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Abstract

In this paper, we develop a maximum likelihood estimator of time-varying loadings in

high-dimensional factor models. We specify the loadings to evolve as stationary vector au-

toregressions (VAR) and show that consistent estimates of the loadings parameters can be

obtained by a two-step maximum likelihood estimation procedure. In the first step, princi-

pal components are extracted from the data to form factor estimates. In the second step,

the parameters of the loadings VARs are estimated as a set of univariate regression models

with time-varying coefficients. We document the finite-sample properties of the maximum

likelihood estimator through an extensive simulation study and illustrate the empirical rel-

evance of the time-varying loadings structure using a large quarterly dataset for the US

economy.
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1 Introduction

In this paper, we develop a consistent maximum likelihood estimator of time-varying loadings in

high-dimensional factor models where factors are estimated with principal components.

The problem of time-varying loadings in factor models is important because the assumption of

constant loadings has been found to be implausible in a number of studies considering structural

instability in factor models. In a large macroeconomic dataset for the U.S., Stock and Watson

(2009) find considerable instability in factor loadings around 1984, and they improve factor-based

forecast regressions of individual variables by allowing factor coefficients to change after the break

point. Breitung and Eickmeier (2011) develop Chow-type tests for structural breaks in factor

loadings and find similar evidence of structural instability around 1984. They also find evidence of

structural breaks in the Euro area around 1992 and 1999. Del Negro and Otrok (2008), Liu et al.

(2011), and Eickmeier et al. (2015) estimate factor models in which the factor loadings are modelled

as random walks using large panels of data, but theoretical results for models with time-varying

parameters in a high-dimensional setting are scant.

The econometric theory on factor models explicitly addresses the high dimensionality of these

datasets by developing results in a large N and large T framework. The central results in the

literature on consistent estimation of the factor space by principal components as N,T →∞ have

been developed in Stock and Watson (1998, 2002), and Bai and Ng (2002). Forni et al. (2000)

consider estimation in the frequency domain. Principal components have the advantage of being

easy to compute and feasible even when the cross-sectional dimension N is larger than the sample

size T . Bates et al. (2013) characterize the types and magnitudes of structural instability in factor

loadings under which the principal components estimator of the factor space is consistent. Another

strand of literature is concerned with estimation by maximum likelihood. Bai and Li (2012a,b)

consider maximum likelihood estimation of factor loadings and idiosyncratic variances, while Doz

et al. (2012) study functions of maximum likelihood estimators, also in a large N,T setting. Their

analyses applies to factor models with constant loadings.

We consider a factor model of the form Xit = λ′itFt+eit for i = 1, ...N and t = 1, ..., T , where the

data Xit depend on a small number r � N of unobserved common factors Ft. The r × 1 vector of

factor loadings λit evolves over time. We model λit for each i as a stationary vector autoregression,

and our main contribution is to show that the parameters of these time-varying loadings can be

consistently estimated by maximum likelihood. Our estimation procedure consists of two steps. In

the first step, the common factors are estimated by principal components, and in the second step

we estimate the loadings parameters by maximum likelihood, treating the principal components as

observed data.

The principal components estimator is robust to stationary variations in the loadings. By

averaging over the cross-section, the temporal instabilities in the loadings are smoothed out and

the factor space is consistently estimated. Average consistency in t of the factor space is shown by

Bates et al. (2013), and we extend the result to uniform consistency in t to analyse the maximum

likelihood estimator.
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In the second step, we estimate a panel of regression models with time-varying coefficients

where the principal components are treated as the observed regressors, and the loadings are the

time-varying coefficients. We allow for heteroskedasticity and serial correlation in the idiosyncratic

errors eit, but restrict our attention to cross-sectionally uncorrelated errors to avoid proliferation

of parameters. Conditional on the factor estimates, the variables in the panel of regressions are

therefore uncorrelated, and the loadings parameters can be estimated as a set of N univariate

regression models with time-varying coefficients. Under the condition that T
N2 → 0, the maximum

likelihood estimator of the time-varying loadings is consistent as N,T → ∞, and estimation error

from the principal components can be ignored.

We point out that the computation of the maximum likelihood estimator is relatively simple.

Principal components are simple to compute, and the set of N univariate regression models with

time-varying parameters can be readily estimated by Kalman-filter procedures.

The rest of the paper is organized as follows. Section 2 introduces the model and the two-step

estimation procedure. Section 3.1 states the assumptions and consistency results for the principal

components estimator, and Section 3.2 discusses identification of the loadings parameters. Our

main result on consistency of the maximum likelihood estimator of the time-varying loadings and

the associated assumptions are stated in Section 3.3. In Section 4 we report the results of a Monte

Carlo study, and in Section 5 we provide an empirical illustration. Section 6 concludes.

2 Model and Estimation

We consider the following model:

Xt = ΛtFt + et, (1)

where Xt = (X1t, ..., XNt)
′ is the N -dimensional vector of observed data at time t. The observa-

tions are generated by a small number r � N of unobserved common factors Ft = (F1t, ..., Frt)
′,

time-varying factor loadings Λt = (λ1t, ..., λNt)
′, and idiosyncratic errors et = (e1t, ..., eNt) with

covariance matrix E(ete
′
t) = Ψ0. The N × r loadings matrix Λt = (λ1t, ..., λNt)

′ is time-varying and

each λit ∈ Rr×1 evolves as an r-dimensional vector autoregression:

B0
i (L)(λit − λ0

i ) = ηit, (2)

where λ0
i = E(λit) is the unconditional mean, and B0

i (L) = I − B0
i,1L − ... − B0

i,pL
p is a pth-order

lag polynomial with roots outside the unit circle. The autoregressive order p can be allowed to

vary over i such that pi differs over i. We suppress the subscript for notational convenience. The

innovations ηit have covariance matrix E(ηitη
′
it) = Q0

i .

Our goal is to estimate the parameters of each of the loadings processes (2) and the idiosyncratic

variance matrix Ψ0. To achieve a sufficiently parsimonious parametrization of the N × N matrix

Ψ0, we specify it to be diagonal, Ψ0 = diag(ψ0
1, ..., ψ

0
N ), such that the idiosyncratic errors are

cross-sectionally uncorrelated. Conditional on the factors, Xi is therefore uncorrelated over i, and
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the model can be written as:

Xi = FΛi + ei, (3)

where Xi = (Xi1, ..., XiT )′, ei = (ei1, ..., eiT )′, F = diag {F ′t}t=1,...,T is a T × rT block-diagonal

matrix, and Λi = (λ′i1, ..., λ
′
iT )′. The mean and variance of Xi are E(Xi) = (F ′1λ

0
i , ..., F

′
Tλ

0
i )
′ and

Σi := V ar(Xi) = FΦiF
′ + ψiIT where Φi = V ar(Λi) is of dimension rT × rT . We can thus specify

a Gaussian likelihood function for Xi conditional on the factors F = (F1, ..., FT )′ as:

LT (Xi|F ; θi) = −1

2
log(2π)− 1

2T
log|Σi| −

1

2T
(Xi − E(Xi))

′Σ−1
i (Xi − E(Xi)), (4)

with parameter vector θi = {Bi(L), λi, Qi, ψi}. Equations (2) and (3) can be written as a linear

state-space model and the likelihood can therefore be calculated with the Kalman filter.

It is not feasible to estimate θi with (4), however, as the likelihood depends on the unobservable

factors F . We therefore replace the unobservable factors F in (4) with an estimate F̃ to form the

feasible likelihood function L̃T (Xi|F̃ ; θi). This gives us a set of N likelihood functions to estimate

the parameters θi for each i. Define the estimator θ̃i which maximizes the feasible likelihood

function as:

θ̃i = argmax
θ

L̃T (Xi|F̃ ; θi). (5)

This is our object of interest and we show that the estimator θ̃i
p→ θ0

i for each i, where θ0
i ={

B0
i (L), λ0

i , Q
0
i , ψ

0
i

}
is the true value of the parameters.

We use the principal components estimator to estimate the factors. The principal components

estimator treats the loadings as being constant over time, Λt ≡ Λ, and solves the minimization

problem:

(F̃ , Λ̃) = min
F,Λ

(NT )−1
N∑
i=1

T∑
t=1

(Xit − λ′iFt)2, (6)

where F̃ is T × r and Λ̃ is N × r. To uniquely define the minimizers, it is necessary to impose

identifying restrictions on the estimators, as only Xit is observed. By concentrating out Λ and

using the normalization F ′F/T = Ir, the problem is equivalent to maximizing tr(F ′(XX ′)F ),

where X = (X1, ..., XT )′ is the T ×N matrix of observations. The resulting estimator F̃ is given

by
√
T times the eigenvectors corresponding to the r largest eigenvalues of the T × T matrix XX ′.

The solution is not unique: any orthogonal rotation of F̃ is also a solution. Bai and Ng (2008b)

give an extensive treatment of the principal components estimator. We use F̃ to form the feasible

likelihood function L̃T (Xi|F̃ ; θi).

The estimation procedure thus consists of two steps. In the first step, we extract principal

components from the observable data to estimate the factors Ft, under the assumption of constant

loadings. In the second step, we use the factor estimates together with the observable data to

maximize the likelihood function and estimate the parameters θi of the time-varying loadings. Our

main result in Section 3.3 shows that this yields a consistent estimator for the parameters of the
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time-varying loadings.

3 Asymptotic Theory

In this section, we present the asymptotic theory for the two-step estimation method discussed

in Section 2. The main result is Theorem 1 on consistent estimation of the loadings parameters

by maximum likelihood; it is given in Section 3.3. Our result builds on the work by Bates et al.

(2013), who show average consistency of the principal components estimator when loadings are

subject to structural instability. We use a different rotation of the principal components estimator,

and in Section 3.1 we therefore restate their result in Lemma 1. Furthermore, we provide a result

on uniform consistency in t of the principal components estimator in Proposition 1. Section 3.2

discusses identification of the factors and loadings parameters. All results are for N,T → ∞, and

the factor rank r is assumed to be known.

We introduce the following notation. ‖A‖ = [tr(A′A)]1/2 denotes the Frobenius norm of the

matrix A. The subscripts i, j are cross-sectional indices, t, s are time indices, and p, q are factor

indices. The constant M ∈ (0,∞) is a constant common to all the assumptions below. Finally,

define CNT = min{
√
N,
√
T}.

3.1 Principal Components Estimation

Let ξit := λit − λ0
i = B0

i (L)−1ηit be the loadings innovations and write (1) as:

Xt = Λ0Ft + ξtFt + et,

where Λ0 = (λ0
1, ..., λ

0
N )′ and ξt = (ξ1t, ..., ξNt)

′ are the N × r matrices of loadings means and

innovations, respectively. The vector ξit is the moving average representation of the loadings. As-

sumptions A-C are standard for factor models and are the same as Assumptions A-C in Bai and

Ng (2002):

Assumption A (Factors). E‖Ft‖k ≤ M < ∞ for some k ≥ 4, and T−1
∑T

t=1 FtF
′
t

p→ ΣF for

some r × r positive definite matrix ΣF .

Assumption B (Loadings). ‖λ0
i ‖ ≤ M < ∞, and ‖Λ0′Λ0/N − ΣΛ‖ → 0 for some positive

definite matrix ΣΛ.

Assumption C (Idiosyncratic Errors). There exists a positive constant M <∞ such that for

all N and T :

1. E(eit) = 0, E|eit|8 ≤M.
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2. E(e′set/N) = E(N−1
∑N

i=1 eiseit) = γN (s, t), |γN (s, s)| ≤M for all s, and T−1
∑T

s,t=1 |γN (s, t)| ≤
M .

3. E(eitejt) = τij,t with |τij,t| ≤ |τij | for some τij and for all t. In addition N−1
∑N

i,j=1 |τij | ≤M .

4. E(eitejs) = τij,ts, and (NT )−1
∑N

i,j=1

∑T
t,s=1 |τij,ts| ≤M .

5. For every (s, t), E|N−1/2
∑N

i=1[eiseit − E(eiseit)]|4 ≤M .

We leave the moment condition on the factors in Assumption A unspecified, as the result in Propo-

sition 1 depends on k. Assumption B requires the columns of Λ0 to be linearly independent, such

that the matrix ΣΛ is non-singular. Assumptions A and B together imply the existence of r com-

mon factors. Assumption C allows for heteroskedasticity and limited time-series and cross-section

dependence in the idiosyncratic errors. It will later be strengthened to eit being independent over

i and t. Note that if eit is independent for all i and t, Assumptions C.2-C.5 follow from C.1.

We impose the following assumption on the factor loadings innovations and the factors:

Assumption D (Factor Loadings Innovations). The following conditions hold for all N,T and

factor indices p1, q1, p2, q2 = 1, ..., r:

1. sup
s,t

∑N
i,j=1 |E(ξisp1ξjtq1Fsp1Ftq1)| = O(N).

2.
∑T

s,t=1

∑N
i,j=1 |E(ξisp1ξjsq1Fsp1Fsq1Ftp2Ftq2)| = O(NT 2).

3. sup
s,t

∑T
s=1

∑N
i,j=1 |E(ξisp1ξjsq1ξitp2ξjtq2Fsp1Fsq1Ftp2Ftq2)| = O(N2) +O(NT ).

Assumption D is identical to Bates et al. (2013) except for D.3, which is stronger than their

corresponding assumption. Assumption D.3 is needed for uniform consistency of the principal

components and is still reasonable. We do not require independence between the factors and

loadings, as the effect of the factors on the observable variables might reasonably be expected to

change when the factors differ substantially from their mean levels. However, if the factors and

loadings are assumed to be independent, and the loadings evolve as stationary vector autoregressions

that are independent over i, Assumptions D.1-D.3 can easily be shown to hold: For simplicity, take

r = 1. By Assumption A and cross-sectional independence of the loadings, the supremum in D.1

can be bounded by:

sup
s,t
{|E(FsFt)|

N∑
i,j=1

|E(ξisξjt)|} ≤Msup
s,t

N∑
i,j=1

|E(ξisξjt)| = M

N∑
i=1

sup
s,t
|E(ξisξit)|.

The terms E(ξisξit) are the autocovariances of the moving average representation of the loadings.

As the loadings are stationary, these autocovariances are bounded, and the rate O(N) follows. The

rate O(NT 2) in D.2 follows from D.1 when the factors and the loadings are independent. The sum
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in D.3 can be bounded by:

Msup
s,t

T∑
s=1

N∑
i,j=1

|E(ξisξjsξitξjt)| = Msup
s,t

T∑
s=1

N∑
i=1

|E(ξ2
isξ

2
it)|+Msup

s,t

T∑
s=1

N∑
i 6=j
|E(ξisξit)E(ξjsξjt)|

≤M
T∑
s=1

N∑
i=1

sup
s,t
|E(ξ4

is)|+Msup
s,t

N∑
i 6=j

(
T∑
s=1

|E(ξisξit)|2
)1/2( T∑

s=1

E|(ξjsξjt)|2
)1/2

.

The first term is O(NT ) if E(ξ4
is) < ∞, and the second term is O(N2) if the autocovariances

E(ξisξit) are square-summable. Assumption D.3 is therefore satisfied when the loadings and the

factors are independent. We assume the same rates to hold without imposing independence between

the factors and the loadings.

Finally, we impose independence between the idiosyncratic errors and the factors and loadings

innovations.

Assumption E (Independence). For all (i, j, s, t), eit is independent of (Fs, ξjs).

Assumptions A-E are sufficient to consistently estimate the space spanned by the factors. For

this purpose, we use the result of Lemma 1 below, which is a modified version of Theorem 1 in

Bates et al. (2013).1 We use a rescaled estimator that is more convenient for the rest of the analysis

and therefore restate their result:

Lemma 1. Under Assumptions A-E there exists an r × r matrix H such that

T−1
T∑
t=1

‖F̃t −H ′Ft‖2 = Op(C
−2
NT )

as N,T →∞.

Proof. See the Appendix.

Lemma 1 shows that the mean-squared deviation between the principal components and the

common factors disappears as the sample size T and the cross-sectional dimension N tend to infin-

ity.2 The convergence rate CNT is the same as in Bai and Ng (2002), and the principal components

estimator is thus robust to stationary deviations in the loadings around a constant mean. Note

that the common factors are only identified up to a rotation, so the principal components converge

to a rotation of the common factors.

1Bates et al. (2013) use the estimator F̂ = F̃ VNT , where VNT is the diagonal matrix of the r largest eigenvalues
of (NT )−1XX ′.

2Lemma 1 also holds when the factor rank is unknown. By setting the number of estimated factors to any fixed
k ≥ 1, the Lemma can be stated as T−1 ∑T

t=1 ‖F̃
k
t − Hk′Ft‖2 = Op(C−2

NT ), where F̃ k
t is k × 1 and Hk is a r × k

matrix, and F̃ k
t consistently estimates the space spanned by k of the true factors
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Lemma 1 does not imply uniform convergence in t, but only average consistency of the principal

components. In order to analyse the properties of the feasible likelihood function L̃T (Xi, F̃ |θi), we

need uniform consistency of the estimated factors, in addition to the average consistency of Lemma

1. To establish uniform convergence, we make additional assumptions, as in Bai and Ng (2006,

2008a):

Assumption F There exists a positive constant M <∞ such that for all N and T :

1.
∑T

s=1 |γN (s, t)| ≤M for all t.

2. E‖(NT )−1/2
∑T

s=1

∑N
k=1 Fs[eksekt − E(eksekt)]‖2 ≤M for all t.

3. E‖N−1/2
∑N

i=1 λ
0
i eit‖8 ≤M for all t.

Assumption F.1 is stronger than C.2, but still reasonable: If eit is assumed to be stationary

with absolutely summable autocovariances, Assumption F.1 holds. Assumptions F.2 and F.3 are

reasonable as they involve zero-mean random variables. We can now present the uniform consis-

tency result for the estimated factors.

Proposition 1. Under Assumptions A-F and additionally if max
t
‖Ft‖ = Op(αT ), and T/N2 → 0,

max
t
‖F̃t −H ′Ft‖ = Op

(
T 1/8

N1/2

)
+Op(αTN

−1/2) +Op(αTT
−1) +Op(C

−1
NT ).

Proof. See the Appendix.

Proposition 1 shows that the maximum deviation between the factors and the principal compo-

nents depends on αT . The convergence rate thus depends on the assumption imposed on max
t
‖Ft‖.

The factors can be modelled as a dynamic process with arbitrary dynamics to determine αT . How-

ever, if the parameters governing these dynamics are not of direct interest, nothing is lost by

assuming the factors to be a sequence of fixed and bounded constants. Thus max
t
‖Ft‖ ≤M .3 We

can take Op(αT ) to be O(1) in our results, and max
t
‖F̃t −H ′Ft‖ = op(1). However, Proposition

1 is of independent interest, e.g. for deriving the limiting distribution for the maximum likelihood

estimator, so we state Proposition 1 in its more general form. Bai (2003) and Bai and Ng (2008a)

derive a similar result for factor models with constant loadings. Uniform convergence when loadings

undergo small variations is also considered by Stock and Watson (1998), who obtain a much slower

convergence rate and require T = o(N1/2). Thus, Proposition 1 extends the uniform consistency

result to the case of time-varying loadings.

3Bai and Li (2012a,b) treat the factors as a sequence of fixed constants when providing inferential theory for
maximum likelihood estimation of factor models with constant loadings.
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3.2 Identification

It is well known that without identifying restrictions, factors and loadings are not separately iden-

tified in (1). The common component Ct = ΛtFt is identified, but normalizations are needed to

separate factor and loadings from the common component. This has implications for the identifi-

cation of the loadings parameters as well, which we now illustrate. The model defined by (1) and

(2) is observationally equivalent to:

Xt = ΛtH
′−1H ′Ft + et,

Bi(L)H−1(λit − λi) = H−1ηit, for i = 1, ..., N.

Lemma 1 states that the principal components estimator F̃t is a consistent estimate of a rotation

of the true factors, H ′Ft. The two-step estimation procedure fixes the rotational indeterminacy

by imposing the normalization in the principal components step. By replacing the unobserved

factors Ft with F̃t for maximum likelihood estimation, we are thus estimating the parameters of

λ∗it = H−1λit.

To clarify the issue, consider the following example. Using the same notation as previously, the

elements of the r× 1 vector λit = (λit,1..., λit,r)
′ refer to the loadings of variable i at time t on each

of the r factors, and λi = E(λit) = (λi,1, ..., λi,r)
′ are the corresponding unconditional expectations

of the factor loadings. Assume that the matrices ΣF and ΣΛ are diagonal. In this case it is not

hard to show that the rotation matrix H converges to Σ
−1/2
F . Let the number of factors r = 2 with

variance ΣF = diag(σ2
1, σ

2
2) and let the data-generating parameters of the loadings be

λ0
i =

(
λi,1

λi,2

)
, Q0

i =

(
qi,1 0

0 qi,2

)
, B0

i (L) = I2 −

(
bi,11 0

0 bi,22

)
.

We can now make precise what θ̃ is estimating. With the normalization F̃ ′F̃ /T = I2, the principal

components will be close to Σ
−1/2
F Ft in large samples. Using the principal components in place of

the unobserved factors means that we are estimating the following model:

Xt = Λ∗t F̃t + et,

λ∗it − λ∗i = B∗i (λ∗i,t−1 − λ∗i ) + vit, for i = 1, ..., N,

where λ∗it = Σ
−1/2
F λit =

(
σ−1

1 λit,1

σ−1
2 λit,2

)
and vit = Σ

−1/2
F ηit. The loadings λit are scaled by the

standard deviations of the unobserved factors, and it is the parameters of the rotated loadings λ∗it
that can be estimated. In large samples the estimate of the loadings mean λ∗i will be therefore close

to

Σ
−1/2
F λ0

i =

(
σ−1

1 λi,1

σ−1
2 λi,2

)
,
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and the variance estimate V ar(vit) = V ar(Σ
−1/2
F ηit) will be close to

Σ
−1/2
F Q0

iΣ
−1/2
F =

(
σ−2

1 qi,1 0

0 σ−2
2 qi,2

)
.

The mean and variance parameters are thus scaled by the standard deviation of the factors. The

matrices Bi(L) and Q0
i of the data-generating model are diagonal in this example, so the diagonal

elements of B∗i are the autocorrelations of λ∗it,1 and λ∗it,2. In large samples the first diagonal element

of B∗i will therefore be close to

b∗i,11 =
Cov(λ∗it,1, λ

∗
i,t−1,1)

V ar(λ∗it,1)
=
Cov(σ−1

1 λit,1, σ
−1
1 λi,t−1,1)

V ar(σ−1
1 λit,1)

=
σ−2

1 Cov(λit,1, λi,t−1,1)

σ−2
1 V ar(λit,1)

=
Cov(λit,1, λi,t−1,1)

V ar(λit,1)
= bi,11,

and similarly for b∗i,22. The estimates of the autoregressive matrix B∗i are therefore unaffected by

the normalization imposed on the principal components, and the estimate of B∗i is consistent for

the autoregressive parameters Bi of the data-generating process λit.

The arguments of this example apply to the general setting as well. The maximum likelihood

estimator (5) of the loadings parameters is estimating Bi(L), H−1λi, and H−1QiH
′−1. The mean

and variance parameters of (2) are identified up to the unknown rotation matrix H, while the

dynamic parameters Bi(L) are not subject to any rotation. The rotation is determined by the

restriction used to identify the principal components. Using another normalization in the first

step will thus change the estimates of λi and Qi, while the estimate of Bi(L) is unaffected, except

for small numerical differences owing to numerical optimization of the likelihood. The dynamic

properties of the loadings are therefore uniquely identified. In the following, we assume for simplicity

that H = Ir. This is just a normalization and can be achieved by imposing further assumptions on

the matrices ΣF and ΣΛ.

3.3 Maximum Likelihood Estimation

Our method of proof relies on showing that the likelihood function (4) with principal components

is asymptotically equivalent to the likelihood function with unobserved factors. To establish our

result, we impose distributional assumptions on the loadings and idiosyncratic errors that enable

maximum likelihood estimation of the parameters θi = {Bi(L), λi, Qi, ψi}. We make the following

assumptions:

Assumption G (Distributions) For all i = 1, ..., N , the following statements hold:

1. The loadings λit follow a finite-order Gaussian VAR:

Bi(L)(λit − λi) = ηit,
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with the r × r filter Bi(L) = I − Bi,1L − ... − Bi,pLp having roots outside the unit circle,

and ηit is an r-dimensional Gaussian white noise process, ηit ∼ i.i.d. N (0, Qi), where Qi is

positive definite with all elements bounded.

2. The idiosyncratic errors et are cross-sectionally independent Gaussian white noise, et ∼
N (0,Ψ), where Ψ is a diagonal matrix with elements ψi > 0 and bounded for all i.

G.1 assumes the loadings to evolve as stationary vector autoregressions. We rule out the possi-

bility of I(1) loadings as this would be in violation of Assumption D. With non-stationary loadings

the principal components estimator cannot consistently estimate the factor space.4 G.2 assumes

the idiosyncratic errors to be i.i.d. over both t and i. This assumption can be relaxed to allow

for serial correlation. The key part of Assumption G.2 is the cross-sectional independence. This

enables us to analyse the likelihood separately for each i. This is a set of N independent univariate

regressions with time-varying parameters. With observed regressors, consistency is known to hold,

see e.g. Pagan (1980). Rather than proving consistency for the maximum likelihood estimator with

observed factors we therefore assume consistency in the following assumption.

Assumption H (MLE with observed factors) For each i, the function LT (Xi|F ; θi) satisfies:

1. There exists a function L0(Xi|F ; θi) that is uniquely maximized at θ0.

2. θ0
i is in the interior of a convex set Θi, and LT (Xi|F ; θi) is concave.

3. LT (Xi|F ; θi)
p→ L0(Xi|F ; θi) for all θi ∈ Θi.

Under Assumptions G and H, the maximum likelihood estimator with observed factors θ̂i =

argmax
θ
LT (Xi|F ; θi) exists with probability approaching 1 and is consistent for each i: θ̂i

p→ θ0
i .

This follows from standard arguments as in Newey and McFadden (1994).

Replacing the unobserved factors with the principal components estimates yields the feasible

likelihood function L̃T (Xi|F̃ ; θi) and the maximum likelihood estimator defined in (5). We now

state our main result.

Theorem 1. Let Assumption A-H hold. For each i, the estimator θ̃i defined in (5) exists with

probability approaching 1 and

θ̃i
p→ θ0

i .

Proof. See the Appendix.

4Bates et al. (2013) consider random walk loadings of the form λit = λi,t−1 +T−3/4ζit and show that Assumption
D is satisfied with this specification. However, the scaling of the loadings innovations by the factor T−3/4 is crucial
for Lemma 1 to hold. With a pure random walk of the form λit = λi,t−1 + ζit, principal components cannot estimate
the factor space consistently.
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Theorem 1 states that using the principal component estimates instead of the unobserved factors

does not affect the consistency of the maximum likelihood estimator. The main argument in proving

Theorem 1 is that the feasible likelihood function convergences uniformly to the infeasible likelihood

function. Asymptotically, the feasible likelihood function therefore has the same properties as the

infeasible likelihood function, for which consistency is known to hold. Assumption H thus holds for

L̃T (Xi|F̃ ; θi) and consistency follows. In the proof of Theorem 1 we use the following normalization

that is convenient for the calculations: If F ′F/T = Ir and Λ0′Λ0 is a diagonal matrix with distinct

elements, we show in the Appendix that the rotation matrix H converges to the identity Ir. Lemma

1 and Proposition 1 then holds with H replaced by the identity matrix, and θi can be estimated

asymptotically without rotation. Such normalizations are inconsequential for the results as H is

asymptotically bounded, and they are only imposed to avoid unnecessary complications. Without

such normalizations the feasible likelihood converges to LT (Xi|FH; θi) and θ̃i is consistent for the

parameters of the process λ∗it = H−1λit as discussed in Section 3.2.

We have assumed that the factors are estimated by the method of principal components. Note,

however, that the proof of Theorem 1 does not rely on the principal components estimator. Theorem

1 holds for all estimators F̃ that satisfy the conditions for Lemma 1 and Proposition 1.

Our analysis does not make any formal statements about the limiting distribution of θ̃i. Sim-

ulation evidence in Section 4 does, however, suggest that an asymptotic normality result holds for

θ̃i as well. The simulations further indicate that the limiting distribution of θ̃i is unaffected by the

estimation error of Ft. Two-step estimators typically require adjusting the limiting distribution

to account for estimation error from first-step estimation as in Newey (1984) and Pagan (1986),

but that does not seem to be the case here. Bai and Ng (2006) show that the estimated-regressor

problem can be ignored when using principal components in place of the unobserved factors in

factor-augmented VARs. We expect that a similar result holds for our model, but leave a formal

proof for future research.

In Assumption G.2 and the proof of Theorem 1 we assume that the model has an exact factor

structure in the sense that idiosyncratic errors have no cross-sectional or temporal dependence.

It is straightforward to relax the assumption of no temporal dependence. We could model the

idiosyncratic errors as cross-sectionally uncorrelated autoregressions and estimate the parameters

by including eit in the state equation of the state space representation of the model and compute

the likelihood with the Kalman filter. The proof of Theorem 1 applies with very minor changes.

The assumption of no temporal dependence in eit is thus only for expositional simplicity.

Relaxing the assumption of no cross-sectional correlation to allow for an approximate factor

structure requires substantially more work. The essential contribution of Assumption G.2 is that it

enables the likelihood of the full panel of data X = (X1, ..., XN ) to be analysed separately for each

Xi. When the idiosyncratic elements of the model are cross-sectionally correlated, E(ete
′
t) = Ψ0

is non-diagonal, and we cannot condition on the factors to make Xi independent over i. Analysis

of the model with cross-sectionally correlated errors requires a different method of proof and is be-
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yond the scope of this paper.5 However, in the next section we provide simulation evidence showing

that our results are robust to the assumption of no cross-sectional correlation in the idiosyncratic

elements.

4 Monte Carlo Simulations

In this section, we conduct a simulation study to assess the finite-sample performance of the two-step

estimator. We provide results for both principal components and maximum likelihood estimates.

Section 4.1 describes the simulation design, and Section 4.2 reports and discusses the results.

4.1 Design

The simulation design broadly follows that of Stock and Watson (2002):

Xit = λ′itFt + eit,

(Ir −BiL)(λit − λi) = ηit,

Ftp = ρFt−1,p + utp,

(1− αL)eit = vit,

ηit ∼ i.i.d. N (0, Qi),

utp ∼ i.i.d. N (0, 1− ρ2),

vt ∼ i.i.d. N (0,Ω),

where i = 1, ..., N , t = 1, ..., T , p = 1, ..., r. The processes {ηit},{utp}, and {vt} are mutually

independent. The autoregressive matrix Bi determines the degree of persistence of the loadings

and has eigenvalues inside the unit circle in all simulations. The unconditional mean of the loadings

is λi = (λi1, ..., λir)
′ and λip ∼ i.i.d. N (0, 1) in all simulations. The matrix Qi is the covariance

matrix of the loadings innovations. The model allows for cross-sectional and temporal dependence

in the errors eit. The parameter α determines the degree of serial correlation in the idiosyncratic

errors, and cross-sectional correlation is modelled by specifying the variance matrix of vt as Ω =(
β|i−j|

√
ψiψj

)
ij

for i, j = 1, ..., N . The matrix is thus a Toeplitz matrix and the cross-sectional

correlation between the idiosyncratic elements is therefore limited and determined by the coefficient

β. If β = 0, α = 0, eit is independent across i and t, and the model is an exact factor model

and correctly specified according to Assumption G. We allow for factor persistence through the

coefficient ρ.

We generate the model 2000 times for each of the different combinations of T and N . To

avoid any dependence on initial values of the simulated processes we have a ’burn-in’ period of 200

observations for each simulation. The principal components are calculated with the estimator F̃t

defined in (6). The data Xit are standardized to have mean zero and variance equal to one prior to

5Bai and Li (2012a) analyse factor models with constant loadings in a maximum likelihood setting under weak
cross-sectional correlation in eit. They show that the estimates of ψ0

i are consistent for the diagonal elements of
T−1 ∑T

t=1E(ete
′
t). However, they rely on a method of proof that differs substantially from ours and their results do

not readily apply to our model.
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extracting principal components. The principal components are identified only up to an orthogonal

rotation. In order to directly compare the maximum likelihood estimates with data-generating

parameters, we therefore rotate the principal components to resemble the simulated factors. More

specifically, we solve for the orthogonal r × r matrix A∗ that maximizes tr[corr(F, F̃A)].6 The

estimates are then rescaled to have the same standard deviation as the true simulated factors:

F̃ ∗p =
σ(Fp)

σ(F̃p)
F̃p, p = 1, ..., r

where F̃p is the pth column of the rotated principal components matrix F̃A∗. Such rotations

are innocuous and allow us to directly compare the estimated parameter values with the data-

generating parameters. The principal components are treated as data, and we maximize the likeli-

hood L̃T (Xi|F̃ ∗; θi) to estimate θi.

The performance of the principal component estimator F̃ is measured by the trace statistic:

R2
F̃ ,F

=
Ê[tr(F ′F̃ (F̃ ′F̃ )−1F̃ ′F )]

Ê[tr(F ′F )]
,

where Ê denotes the average over the Monte Carlo simulations. The trace statistic R2
F̃ ,F

is a

multivariate R2 from a regression of the true data-generating factors on the principal components.

It is smaller than 1 and tends to 1 as the canonical correlation between the factors and the principal

components tends to 1.

For the maximum likelihood estimates θ̃i we compute the mean estimates over the Monte

Carlo repetitions for each parameter.7 However, for the mean parameter λi we report the bias of

the estimates λ̃i as the true value of λi changes for each combination of N,T . Furthermore, we

calculate the root-mean-squared error of the estimates θ̃i and also of the infeasible estimates θ̂i

where the true data-generating factors are used in the maximum likelihood estimation. We report

the relative root-mean-squared error between the estimates θ̃i and θ̂i. This gives us a measure of

the estimation error in θ̃i that is due to estimation error from the principal components estimates.

The parameters are identically chosen across the cross-section.8 The properties of the estimated

parameters θ̃i are thus the same for all i and we only report the results for a single cross-section

index.9 In the baseline case, we set Bi = diag{bip}p=1,...,r, Qi = diag{qip}p=1,...,r, and choose the

6The solution to this is A∗ = V U ′ where V and U are the orthogonal matrices of the singular value decomposition
corr(F, F̃ ) = USV ′. When the number of principal components k is not equal to the true number of factors r, we
only rotate the first l = min{k, r} principal components. Eickmeier et al. (2015) use the same rotation.

7Convergence is generally very good, with all 1-factor calibrations having over 99% convergence rate, and most
calibrations with 2 and 3 factors have over 98% convergence rate. Exceptions are sample sizes of T = 50 for the 2-
and 3-factor models where the lowest convergence rate is 92%. However, this is expected as we are estimating up to
10 parameters in a highly non-linear model with 50 observations. Convergence statistics using the true factors are
similar, but with somewhat better convergence rates for calibrations with 2 and 3 factors and T = 50.

8The mean parameters λi are not the same for all i. This is necessary for Assumption B to be satisfied. With λi

identical over i, the matrix Λ0 does not have full rank and Λ0′Λ0/N will not converge to a positive definite matrix.
9Simulations with loadings parameters calibrated with heterogeneous values across i show similar results as in

Table 1. The results are available upon request.
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loadings persistence and variance parameters to be bip = 0.9 and qip = 0.2. The idiosyncratic errors

are cross-sectionally and temporally uncorrelated, i.e. α = 0, β = 0, and the variance is set at

ψi = 1. Finally, we set ρ = 0 such that the factors are white noise.

We introduce serial correlation and cross-sectional dependence separately in the idiosyncratic

errors. We set α = 0.5 and estimate this parameter by including eit in the state equation. To

consider the effect of cross-sectional correlation, i.e. misspecifying the model, we set β = 0.5.

We also report results with persistent factors with the factor persistence set at both 0.9 and 0.5.

Finally, we consider the consequences of estimating the wrong number of factors, i.e. extracting

one fewer or one additional principal component than the true number of factors.

4.2 Results

Table 1 reports the results for one factor, r = 1. Panel I shows the results for the baseline

model with no serial, no cross-sectional dependence in errors, and no factor dependence. The R2
F̃ ,F

statistics show that the factor estimates are close to the true factors even for small sample sizes. For

the autoregressive parameter bi, the estimates improve as the sample size T increases. Increasing

the cross-sectional dimension N only gives minor improvements for fixed T . This is unsurprising

as a larger N can only improve the parameter estimates through better factor estimates which

are already quite good even for N = 50. The estimate of the loadings innovation variance qi

is closely related to the estimate of bi. As bi gets closer to its true value, so does qi, and vice

versa. For T ≥ 200 the estimates are close to the true values. The small-sample bias of bi is not

a consequence of estimation error from principal components. Using the true factors instead of

principal components to estimate the parameters of the latent process λit also shows that T ≥ 200

is needed for the bias of bi and qi to be less than 10% of the true value. The loadings mean λi and

the error variance ψi are very precisely estimated for all sample sizes.

In Panel II, the idiosyncratic errors are serially correlated, and the autoregressive parameters

for the errors are estimated along with the other parameters. The R2
F̃ ,F

statistic is hardly affected

by serially correlated errors. The results are very close to the corresponding values in the first

panel. The results for the loadings parameters are also very similar and are not markedly affected.

The autoregressive parameter for the errors α and the variance parameter ψ are very close to their

true value for all sample sizes. The model with serially correlated errors can thus be estimated

equally well as the model with i.i.d. errors.
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Table 1 - Simulation results for 1-factor model

T N R2
F̃ ,F

bi λi qi ψi α

Panel True values 0.9 0 0.2 1

α = 0, β = 0, ρ = 0

I

50 50 0.943 0.603 -0.022 0.302 0.970 -
100 50 0.941 0.785 -0.005 0.258 1.005 -
50 100 0.960 0.607 0.023 0.307 0.978 -

100 100 0.969 0.792 -0.043 0.260 1.010 -
100 200 0.976 0.797 -0.011 0.256 0.993 -
200 200 0.984 0.864 0.003 0.224 1.003 -
400 200 0.986 0.884 -0.019 0.213 1.009 -
600 300 0.991 0.890 0.012 0.208 0.997 -

α = 0.5, β = 0, ρ = 0

II

50 50 0.939 0.617 -0.005 0.296 0.934 0.500
100 50 0.934 0.805 -0.009 0.246 0.992 0.494
50 100 0.956 0.614 0.033 0.290 0.929 0.494

100 100 0.966 0.805 -0.060 0.246 0.978 0.509
100 200 0.974 0.812 0.015 0.242 0.969 0.493
200 200 0.982 0.870 0.001 0.223 0.990 0.497
400 200 0.985 0.885 -0.027 0.212 0.994 0.500
600 300 0.989 0.890 0.011 0.206 0.995 0.499

α = 0, β = 0.5, ρ = 0

III

50 50 0.944 0.540 -0.042 0.334 1.279 -
100 50 0.942 0.762 -0.002 0.276 1.326 -
50 100 0.959 0.556 0.029 0.335 1.295 -

100 100 0.968 0.777 -0.029 0.275 1.324 -
100 200 0.976 0.775 -0.004 0.273 1.328 -
200 200 0.983 0.857 -0.005 0.235 1.326 -
400 200 0.986 0.881 -0.019 0.215 1.353 -
600 300 0.990 0.889 0.003 0.210 1.321 -

α = 0, β = 0, ρ = 0.9

IV

50 50 0.652 0.587 0.000 0.355 1.177 -
100 50 0.785 0.784 0.019 0.255 1.134 -
50 100 0.651 0.606 -0.031 0.392 1.257 -

100 100 0.809 0.828 0.010 0.291 1.385 -
100 200 0.806 0.781 0.009 0.269 1.116 -
200 200 0.896 0.865 -0.024 0.237 1.065 -
400 200 0.941 0.894 -0.050 0.221 1.122 -
600 300 0.961 0.895 0.026 0.211 1.040 -

α = 0, β = 0, ρ = 0.5

V

50 50 0.905 0.625 -0.033 0.306 1.017 -
100 50 0.920 0.803 -0.010 0.249 1.023 -
50 100 0.916 0.606 0.044 0.307 1.045 -

100 100 0.950 0.803 -0.060 0.254 1.076 -
100 200 0.955 0.803 0.019 0.254 1.015 -
200 200 0.973 0.865 -0.010 0.226 1.012 -
400 200 0.981 0.885 -0.022 0.214 1.026 -
600 300 0.987 0.889 0.012 0.209 1.006 -

Notes: The columns T and N report the sample sizes. The column
R2

F̃ ,F
reports the convergence statistic for the principal components

estimator. The remaining columns report the mean of the parameter
estimates over the Monte Carlo simulations. For the parameter λi,
the bias is reported.
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Table 2 - Relative root-mean-squared error for 1-factor model

T N R2
F̃ ,F

bi λi qi ψi α

Panel True values 0.9 0 0.2 1

α = 0, β = 0, ρ = 0

I

50 50 0.943 1.043 1.056 0.983 1.024 -
100 50 0.941 1.083 1.062 0.986 1.024 -
50 100 0.960 1.032 1.042 1.039 1.030 -

100 100 0.969 1.065 1.033 1.017 1.076 -
100 200 0.976 1.009 1.033 1.032 1.020 -
200 200 0.984 1.029 1.019 0.992 1.005 -
400 200 0.986 0.995 1.013 1.008 1.039 -
600 300 0.991 0.979 1.011 0.989 0.997 -

α = 0.5, β = 0, ρ = 0

II

50 50 0.939 1.040 1.065 1.063 0.997 1.006
100 50 0.934 1.022 1.072 0.985 1.025 1.014
50 100 0.956 1.021 1.054 0.989 0.988 1.001

100 100 0.966 1.105 1.051 1.032 1.015 1.017
100 200 0.974 0.999 1.043 1.020 0.998 1.002
200 200 0.982 0.977 1.021 1.011 0.998 0.999
400 200 0.985 0.985 1.019 1.018 1.015 0.999
600 300 0.989 0.980 1.012 1.007 1.000 1.007

α = 0, β = 0.5, ρ = 0

III

50 50 0.944 1.013 1.055 0.998 1.053 -
100 50 0.942 1.081 1.066 1.043 1.095 -
50 100 0.959 1.016 1.041 0.989 1.068 -

100 100 0.968 0.970 1.021 0.984 1.133 -
100 200 0.976 1.022 1.033 1.011 1.049 -
200 200 0.983 0.962 1.019 0.996 1.035 -
400 200 0.986 1.001 1.013 0.995 1.076 -
600 300 0.990 0.981 1.006 0.984 0.982 -

α = 0, β = 0, ρ = 0.9

IV

50 50 0.652 1.060 1.147 1.339 1.926 -
100 50 0.785 1.106 1.127 1.060 1.778 -
50 100 0.651 1.038 1.147 1.451 2.415 -

100 100 0.809 0.854 1.166 1.468 4.506 -
100 200 0.806 1.047 1.085 1.083 1.665 -
200 200 0.896 0.947 1.085 1.101 1.455 -
400 200 0.941 0.851 1.099 1.130 2.743 -
600 300 0.961 0.921 1.044 1.021 1.432 -

α = 0, β = 0, ρ = 0.5

V

50 50 0.905 1.061 1.064 0.936 1.086 -
100 50 0.920 1.043 1.067 1.049 1.039 -
50 100 0.916 1.024 1.046 1.030 1.241 -

100 100 0.950 0.956 1.043 1.060 1.415 -
100 200 0.955 1.090 1.040 1.070 1.057 -
200 200 0.973 1.012 1.028 1.023 1.038 -
400 200 0.981 0.984 1.014 1.013 1.169 -
600 300 0.987 0.971 1.011 0.990 1.040 -

Notes: The columns T and N report the sample sizes. The column
R2

F̃ ,F
reports the convergence statistic for the principal components

estimator. The remaining columns report the relative root-mean-
squared error of the parameter estimates using principal components
and the true simulated factors.
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Table 3 - Simulation results for 2- and 3-factor model

T N R2
F̃ ,F

bi1 λi1 qi1 bi2 λi2 qi2 bi3 λi3 qi3 ψi

Panel True values 0.9 0 0.2 0.9 0 0.2 0.9 0 0.2 1

Two factors – α = 0, β = 0, ρ = 0

I

50 50 0.920 0.615 0.009 0.277 0.447 -0.156 0.379 - - - 1.146
100 50 0.934 0.825 0.018 0.236 0.731 0.033 0.287 - - - 1.017
50 100 0.953 0.629 -0.017 0.271 0.490 -0.080 0.365 - - - 0.971

100 100 0.953 0.819 0.047 0.234 0.735 -0.041 0.287 - - - 1.032
100 200 0.973 0.813 -0.056 0.240 0.739 -0.051 0.291 - - - 1.088
200 200 0.978 0.872 -0.006 0.216 0.854 0.002 0.239 - - - 1.006
400 200 0.982 0.888 -0.020 0.205 0.883 0.036 0.217 - - - 1.029
600 300 0.987 0.892 0.004 0.204 0.891 0.021 0.210 - - - 1.013

Three factors – α = 0, β = 0, ρ = 0

II

50 50 0.883 0.584 -0.000 0.244 0.434 -0.143 0.334 0.340 0.006 0.516 1.396
100 50 0.875 0.813 0.029 0.196 0.755 -0.038 0.245 0.587 -0.181 0.372 1.353
50 100 0.906 0.605 -0.010 0.240 0.476 -0.051 0.333 0.351 -0.151 0.536 1.134

100 100 0.938 0.831 -0.021 0.216 0.770 -0.103 0.262 0.639 0.051 0.361 1.132
100 200 0.960 0.838 0.023 0.219 0.774 0.034 0.262 0.654 -0.120 0.365 1.040
200 200 0.974 0.875 -0.014 0.210 0.862 0.014 0.226 0.823 0.062 0.276 1.015
400 200 0.975 0.889 0.022 0.207 0.886 0.043 0.214 0.880 0.051 0.231 1.099
600 300 0.985 0.893 -0.001 0.204 0.890 -0.003 0.210 0.887 -0.003 0.216 1.025

Notes: The columns T and N report the sample sizes. The column R2
F̃ ,F

reports the convergence statistic

for the principal components estimator. The remaining columns report the mean of the parameter estimates
over the Monte Carlo simulations. For the parameter λi, the bias is reported.

Table 4 - Relative root mean squared errors for 2- and 3-factor model

T N R2
F̃ ,F

bi1 λi1 qi1 bi2 λi2 qi2 bi3 λi3 qi3 ψi

Panel True values 0.9 0 0.2 0.9 0 0.2 0.9 0 0.2 1

Two factors — α = 0, β = 0, ρ = 0

I

50 50 0.920 1.210 1.105 1.151 1.061 1.167 1.446 - - - 1.462
100 50 0.934 0.989 1.063 1.079 1.048 1.090 1.027 - - - 1.040
50 100 0.953 1.087 1.059 1.049 1.054 1.086 1.110 - - - 1.069

100 100 0.953 1.250 1.055 1.030 1.097 1.093 1.062 - - - 1.118
100 200 0.973 1.059 1.059 1.059 1.053 1.112 1.082 - - - 1.388
200 200 0.978 0.978 1.027 1.007 0.929 1.039 1.019 - - - 1.027
400 200 0.982 0.988 1.027 1.010 0.986 1.069 1.012 - - - 1.082
600 300 0.987 0.963 1.037 1.000 0.970 1.022 1.002 - - - 1.042

Three factors — α = 0, β = 0, ρ = 0

II

50 50 0.883 1.409 1.113 1.221 1.187 1.140 1.372 1.030 1.566 1.557 1.788
100 50 0.875 1.604 1.082 0.999 1.236 1.119 1.164 1.199 1.877 1.466 1.821
50 100 0.906 1.359 1.091 1.178 1.114 1.112 1.387 1.016 1.537 1.727 1.403

100 100 0.938 1.204 1.079 1.021 1.150 1.104 1.121 1.016 1.312 1.286 1.285
100 200 0.960 1.235 1.051 1.051 1.087 1.082 1.081 1.029 1.217 1.186 1.109
200 200 0.974 1.073 1.030 1.024 1.062 1.053 1.045 1.029 1.100 1.156 1.047
400 200 0.975 0.967 1.036 1.041 1.003 1.090 1.091 1.063 1.195 1.109 1.320
600 300 0.985 0.970 1.014 1.021 0.987 1.021 1.037 0.893 1.033 1.061 1.051

Notes: The columns T and N report the sample sizes. The column R2
F̃ ,F

reports the convergence statistic

for the principal components estimator. The remaining columns reports the relative root-mean-squared
error of the parameter estimates using principal components and the true simulated factors.
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Next, in Panel III we consider the effect of cross-sectional correlation in the errors. The factor

estimates are again not affected. The misspecification of the variance matrix for the idiosyncratic

errors deteriorates the estimates of bi and qi for the smaller sample sizes. Compared to the results for

i.i.d. errors, estimates are worse, but do converge for the larger sample sizes. The mean parameter

λi is not affected. One can show that the information matrix of the likelihood is block diagonal

between λi and the other parameters, so misspecifying the variance does not lead to estimation

error in the mean. Cross-sectionally correlated errors inflate the estimate of the idiosyncratic error

variance ψi, however, but the loadings parameters remain consistent. This indicates that our result

in Theorem 1 is robust to the assumption of no cross-sectional correlation in eit.

High factor persistence has a larger impact on the R2
F̃ ,F

statistic. Panel IV shows much lower

values of these statistics for all but the largest sample sizes. However, this estimation error does not

seem to influence the estimate of the loadings parameters. The estimates for bi, and accordingly qi,

are similar to the case of white noise factors. The most notable impact of the lower R2
F̃ ,F

is in the

estimate of ψi. The increase in factor estimation error seems to inflate the error variance, which is

larger for all sample sizes, but the results do show convergence for the largest sample size. Results

for more moderate levels of factor persistence are shown in Panel V. The drop in the R2
F̃ ,F

is less

severe in this case and the estimate of ψi thus less biased.

In Table 2, the relative root-mean-squared errors of the estimates using principal components

and the true simulated factors are reported. Values close to 1 indicate that the asymptotic vari-

ance of the parameter estimates is unaffected by the estimation error from principal components

estimation of the factors. In Panels I-III, all the statistics are close to 1 even for the smallest

sample sizes. In Panel IV, the statistics for the loadings parameters are somewhat higher for the

smaller sample sizes, but close to one for large sample sizes. The statistics for the idiosyncratic

variances are much larger than 1. This is partly due to the bias of these estimates evident in Panel

IV of Table 1, but also reflects higher variability of the estimates. High factor persistence thus

mainly affects the idiosyncratic variance parameters. Unreported results show that the estimates

improve for larger sample sizes. In Panel V, the factor persistence is more moderate and the relative

root-mean-squared errors are much closer to 1.

Table 3 displays the simulations results for the model with 2 and 3 factors with i.i.d. errors and

white noise factors. Compared to the 1-factor model, the R2
F̃ ,F

statistics are lower, reflecting the

increasing difficulties in extracting additional factors. In Panel I, the estimates for the second set of

loadings parameters are worse than for the first set and the same pattern is evident for the 3-factor

model (Panel II). The results for the third set of loadings parameters are worse than for the second,

which are worse than for the first. However, all the estimates are converging to their true values.

Compared to the 1-factor model, larger sample sizes are generally needed to get precise estimates

due to the increased number of parameters. Introducing serial and cross-sectional correlation in

the errors or persistence in factors does not reveal any additional insights compared to the 1-factor

model. The results generalize and are therefore omitted. Table 4 shows the relative root-mean-

squared errors for the 2- and 3-factor model. The statistics are somewhat larger than 1 for the
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smaller sample sizes, but get increasingly closer to one as the sample sizes grow. This indicates

that the estimation error of the principal components does not affect the asymptotic variance of

the estimates.

Table 5 - Simulation results for incorrect number of principal components

T N R
2(1)

F̃ ,F
R

2(2)

F̃ ,F
bi1 λi1 qi1 bi2 λi2 qi2 ψi

Panel True values 0.9 0 0.2 0.9 0 0.2 1

1 principal component, two factors — α = 0, β = 0, ρ = 0

I

50 50 0.954 0.797 0.497 0.011 0.387 - - - 6.703
100 50 0.956 0.789 0.835 0.056 0.230 - - - 2.354
50 100 0.967 0.807 0.649 -0.070 0.313 - - - 3.681

100 100 0.971 0.808 0.831 0.040 0.238 - - - 2.587
100 200 0.981 0.819 0.817 -0.070 0.248 - - - 3.566
200 200 0.985 0.820 0.873 -0.031 0.218 - - - 2.078
400 200 0.989 0.823 0.885 0.023 0.215 - - - 4.885
600 300 0.992 0.826 0.889 0.023 0.212 - - - 6.630

2 principal components, 1 factor — α = 0, β = 0, ρ = 0

II

50 50 0.475 0.951 0.315 -0.022 0.198 0.128 -0.008 0.100 0.886
100 50 0.474 0.948 0.642 -0.003 0.196 0.241 0.016 0.075 0.928
50 100 0.482 0.964 0.317 0.005 0.210 0.126 0.006 0.106 0.901

100 100 0.486 0.972 0.605 -0.010 0.208 0.248 -0.003 0.079 0.961
100 200 0.489 0.978 0.583 0.008 0.199 0.268 0.013 0.074 0.953
200 200 0.492 0.984 0.826 -0.007 0.201 0.241 0.002 0.047 0.967
400 200 0.493 0.986 0.884 -0.018 0.195 0.236 -0.007 0.025 0.994
600 300 0.495 0.991 0.889 0.014 0.196 0.227 -0.004 0.017 0.991

Notes: The columns T and N report the sample sizes. The columns R
2(1)

F̃ ,F
and R

2(1)

F̃ ,F
are the

two convergence statistics for the principal components estimator. The remaining columns
report the mean of the parameter estimates over the Monte Carlo simulations. For the
parameter λi, the bias is reported.

Table 5 shows the results of estimating the wrong number of factors. For these simulations, we

report two convergence statistics for the principal components. The first is the R2 from a regression

of the principal components on the true factors, R
2(1)

F̃ ,F
= Ê[F̃ ′F (F ′F )−1F ′F̃ ]

Ê[F̃ ′F̃ ]
and the second is the

R2 from a regression of the true factors on the principal components. In Panel I, the simulated

data have two factors, but only 1 principal component is extracted. The first statistic R
2(1)

F̃ ,F
is close

to 1 for all sample sizes. Hence, the two factors explain all the variation in the single principal

component. The second statistic R
2(2)

F̃ ,F
does not tend to 1, as a single principal component cannot

span the two-dimensional factor space. The results show that the loadings parameters for the first

factor can still be estimated consistently. The consequence of excluding a factor is that the estimate

of the error variance ψi gets larger, reflecting the variability in the data from the excluded factor

and its loadings. Panel II displays results for the 1-factor model with two principal components

extracted from the data. R
2(2)

F̃ ,F
tends to 1, and the two principal components thus explain all the

variation in the single factor. The other measure R
2(1)

F̃ ,F
tends to 0.5 as the single factor can only

span half of the two-dimensional space of the principal components. The loadings on the first factor
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are estimated consistently. For the second factor, the mean and variance of the loadings are being

estimated as zero.10 The estimated parameters thus show that the data do not load on the second

factor and therefore correctly dismiss the second factor. The results are thus very encouraging even

with the number of principal components different from the true number of factors.

The results can be summarized as follows:

• The loadings and idiosyncratic variance parameters are estimated consistently. The sample

size T needs to be sufficiently large (≥ 200) for the bias in the autoregressive parameters to

be less than 10%.

• The results are robust to the assumption of cross-sectionally uncorrelated errors. The loadings

parameters are not affected by this misspecification, only the estimate of the error variance.

• Loadings parameters are consistently estimated even when an incorrect number of principal

components are extracted. Too few principal components increase the error variance estimate,

and loadings means and variances are correctly estimated as zero for principal components

in excess of the true number of factors.

• The relative root-mean-squared errors indicate that the asymptotic variance is unaffected by

replacing the factors with the principal components estimates and that the estimates have

the same limiting distribution as if the factors are observed.

5 An Empirical Illustration

We provide an empirical illustration of the model using the data set of Stock and Watson (2009), who

analyse a balanced panel of 144 quarterly time series for the United States, focusing on structural

instability in factor loadings and its consequences for forecast regression. The data set consist

of 144 quarterly time series for the United States, spanning 1959:I-2006:IV. The data series are

transformed to be stationary, and the first two quarters are thus excluded because of differencing,

resulting in T = 190 observations used for estimation. We exclude a number of series that are

higher-level aggregates of the included series, which brings the number of series used for estimation

to N = 109. For a complete data description and details on data transformations, see the appendix

of Stock and Watson (2009).

Stock and Watson (2009) argue for 4 factors in the sample, and perform robustness checks of

their results using different numbers of factors. We therefore extract 4 principal components from

the standardized data and estimate the loadings parameters and the idiosyncratic variances for

each of the 109 variables. The system matrices Bi and Qi are specified to be diagonal, i.e., the

loadings are estimated as univariate autoregressions uncorrelated over the factor indices. The lag

polynomials Bi(L) are of order one for all i.

10The results for bi2 are not indicative of any convergence. Histograms of the estimated values show that the
parameter is not identified as the values are randomly estimated anywhere between -1 and 1.
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Stock and Watson (2009) test for breaks in the factor model and find evidence of structural

instability in a large number of the factor loadings. Using Chow statistics to test for breaks in

loadings in 1984:I, they reject the null of no instability for 41% of the variables. We provide similar

evidence of structural instability in the loadings. For each variable Xi, we test the null hypothesis

of constant loadings by likelihood ratio statistics. In the restricted model, we thus set the diagonal

elements of the matrix Qi equal to zero, in which case the maximum likelihood estimator of the

restricted model can be computed by ordinary least squares. The last column of Table 6 reports the

rejection frequencies grouped by variable category as well as the rejection frequency for the entire

panel. For 85% of the series, the likelihood ratio statistics rejects at the 5% significance level, and

76% of the series are rejected at the 1% level. When comparing the rejection frequencies across

categories, no obvious pattern emerges: The rejection frequencies are high for all categories. The

category with the lowest rejection frequency is consumption variables, where the null of constant

loadings cannot be rejected for a third of the variables.

Table 6 - Rejection frequencies of likelihood ratio statistics

Category F1 F2 F3 F4 All Factors

Output 0.63 0.75 0.38 0.25 0.88
Consumption 0.33 0.33 0.00 0.67 0.67

Labour market 0.70 0.61 0.30 0.17 0.78
Housing 1.00 0.60 0.60 0.20 1.00

Investment 0.63 0.88 0.50 0.38 1.00
Prices & Wages 0.50 0.68 0.21 0.29 0.79

Financial variables 0.68 0.74 0.68 0.53 0.95
Money & Credit 0.50 0.38 0.50 0.50 0.88

Other 0.71 0.71 0.29 0.00 0.86
All 0.62 0.66 0.39 0.31 0.85

Notes: Column F1 reports the rejection frequencies across
variable groups of the likelihood ratio statistics for testing the
null hypothesis of constant loadings on the first factor and
similarly for columns F2−F4. The last column reports the re-
jection frequencies for the null hypothesis of constant loadings
on all factors. All tests are evaluated at the 5% significance
level.

We also test the null hypothesis of constant loadings on each individual factor. We reestimate

the model for each variable 4 times and let the loadings on a single factor be constant each time,

while the rest of the loadings follows first-order autoregressions. Columns F1−F4 of Table 6 report

the rejection frequencies for these likelihood ratio statistics. For the first two factors, approximately

two thirds of the series show evidence of time-varying loadings. For the last two factors, the rejection

frequencies are smaller, but time-variation in the loadings is still evident for a non-trivial number of

the series. Comparing the rejection frequencies across variable categories does not reveal any general

patterns: The rejection frequencies vary a lot across categories and factors. Closer inspection of

the individual series indeed reveals that the way in which the data load on the factors is very

heterogeneous across series.
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Figure 1: Factor loadings for the one-year/three-month Treasury term spread

Figure 2: One-year/three-month Treasury term spread and two estimates of its common component (CC)
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Comparing our results to those of Stock and Watson (2009), we find that a larger share of the

variables have time-varying loadings. However, as our model considers stationary variations around

a constant mean, and Stock and Watson (2009) consider a one-time break at a fixed point in time,

it is possible for the likelihood ratio statistics to reject the null of constant loadings, even when the

Chow tests of Stock and Watson (2009) cannot reject the null of no breaks.

Given the large number of series for which we reject the null of constant loadings, we can obtain a

better in-sample fit of the common component by letting the loadings vary over the time dimension.

Figure 1 displays the estimated loadings paths for the one-year/three-month Treasury term spread.

This series exhibits very strong evidence of structural instability in the loadings. The p-values

of the likelihood ratio statistics for joint and single restrictions are all zero to at last 4 decimal

places. The loadings show a considerable amount of variation over the sample period with quite

persistent dynamics. Figure 2 displays the standardized Treasury term spread and two estimates of

its common component, computed with time-varying loadings and constant loadings, respectively.

The common component based on time-varying loadings tracks the data much closer than the one

with constant loadings. The correlations of the two estimates of the common component with the

data are 0.56 and 0.19, respectively. This clearly illustrates the improvement in the in-sample fit

by modelling the loadings as autoregressive processes.

6 Conclusion

We proposed a two-step maximum likelihood estimator for time-varying loadings in high-dimensional

factor models. The loadings parameters are estimated by a set of N univariate regression models

with time-varying coefficients, where the unobserved regressors are estimated by principal com-

ponents. Replacing the unobservable factors with principal components gives a feasible likelihood

function that is asymptotically equivalent to the infeasible one with unobservable factors and there-

fore gives consistent estimates of the loadings parameters as N,T → ∞. The finite-sample prop-

erties of our estimator were assessed via an extensive simulation study. The results showed that

the loadings means and idiosyncratic error variances are estimated precisely even for small sample

sizes. A somewhat larger sample size is needed to get precise estimates of the loadings variance

and dynamic parameters. Furthermore, the simulations showed very satisfactory results when the

number of principal components is different from the number of factors in the data. We illustrated

the empirical relevance of the time-varying loadings structure using the large quarterly dataset of

Stock and Watson (2009) for the US economy. For the majority of the variables we found evidence

of time-varying loadings, and we showed that a large increase in the in-sample fit of the common

component can be obtained by modelling the loadings as time-varying.
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Appendix

Let X = (X1, ..., XT )′ be the T×N matrix of observations, and let VNT be the r×r diagonal matrix

of the r largest eigenvalues of (NT )−1XX ′ in decreasing order. By the definition of eigenvalues

and eigenvectors, we have (NT )−1XX ′F̃ = F̃ VNT or (NT )−1XX ′F̃ V −1
NT = F̃ , where F̃ ′F̃ /T = Ir.

Let H = (Λ0′Λ0/N)(F ′F̃ /T )V −1
NT be the r× r rotation matrix. Assumption A and B together with

Lemma A.1 below implies that ‖H‖ = Op(1). Let wt = ξtFt. We can write (1) as:

Xt = Λ0Ft + ξtFt + et = Λ0Ft + wt + et.

Define e = (e1, ..., eT )′ and w = (w1, ..., wT )′. We use the following expression from Bates et al.

(2013):

XX ′ = FΛ0′Λ0F ′ + FΛ0′(e+ w)′ + (e+ w)Λ0F ′ + (e+ w)(e+ w)′. (7)

Let vt denote a conforming unit vector with zeros in all entries except the tth. We then have:

XX ′v = FΛ0′Λ0Ft + FΛ0′(et + wt) + (e+ w)Λ0Ft + (e+ w)(et + wt).

Using the definition of F̃t and H, we can then write:

F̃t −H ′Ft = V −1
NT (NT )−1F̃ ′XX ′v − V −1

NT (F̃ ′F/T )(Λ0′Λ0/N)Ft

= V −1
NT (NT )−1

{
F̃ ′FΛ0′et + F̃ ′eΛ0Ft + F̃ ′eet

+F̃ ′FΛ0′wt + F̃ ′wΛ0Ft + F̃ ′wwt + F̃ ′ewt + F̃ ′wet

}
.

Denote each term on the right-hand as A1t, ..., A8t, respectively. We get:

F̃t −H ′Ft = V −1
NT

8∑
n=1

Ant. (8)

The following is a generalization of Lemma A.3 in Bai (2003). They consider constant loadings; we

generalize the proof to autoregressive loadings.

Lemma A.1. Under Assumptions A-E, as N,T →∞:

(i)
∥∥VNT − F̃ ′F

T
Λ0′Λ0

N
F ′F̃
T

∥∥2
= Op(C

−2
NT ),

(ii) F̃ ′F
T

Λ0′Λ0

N
F ′F̃
T

p→ V ,

where V is the diagonal matrix consisting of the eigenvalues of ΣΛΣF .
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Proof. From VNT = T−1F̃ ′(NT )−1XX ′F̃ we get using (7):

VNT −
F̃ ′F

T

Λ0′Λ0

N

F ′F̃

T
= T−1F̃ ′(NT )−1

{
FΛ0′(e+ w)′ +(e+ w)Λ0F ′ + (e+ w)(e+ w)′)

}
F̃

= T−1
T∑
t=1

F̃t

8∑
n=1

A′nt.

Hence,

‖T−1
T∑
t=1

F̃t

8∑
n=1

A′nt‖2 ≤

(
T−1

T∑
t=1

‖F̃t‖2
)(

T−1
T∑
t=1

∥∥∥∥ 8∑
n=1

Ant

∥∥∥∥2
)

≤ 8rT−1
T∑
t=1

8∑
n=1

‖Ant‖2,

where the last inequality uses tr(F̃
′
F̃ /T ) = tr(Ir) = r and Loève’s inequality. The right-hand side

is Op(C
−2
NT ) by Theorem 1 of Bates et al. (2013).11 Statement (i) follows.

Statement (ii) is implicitly proven by Stock and Watson (1998). It should be noted that their

paper considers the model Xt = Λ0Ft + et, i.e. a factor model with constant loadings. However,

their proof only uses the asymptotic representation VNT = F̃ ′F
T

Λ0′Λ0

N
F ′F̃
T + op(1) and the normal-

ization F̃ ′F̃ /T = Ir. Their proof is thus applicable for our model as well.

Proof of Lemma 1. From (8) we have:

T−1
T∑
t=1

‖F̃t −H ′Ft‖2 ≤ ‖V −1
NT ‖

28T−1
T∑
t=1

8∑
n=1

‖Ant‖2.

Since VNT converges to a positive definite matrix, it follows that ‖V −1
NT ‖2 = Op(1). The right-hand

side is thus Op(C
−2
NT ) by Theorem 1 in Bates et al. (2013).

Proof of Proposition 1. Using (8) we have:

max
t
‖F̃t −H ′Ft‖ = max

t
‖V −1

NT

8∑
n=1

Ant‖ ≤ ‖V −1
NT ‖

8∑
n=1

max
t
‖Ant‖.

11Our Assumption D.3 differs from the corresponding assumption in Bates et al. (2013). They assume
that

∑T
s,t=1

∑N
i,j=1 |E(ξisp1ξjsq1ξitp2ξjtq2Fsp1Fsq1Ftp2Ftq2)| is bounded by the envelope function Q3(N,T ), with

C2
NTQ3(N,T ) = O(N2T 2). This is implied by Assumption D.3, and their Theorem 1 thus holds with Assump-

tion A-E.
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Lemma 1 implies that ‖V −1
NT ‖ = Op(1). We can write A1t as:12

A1t = (NT )−1
T∑
s=1

(F̃s −H ′Fs)F ′sΛ0′et + (NT )−1
T∑
s=1

H ′FsF
′
sΛ

0′et.

The first term is less than:(
T−1

T∑
s=1

‖F̃s −H ′Fs‖2
)1/2(

N−2T−1
T∑
s=1

‖F ′sΛ0′et‖2
)1/2

.

We have:

N−2T−1
T∑
s=1

‖F ′sΛ0′et‖2 ≤ N−1‖N−1/2Λ0′et‖2T−1
T∑
s=1

‖Fs‖2.

By Assumption F.3, the maximum of ‖N−1/2Λ0′eit‖2 over t is Op(T
1/4), and Assumption A implies∑T

s=1 ‖Fs‖2 = Op(1). By Lemma 2, we have T−1
∑T

s=1 ‖F̃s − H ′Fs‖2 = Op(C
−2
NT ). Taking the

square root then gives that the first term is Op
(
C−1
NT

)
Op

(
T 1/8

N1/2

)
. For the second term, we have:

(NT )−1‖
T∑
s=1

H ′FsF
′
sΛ

0′et‖ ≤ N−1/2‖H‖‖N−1/2Λ0′et‖T−1
T∑
s=1

‖Fs‖2,

where ‖H‖ = Op(1) and T−1
∑T

s=1 ‖Fs‖2 = Op(1) by Assumption A. The maximum of ‖N−1/2Λ0′et‖
over t is Op(T

1/8). The second term is thus equal to Op

(
T 1/8

N1/2

)
and dominates the first.

Consider A2t, which can be written as:

(NT )−1
T∑
s=1

(F̃s −H ′Fs)e′sΛ0Ft + (NT )−1
T∑
s=1

H ′Fse
′
sΛ

0Ft.

The first term is bounded by

(
T−1

T∑
s=1

‖F̃ −H ′Fs‖2
)1/2(

N−2T−1
T∑
s=1

‖e′sΛ0Ft‖2
)1/2

.

Now,

N−2T−1
T∑
s=1

‖e′sΛ0Ft‖2 ≤ max
t
‖Ft‖2N−1T−1

T∑
s=1

‖N−1/2e′sΛ
0‖2 = Op(α

2
T )N−1

by Assumption F.3. The first term is thus equal to Op(C
−1
NTαTN

−1/2). The second term is equal

12The terms A1t, A2t, A3t have been shown to be Op(αTT
−1) + Op(T 1/8)N−1/2 by Bai and Ng (2008a). They

do, however, rely on intermediate results, which we have not proved for the model with time-varying loadings. We
therefore provide an alternative proof for A1t, A2t, A3t.
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to:

(NT )−1
T∑
s=1

N∑
i=1

H ′Fseisλ
0′
i Ft,

which is bounded by:

N−1/2Mmax
t
‖Ft‖‖H‖

(
T−1

T∑
s=1

‖Fs‖2
)1/2

(NT )−1
T∑
s=1

N∑
i,j=1

eisejs

1/2

.

This is equal to Op(αT )N−1/2 by Assumption C.3 and dominates the first term.

We can write A3t as:

(NT )−1
T∑
s=1

(F̃s −H ′Fs)[e′set − E(e′set)] + (NT )−1
T∑
s=1

H ′Fs[e
′
set − E(e′set)]

+ (NT )−1
T∑
s=1

(F̃s −H ′Fs)E(e′set) + (NT )−1
T∑
s=1

H ′FsE(e′set).

The first term is bounded by:

(
T−1

T∑
s=1

‖F̃s −H ′Fs‖2
)1/2

N−1T−1
T∑
s=1

∣∣∣∣∣N−1/2
N∑
i=1

[e′iseit − E(e′iseit)]

∣∣∣∣∣
2
1/2

.

By Assumption C.5, max
t

∣∣∣N−1/2
∑N

i=1[e′iseit − E(e′iseit)]
∣∣∣2 = Op(

√
T ), so the first term is equal to

Op(C
−1
NT )Op(

T 1/4

N1/2 ). The second term is bounded by:

(NT )−1/2‖H‖‖(NT )−1/2
T∑
s=1

N∑
i=1

Fs[e
′
iseit − E(e′iseit)]‖.

By Assumption F.2, the maximum of this expression over t is Op(N
−1/2). The third term is

bounded by:

T−1/2

(
T−1

T∑
s=1

‖F̃s −H ′Fs‖2
)1/2( T∑

s=1

γN (s, t)2

)1/2

.

By Assumption F.1 and Lemma 2, this is equal to T−1/2Op(C
−1
NT ). The fourth term is bounded by:

T−1max
t
‖Ft‖‖H‖

T∑
s=1

|γN (s, t)|,

which is Op(αTT
−1).
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For A4t, we have:

(NT )−1‖F̃ ′FΛ0′wt‖ ≤ ‖T−1/2F̃‖‖T−1/2F‖‖N−1Λ0′wt‖.

The first two terms are both Op(1). The last term can be bounded in expectation:

E

∥∥∥∥Λ0′wt
N

∥∥∥∥2

≤ N−2
N∑

i,j=1

|E(witwjt)λ
0′
i λ

0
j | ≤M2N−2

N∑
i,j=1

|E(ξitFtξjtFt)|

≤M2r2N−2sup
p.q

N∑
i,j=1

|E(ξitpξjtqFtpFtq)| = Op(N
−1)

uniformly in t by Assumption D.1, so the maximum of the last term over t is Op(N
−1/2).

Consider A5t:

(NT )−1‖
T∑
s=1

F̃sw
′
sΛ

0Ft‖ ≤ max
t
‖Ft‖

(
T−1

T∑
s=1

‖F̃s‖2
)1/2(

T−1
T∑
s=1

‖N−1w′sΛ
0‖2
)1/2

.

By Assumption D.1, this is equal to Op(αTN
−1/2).

For A6t, we have:

(NT )−1‖
T∑
s=1

F̃sw
′
swt‖ ≤ N−1T−1/2

(
T−1

T∑
s=1

‖F̃s‖2
)1/2( T∑

s=1

‖w′swt‖2
)1/2

.

By Assumption D.3, we have:

T∑
s=1

E(w′swt)
2 =

T∑
s=1

N∑
i,j

E(wiswitwjswjt)

≤ r4 sup
p1,p2,q1,q2

T∑
s=1

N∑
i,j

|E(ξisp1ξjsq1ξitp2ξjtq2Fsp1Fsq1Ftp2Ftq2)| = O(N2) +O(NT )

uniformly in t. We therefore have that max
t
‖A6t‖ = N−1T−1/2[Op(N)+Op(N

1/2T 1/2)] = Op(C
−1
NT ).

The seventh term is bounded by:

(
T−1

T∑
s=1

‖F̃s‖2
)1/2(

N−2T−1
T∑
s=1

‖e′swt‖2
)1/2

.
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The first term is O(1). We can bound the second term in expectation:

N−2T−1
T∑
s=1

E‖e′swt‖2 = N−2T−1
T∑
s=1

N∑
i,j=1

E(eisejs)E(witwjt)

≤ N−2T−1
T∑
s=1

N∑
i,j=1

E(e2
is)

1/2E(e2
js)

1/2|E(witwjt)|

≤Mr2N−2T−1sup
p,q

T∑
s=1

N∑
i,j=1

|E(ξiptξjqtFptFtq)|,

which is Op(N
−1) uniformly in t by Assumption D.1. Taking the square root then gives Op(N

−1/2).

Finally, A8t is bounded by:

(NT )−1‖F̃ ′wet‖ =

(
T−1

T∑
s=1

‖F̃s‖2
)1/2(

N−2T−1
T∑
s=1

‖w′set‖2
)1/2

.

The first term is again O(1), and the last term can be bounded in expectation:

N−2T−1
T∑
s=1

E‖w′set‖2 = N−2T−1
T∑
s=1

N∑
i,j=1

E(eitejt)E(wiswjs)

≤ N−2T−1
T∑
s=1

N∑
i,j=1

E(e2
it)

1/2E(e2
jt)

1/2|E(wiswjs)|

≤Mr2N−2T−1sup
p,q

T∑
s=1

N∑
i,j=1

|E(ξipsξjqsFpsFsq)|,

which is Op(N
−1) uniformly in t by Assumption D.1. The last term is thus Op(N

−1/2). All terms

are dominated by Op(
T 1/8

N1/2 ) +Op(αTN
−1/2) +Op(αTT

−1) +Op(C
−1/2

NT ), and Proposition 1 follows.

Lemma A.2. Let Assumption A-E hold. If F ′F/T = Ir and Λ0′Λ0 is a diagonal matrix with

distinct entries,

H = Ir +Op(C
−2
NT ).

Proof. First we need to show that (F̃ −FH)′F/T and (F̃ −FH)′F̃ /T are both Op(C
−2
NT ). We

have:

‖(F̃ − FH)′F/T‖2 = ‖T−1
T∑
t=1

(F̃t −H ′Ft)F ′t‖2

≤

(
T−1

T∑
t=1

‖F̃t −H ′Ft‖2
)(

T−1
T∑
t=1

‖Ft‖2
)

= Op(C
−2
NT ),
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where the last equality follows from Lemma 1 and Assumption A. By similar arguments (F̃ −
FH)′F̃ /T = Op(C

−2
NT ). The rest of the proof is identical to the proof of equation (2) in Bai and

Ng (2013).

Lemma A.2 shows that if the imposed normalization holds for the process generating the data,

the factors can be estimated without rotation. This implies that θi can be estimated without rota-

tion as well. In the proof of Theorem 1 below, we assume that H = Ir, and note that in general, the

feasible likelihood converges to LT (Xi|FH; θi), and θ̃i is consistent for a rotation of θ0
i as discussed

in Section 3.2.

Proof of Theorem 1. It suffices to show that the feasible likelihood function L̃T (Xi|F̃ ; θi)

converges uniformly to the infeasible one LT (Xi|F ; θi).
13 This will imply that L̃T (Xi|F̃ ; θi) satisfies

the conditions of Assumption H and θ̃i
p→ θ0

i . We thus need:

sup
θ∈Θ

∣∣∣L̃T (Xi|F̃ ; θi)− LT (Xi|F ; θi)
∣∣∣ p→ 0.

By the mean value expansion, we can write:

L̃T (Xi|F̃ ; θi) = LT (Xi|F ; θi) +

T∑
t=1

∇FtLT (Xi|F ∗; θi)(F̃t − Ft),

where∇FtLT (Xi|F ∗; θi) = ∂LT (Xi|F ;θi)
∂Ft

∣∣∣
F=F ∗

, and F ∗ is between F and F̃ . For uniform convergence

the last term needs to be op(1) uniformly in Θ, when F ∗t is in a neighbourhood of Ft, such that

max
t
‖F ∗t − Ft‖ = op(1).

Let λmax(A) and λmin(A) denote the largest and smallest eigenvalue of a matrix A, and let

(A)(s,t) denote entry (s, t) of a T × T matrix A. Furthermore, let φi be the r × r block matrix on

the diagonal of Φi, i.e. φi = V ar(λit). The derivative of LT (Xi|F ; θi) takes the form:14,15

∇FtLT (Xi|F ; θi)
′ =− T−1φiFtΣ

−1
i,(t,t) + T−1λi

T∑
s=1

(Xis − F ′sλi)Σ−1
i,(s,t)

+ T−1φiFt
(
Σ−1
i (Xi − E(Xi))(Xi − E(Xi))

′Σ−1
i

)
t,t
,

where Ft is to be evaluated at F ∗t . Denote the three terms above by Bnt, for n = 1, ..., 3. We can

13Pointwise convergence would suffice as Assumption H(iii) requires convergence for all θi ∈ Θi. However, there
are no additional difficulties in showing uniform convergence, and we therefore prove convergence uniformly in Θi.

14The calculations of the derivative are omitted for brevity. They are available upon request.
15With autocorrelated errors, the derivative takes the same form, but the variance matrix is Σi = FΦiF

′ + Ψi,
where Ψi = E(eie

′
i) is non-diagonal.
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then write:

sup
θ∈Θ

∣∣∣L̃T (Xi|F̃ ; θi)− LT (Xi|F ; θi)
∣∣∣ = sup

θ∈Θ

∣∣∣∣∣
T∑
t=1

3∑
n=1

(F̃t − Ft)′Bnt

∣∣∣∣∣
≤ sup

θ∈Θ

∣∣∣∣∣
T∑
t=1

(F̃t − Ft)′B1t

∣∣∣∣∣+ sup
θ∈Θ

∣∣∣∣∣
T∑
t=1

(F̃t − Ft)′B2t

∣∣∣∣∣+ sup
θ∈Θ

∣∣∣∣∣
T∑
t=1

(F̃t − Ft)′B3t

∣∣∣∣∣ .
(9)

For the term involving B1t, we have:∣∣∣∣∣T−1
T∑
t=1

(F̃t − Ft)′φiF ∗t Σ−1
i,(t,t)

∣∣∣∣∣ ≤ λmax(Σ−1)T−1
T∑
t=1

‖F̃t − Ft‖‖φi‖‖F ∗t ‖, (10)

since each entry in Σ−1
i is bounded by the largest eigenvalue. For the largest eigenvalue of Σ−1

i , we

have λmax(Σ−1
i ) = [λmin(Σi)]

−1, and it therefore follows from the Weyl inequality that λmax(Σ−1
i ) ≤

M as:16

λmin(Σi) ≥ λmin(FΦiF
′) + λmin(ψiIT ) ≥ ψi > 0

uniformly in Θi. The term ‖φi‖ is also uniformly bounded, as the parameters of Bi(L) are in the

stationary region, and the elements of Qi are bounded. We can therefore bound (10) by:

O(1)T−1
T∑
t=1

‖F̃t − Ft‖‖F ∗t − Ft‖+O(1)T−1
T∑
t=1

‖F̃t − Ft‖‖Ft‖.

Since F ∗t is between Ft and F̃t, the first term is less than T−1
∑

t ‖F̃t − Ft‖2 and is Op(C
−2
NT ) by

Lemma 1. Note that T−1
∑

t ‖F̃t − Ft‖2 does not depend on θi, and the result is thus uniform in

Θi. For the second term, we can write:

T−1
T∑
t=1

‖F̃t − Ft‖‖Ft‖ ≤

(
T−1

T∑
t=1

‖F̃t − Ft‖2
)1/2(

T−1
T∑
t=1

‖Ft‖2
)1/2

,

which is Op(C
−1
NT ) by Lemma 1 and Assumption A, also uniformly in Θi.

For the term involving B3t in (9), we can write:∣∣∣∣∣T−1
T∑
t=1

(F̃t − Ft)′φiF ∗t
(
Σ−1
i (Xi − E(Xi))(Xi − E(Xi))

′Σ−1
i

)
t,t

∣∣∣∣∣ ≤
max
t

∣∣∣(F̃t − Ft)′φiF ∗t ∣∣∣T−1

∣∣∣∣∣
T∑
t=1

(
Σ−1
i (Xi − E(Xi))(Xi − E(Xi))

′Σ−1
i

)
t,t

∣∣∣∣∣ .
16This also holds with Ψi = E(eie

′
i) non-diagonal, as we can bound the smallest eigenvalue of Σi uniformly i Θi.
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For the term outside the sum, we have:

max
t

∣∣∣(F̃t − Ft)′φiF ∗t ∣∣∣ ≤ ‖φi‖max
t
‖F̃t − Ft‖‖F ∗t ‖

≤ O(1)max
t
‖F̃t − Ft‖2 +O(1)max

t
‖F̃t − Ft‖‖Ft‖.

If we take Ft to be a sequence of fixed and bounded constants, max
t
‖Ft‖ ≤ M , and the second

term is then op(1) by Proposition 1, which is uniform in Θi as the proof of Proposition 1 does not

depend on θi. The first term is bounded by the second.

The term involving the sum can be written as

T−1

∣∣∣∣∣
T∑
t=1

(
Σ−1
i (Xi − E(Xi))(Xi − E(Xi))

′Σ−1
i

)
t,t

∣∣∣∣∣
= T−1

∣∣tr (Σ−1
i (Xi − E(Xi))(Xi − E(Xi))

′Σ−1
i

)∣∣ , (11)

which is bounded by

λmax(Σ−2)T−1|tr(Xi − E(Xi))(Xi − E(Xi))
′| ≤M2T−1

T∑
t=1

‖Xit − F ∗′t λi‖2

≤ 4M2T−1
T∑
t=1

(
‖F ′tλ0

i ‖2 + ‖F ′t(λit − λ0
i )‖2 + ‖eit‖2 + ‖F ∗′t λi‖2

)
.

The first term in the sum is bounded by T−1M2
∑T

t=1 ‖Ft‖2 = Op(1). For the second term in the

sum, we can write:

T−1
T∑
t=1

‖F ′t(λi,t − λ0
i )‖2 ≤

(
T−1

T∑
t=1

‖Ft‖4
)1/2(

T−1
T∑
t=1

‖λi,t − λ0
i ‖4
)1/2

.

This is Op(1) by Assumption A and G. By Assumption C we have T−1
∑T

t=1 e
2
it = Op(1), and for

the last term, we can write:

T−1
T∑
t=1

‖F ∗′t λi‖2 ≤M2T−1
T∑
t=1

‖F ∗′t − Ft‖2 +M2T−1
T∑
t=1

‖Ft‖2 = Op(C
−2
NT ) +Op(1),

as λi is estimated in a bounded parameter space. The second term in (9) is thus max
t
‖F̃t −

Ft‖Op(1) = op(1) uniformly in Θi.
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For the term involving B2t in (9), we can write:∣∣∣∣∣T−1
T∑
t=1

(F̃t − Ft)′λi
T∑
s=1

(Xis − F ∗′s λi)Σ−1
i,(s,t)

∣∣∣∣∣
≤

(
T−1

T∑
t=1

|(F̃t − Ft)′λi|2
)1/2

T−1
T∑
t=1

∣∣∣∣∣
T∑
s=1

(Xis − F ∗′s λi)Σ−1
s,t

∣∣∣∣∣
2
1/2

.

The first term in parentheses is less than M2T−1
∑T

t=1 ‖F̃t−Ft‖2 = Op(C
−2
NT ) uniformly in Θi. The

second term in parentheses is equal to

T−1
∣∣tr (Σ−1

i (Xi − E(Xi))(Xi − E(Xi))
′Σ−1
i

)∣∣ ,
which is Op(1) uniformly in Θi from the arguments above, see (11). By taking the square root, the

second term is thus Op(C
−1
NT ) and dominated by the third. Collecting the results gives:

sup
θ∈Θ

∣∣∣L̃T (Xi|F̃ ; θi)− LT (Xi|F ; θi)
∣∣∣ = Op

(
max
t
‖F̃t − Ft‖

)
= op(1).
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