. Conveniently, the new asymp-

totic distributions re�ect the choice of bandwidth and kernel even in the limit. These papers

convincingly demonstrate that the new distributions may provide substantially better approx-

imations to actual �nite-sample distributions. In fact, the usefulness of such procedures has

spawned an active stream of literature; an incomplete list of recent contributions includes Sun

et al. (2008), Yang and Vogelsang (2011), Vogelsang and Wagner (2013) or Sun (2014a,b).

The �xed-b framework, however, does not automatically lead to �nite-sample improvements in

all empirically relevant settings. Importantly, variances varying over time a�ect limiting distribu-

tions in the �xed-b framework and thus lead to a loss of asymptotic pivotality; see Müller (2014).

Time-varying volatility is present in many �nancial (see among others Guidolin and Timmer-

mann, 2006; Amado and Teräsvirta, 2014; Teräsvirta and Zhao, 2011; Amado and Teräsvirta,

2013) and macroeconomic (see e.g. Stock and Watson, 2002; Sensier and van Dijk, 2004; Clark,

2009, 2011; Justiniano and Primiceri, 2008) time series such as excess returns, economic growth

or in�ation rates. Time-varying volatility includes, but is not limited to, permanent breaks or

trends in the variance properties of (the innovations of) the series.1 Correspondingly, conse-

quences of (and remedies for) time-varying volatility for inference with dependent data have

received substantial attention in recent years.2 Yet, if one lets b → 0 as in the work of Newey

1In the macroeconomic literature, a particular such phase of declining volatility at the end of the millennium
is known as the �Great Moderation.�

2For stationary autoregressions see e.g. Phillips and Xu (2006) or Xu (2008); for unit root autoregressions, see
Cavaliere and Taylor (2008b) or Cavaliere and Taylor (2009). The e�ects of time-varying volatility are ampli�ed
in panels of (nonstationary) series, making corrections all the more necessary; see e.g. Demetrescu and Hanck
(2012) or Westerlund (2014).
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and West (1987), time-varying volatilities do not have an asymptotic e�ect (cf. Cavaliere, 2004).

Practitioners thus face a trade-o� in the precision of the critical values provided by the �xed-b

approach, a trade-o� which is determined by the strength of the time variations of the variance

in the data generating process [DGP].

Our �rst contribution is to quantify the extent of distortions due to time-varying volatility in

Section 3. They are nontrivial even in the limit, such that �xed-b asymptotics should only

be used with additional care. The second contribution of the paper is to discuss methods for

valid �xed-b inference even in the presence of time-varying volatility, thus making the trade-o�

irrelevant. To achieve this, Section 4 builds on techniques inspired by the unit root testing

literature, modifying them as required. The �rst approach builds on the work of Cavaliere

and Taylor (2008a) employing a wild bootstrap scheme. Second, we propose to time transform

heteroskedastic series following Cavaliere and Taylor (2008b) so as to recover homoskedasticity

prior to conducting the test. Since Cavaliere and Taylor (2008b) work with series being integrated

of order one, and our setup assumes integration of order zero, the transformation algorithm is

modi�ed accordingly. Third, we argue that a pretest for time-varying volatility can also be used

for robusti�cation: depending on the outcome of the test, one either uses small-b methods valid

under time-varying volatility or �xed-b methods requiring homoskedasticity.

The simulation results presented in Section 5 support the asymptotic discussion. First and as is

well-known, the usual HAC-based tests are size-distorted in �nite samples when there is serial

correlation, a distortion which can be remedied using the �xed-b approach under homoskedas-

ticity. The �xed-b based tests are, however, size distorted under time-varying volatility. Second,

the corrections suggested here yield better �nite-sample size under time-varying volatility. They

also show good size performance under homoskedasticity. The time transformation is somewhat

oversized for shorter time series and strong autocorrelation, while the wild bootstrap is only very

slightly size-distorted. Third and as one would expect, the pre-test has an intermediate position.

Fourth, the wild bootstrap turns out to be substantially more powerful than the time transfor-

mation, which may even have zero local power. Summing up, the wild bootstrap approach is

highly recommendable for practical purposes.

Section 6 provides an empirical application to testing for equal predictive ability of survey fore-

casts and simple time-series forecasts, illustrating the potential empirical e�ect of using testing

procedures which are (and which are not) robust to time-varying volatility. Section 7 concludes.

The appendices collect proofs, other derivations and additional simulation results.

2 Fixed-b heteroskedasticity- and autocorrelation robust testing

In this paper, we focus on the simple and prototypical case of tests for the �nite mean of a series

yt, E (yt) = µ. That is, we test H0: µ = µ0. The �ndings to be presented, however, generalize

readily to other testing problems, e.g., to the case of GMM testing of moment restrictions in a

regression model, where both shocks or instruments could be subject to time-varying volatility.
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Our goal is to provide tests which are robust to the potential presence of both (unconditional)

heteroskedasticity and autocorrelation, and the analysis of the univariate case provides good

guidance in this respect.

The classical t-test for µ relies on the normalized sample mean,

√
T

(
ȳ − µ0

ω

)
,

with ȳ = 1
T

∑T
t=1 yt the sample average of yt and ω

2 = limT→∞Var
(√
T (ȳ − µ)

)
is the so-called

long-run variance of yt. We thus consider the case of
√
T -consistent sample averages, which are

given for independent, both identically and heterogeneously distributed random variables, as well

as serially correlated short memory series. The long-run variance�as opposed to the variance of

yt�captures the e�ect of possible serial correlation or heteroskedasticity on the sample average,

hence the acronym HAC for its estimate.

For yt weakly stationary with absolutely summable autocovariances γj = Cov (yt, yt−j), it holds

that ω2 =
∑∞

j=−∞ γj . Regularity conditions assumed3, a central limit theorem applies for ȳ and

√
T

(
ȳ − µ0

ω

)
d→ N (0, 1)

under the null.

In practice, the long-run variance ω2 is unknown and has to be estimated, leading to the feasible

t-ratio

T =
√
T

(
ȳ − µ0

ω̂

)
(1)

with ω̂ being a suitable estimate of ω.

The most popular HAC estimators rely on suitably weighted sums of sample autocovariances;

see Newey and West (1987) and Andrews (1991).4 Thus,

ω̂2 =
T−1∑

j=−T+1

k

(
j

B

)
γ̂j

where k is the kernel function, B denotes the bandwidth and γ̂j is the jth-order sample auto-

covariance, i.e. γ̂j = 1
T

∑T
t=j+1 (yt − ȳ) (yt−j − ȳ). Under additional regularity conditions (see

e.g. Andrews, 1991), and in particular b = B/T → 0 at suitable rates, consistency follows, ω̂
p→ ω,

and

T d→ N (0, 1)

under H0. Although this asymptotic result does not depend on the particular choice of a suitable

kernel and a bandwidth, the �nite-sample behavior of T hinges on both user inputs. To make

3See e.g. Davidson (1994, Chapter 24) for sets of suitable assumptions.
4Semiparametric estimates based on AR approximations (e.g. Berk, 1974) or on so-called steep origin kernels

(Phillips et al., 2006) are also available in the literature.
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this dependence explicit, Kiefer and Vogelsang (2005) let b ∈ (0, 1] for the asymptotic analysis.

While the resulting limiting distribution is free of nuisance parameters, it is nonstandard. In

particular, it depends directly on the kernel k and indirectly (via b) on the bandwidth B, thus

o�ering second-order re�nements to the usual, small-b asymptotics where b→ 0; see Sun (2014b).

Concretely,

T d→ B (k, b) ,

where

B (k, b) =
W (1)√
Q (k, b)

(2)

with W (s) a standard Wiener process,

Q (k, b) = −
∫ 1

0

∫ 1

0

1

b2
k′′
(
r − s
b

)
(W (r)− rW (1)) (W (s)− sW (1)) drds

for kernels with smooth derivatives, and

Q (k, b) =
2

b

∫ 1

0
(W (r)− rW (1))2 dr − 2

b

∫ 1−b

0
(W (r + b)− (r + b)W (1)) (W (r)− rW (1)) dr

for the Bartlett kernel.

The corresponding critical values for T are tabulated as a function of k and b in Kiefer and

Vogelsang (2005). For b → 0, Q (k, b)
d→ 1, B (k, b)

d→ N (0, 1) and small-b asymptotics are, in

a sense, a special case of the �xed-b approach. Note that the functional B (k, b) depends on the

entire path of the Wiener process and not only onW (1), as is the case with the small-b approach.

This has consequences when the volatility of yt varies in time, as we shall see in the following

section.

3 Failure of �xed-b HAR tests under time-varying volatility

In order to analyze �xed-b asymptotics of T under time-varying volatility, we assume a multi-

plicative component structure.

Assumption 1. Let the observed series yt be generated as

yt = µ+ htυt, t = 1, . . . , T,

where the stochastic component υt is zero-mean stationary as speci�ed below, and time variation

in the volatility is induced by the function ht = h(t/T), also speci�ed below.

This multiplicative structure is common in the literature; see e.g. Cavaliere (2004). This makes

yt a uniformly modulated process (Priestley, 1988, p. 165).5 To conduct the asymptotic analysis,

5Other contributions model υt explicitly as a linear process with modulated innovations; see e.g. Cavaliere and
Taylor (2008a,b). Demetrescu and Sibbertsen (2014) argue that the two DGPs are equivalent for most practical
purposes.
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we assume the stochastic component to have short memory in the following sense.

Assumption 2. Let υt be a zero-mean strictly stationary series with unit long-run variance,

L2+δ-bounded for some δ > 0, and strong mixing with coe�cients α(j) which satisfy the summa-

bility condition
∑

j≥0 α(j)1/p−1/(2+δ) <∞ for some 2 < p < 2 + δ.

Assuming strong mixing (with coe�cients α(j) satisfying a typical summability condition) is a

standard way of imposing short memory for υt (and thus yt); cf. e.g. Phillips and Durlauf (1986).

Restricting the long-run variance to unity is without loss of generality, and allows to interpret

h2
t as the localized long-run variance of the series yt. The assumption yields (see e.g. Davidson,

1994, Chapter 29) weak convergence of the partial sums of υt to a standard Wiener process,

1√
T

[sT ]∑
t=1

υt ⇒W (s),

so υt is integrated of order 0. While yt, being a modulated version of υt, is also strong mixing,

its partial sums exhibit a limiting behavior depending on the modulating function ht.

Assumption 3. Let ht = h (t/T) with h (·) a deterministic, piecewise Lipschitz function, positive
at all s ∈ [0, 1].

This allows for general patterns of smoothly or abruptly changing variances, as long as the abrupt

changes are not too frequent.6

Under the conditions spelled out by the above assumptions, we have (for details, see Cavaliere,

2004, Lemma 3)

1√
T

[sT ]∑
t=1

(yt − µ)⇒
∫ s

0
h (v) dW (v) ≡ Bh(s).

The process Bh(s) is a Gaussian process, but not a Brownian motion: the covariance kernel of

Bh(s) is given by

Cov (Bh(s), Bh(r)) =

∫ min{s,r}

0
h2 (v) dv

which, in general, is not the covariance kernel of the standard Wiener process, min {s, r}.

Unsurprisingly, the fact that the normalized partial sums of the centered yt do not converge

weakly to a Brownian motion a�ects the �xed-b asymptotics of T . The corresponding �xed-b

limiting distribution is stated in

Proposition 1. Under H0 and Assumptions 1-3, it holds for B/T = b ∈ (0, 1] that

T d→ B (h, k, b) ≡ Bh (1)√
Qh,k,b

6Seasonally varying variances are excluded, for instance. This is not critical, however, since the work of
Burridge and Taylor (2001) suggests that seasonally varying variances actually average out and do not a�ect
convergence to Wiener process.
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as T →∞, where

Qh,k,b = −
∫ 1

0

∫ 1

0

1

b2
k′′
(
r − s
b

)
(Bh(r)− rBh(1)) (Bh(s)− sBh(1)) drds

for kernels with smooth derivatives, and

Qh,k,b =
2

b

∫ 1

0
(Bh(r)− rBh(1))2 dr − 2

b

∫ 1−b

0
(Bh(r + b)− (r + b)Bh(1)) (Bh(r)− rBh(1)) dr

for the Bartlett kernel.

Proof: See the Appendix.

Proposition 1 elaborates upon the statement in Müller (2014, p. 314) that HAR testing via T
is not robust to time-varying volatility for �xed b, giving an exact description of the asymptotic

distribution. Although Bh (1) is normal with mean zero and variance ω̄2 =
∫ 1

0 h
2(s)ds, the

distribution of B (h, k, b) is di�erent from that of B (k, b) whenever h is not constant almost

everywhere. This is because Qh,k,b is essentially di�erent from the denominator of (2) under

time-varying volatility.

Figure 1 quanti�es the lack of pivotality, showing quantile-quantile (QQ) plots for the distribu-

tions B (h, k, b) for b = {0.1, 0.5, 0.9} and four di�erent variance patterns h. We take T = 1000

and simulate B (h, k, b) with 50,000 replications. The kernel k is taken to be the Bartlett kernel.

Under DGP1, volatility is constant over time. This case is reported as a benchmark, where we

compare the quantiles of B(k, b) with themselves. The �rst row of graphs in Figure 1 show the

results for a small, medium and large value of b. The negligible deviations are due to Monte

Carlo variability. An early downward break in volatility is present in DGP2. (For the exact

details of the DGPs, see Section 5.) Here, we compare the quantiles of B(h, k, b) on the y-axis

with the corresponding quantiles of B(k, b) on the x-axis. The results shown in the second row

of Figure 1 clearly demonstrate di�erences between the two distributions. The larger b, the more

pronounced is the discrepancy. For DGP 4 (with a double break in volatility), di�erences are

again clearly visible. The results for the linear upward trend in volatility in DGP6 nicely illus-

trate the di�erence between the distributions as well as the role of b. The discrepancies are most

pronounced in the tails of the distributions, which matter for testing. In our numerical work in

Section 5, we err on the safe side so as not to overstate the e�ects of time-varying volatility and

work with a relatively large nominal level of 10%.

For HAC-based tests (or, with some abuse of notation, b = 0), robustness to time-varying

volatility is recovered. Recall, Bh (1) follows a normal distribution with mean zero and variance

ω̄2, which can be interpreted as the average long-run variance of the series. Moreover, Cavaliere

(2004) shows that, under mild conditions on the rate at which b vanishes, the HAC variance

estimator is consistent precisely for this variance, plim ω̂2 = ω̄2. Hence, under H0,

T d→ N (0, 1) for b→ 0.
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b = 0.5 b = 0.9
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Figure 1: Quantile-quantile plots to compare B(k, b) (x-axis) to the distributions B(h, k, b) under
various variance pro�les h and for di�erent b. DGP1: constant volatility; DGP2: early downward
break in volatility; DGP4: double break in volatility; DGP6: linear upward trend in volatility.
The Bartlett kernel is employed. The dashed vertical line is the 95% critical value from the
B(k, b) distribution.
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In other words, small-b methods asymptotically lead to pivotality under time-varying volatility as

it does under weak stationarity. Recall, however, that the �nite-sample quality of the asymptotic

approximation in the small-b framework is meager, so practitioners essentially have to choose

between the devil and the deep blue sea when not knowing the variance properties of the DGP.

Section 5 quanti�es the size distortions resulting from ignoring time-varying volatility when using

�xed-b asymptotics. The section will also recall that, despite asymptotic robustness, the small-b

approach will often exhibit fairly strong size distortions in small samples under both homo- and

heteroskedasticity. Hence, corrections for �xed-b inference should be valuable in empirical work.

As a �nal comment, note that the behavior under local alternatives is a�ected as well, via the

�denominator� of the limiting distribution depending on h.

Corollary 1. With E (yt) = c/
√
T , we have under the assumptions of Proposition 1 that

T d→ Bh (1) + c√
Qh,k,b

.

Proof: See the Appendix.

Remark 1. A partial solution to the problem studied in this paper is provided by Ibragimov and

Müller (2010). They construct valid t-statistic based inference when it is possible to partition

the data into q groups, such that estimators based on each group are approximately independent,

unbiased and Gaussian. Their approach is somewhat restrictive, however, in that it relies on a

result of Bakirov and Székely (2005) that guarantees size control only if the nominal level is at

most 8.3%.

4 Robust inference under time-varying volatility

The critical issue about the failing asymptotics is that the partial sums of yt do not converge

weakly to Brownian motion, but to a di�erent Gaussian process. In the following, we discuss

three di�erent ways to accommodate this.

4.1 The wild bootstrap

Cavaliere and Taylor (2008a) propose the wild bootstrap as a way to deal with time-varying

volatility in a unit root testing context. We exploit the wild bootstrap to estimate the actual

null distribution of T under time-varying volatility.7 The basic algorithm is as follows.

1. Generate T iid standardized random variables r∗t .

2. Generate the wild bootstrap sample as y∗t = r∗t (yt − ȳ).

7Cavaliere and Taylor (2009) show the wild bootstrap to cope with stochastic volatility as well. The multivariate
case has been dealt with in a series of papers starting with Cavaliere et al. (2010).
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3. Compute the bootstrap test statistic T ∗ based on the resampled series y∗t .

4. Repeat steps 1-3 to obtain a set of M resampled statistics T ∗m, m = 1, . . . ,M .

5. Use the (1− α)-quantile of {T ∗m}m=1,...,M , say q∗1−α, as critical value for the test.
8

As choice for r∗t in Step 1 one usually picks the standard normal or the two-point Mammen

distribution.

The following proposition shows that the wild bootstrap procedure gives size control in the

limit. Given that the replicated series are white noise, whereas the sample is not, size control

may be somewhat surprising. The key idea is that the wild bootstrap procedure is intended

to obtain correct critical values of an asymptotic distribution that is invariant to short-memory

serial correlation, but not to time-varying volatility. Therefore, the bootstrapped residuals need

to replicate the variance pro�le (which they do, see the proof for details), but not necessarily the

serial correlation structure. The latter may, however, additionally be incorporated, if desired,

cf. Remark 3.

Proposition 2. Under H0 and Assumptions 1-3, it holds as T →∞ and B/T = b ∈ (0, 1] that

Pr
(
T > q∗1−α

)
→ α.

Proof: See the Appendix.

Remark 2. Alternatively to step 5, one could of course use bootstrap p-values for a test decision;

it can be seen from the proof of the proposition that the wild bootstrap p-values converge weakly

to a uniform distribution U [0, 1]. Moreover, since the bootstrap procedure generates critical

values which are invariant to the true mean µ of yt, the behavior of T under (local) alternatives

remains as implied by Corollary 1.

Remark 3. To reduce the in�uence of the short-run dynamics in �nite samples, one may also

use the residuals of a parametric model �t, say ARMA, in Step 2; when doing so here, we resort

for simplicity to an AR(1) �t such that ût = yt − â0 − â1yt−1 are used instead of yt − ȳ when

generating the bootstrap sample. It is not necessary to recolor the bootstrap shocks to obtain

the correct limiting distribution, although it would (of course) be possible to do so. See the proof

of Proposition 2 for further details on this issue.

Remark 4. In fact, employing an autoregressive sieve approximation and recoloring would likely

lead to second-order improvements. Moreover, in related work, Gonçalves and Vogelsang (2011)

prove that suitable bootstrap procedures may even lead to higher-order accuracy in HAC testing

under a location model like the present one. Our focus, however, is not on such re�nements

but on solving the �rst-order problem resulting from time-varying volatility. We conjecture that

employing block, dependent or autoregressive wild bootstraps may allow to extend our analysis

in this direction, too.
8This obviously applies, as in this paper, when performing a right-tailed test. The modi�cations to left-tailed

and two-sided tests are, however, entirely standard.
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4.2 Time transformations

The wild bootstrap can be computationally demanding with a large number of replications to

ensure precision. The second possible correction therefore elaborates on the approach provided

by Cavaliere and Taylor (2008b) which modi�es the data in such a way that the series are in

a sense transformed back to homoskedasticity. Hence, it will be valid to apply �xed-b methods

applied to the transformed series. The time transformation approach of Cavaliere and Taylor

(2008b) needs to be adapted to our setup, though, since they deal with I(1) processes under the

null when testing for a unit root, whereas we deal with I(0) processes. The procedure we suggest

is as follows.

1. Subtract the mean of yt under the null and build the cumulated sums,

xt =
t∑

j=1

(yj − µ0) .

2. Estimate the variance pro�le of xt, η̂(s) =
∑[sT ]

t=1 (yj−ȳ)2∑T
t=1(yj−ȳ)2

, and build its inverse g(s).

3. Time transform xt via

x̃t = x[Tg(t/T )].

4. Base the actual test on the di�erenced series, ỹt = ∆x̃t, i.e. compute

T̃ =
√
T

¯̃y

ω̃
, (3)

where ω̃2 is an estimator of the long-run variance of ỹt using a bandwidth B = [bT ].

The following proposition shows that �xed-b asymptotics are recovered.

Proposition 3. Under H0 and Assumptions 1-3, it holds as T →∞ and B/T = b ∈ (0, 1] that

T̃ d→ B (k, b) .

Proof: See the Appendix.

Remark 5. In practice one often computes HAC estimators using some form of prewhitening;

see Andrews and Monahan (1992). Although serial correlation does not enter the asymptotic

distribution, it may still impact the empirical size in small samples. The proposition also holds

when the long-run variance estimator is computed on the basis of ARMA residuals and then

adjusted for serial correlation; see the proof for details.

Considering local alternatives, it turns out that the time transformation does have an asymptotic

e�ect on the resulting distribution, in contrast to the wild bootstrap (Corollary 1). The precise

e�ect is given in the following

11



Corollary 2. With E (yt) = c/
√
T , we have under the assumptions of Proposition 3 that

T̃ d→ W (1) + c/ω̄√
Q̃h,k,b,c

where

Q̃h,k,b,c = −
∫ 1

0

∫ 1

0

1

b2
k′′
(
r − s
b

){
(W (r)− rW (1) + c/ω̄ (g̃(r)− r))×

(W (s)− sW (1) + c/ω̄ (g̃(s)− s))
}

drds

for kernels with smooth derivatives, and

Q̃h,k,b,c =
2

b

∫ 1

0
(W (r)− rW (1) + c/ω̄ (g̃(r)− r))2 dr

−2

b

∫ 1−b

0

{
(W (r + b)− (r + b)W (1) + c/ω̄ (g̃ (r + b)− (r + b)))×

(W (r)− rW (1) + c/ω̄ (g̃(r)− r))
}

dr

for the Bartlett kernel, with g̃ being the inverse of the variance pro�le η (s) = ω̄−2
∫ s

0 h
2(s)ds.

Proof: See the Appendix.

The limiting distribution in Corollary 2 exhibits counterintuitive behavior under large deviations

from the null. Let e.g. c→ ±∞ and note that, unless g̃(s) = s (which is essentially only the case

for constant variances h2
t ), we have that

G := plimc→±∞|T̃ | = −
∫ 1

0

∫ 1

0

1

b2
k′′
(
r − s
b

)
(g̃(r)− r) (g̃(s)− s) drds > 0

for smooth kernels, and correspondingly

G =
2

b

∫ 1

0
(g̃(r)− r)2 dr − 2

b

∫ 1−b

0
(g̃ (r + b)− (r + b)) (g̃(r)− r) dr > 0

for the Bartlett kernel. Consequently, c2 dominates in the denominator and it holds as T →∞
followed by c→ ±∞ that

T̃ p→ sgn(c)G−
1/2. (4)

As a consequence, the test based on T̃ will either always reject (if the constant sgn(c)G−1/2

belongs to the critical region of the �xed-b test) or never (if sgn(c)G−1/2 does not belong to the

rejection region). Simulations presented in Section 5 reveal that the test will indeed have no

power for several realistic heteroskedastic scenarios.

Some variations of the time transformation approach can be built analogously to the classical

weighted least squares method and would consist here of standardizing the observations yt by

some (nonparametric) estimate of their standard deviation, ĥt. See e.g. Xu and Phillips (2008)

12



for an application in time series autoregressions (and note also their additional requirements on

the estimator ĥt). The analogy does not go too far, though, given that in the WLS transformed

model we would not have a regression with a constant anymore, but rather

yt
ht

=
µ

ht
+ υt.

While the error term is strictly stationary, time-varying volatility is re-introduced through the

back door, given that the LS estimator for µ in the transformed model is given as

µ̂ = µ+

∑T
t=1

υt
ht∑T

t=1
1
h2t

and the term relevant for the limiting distribution of the test statistic is T−1/2
∑T

t=1
υt
ht
.9 The

fact that the true standard deviation was used for the WLS transformation does not a�ect the

argument. One could alternatively standardize the series yt under the null hypothesis, i.e. work

with

ỹwt =
yt − µ0

ht

and test the equivalent null hypothesis that E (ỹwt ) = 0. Denote the corresponding test statistic

T̃ w. The di�erence to testing the mean of yt (either ignoring time-varying volatility or via WLS)

is that ỹwt is now strictly stationary under the null hypothesis and �xed-b inference would be

applicable. The disadvantages of this approach appear under (local) alternatives, just like those

of the time transformation, as illustrated in the following

Corollary 3. Under the assumptions of Proposition 3 we have that

T̃ w d→ W (1) + ch̄(1)√
Q̃wh,k,b,c

where h̄(s) =
∫ s

0
1

h(r)dr and

Q̃wh,k,b,c = −
∫ 1

0

∫ 1

0

1

b2
k′′
(
r − s
b

){(
W (r)− rW (1) + c

(
h̄(r)− r

))
×(

W (s)− sW (1) + c
(
h̄(s)− s

))}
drds

for kernels with smooth derivatives, and

Q̃wh,k,b,c =
2

b

∫ 1

0

(
W (r)− rW (1) + c

(
h̄(r)− r

))2
dr

−2

b

∫ 1−b

0

{(
W (r + b)− (r + b)W (1) + c

(
h̄(r + b)− (r + b)

))
×(

W (r)− rW (1) + c
(
h̄(r)− r

))}
dr

9This also illustrates how time-varying volatility may be induced in regression models by nonstationary regres-
sors or instruments.
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for the Bartlett kernel.

Proof: See the Appendix.

Note that h̄(s) = s only when h is constant, such that, in general, one would obtain a limiting

distribution under local alternatives having the exact same properties as c→ ±∞ as the one in

Corollary 2. We therefore do not further pursue rescaling approaches here.

4.3 Pre-testing

The third correction for time-varying volatility we study aims to mimick what practitioners of-

ten do: only correct for a problem detected in the data. Essentially, we consider to �rst test

for heteroskedasticity, and then work with either �xed-b or small-b statistics and asymptotics,

according to the outcome of the test. The intuition is that if a test for time-varying volatility

does not reject, then the departures from constant variances may not be strong enough to se-

riously distort the �xed-b asymptotics of T . If, on the other hand, the test rejects, then the

small bandwidth-choice procedures may be preferable.10 The success of such a testing strategy

obviously depends on the properties of the pre-test.

To this end, we resort to the test proposed by Deng and Perron (2008). Xu (2013) demonstrates

that the test has good size and power properties. It is based on the series zt = (yt − ȳ)2. The

test statistic is given by

Q = sup
1≤t≤T

1√
T

|Dt|
ω̂z

where Dt =
∑t

j=1 zj −
t
T

∑T
j=1 zj and ω̂z is a HAC estimator of the long-run variance of zt. The

test rejects for large values of Q.

Like for the wild bootstrap, the third correction just concerns obtaining suitable critical values,

such that Corollary 1 applies under local alternatives.

5 Simulation evidence

5.1 Setup

This section studies the �nite-sample behavior for the various statistics discussed above in dif-

ferent settings.

We consider one-sided tests of H0 : µ = 0 against H1 : µ > 0. The DGP is given by

yt = µ+ υt (5)

(1− φL)υt = htεt (6)

10A more complex alternative would be to use either of the two robust versions discussed above when time-
varying volatility is detected. We do not pursue this line of research here.
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Figure 2: Size, φ = 0.1. Left block: T = 100, right block: T = 500. Y denotes the standard �xed-
b approach (NW for b = 0), TT the time transformation statistic (3), WB the wild bootstrap
approach (cf. Prop. 2) and PT the pretest (cf. Section 4.3). Rejection frequencies are given on
the y-axis, while b-values are given on the x-axis.

with εt ∼ i.i.d.N(0, 1) and φ = {0.1, 0.5, 0.85}.11 The following deterministic volatility DGPs

for ht are studied.

1. Constant volatility (ht = 1);

2. Downward break at t = [0.2T ] from σ0 = 5 to σ1 = 1

3. Upward break at t = [0.8T ] from σ0 = 1 to σ1 = 5

4. Double break, upward (as in DGP3) at 0.4 and downward (back to initial level) at 0.6

5. Double break, downward at 0.1 (as in DGP2) and upward (back to initial level) at 0.9

6. Downward trend: ht = σ0 + (σ1 − σ0)(t/T ), σ0 = 5, σ1 = 1.

The DGPs, and in particular its breakpoints and sizes, are borrowed from Cavaliere and Tay-

lor (2008b). For power results, we take µT = c(ω̄2/T )1/2 with ω̄2 being the average variance

depending on the particular DGP1-6. Under homoskedasticity (DGP1), we have ω̄2 = σ2,

while ω̄2 = T−1
∑T

t=1(σ2
0 + 1(t > [τT ])σ2

1) under DGPs 2 and 3 for instance. The parameter

c = {2, 4, . . . , 16} is a localizing constant.

11We also studied the ARMA(1,1) case with (φ, θ) = (0.85,−0.45). Obviously, the implied AR(∞) structure
generally does not improve the performance of the tests. However, it is found not to have an impact on the
relative performance of the procedures studied here. In order to focus on the issue of volatility, we therefore work
with a relatively simple autocorrelation structure in what follows.
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Figure 3: Size, φ = 0.5. Left: T = 100, right: T = 500. See notes to Figure 2.

Critical values for the �xed-b approach are taken from Kiefer and Vogelsang (2005), Table 1.

The nominal signi�cance level is 10%. We use the quadratic spectral [QS] and the Bartlett

kernel and values of b ranging from 0.1 to 1 in increments of 0.1. The number of wild bootstrap

replications equals M = 399, while the number of Monte Carlo replications is 5,000. The sample

sizes are T = {100, 250, 500}. We implement the AR(1) �nite-sample correction along the lines

of Remarks 3 and 5. For the Newey and West (1987, NW) approach, a data driven bandwidth

choice is implemented, see Andrews and Monahan (1992).

5.2 Size

First, we present size results. We focus on the Bartlett kernel for better readability in the size

results, as results for the QS kernel were quite similar.12

Under homoskedasticity (DGP1), the top-left entries of Figures 2, 3 and 4 reveal that, as is

well-known, NW (corresponding to the entry b = 0) with automatic bandwidth selection (see

Andrews, 1991) faces substantial size distortions for T as large as T = 100. Again in line with the

literature, these distortions are more pronounced when autocorrelation is stronger. Con�rming

the results of Kiefer and Vogelsang (2005), the remainder of the �homoskedasticity� panels of

Figures 2, 3 and 4 show that �xed-b asymptotics provide a very good approximation to the

�nite-sample distribution of the t-ratio given in equation (1) for all T , all but eliminating the

size distortions of NW. Similarly, the corrections based on time transformations and the wild

bootstrap provide accurate tests under homoskedasticity.

12Moreover, we waive to report qualitatively similar results for DGPs 5 and 6 here, as well as intermediate
results for T = 250. For the referees: Additional simulation results are reported in Appendix B.
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Figure 4: Size, φ = 0.85. Left: T = 100, right: T = 500. See notes to Figure 2.

DGPs 2 (�early down�), 3 (�late up�) and 4 (�up, then down�) con�rm the analytical prediction

from Section 3 that, in general, �xed-b asymptotics are not pivotal under time-varying volatility.

In particular, the tests seem to be conservative and increasingly so in b, with the exception of DGP

4 for large b. That �xed-b asymptotics work relatively well for small b is not unexpected, as they

then operate very similarly to the standard NW approach which would be valid asymptotically

(see above and Cavaliere, 2004). The wild bootstrap continues to be very e�ective in removing

the size distortions, with some mild �nite-sample exceptions for large φ, small T and small b.

Unsurprisingly, the size of the pretest is intermediate between that of NW and the �xed-b ap-

proaches. When the pretest does not reject frequently, e.g., for small T and/or homoskedasticity

and the double break scenario (�up, then down�), the size of the pretest tracks that of �xed-b for

all choices of b. Looking at the three panels for the di�erent T for the double break scenario con-

�rms that higher power of the pretest results in a behavior more like that of the asymptotically

robust NW test.

The time transformation only performs convincingly for large T (as predicted by Proposition 3)

and small or moderate autocorrelation. The top left panel of Figure 4 reveals poor empirical size

properties of the time transformation for T = 100. The reason for this is that the time trans-

formation may, in short series, produce stretches of identical observations that do not properly

mimic the dynamics of the underlying series.

The �homoskedasticity� panels of the top-right and bottom entries of Figures 2, 3 and 4 highlight

the �nite-sample character of the size distortions of NW, which are largely removed for T = 500.

Similarly, the upward size distortions of the wild bootstrap have all but disappeared for T = 500.

The top-right and bottom entries of Figures 2, 3 and 4 moreover con�rm that the distortions for

�xed-b are not of a �nite-sample nature under time-varying volatility.
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Figure 5: Power vs. c, φ = 0.1, b = 0.5, T = 100. QS denotes the Quadratic Spectral kernel
and BT stands for the Bartlett kernel. Y denotes the standard �xed-b approach (NW for b = 0),
TT the time transformation statistic (3), WB the wild bootstrap approach (cf. Prop. 2) and PT
the pretest (cf. Section 4.3). Rejection frequencies are given on the y-axis, while the localizing
coe�cient c is given on the x-axis.

5.3 Power

Figures 5 and 6 report power results for T = 100. As expected, power generally increases in

c. The notable exception here is the time transformation under time-varying volatility, where

the probability limit under local alternatives appears to yield zero power as c → ∞ at least

for the simulation designs considered here. This is not unexpected, see the discussion following

Corollary 2, in particular Eq. (4).

Overall, the wild bootstrap achieves highest power. Essentially, it performs size adjustment for

�xed-b, with a power curve that starts near α = 0.1 at c = 0: it does not su�er from the

conservativeness of �xed-b visible at c = 0 for �early down� and �late up.� For T = 100, the
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Figure 6: Power vs. b, φ = 0.1, c = 2, T = 100. QS denotes the Quadratic Spectral kernel and
BT stands for the Bartlett kernel. Y denotes the standard �xed-b approach (NW for b = 0), TT
the time transformation statistic (3), WB the wild bootstrap approach (cf. Prop. 2) and PT the
pretest (cf. Section 4.3). Rejection frequencies are given on the y-axis, while the �xed-b values
are given on the x-axis.

Deng and Perron (2008) pretest does not have very high power yet, such that it sometimes sides

with �xed-b, implying power intermediate between the wild bootstrap and the more conservative

�xed-b testing approach.

That the particular type of variance break yields slight variation in power for �xed-b may be

explained by its size distortions. (The normalization employed here implies that the power of the

robust versions is not a�ected by the type of time-varying volatility.) Figure 6 reveals that there

is no clear pattern of power as a function of b for the di�erent DGPs. Under homoskedasticity, as

already noticed by Kiefer and Vogelsang (2005) for �xed-b, the power of all procedures falls in b,

albeit not by much. Under the heteroskedastic DGPs, the power of the wild bootstrap and that
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of the pretest-based procedure is roughly constant in b, with possibly a little peak at b = 0.4 in

the case of the wild bootstrap. The lack of power of the time transformation is more pronounced

for larger b.

The comparison of the dashed and solid lines suggests that the Bartlett kernel may be somewhat

more powerful than the QS kernel. However, the di�erence is only substantial in the case of the

time transformation, which is dominated by other approaches anyhow.

The present simulations therefore suggest to use the wild bootstrap with an intermediate value

of b (say, b = 0.4) in practice. The pretest would be a useful alternative for larger sample sizes.

6 Real-time evaluation of professional output and in�ation fore-

casts

We evaluate forecasts of real output and in�ation in the US using the procedures proposed in

the previous section. Utilizing the rich Survey of Professional Forecasters (SPF) database from

the Federal Reserve Bank of Philadelphia, we shall demonstrate that allowing for changes in

volatility has an important implication on the empirical �ndings. In particular, we make use

of the �Forecast Error Statistics for the Survey of Professional Forecasters�, see Stark (2010).

For exchange rate data, Choi and Kiefer (2010) employ a �xed-b approach to inference on equal

predictive accuracy, on the grounds that serial dependence of the loss di�erentials leads to �nite-

sample distortions of the usual t-tests. Furthermore, Li and Patton (2015) use �xed-b inference

in the context of predictive accuracy testing based on high frequency data, see also Patton (2015)

for a discussion of Diebold (2015).

We consider one-quarter and one-year ahead forecasts. Regarding the vintage structure of the

real-time data, we study the �rst and the �nal data release.13 The sample ranges from 1969:Q4

to 2015:Q1, yielding T = 182 quarterly observations on real output (RGDP) and gross domestic

product de�ator in�ation (PGDP) time series and their respective forecasts. The Great Modera-

tion is thus part of our sample. It is well-documented that the it led to enhanced macroeconomic

stability which eased forecasting in general, but also made it more di�cult to beat simple time

series models, see for instance Stock and Watson (2007). Groen et al. (2013) �nd along the same

lines that structural breaks in the variance play an important role for real-time in�ation fore-

casting. As the sample most likely contains observations with variance breaks, the procedures

developed above are important and suitable in this application.

The forecasts in the SPF are either averaged surveys obtained from individual professionals or

simple time series forecasts. Among these, we consider models already available in the data set,

namely direct and indirect autoregressive models and a no-change random walk model. Thereby,

we follow Stark (2010) in our real-time evaluation, who also provides details on the construction

of the time series model forecasts. See Groen et al. (2009) for a similar analysis for the real-time

evaluation of Bank of England forecasts for output and in�ation.

13Results for two- and three-quarter ahead forecasts are qualitatively similar and available upon request.
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Figure 7: Forecast error loss di�erentials e2
TSM,t−e2

SPF,t between time series model forecasts and
survey forecasts. The left (right) panel shows the series for h = 1 (h = 4). The upper graphs are
for real output, while the lower ones are for in�ation. The time series model is in each case the
best competitor of the SPF, see Table 1.

Some series contain a few missing values (either only a single one in the mid-nineties (0.55% of

the data points) or �ve ones in the early seventies (2.75% of the data points)). We decide to

impute these few missing values via a bootstrap based expectation maximization [EM] algorithm,

see Honaker et al. (2011). The algorithm makes use of the standard EM algorithm on multiple

bootstrapped samples of the original data set (containing missing values) to obtain imputed

values.14

Figure 7 shows some exemplary MSE loss di�erential series. These are computed as e2
TSM,t −

e2
SPF,t, where e

2
TSM,t is the squared forecast error of a time series model (TSM) and e2

SPF,t

denotes the corresponding value for the survey forecast. We show the resulting series for SPF

real output and in�ation forecasts in comparison each to the best competing time series model

forecasts. Di�erent horizons and vintages are considered. It can be seen that the volatility

of the loss di�erentials sharply declined during the early eighties for real GDP growth (upper

panel) and in�ation (lower panel) in conjunction with the Great Moderation. The conjecture

of a nonconstant volatility in forecast error loss di�erentials is strongly con�rmed by the Deng

and Perron (2008) test. Three out of four rejections are at the nominal signi�cance level of one

percent, while the rejection for the case of four-quarters ahead in�ation forecasts is signi�cant

at the �ve percent level. The degree of autocorrelation is mild to intermediate, ranging between

0.03 and 0.44 (average 0.17) for output and between 0.14 and 0.5 (average 0.32) for in�ation. As

before, we employ a �rst-order autoregressive �nite-sample correction.

14We use 10,000 bootstrap replications for the EM algorithm and compare the resulting imputed values with
the distribution of the original data set to check their plausibility. An appendix (available upon request) provides
speci�c details about the missing and imputed values. For the referees: Please see Appendix C.
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Table 1: Relative RMSE values RMSE(TSM)/RMSE(SPF) of SPF output and in�ation fore-
casts; 1969:Q4-2015:Q1; evaluated against the �rst and the �nal data release.

Variable Forecast horizon Vintage No change Direct AR Indirect AR

Real GDP h = 1 First release 1.52 1.36 1.35
Final release 1.39 1.24 1.24

h = 4 First release 1.41 1.08 1.04
Final release 1.41 1.08 1.04

In�ation h = 1 First release 1.22 1.24 1.23
Final release 1.17 1.20 1.20

h = 4 First release 1.17 1.20 1.20
Final release 1.07 1.22 1.23

Table 1 shows some descriptive statistics for the root mean squared error (RMSE) losses of time

series model-based forecasts in relation to the ones for survey forecasts. A ratio greater than

unity thus indicates the superiority of SPF forecasts. The results give some interesting insights

regarding the performance of time series models in comparison to professional survey forecasts.

Based on these descriptive statistics, it seems that survey forecasts outperform simple time series

models. In particular for the short horizon (h = 1), the �gures suggest that SPF forecasts for

output and in�ation dominate the ones by time series models. In most cases (except for one-year

ahead real GDP growth and in�ation forecasts) the SPF performs better when being evaluated

against the �rst release rather than the �nal release. For real GDP growth predictions, the

indirect AR is the strongest competitor of SPF forecasts, while the no-change forecast performs

best among the time series model forecasts for the in�ation series.

Next, we conduct formal tests of equal predictive ability using Diebold and Mariano (1995)

statistics. The auxiliary regression is given by

e2
TSM,t − e2

SPF,t = µ+ ut .

We report results for one-sided tests, i.e. H0 : µ = 0 versus H0 : µ > 0 at di�erent conventional

signi�cance levels. We thus test the null hypothesis of equal predictive ability against the al-

ternative that time series model-based forecasts have a larger mean squared error. A rejection

thus yields evidence in favor of superiority of SPF forecasts relative to simple model-based fore-

casts. Among the di�erent versions of the Diebold-Mariano statistics are a classic Newey-West

type statistic and also the �xed-b versions as suggested by Choi and Kiefer (2010). Moreover,

we add the time transformation and wild bootstrap �xed-b versions to our comparison to deal

with the time-varying nature of volatility. We use the Bartlett kernel for the �xed-b approach

(with b = {0.1, . . . , 1}) as it is slightly more powerful than the Quadratic Spectral kernel in our

simulations. The number of wild bootstrap replications is 10,000.
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Results for the �rst data release are reported in Figures 8 (real GDP growth) and 9 (in�ation).15

Each �gure contains the results for h = 1 (left panel consisting of six graphs) and h = 4 (right

panel). In a given panel, the upper two graphs show the results for the comparison of no-change

forecasts to the SPF; the middle ones for the direct autoregressive forecast against the SPF and

the two graphs at the bottom show the results for the indirect autoregressive model versus the

SPF. The left part of a given panel contains Diebold-Mariano statistics in comparison to standard

�xed-b critical values, while the right part presents the outcomes for the wild bootstrap. Both

sets of critical values are presented for three conventional nominal signi�cance levels (1%, 5% and

10%). Di�erences in the asymptotic and bootstrapped critical values give an indirect indication

for the presence of time-varying volatility. The null hypothesis of equal predictive ability is

rejected if the Diebold-Mariano statistic [DM stat] exceeds the critical value.

First, we �nd that asymptotic and bootstrap critical values di�er remarkably in all considered

situations. This �nding is in line with the rejections of homoskedasticity by the Deng and

Perron (2008) test. Boostrapped critical values are smaller than their asymptotic counterparts,

shifting statistical evidence towards the alternative hypothesis. The use of unmodi�ed �xed-b DM

statistics most often leads to only weak evidence against the null hypothesis of equal predictive

ability and sometimes even to nonrejections. To the contrary, the application of the �xed-b

DM statistic with time transformed data [labeled as DM (TT) in the �gures] provides strong

evidence of superiority of professional forecasts in the case of real GDP forecasts. Similarly, the

wild bootstrap versions of �xed-b DM statistics yield strong evidence against the null. For short-

term in�ation forecasts, we observe that the DM (TT) statistic does not a�ect the conclusions

much for the comparison to the direct AR and indirect AR models, while it does so for the longer

horizon of four quarters. Moreover, the wild bootstrap DM statistics clearly provide evidence

for superior predictive ability of survey forecasts over simple time series model forecasts for both

horizons.

15Results for the �nal release are qualitatively similar and available upon request.
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7 Concluding remarks

Fixed-b asymptotics are a tremendously useful device to enable more accurate inference when

dealing with serially correlated data. Serial correlation is, however, not the only important data

feature practitioners need to pay attention to when aiming to conduct reliable hypothesis tests:

many important macroeconomic and �nancial time series are subject to time-varying volatility

such as variance breaks. We show that the standard �xed-b approach no longer yields pivotal

tests under time-varying volatility and quantify the resulting distortions.

Based on wild bootstrap schemes (Cavaliere and Taylor, 2008a), on time transformations (Cav-

aliere and Taylor, 2008b) or on a pre-test procedure, we provide corrections that restore size

control of �xed-b methods even under time-varying volatility. Simulations illustrate the useful

size and power properties of the corrections, in particular of the wild bootstrap approach. The

behavior of the pre-test procedure hinges on whether the pre-test has enough power of detecting

changes in the variance and is not reliable for very small sample sizes, where the power of the

pretest is not close to unity, while the time transformation approach may lead to a nonmonotonic

local power function and even zero local power.

The evidence provided here suggests quite plausibly that the multivariate wild bootstrap would

provide a robust version of �xed-b tests in a composite-hypothesis situation as well. While the

time transformation has inherent di�culties in the multivariate setup which make such extensions

di�cult, the pre-test may again provide a complement to the wild bootstrap approach, provided

that the sample size is large enough.

An application to Survey of Professional Forecasters data suggests that ignoring important time-

variation in the variance can seriously a�ect conclusions regarding predictive ability. In our

application, we consider a comparison of the forecasting abilities of professional survey forecasts

to time series models. Without accounting for the apparent changes in volatility, Diebold and

Mariano (1995) statistics provide only weak evidence (at best) against the null hypothesis of equal

predictive ability. The modi�ed versions (based on time transformed data or the wild bootstrap)

however indicate that survey forecasts signi�cantly outperform model-based forecasts.
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Appendix

A Proofs

Proof of Proposition 1

Note that the arguments in the proof of Theorem 2 in Kiefer and Vogelsang (2005) can be used

without further modi�cation to conclude that

T =

1√
T

∑T
t=1 (yt − µ0)√

− 1
T 2

∑T−1
i=1

∑T−1
j=1

T 2

B2k′′
(
i−j
B

)
1√
T

∑i
t=1 (yt − ȳ) 1√

T

∑j
t=1 (yt − ȳ)

+ op (1) .

for kernels with smooth derivatives or

T =

1√
T

∑T
t=1 (yt − µ0)√

2
bT

∑T
i=1

(
1√
T

∑i
t=1 (yt − ȳ)

)2
− 2

bT

∑[(1−b)T ]
i=1

(
1√
T

∑i
t=1 (yt − ȳ)

)(
1√
T

∑i+[bT ]
t=1 (yt − ȳ)

)+op (1) .

for the Bartlett kernel. The weak convergence

1√
T

[sT ]∑
t=1

(yt − µ)⇒ Bh(s)

and the continuous mapping theorem [CMT] then establish the desired limiting null distribution.

Proof of Corollary 1

Under a local alternative we have the weak convergence

1√
T

[sT ]∑
t=1

(yt − µ0)⇒ Bh(s) + cs

and the result follows with the same arguments as in the proof of Proposition 1.

Proof of Proposition 2

We begin with the case of Gaussian bootstrap variables r∗t and no prewhitening. Let S∗T (s)

denote the normalized partial sums of the bootstrapped centered sample,

S∗T (s) =
1√
T

[sT ]∑
t=1

(yt − ȳ) r∗t

30



To guarantee size control in the limit, it su�ces to show that the bootstrap partial sums converge

weakly in probability to
√

Var(υt)Bh(s), since Var (υt) would cancel out in the bootstrapped t-

ratio. Note that, conditional on the sample yt, t = 1, . . . , T , S∗T (s) is a Gaussian process with

independent increments. Its covariance kernel is given by

Cov (S∗T (s), S∗T (r)) =
1

T

[min{s,r}T ]∑
t=1

(yt − ȳ)2 E
(

(r∗t )
2
)

=
1

T

[min{s,r}T ]∑
t=1

(yt − ȳ)2 .

Then, following the proof of Lemma A.5 in Cavaliere et al. (2010), it su�ces to establish the

weak convergence

1

T

[sT ]∑
j=1

(yj − ȳ)2 ⇒ Var (υt)

∫ s

0
h2(r)dr

i.e. that the wild bootstrap correctly replicates the variance pro�le of the sample yt in the

limit. Assumption 2 guarantees pointwise convergence of 1
T

∑[sT ]
j=1 (yj − ȳ)2 via a Law of Large

Numbers for strong mixing processes (see Davidson, 1994, Section 20.6), and the monotonicity

of the quadratic variation function leads to uniformity of the convergence, as required for the

result.

We then examine the case of prewhitening. Let a and c be the pseudo-true value of the AR(1)

coe�cient and of the intercept in the autoregression16 yt = â0 + â1yt−1 + ût and let ut =

ht (υt − a1υt−1) such that ut satis�es indeed the same assumptions as yt up to the (for this step

irrelevant) unity long-run variance requirement. Then,

S∗T (s) =
1√
T

[sT ]∑
t=1

utr
∗
t +

1√
T

[sT ]∑
t=1

(ût − ut) r∗t

and the result follows along the lines of the case without prewhitening if the second summand on

the r.h.s. vanishes uniformly in s ∈ [0, 1]. Given that r∗t are serially independent and independent

of yt, this is implied by

sup
s∈[0,1]

1

T

[sT ]∑
t=1

(ût − ut)2 p→ 0

which is in turn implied by sups∈[0,1]\D
∣∣û[sT ] − u[sT ]

∣∣ p→ 0 where D denotes the set of disconti-

nuities of h (·), which are negligible given that there is a �nite number of jump discontinuities.

Now, at all continuity points of h,

û[sT ] − u[sT ] = µ+ h[sT ]υ[sT ] − â0 − â1

(
µ+ h[sT ]−1υ[sT ]−1

)
− h[sT ]

(
υ[sT ] − a1υ[sT ]−1

)
= µ (1− â1)− â0 − υ[sT ]−1

(
(â1 − a1)h[sT ]−1 − a1

(
h[sT ] − h[sT ]−1

))
,

where â1 and â0 are
√
T -consistent (Phillips and Xu, 2006), supt∈{1,...,T} |υt| = op

(√
T
)
thanks

to the uniform L2+δ boundedness of υt, and h[sT ] − h[sT ]−1 = O
(
T−1

)
uniformly in s thanks to

16See Phillips and Xu (2006) for the precise details.
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the piecewise Lipschitz condition on h. Hence sups∈[0,1]\D
∣∣û[sT ] − u[sT ]

∣∣ p→ 0 as required for the

result.

Finally, should r∗t follow the Rademacher or Mammen distribution, say, S∗T (s) is not Gaussian,

but weak convergence to a Gaussian process (conditional on the sample) holds and the proof

follows along the same lines.

Proof of Proposition 3

Cavaliere and Taylor (2008b, proof of Theorem 1) show that

1√
T

[sT ]∑
t=1

ỹt ⇒ ω̄W (s).

The result then follows like in the proof of Proposition 1 when no prewhitening is used.

To discuss prewhitening for computing the HAC estimator, we focus for simplicity on the AR(1)

case; the extension to ARMA is not di�cult but tedious.

Use the Phillips-Solo device to write, with y0 = 0 for convenience,

ût = yt − â1yt−1 − â0 = yt (1− â1) + â1∆yt−1 − â0,

such that

1√
T

[sT ]∑
t=1

ût = (1− â1)
1√
T

[sT ]∑
t=1

yt + â1y[sT ] −
1√
T

[sT ]∑
t=1

â0.

Some OLS algebra indicates that â0 = (1− â1) ȳ +Op
(
T−1

)
, and, thanks to the uniform L2+δ-

boundedness of yt, it holds that sups∈[0,1]

∣∣y[sT ]

∣∣ = op

(√
T
)
, hence

1√
T

[sT ]∑
t=1

ût = (1− â1)
1√
T

[sT ]∑
t=1

(yt − ȳ) + op (1)

with the op (1) term uniform in s. Since the adjustment of the HAC estimator is done precisely

by division with (1− â1), this term cancels out and we have the same behavior of Qb,k as under

no prewhitening.

Proof of Corollary 2

Begin by writing

xt =
t∑

j=1

(yj − µ0) =
t∑

j=1

hjυj + c
t√
T

and note that the variance pro�le estimate is invariant to µ. Now, the transformation is

x̃t = x[Tg(t/T )]
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with g the inverse of η̂, implying that

t∑
j=1

ỹj = x̃t =

[Tg(t/T )]∑
j=1

hjυj + c
√
Tg

(
t

T

)
.

Since η̂ converges weakly to the variance pro�le η, its inverse converges weakly to the inverse g̃

of the variance pro�le, which is, like η, monotonic and continuous. Hence, using the CMT and

Cavaliere and Taylor (2008b, proof of Theorem 1) again, we obtain the required weak convergence

1√
T

[sT ]∑
t=1

ỹt ⇒ ω̄W (s) + cg̃(s).

Proof of Corollary 3

Under µ = µ0 + c/
√
T , we have that

ỹwt = υt +
1

ht

c√
T
.

This implies for the partial sums of ỹwt that

1√
T

[sT ]∑
t=1

ỹwt =
1√
T

[sT ]∑
t=1

υt +
c

T

[sT ]∑
t=1

1

ht
.

With h (·) being piecewise Lipschitz, bounded and bounded away from zero, 1/h is itself piecewise

Lipschitz, bounded and bounded away from zero, so we ultimately have

1√
T

[sT ]∑
t=1

ỹwt ⇒W (s) + c

∫ s

0

1

h(r)
dr ≡W (s) + ch̄(s)

as required for the result.
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B Additional simulation results�Not for publication
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Figure 10: Size, T = 250. Top left block: φ = 0.1, top right: φ = 0.5, bottom: φ = 0.85. Y
denotes the standard �xed-b approach, TT the time transformation statistic (3), WB the wild
bootstrap approach (cf. Prop. 2) and PT the pretest (cf. Section 4.3). Rejection frequencies are
given on the y-axis, while b-values are given on the x-axis.

Figure 11 omits results for the time transformation in view of the substantial upward size dis-

tortions.
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Figure 11: Power vs. c, φ = 0.85, b = 0.5, T = 100. See notes to Figure 5.

35



●

●
● ● ● ● ● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

homoskedasticity, c=2, phi=0.85

b

em
pi

ric
al

 p
ow

er

●
●

● ● ● ● ● ● ● ● ●

●

●

QS, Y
BT, Y
QS, WB
BT, WB
QS, PT
BT, PT

●

●
●

●

●
●

● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

early down, c=2, phi=0.85

b

em
pi

ric
al

 p
ow

er
●

●
●

●
●

●
● ● ● ● ●

●

●

QS, Y
BT, Y
QS, WB

BT, WB
QS, PT
BT, PT

●

●
●

●
●

● ● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

late up, c=2, phi=0.85

b

em
pi

ric
al

 p
ow

er

●
● ●

●
● ● ● ● ● ● ●

●

●

QS, Y
BT, Y
QS, WB

BT, WB
QS, PT
BT, PT

●

●
●

● ●
●

● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

up, then down, c=2, phi=0.85

b

em
pi

ric
al

 p
ow

er

●
●

● ● ● ● ● ● ● ● ●

●

●

QS, Y
BT, Y
QS, WB

BT, WB
QS, PT
BT, PT

Figure 12: Power vs. b, φ = 0.85, c = 2, T = 100. See notes to Figure 6.
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Figure 13: Power vs. b, φ = 0.1, c = 6, T = 100. See notes to Figure 6.
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C Imputation�Not for publication

This appendix contains details on the imputed values for the missing observations in the SPF

data set from the �Forecast Error Statistics for the Survey of Professional Forecasters� obtained

from the Federal Reserve Bank of Philadelphia.

Data

In our empirical application, we evaluate forecasts of real output and in�ation in the US. The

data stems from the Survey of Professional Forecasters (SPF) database of the Federal Reserve

Bank of Philadelphia. In particular, we obtain data from the �Forecast Error Statistics for

the Survey of Professional Forecasters�. This database o�ers time series based forecasts (direct

and indirect autoregression and a no-change random walk forecast) in comparison to averages

computed from the distribution of survey forecasts for a wide range of variables and a relatively

long time period.

In connection to the previous literature, we focus on real output growth (RGDP) and in�ation

(PGDP, i.e. the price de�ator of the GDP). For both variables, we use one-quarter and four-

quarters ahead forecasts. Moreover, we take the �rst and last vintage of the real-time data for

the forecast evaluation. Our sample ranges from 1969:Q4 to 2015:Q1, yielding T = 182 quarterly

observations on real output and in�ation time series and their respective forecasts. Some series

contain a few missing values: either only a single one in the mid-nineties (0.55% of the data

points) or �ve ones in the early seventies (2.75% of the data points). Details are reported in

Tables 2�5.

These few missing values are imputed via a bootstrap based expectation maximization [EM]

algorithm, see Honaker et al. (2011). The algorithm makes use of the standard EM algorithm

on multiple bootstrapped samples of the original data set (containing missing values) to obtain

imputed values. We use 10,000 bootstrap replications for the EM algorithm. The code is written

in R (by using the Amelia package) and available upon request from the authors. Tables 2�

5 contain the imputed values (underlined) in connection to neighboring values. The obtained

bootstrap averages serve as imputed values which are reasonable. Figure 14 shows the time series

of real output and in�ation and the corresponding four-quarters ahead forecasts together with

the imputed values (shown as red �lled dots). The imputed values seem to plausible. Further

details on the time series model forecasts are provided in Tables 4�5.
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Table 2: Data entries for realized output and in�ation series (�rst data release). #MV gives
the number of missing values in total. Underlined values are imputed values obtained from the
bootstrap-based EM algorithm. Neighboring values are reported for comparison.

Output In�ation
Date First release Date First release

1995:03 4.20481 1995:03 0.58927
1995:04 2.41452 1995:04 2.26685
1996:01 2.80932 1996:01 2.60573

#MV 1 #MV 1

Table 3: Data entries for SPF forecasts of output and in�ation series (four-quarters ahead). #MV
gives the number of missing values in total. Underlined values are imputed values obtained from
the bootstrap-based EM algorithm. Neighboring values are reported for comparison.

Output In�ation
Date SPF (h = 4) Date SPF (h = 4)

1969:04 4.03701 1969:04 3.21260
1970:01 3.55115 1970:01 3.56122
1970:02 3.90855 1970:02 3.56355
1970:03 4.05961 1970:03 3.90631
1970:04 3.10037 1970:04 3.01866
1971:01 4.54798 1971:01 4.15267
1971:02 4.26233 1971:02 2.95183

1975:02 5.40498 1975:02 3.50332
1975:03 5.33554 1975:03 6.52413
1975:04 5.02638 1975:04 6.57499

#MV 5 #MV 5
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