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Abstract

In this paper, we study the Edgeworth expansion for a pre-averaging
estimator of quadratic variation in the framework of continuous diffusion
models observed with noise. More specifically, we obtain a second order
expansion for the joint density of the estimators of quadratic variation
and its asymptotic variance. Our approach is based on martingale embed-
ding, Malliavin calculus and stable central limit theorems for continuous
diffusions. Moreover, we derive the density expansion for the studentized
statistic, which might be applied to construct asymptotic confidence re-
gions.

Keywords: diffusion processes, Edgeworth expansion, high frequency
observations, quadratic variation, pre-averaging.
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1 Introduction

In the last decade the estimation of quadratic variation of Itd semimartingales
have been investigated by many researchers. Typically, this estimation problem
is considered in the infill asymptotics setting, i.e. the underlying observations
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are recorded from high frequency data of continuous/discontinuous It6 semi-
martingales, diffusion processes corrupted by noise or related models. A recent
comprehensive monograph [6] presents a detailed asymptotic analysis for esti-
mators of quadratic variation and related objects in various frameworks.

In financial mathematics, it is nowadays widely accepted that financial data
is contaminated by microstructure noise such as rounding errors, bid-ask bounds
and misprints, when observed at ultra high frequency. This fact prevents us from
using classical realised volatility estimator at such frequencies. In this work we
consider a continuous SDE model corrupted by additive i.i.d. noise, i.e. the
observations are

Yi, = Xy, +eu,

where X is a continuous diffusion process, ¢ is an i.i.d process independent of
X and t; = iA, with A, — 0. It is well-known that realised volatility has
an explosive behaviour and more delicate methods are required to estimate the
quadratic variation of the latent diffusion process X. The most famous esti-
mation approaches in this framework are the multiscale approach of [14], the
realised kernel method proposed in [2] and the pre-averaging concept originally
introduced in [9] among others. All these estimators are consistent, asymptoti-

cally mixed normal and have the convergence rate A, 1 4, which is known to be
optimal.

Due to this relatively slow rate of convergence the quality of the mixed
normal approximation is rather questionable even at high frequencies. The
aim of this paper is to derive the second order Edgeworth expansion for the
pre-averaging estimator to improve the mixed normal approximation of the un-
known density. We remark that our work is related to a recent paper [10],
which investigates the Edgeworth expansion for power variations of continuous
diffusion processes in the noise-free setting. However, in the framework of con-
tinuous diffusions corrupted by additive i.i.d. noise the stochastic second order
expansion of the pre-averaging statistics is more involved. Our methodology re-
lies on martingale methods, stochastic expansion of the pre-averaging statistics
and general theory of Edgeworth expansion associated with mixed normal limits
studied in [13]. The latter approach is heavily using different aspects of Maliavin
calculus, such as integration by parts formula and conditions for smoothness of
probability laws. In a second step, we will present the Edgeworth expansion for
the density of the studentized statistic, which can be potentially used to con-
struct more precise confidence regions for the quadratic variation of the diffusion
process X.

The paper is organised as follows. We describe the main setting and re-
call the pre-averaging approach in Section 2. Section 3 presents a second order
stochastic decomposition for the pre-averaging estimator of the quadratic vari-
ation. We demonstrate the general theory of Edgeworth expansion with respect
to mixed normal limits in Section 4. In Section 5 we apply the asymptotic
theory to the pre-averaging estimator and present Edgeworth expansion for the
studentized version of the statistic. In Section 6, we deal separately with the
case of constant volatility, which does not satisfy our non-degeneracy condition.



Section 7 demonstrates an example and Section 8 collects some steps of the
proof.

2 Setting

In this paper, we deal with infill asymptotics, i.e. the data is observed at
equidistant grid iA,, i € N, over a finite horizon [0,7] and A,, — 0. We also
impose that 1/A,, is a positive integer. The terminal time 7' is assumed to
be fixed and we assume T' = 1 without loss of generality. For simplicity, we
use the notation ¢; := iA,,. On a filtered probability space (2, F, (F¢)te[o,1], P)
(to be specified in Section 5.2), we consider a diffusion model that satisfies the
stochastic differential equation

dX, = b (X,)dw, + b (X,)dt (2.1)

with a bounded random variable X, as starting value, a standard Brownian
motion W and continuous functions b1l b2 : R — R. We intentionally choose
the notations b1, b2 to emphasize that the diffusion term bl dominates the
drift term b[?! in asymptotic expansions throughout the paper. We are interested
in estimating the integrated volatility which we denote by

1
- J (ol (X,))2t. (2.2)
0

However, due to the microstructure noise effects, we are not able to observe the
process X directly, but only with distortions. More specifically, we assume that
the underlying observations (Y3, );>0 are given by

Y;fi = Xt,i + €y, (23)
where (g¢,)i>0 is a sequence of i.i.d. random variables with
Ele,]=0 and  E[e]]=w’>0, (2.4)

and &;, is F,-measurable. In addition, we assume that the processes ¢ and
X are independent. Such additive noise models are widely used in financial
mathematics, see e.g. [2, 5, 9, 15] among many others.

We require some notation to describe the pre-averaging estimator which is
originally due to [5, 9]. We pick a sequence of positive integers (k,)~_; and a
positive real number 6 such that

1
knA}l/Q =04+ O(A}/Q) and d,, := [k A J e N. (2_5)

Moreover, we consider a continuous, non-negative function g on [0, 1] which is
piecewise continuously differentiable with a piecewise Lipschitz derivative ¢’.
This function should also satisfy

1

g(0)=g¢(1) =0 and . g*(s)ds > 0. (2.6)



Furthermore, we introduce the following notations associated with g:
kn—1

h(j/kn) = 9((G +1)/kn) = 9(i/kn), U1 = kn Z h(j/kn))

k

nyz ), un = L
(O ko 9(J (O k.,

nz (7/kn)

j=

[

kn—

Z 9(i/kn))* (5 = 1/2).

Moreover, we need the notations written below. The first four are limits of the
terms ¥, 1 <@ < 4.

by = f [ () Pds, s = f G3(s)ds, s = f " g(s)ds, s = f ' sg?(s)ds,

0 0 0

s = j [ st an, v - f (j 9(s)dsg(u) - f<g<s>—¢2)ds)2du
w—j j j [29(s) + g(r)]drdsg?(u)du.

For any process U we define the pre-averaged increment at stage iA,, via

kn—l kn_l

U= ) 90/ka) AT U = D7 =h(j/kn)Us,,,,

j=1 =0

where AU = U, — Uy,_, . Finally, we are ready to introduce the pre-averaging
estimator for the quadratic variation V :

dp,—1 1/A,
I Yrd, A
V, = — Y, )2-—-Li=nen ATY)?, 2.7
7 2‘6( T g( ) (2.7)

We remark that V;, is essentially the estimator proposed in [5] with the difference
that we only use non-overlapping windows in this paper. This makes it easier
to determine the dominating martingale M,, of the estimator, which is required
in Sections 3 and 4, while computation of the martingale part of the original
estimator investigated in [5] is far from being obvious. As we will see below, we
need a consistent estimator of the asymptotic conditional variance associated
with V,,, which is defined as

2A_1/2 dn—1 A
F,=="= Y, )t 2.8
swpe 2 (T (2:8)

We recall that a sequence of random variables (Y},),>1, which are defined
on (2, F,P) and take values in a metric space F, is said to converge stably



with the limit Y, which is defined on an extension (Q,F,P) of (2, F,P), if for
any bounded, continuous function f and any bounded F-measurable random
variable Z it holds that

E[f(Y,)Z] = E[f(Y)Z], n — . (2.9)

In short, we use the notation Y, Loty Y We say that Y is mixed normal with
random variance Z2, and write Y ~ M N(0, Z?%),if Y ~ ZU, where U ~ N(0, 1),
Z > 0 and U, Z are independent.

Denoting Z,, = A;1/4(Vn — V), we proceed to the first asymptotic result
whose proof essentially follows from the work of [5, 9]. We provide a sketch of
the proof in Section 8.

Theorem 2.1. Under the condition E[(g4,)8] < 00, we deduce that

1 2 2
Zy 225 M ~ MN(0,C) with C = 29[ ((b[” (X1)* + ‘;2;“> dt.
0 2

Moreover, we obtain

E, 5 C.

We note that due to
Z, 2% M and F, - C,
and the properties of stable convergence, the studentized statistic satisfies
Zy
VFn

In this paper, we will first derive an asymptotic expansion for the pair (Z,, F},)
and then proceed to calculate the related Edgeworth expansion for the studen-
tized statistic

4, N(0,1).

Zn
NI

Example 2.2. Our prime example for g is the function

glx)=a A (1—2x).

In this case, we obtain

n N K242 01 k242 .
Y =1, Yy = 1252 Py = T vy = 24%2 when k,, is even
and
w kn—1 . kK2-1 . kK2-1 . kZ-2 .
¢1 = kn ) 1/12 = 12]{1% ) /(/)3 = 4]’(}% ) QZ}4 = 24]{% when kj, is odd.
In addition, we get
1 1 1 1 143 1
= ]. = = = = — = — = — = —.
1 =1, 1o Bk 3 7 e o1’ Vs %6’ Ve 51102’ Y7 105



3 Stochastic decomposition of 7,

In this section, we provide a stochastic decomposition for the bias corrected
version of the random variable Z,, defined in the previous section. This second
order stochastic expansion is essential for obtaining the Edgeworth expansion
discussed in Sections 4 and 5. Since the first term of the estimator V,, defined
in (2.7) uses the observations Y;, with 0 < ¢ < d,k,, we effectively estimate
the quadratic variation of X over the interval [0, d,,k,A,]. For this reason, we
consider the bias corrected statistic

1
T = Zn + A;1/4L . (bl (X,))2dt. (3.1)

Obviously, the statistic Z,, also satisfies Theorem 2.1, since the correction con-
verges to 0 in probability. However, the bias may affect the higher order asymp-
totics. In the next step, we proceed with the estimation of the bias to construct
a feasible statistic. We basically follow the procedure proposed in [4, Section 4].
Let p,, be a sequence of integers satisfying p,, — 00, p,A,, — 0 and p,/A,, — 0,
and set J,, := {1/A,, —p, +1,...,1/A,}. For each ¢ € [d,k, A, 1] we define

B2 = ——— Y WP — P S aryy,

- Y knAnpn i+kn€Jy, 20205 pn i€y

which is constant in ¢. It has been proved in [4] that this local estimator is
consistent for (b[*1(X,))2. Thus, a feasible version of the statistic Z, is obtained
via
1
Zr = Zn + A4 J M (X,))2dt. (3.2)
dunknln

We remark that 1 — d,k,A,, = O(A}/ 2), which implies that
ZE — 7 = op(AYY). (3.3)

n

In the next step, we will show that
Z* = M, + AY*N,

where M, and N, are some tight sequences of random variables. Before we
go into details, we need more notations. We again consider the SDE defined
in (2.1). However, in this section we assume that bl*1 b2l € C4(R). Under this
smoothness assumptions, we apply Ito’s lemma and write bl*] (X¢),k=1,21in
the stochastic differential form as

db™(x,) = b (X)) aw, + b2 (X, )dt.

Similarly, we define the processes bl*1-#2*s1(X,), ki, ko, ks = 1,2. Throughout
the paper, we will also use the shorthand notations

plFrokal — plbvkal (X)) d =1,2,3, ki,... kg =1,2. (3.4)



The following process, which is the first order approximation of zikn7 will play
an important role throughout the proofs:
11 7 _
Ay, = bLgn Wtikn + €ty - (3'5)

Note that the quantity o, is obtained from Y;,, ~via freezing the volatility
process at time t;;, and ignoring the drift process b2J. We also need to define
a function g,, and a process W (i, t):

kp—1
gn(s) = X5 90 /ka)l(GG—1)an jan)(5), (3.6)
j=1
(it 1)kn AT
W(i,t) = f gn(u —ti, )dW,. (3.7
tik, At

We note that g, (s) vanishes for s <0 and s > (k,, —1)A,,. Moreover, we obtain
the identity o
Wtikn = W(Z, t(iJrl)kn).

The next proposition, which gives the expansion of Z}, is a central result of this
section.

Proposition 3.1. We obtain
Zt = M, + AYAN,,

where
A4 dp1 6
M, = ;n Z (af@_k" - E[aikn |‘Ftikn]) and N, = Z Npk + Ry,
2 =0 k=1
with
2A;1/2 dn—1 t(it1)kp
n = D bgggnf M (w)dW,
2 i=0 ik,
2A7_Ll/2 dp,—1 Lty (U
ng = ’L/Jn Z bggn bgki] f dWGW(Z) u)gn (u - tikn)dua
2 i—0 ikn tiky,
AV W) KR 1o
Ny.3 ZT?’ Z (bL,ln)Q,
2 i=0
A3/2k721(21/1" — ) Sy e 1.1
Nn,4 =— 2wn4 : Z 2b£i11n bgikn] + (bgikn])Q
2 i=0
2Ar_zl/2 dp,—1 ~ tGt D hn U '
Nos == DT (AN Y i t Jt AW,dW (i,u) | |
=0 ik ik
Ay Pyng A, A
Nyp =2 Pl 2 205 apy2 |
) wg,kn 2 = (2
Rn :0]P’(1)



4mo=££<f Pwn—W%g%@—mn+wwﬁﬂﬂm>%w—nh>
tiky

u Lt 1)ky,
+#£<f ans = i, sgn 1) + | (ﬁ@—mﬂ—wmﬁ
tikp

u

+wgknAngn (u — tik, )b[2]

tikn *
Proof. See Section 8. O

The meaning and the asymptotic behaviour of the quantity (M, N,) will
be explained in Section 5.

4 Asymptotic expansion theory with respect to
mixed normal limit

In this section, we briefly summarize the main elements of the martingale ex-
pansion for a mixed normal limit, which was developed in [13]. Suppose that,
on a filtered probability space (€2, F, (Ft)ic[o,1], P), we have a auxiliary random
variable Z,, satisfying

Zn = Mn + TnN'ru

where N, is a tight sequence of random variables and (r,) is a sequence of
positive numbers satisfying r,, — 0 (in our framework r,, = Ai/ 4). Note that we
had this type of decomposition in the previous section. In addition, we assume
that M, is a terminal value of some continuous (F;)-martingale (M;")scpo,1] with
M{ = 0. We assume that M,, (and hence Z,,) converges stably in law to a mixed
normal limit M :

M, 2% M ~ MN(0,C).

Here, M is defined on an extension (Q, F,P) of (2, F,P). Let F, be a reference
random variable, which is general here but will be Fj, of (2.8) in Section 5. We
are interested in the asymptotic expansion of (Z,, F},).

Let (Cf')se[0,1] denote the quadratic variation process of M™ and (M;)¢e[o,1];

defined on an extenstion (Q, F,P) of (Q, F,P), be a process satisfying M = M.
For C,, := C7 and F),, we denote

Cn=r;%(Cn,—C)and F,, =, (F, — F),

respectively, where C' and F' are some random variables. We impose the follow-
ing crucial assumption where [B1](i) involves a functional stable convergence.

[B1] () (M". N, Cy, Fr)) =5 (M., N.C. F),
(ii) My ~ MN(0,Cy) for each t € [0, 1].



All information concerning the Edgeworth expansion for (Z,, F;,) is con-
tained in two random symbols ¢ and @, which are introduced in the next sub-
section.

4.1 The random symbols ¢ and &

We start with the random symbol ¢. Let F = F v o(M). We assume that there
exists random variables C'(z), N(z), F(z) such that

~

C(M) =E[C|F], N(M)=E[N|F], F(M)=E[F|F].
Then, we define the adaptive (classical) random symbol ¢ by

(i)?

5 C(z) +iuN(z) + ivF(z). (4.1)

o(z,iu,iv) =

The anticipative random symbol & is more involved and only given implicitly.
For this purpose, we define

®,,(u,v) = Elexp(—u?C/2 + iwF) (e} (u) — 1)1,] (4.2)

where e} (u) = exp(iuM;* +u?C}'/2) and 1, is a truncation functional that takes
values in [0, 1] satisfying at least (i) P[¢), = 1] = 1 — o(r1t*) as n — oo for
some positive constant x, and (ii) C,, — C is bounded whenever ,, = 1. We
observe that (e} (u))se[o,1] is an exponential martingale, that is integrable under
the truncation by 1,,. Computations of ®,(u,v) can be done as if ¥, = 1 in
practice since the effect of the truncation is asymptotically negligible.

For a = (a1, as) € N3, L let |a] = a; + ag. For a function of two variables,
we use the following differential operator notations:

d* = d21d2? and 0* =i~ 1*ld”.
Set ®%(u,v) = 0*®,,(u,v). We suppose that the limit

O (u,v) = lim 7 ®%(u,v)

n—xL

exists and has the form
d(u,v) = 0°E[exp(—u?C/2 + ivF)a (iu, iv)] (4.3)
for every o € Z3 , where 7 is given by

T = ZEj(iu)m" (iv)™ (finite sum) (4.4)

where n;,m; € N and ¢; are random variables. See [13] for details of the random
symbols.

'Ng =Z4 ={0,1,2,...}.



Remark 4.1. We note that the random symbol o dates back to [11] which deals
with a martingale expansion associated with a normal limit. On the other hand,
the random symbol & first appeared in [13] and is due to the mixed normality
of the limit. Indeed, if C' is deterministic, we may pretend 1, = 1 by a suitable
stopping argument and obtain ¥, (u,v) = 0 due to the martingale property of
e (u). That means & = 0.

4.2 The asymptotic expansion of (Z,, F,,)
We define the full random symbol ¢ by

o=0g+o0.

We recall from (4.1) and (4.4) that ¢ and & are finite polynomials in (iu,iv)
with random coefficients. Hence, o admits the decomposition

o(z,iu,iv) = Z ¢;j(z)(iw)™ (iv)™ (finite sum)

for some n;, m; € N. We set the approximated density of (Z,, F;,) as

pn(z,2) =E[¢(2;0,C)|F = x]pF(x) (4.5)
+ TnZ(—dz)mj(—dx)"j (E[cj(z)¢(z;0,0)|F = a:]pF(x)) ,

J

where ¢(+;0,b%) and p!" denote the densities of N(0,b?) and F, respectively.
We note that p exists due to the condition that will be imposed later. For
K,v >0, let

E(K,v) = {h: R* > R|h is measurable and |h(z,z)| < K(1 + |z + |z|)7}.

For h € E(K,7), we denote
Ay (h) = ‘E[h(Zn,Fn)] — fh(z,x)pn(z,x)dzd:c .

We are now at the stage to recall a basic result. We need elements of Malliavin
calculus to state it; see e.g. the book [8] for the main concepts. In what
follows, we will only treat one-dimensional functionals M"™ and F,,, and a two-
dimensional Gaussian process as the input process, for simplicity of notation.
However, it is sufficient for the purpose of this paper.

For H = L?([-1,1] x {1,2},dt x v), v being the counting measure, let w =
(w(h))hem be a Gaussian process associated with the Hilbert space H. That is,
w is a family of centered Gaussian random variables such that E[w(h)w(g)] =
S[_l’l] x{1,2} hgdzdv for h,g € H. The Malliavin derivative is denoted by D, while
its dual, also called divergence operator, is denoted by § = D*. For a separable
Hilbert space E, the Sobolev spaces D ,,(E) of E-valued random variables are well

10



defined, where s is the index of differentiability and p is the index of integrability.
We simply write Ds ,, for Dy ,(R). Let Dy o (E) = [),~; Ds p(E).

p>1""5,P
For a multivariate functional U = (Uy,...,Uy) the Malliavin covariance

matrix of U is given by oy := ({DU;, DU, m)1<i,j<a- We also set Ay := detoy.
Besides [B1], we will consider the following conditions. We note that the R-
valued functional &, appearing below is used to construct a truncation functional

Un.
[B2]g (i) Fe ]D)g’w and C € ngffv.

(ii) Mn € ]D)g_,_l,%, Fn € Dg+17%, Cn € ]D)g,m, Nn € Dé+1,?/; and fn € Dg,%.
Moreover, for every p > 1,
sup{ IMlesny + 1Culernp + 1Fulien,s
neN

[ Nallesip + |5M,p} <

[B3] (i) limn P[I6a] < 1/2] = 1.
(i) |Cy — C| > 7y~ implies |¢,] > 1, where a € (0,1/3) is a constant.
(iif) Forany p > 1, limsup E[1e, <y AT, ] <0 and O e, 17,

[B4]¢m,n (i) ¢ is a random symbol of the form

Q(Z7 iu7 l’U) = ijzkj(lu)mj(lv)nj (b] € D4,”L7 mj < 2; n] < 1)
J

(ii) There exists a random symbol & having a representation

Fliu,iv) = D oo(Rw)™ (iv)™ (¢ €Dy, my <m, n; <n)
J
and (4.3) holds for every o € Z2.

In assumption [B5], the term ®,, (see (4.2)) involves the truncation functional
¥, which is described below. Suppose that ¢ : R — [0,1] in C*(R) satisfies
P(x) = 11if || < 1/2 and ¥(z) = 0if |2| = 1. Let Q, = (M,,F) and
R, = (Np, Fn) and define a random matrix R}, by

R, = 05! (r{DQn, DRy)u + rn(DRy, QRy)u + 77( DRy, DRy ).
Then oz, c,) = 0q,(I2 + R;,). Let
&= il [RP
Then, the truncation functional v,, is composed by

= P(E)(E)- (4.6)

The functional £, will be set more concretely in Section 8.5 for our application.

11



[B5] For every a € Z2 and some ¢ = ¢(a) € (0, 1),

limsup  sup v |(u, o) PE|08 (uw)| < oo,
n—>% (u,0)EAY (2.9)

where A9(2, q) = {(u, v); [(u, )] < 777} and ¢ = (1 - a)/2.
The following customizes Theorem 1 of [13].

Theorem 4.2. Let n = max; n; and { = max(5,2[(n+3)/2]). Let K, v € (0, 0)
and k € (0,1) be arbitrary numbers. Suppose that Conditions [B1], [B2]e, [B3],
[B4]¢,m,n and [B5] are satisfied. Then for some constant K1 = K1(K,~, k),

sup An(h) < KiP[|&] > 1/2]" + o(ry). (4.7)
he€(K,v)

In other words, p,, is the second order Edgeworth expansion of the distribu-
tion of the pair (Z,, F,), if the event truncated by &, is sufficiently small.

See [13] for details of the above theorem and other information, and also
arXiv 1210.3680v3 for updates. The Malliavin calculus is used to derive the
asymptotic expansion formula p,. Further, one needs the non-degeneracy of
the Malliavin covariance since the problem of validity of the asymptotic expan-
sion is deeply related with the regularity of the distribution of the underlying
functional. There is a counterexample, even in the classical expansion, if [B3]
(iii) is not satisfied. Condition [B5] is also a requirement for the non-degeneracy
of the same kind but regarding the correction term corresponding to the antic-
ipative random symbol.

Remark 4.3. Under a stronger assumption that P[|&,| < 1/2] = 1 — O(rF)
for any x > 0, in place of [B3] (i), we can simply use ¥, = ¥(§,) without
¢! apparently, and remove the first term on the right-hand side of (4.7). This
makes presentation of the result slightly simpler though the deeper truncation
(4.6) is re-constructed in the proof. In this case, Condition [B5] may also become

stronger since the truncation reduces.

5 Main results: Asymptotic expansion for the
pre-averaging estimator

In this section, we utilise the results from the general theory for a mixed normal
limit and obtain the Edgeworth expansion for the pre-averaging estimator.
5.1 Assumptions

We will consider F), defined in (2.8) as a consistent estimator of C. We denote
by C;° the set of smooth functions on R whose all derivatives of positive orders
are bounded. Let

a(z) = 20 <(b[1](:c))2+0522$21>2.

12



We are assuming that suppL{ Xy} is compact and that w is positive. We impose
the following condition on the processes b1 and b2,

[V] (i) bl 5P e G and bl (x) % 0 for = € supp L{Xo}.

(i) iy [dza(Xo)| > 0.
Remark 5.1. If bl!] is nonnegative, Condition [V] (ii) can be replaced by
(i) Xy bl (Xo)] > 0.

Remark 5.2. By assumption, supp £{X,} is compact. We do not assume uni-
form ellipticity of the diffusion on the whole domain of b!]. The microstructure
noise serves as a smoother of the distribution of M,. On the other hand, we
need regularity of the distribution of C' defined in Theorem 2.1. Practically
this would be satisfied once C' is random. If C' is deterministic, the problem of
asymptotic expansion becomes a classical one that is tractable by [11]. We refer
to Section 6 for the exposition of this setting.

5.2 Stable limit theorem

We have seen in the previous section that the random coefficients of g solely
depend on the limit of the stable convergence found in the condition [B1].
Hence, we need to compute M, N,C, F'. In this section, we assume that

€t = WAr_Ll/Q(Bti - Bti—l) (7’ = O) (51)

where for the Gaussian process w = (w(h))hemm, Br = w(l[_1xq2}) for t €
[~1,1], as well as Wy = w(l[gxq1y) for t € [0,1]. We assume that w is
independent of Xy. The Malliavin derivative in the directions of W and B are
denoted by DM and D®)| respectively.

The particular Gaussian framework of the model (5.1) is imposed to be able
to use Malliavin calculus. Our results can be directly extended to a more general
setting ,

€1, = A;Wf wsdBs,
ti—1
where w is adapted to the filtration G; = o(Xo, (W;s)s<t), under mild assump-
tions on the stochastic process (w:)i=o (cf. [5]). However, we dispense with the
detailed exposition of this case.
Similarly to g,(s) and W (i,t), we define

kn—1

ha(s) = D h(j/kn) (e, .4,1(5),
j=0

tlit1)kp—1 AL
£(i,1) = —wA 12 f o (1t — ti5, )d B

tik,—1A1t
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We remark that
Etin, = E(iat(i+1)kn) = E(ivt(i-‘rl)kn—l)'
Let

aliu) = b Wi, u) +e(i, )

ikp

and remark that «(i,u), conditionally on Fy,, , is distributed as

ikp ?

N (QJ [gn(u - tikn,)2(bggn )2 + WQAglhn (u— tikn)Q]du> .
t

ikp—1

We will consider the filtration F = (F;).e[0,1], each F; being generated by X,
{Ws}tsero,q and {Bs}se[—1,- 1t6’s lemma implies that M, is the terminal value
of the F-continuous martingale

n ATV duZl ptrna nt .
Mt = n O‘(Zvu)da(l’u)' (52)
2 =0 Ylikp At

According to the expression (5.2), we observe that the quadratic variation of
M™ satisfies

. 4A;1/2 dn—1 ~teiiiye, . .
A T ) f o (i, u) [da(i, w)]?,
2 i=0 Ytikn
where
[da(i, w)]* = [(08) )2gn(u — ti,)? + WAy b (u — tig,, )*]du. (5.3)

Before going to the stable limit theorem, we observe that some of terms included
in N, converge in probability. We want to separate them from others.

Lemma 5.3. We obtain the convergence in probability
Npj = Ny, k=2,3,4

where the quantities N, i, are defined in Proposition 3.1 and
2 pl
N, =00 f pib U,
w2 0 u u

Ny _0(¥s3)® fl(b,[f])Qdu,

1/}2 0
N, _ 020 — ¢o) Jl BT 4 (p11Y2 gy,
2’(/}2 O u u u b

14



After recalling the following notation used in the previous section
Cn = ATYYC, = C), F, = A7VAF, — O),
we are ready to state our stable convergence result.

Theorem 5.4. We obtain the stable convergence
1
(Mn,Nn,Cn,F ) (M,N,C,F) ~ MN <"f Esds> ,
0

where py = p3 = pg = X2 =323 = 32 = ()

1o j 1o (B0 12 BTy, 4 Z Ny
k=2

11 [1])2 wyhy ? 22 1] 2] [1.1] [ 212 ]
s =20 ()2 + ;22 = oy (61,0, 10) — [ (011, 01, 011D |

S

166° w2\ 128 w%/; *
33 _ [1] 1 44 3 [1] 1
2 ((b )? +92¢2) B ) <(b )2 + 9%)

3
s = 2 (e ) o (0 4 20)

3 624 0212
a1 _ 4467 (1 ‘“plf
s = 5 (2 + )
with
0
pasy2) = o ([(09)* + 20 = 2l +2(05)%)
92 2
92(0,:2) = = [(Ur + )2 + (W5 = b2 )bsye + ¥ivay’]
2
4 3wty
Proof. See Section 8. O

5.3 Computation of ¢ and &

It is now straightword to compute ¢g. Indeed, the mixed normality of the limit
in Theorem 5.4 and (4.1) imply

o(z,iu, iv) = (iu)?*H1(2) + iuHs + ivHs(2) (5.4)
where
»13ds Yldds
Hi(z) = 807 Ho = p2, Hi(z) = SO
2 So Eitds So Ellds

15



Now, we pass to the calculation of 7. The anticipative random symbol 7 in (4.3)
is characterized by

O (u,v) = 0°Elexp((—u?/2 + iv)C)7F (iu, iv)] (5.5)

in the present situation. Using techniques from Malliavin calculus, we obtain
the following result.

Proposition 5.5. We obtain the identity

u2 2 u2
o(iu,iv) = iu (—2 + iv) Ha +iu (—2 + iv) Hs, (5.6)
s 72
where c(x) = [(b[l])Q(x) + ‘ngﬁ;] and
3 2
w, =2 wwi” f (bl11)2 ( f Yx dr) dt,
2
2
s = 29¢¢3 J [1] (J ( Xr)2 + C/(XT)Dt(l)Dgl)XT] d?“) dt.
2
Proof. See Section 8. O

5.4 The asymptotic expansion of the pre-averaging esti-
mator

In view of (5.4) and (5.6), we observe that the full random symbol 0 = g + 7 is
given by

o(z,iu,iv) = 28: ¢;(2)(iu)™ (iv) (5.7)
j=1
where
my , n1 =0, ci1(z) =Ha, Mo , na =1, ca(z) = Hs(z),
ms =2, ng=0, c3(2) =Hi(z), ma=1, ng=1, cs(z) =Hs,
ms =3, ny =0, c5(2) = %7—[5, me =1, ng =2, ce(z) = Ha,
mr =3, ny=1, c7(2) =Hs, mg=5, ng=0, cg(z)= i?—[4.

We continue as in Section 4.2 and define the density p,(z,z) by

Pz, @) =¢(2;0,2)p" () (5.8)
8
+ A,lz/‘l Z (=d,)™ (—dy)™ (gb(z; O,x)pc(x)]E[cj (2)|C = x]) ,

Jj=1

16



according to (4.5). For h € £(K, ), we also recall the notation
Ap(h) = ‘E[h(Z:L, Fo)] - Jh(zm)pn(z,m)dzdx .

The following theorem is the main result of this article.

Theorem 5.6. Suppose that Condition [V] is satisfied. Let K > 0,7 > 0.
Then
sup A (h) = o(A)/")
he&(K,)
Proof. See Section 8. O

This theorem is not the end of the story. From the point of view of statistical
applications, the Edgeworth expansion associated to the studentized statistic
Z¥ /\JF, is more interesting. Since the representation of o in (5.7) is the same
as in [10, Section 6], we easily obtain the second order Edgeworth expansion of

22 /NP

Corollary 5.7. Suppose that Condition [V'] is fulfilled. We define the random
variables H1 and Hs via the identity Hi(z) = zHi, k = 1,3. Then the second
order Edgeworth expansion of Z* /\JF,, is given by

* 1
PPV () = 0(y;0,1) + A 6(y; 0,1) [y (B[H20 2] = SE[HsC)
+ Z]E[H4C_5/2] + E[HsC~V?] - 3IE[7-110_1/2])
~ 1.~
+y* (E[HC7/2) = SE[HoC ™) |

Note that the polynomial involved in the second order term is odd of order 3.
However, in general it is not connected to the third order Hermite polynomial,
which appears in the classical Edgeworth expansion in the framework of i.i.d.
observations, see e.g. Theorem 2.5 in [3].

6 The case of constant volatility

The main focus of this paper was to investigate asymptotic expansions when
the estimated object C' is random, as seen in the previous sections. We remark
however that Condition [V](ii) is not satisfied when bl(z) = b for all z. In
particular, the asymptotic expansion of Corollary 5.7 can not be directly applied
to the case of constant volatility.

For the sake of completeness, we thus present the second order Edgeworth
expansion in the setting bl!] (z) = b identically, which relies on an earlier work
[11]. This article studies asymptotic expansions associated with a classical cen-
tral limit theorem and it does not require Condition [V](ii). We note that the
expression for the asymptotic density pZn/ VFEx simplifies quite a bit in the case of

17



constant volatility. In particular, in view of Remark 4.1, we obtain that & = 0.
Hence, H4 = Hs = 0. The following version of Corollary 5.7 is a consequence
of [11, Theorem 1].

Theorem 6.1. Suppose that bl'(z) = b identically and Condition [V'](i) holds.
Then the second order Edgeworth expansion of Z* /\/F,, is given by
p#IVF (y) = 6(y; 0,1)
~ ~ ~ 1~
+ A0y 0,1)C 2y (BIM] + Hs — 370) +y* (Pl — 57 ) |

Proof. First, we notice that Condition [V](i) implies the assumptions of [11,
Theorem 1]. The asymptotic expansion of [11, Theorem 1] has not been obtained
for the pair (Z, F,,), hence we require a stochastic expansion for the studentized

statistic Z* //F, directly. Denoting r,, = Ai/ 4, the Taylor expansion yields

Z; 1 (Fn _O)
\/E = (M, 4+ r,Ny) <01/2 - 203/ + OIP’(Tn))
= My + 1Ny,

where, recalling the notation F), = r,1(F, — C), we have

M, N, M,F,
anm and an W_W-FO]P(].).

Let us denote C,, := C,,/C. Applying Theorem 5.4, we deduce the joint stable
convergence

M N MF C
CY2’ 012 T 903/2° ¢

(MmNnvrgl(Cn —-1)) Lo, ( ) =: (M,n,§),

where ¢ and 7 follow the notation from Theorem 1 of [11]. Recalling equations
(4.1) and (5.4), we observe the identities

]E[HQ] 227'73 2Z7‘~[1

The second order Edgeworth expansion of [11, Theorem 1] implies the formula

E[nM = 2] =

PPN ) = B(;0,1) + 3 rad2 EIEIM = ylo(y:0.1)) = 7ady (LM = y].

A straightforward calculation implies the desired asymptotic expansion. O

7 Example

Example 7.1. Let a > 0 and ¢ > 0. We consider the Black-Scholes model to
illustrate the computations of the previous sections:

dXt = aXtdt + O'Xtth.

18



In this framework we have that
bgl] =0Xy, bil'l] =0’ X, b£1.2] = a0 Xy,
W o, Y —anxi, o -,

Then, we immediately obtain that

5 3
w2t \ 2 N (o2X2+9%) dt N
C QQJ <2X2 1/’1) dt, lewo( i ‘“”2) , Hs = 6H,

2 RN
6%, 3 (02)(3 + ‘gz;{’;) dt
HQ :00[(#}[’% + 21/’4 - Q;Z)Q)O—Q + 21/}3 J‘ XZth
Yo
N 0[2v3(0%a + a?) + (2254 — o) (20%a + ot J X dt.
2

We observe that Dgl)Xt satisfies, for t > s
DWX, = aDMV X, dt + oDV X, dW,, DX, = 0X,.
This easily implies

DWX, = 0 X, exp [(a—0?/2)(t —s) + o(W, — W,)] = 0 Xq.

Hence, we deduce that c(z) = [J 2 4+ 4 :fjl] and

2

4 3,2 -4 1 1
g, 2207050 J X2 (J c’(XT)XTdr> dt,
o 0 ¢

Hs:%izzﬂlﬂ)(?(f[ "(X)X2 4 (X)X ]dr)dt.

Using the above quantities we may obtain the second order Edgeworth expansion
of Z* /\/F, using Corollary 5.7.

8 Proofs

8.1 Sketch of the proof of Theorem 2.1

Without loss of generality, we suppose that the processes bl and b[?! are
bounded. This is done following a standard localization procedure, see [1]
for details. The first order approximation of Y;, ~is given by the process

Qtyy,, = b[jl Wi, + &, (see also the statement of Proposition 3.1). Hence,
we obtain that the dominating term in Z,, is
ATV/A dnl
n 2 2
M, = 7 > {atikn —E[of, |]-‘tikn]}.
2 =0
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Using the notation

Bti, =

A;1/4
wn (a%ikn ]E[atbk | flk:”]) ’
2

we observe that S, —is Fi,,,, -measurable and E[B;, |F, ] = 0 holds.
Moreover, we get

dn—1 1/2 dnp—1
i=0 (1/’2) 2o kn

Therefore, the first claim follows from Theorem IX.7.28 of [7]. As for the second
claim, we again observe that the first order approximation of Y3, ~is given by
the process ay,, . Moreover, we see that the main term in F), satisfies

2A_1/2 dn—1 dn—1 n, 2\ 2
o 3 El(a,,) 1 Fi, 1= 24,12 )] ((bEjgn)anAnﬂl“’ ) iNye)

n
i=0 i=0 5kn

O

8.2 Proofs of Proposition 3.1 and Theorem 5.4

Proof of Proposition 3.1. Proceeding as the in previous section, we apply a
localization procedure and suppose that all processes of the form blk1--Fml
k; = 1,2, are bounded. We will apply the following version of Burkholder’s
inequality several times. For any process U as in (2.1) with bounded drift and
diffusion terms and any p > 0, we have

E[U, - U."] < Gylt — sl (8.1)

Hence, we may apply this result for the following terms: b1, b2 plt-11 plt-2]
b1 and b[2-2!. We expand and denote

A;1/4 dp—1 2AT—L1/4 dp—1 B
A;1/4Vn = n Z (Xtik")Z + n Xtikn stikn
2 i=0 /lp? i=0
A;1/4 dn—1 [ , ?wg] A;1/4 ng 1/An
+ Er — + = — =" ) (AY")?
= RW + R® + R® 4 AVAN, ¢+ op(AL4). (8.2)

Let’s look at the term RE ] first. Due to

_ 1] o (it 1)kn n [] ) 2]
X, :btikn Wi, +£ [(bu by, o VAW (i, 1) + gn(u — tik, )b du] ,

ikn
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we obtain

oA 1/4 dn=l _ t(i+1)kn . _
R’I(’LQ) = nn Z bl[jgn Wik, Etin,, +J (bg] N bggn)dW(Z’u) X Etiny,
t

ikn

2A»,:1/4 dn—1 Jt(i+1)kn

+ n gn(u — tikn)bg] du X &,
2 i=0 Ylikn
A IS
N Yy Z bE”:ln Wi, Etin,
2 =0
2A7_11/4 dp—1 ti+v )k, [U . _
Yl () B LR A e
2 20 bikn, bikn
+op(A}/*)
= RV + AN, 5 + 0p(A)1). (8:3)

In above computation, OP(A}/ 4)—error terms were obtained by applying (8.1) to
the processes b1l and bl2l. Let’s provide some details. (8.1) applied to the
process b2l implies

E[b o] 171 < Cpan/t,

for each 0 < i <d, —1 and t, <u< L 1o - Then, we obtain

t(it1)kn
f gn (1 — i, )2 — b2 ) x 51, = Op(A,) and
t

2A;1/4 d,—1 ft(i+l)k"
t

o gn(u =t O = 0F) Ydu x 5, = 0(A}?),
2 i=0

ikn

where we used the independece of X and ¢, and the i.i.d assumption on ¢ for
the second result above.

Now, we pass to the expansion of R, Analogous to W (i, t) defined in (3.6),
we define a new process

t t
X(i,t) = f Gn(u — i, )OI AW, + f gn(u — tig,, Yo du.
t

ik tikp

We remark that B
Xtikn = X(i’ t(i+1)kn)'
Now, Ito’s lemma yields
(X,

ikn

Lt 1)kn
)? zzf X (4, u) DI dW (3, u) + g (u — tir, )01 du)
t

ikn

Lit1)kn
n f (g (1 — ti5,))2 (Ol
t

ikn
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Therefore, we get

R =
vy i=0

2A;1/4 dn—1 Jt(i+1)kn
t

X (4, u)bEaw (i, u)

2A;1/4 dn1 Jt(iﬂ)kn
t

ikp,

X(i,u)gn(u — tikn)bq[f] du

n

2 i=0 Ytikn
A:Ll/‘l dn—1 cteitiye,
2 3 [T Gt kAP0
V3 i=0 Yliky

= Rgll.l) + R'ELLQ) + RS}.S).

Here, R%l ) is decomposed as

—1/4 dn=1 (t(ip1y, (U
R _ 280 ZJ J pWaw (i, s)bldW (i, u)
t

,(/Jg i=0 ikn tiky,
oAV dusl ptrnr, pu
P S T et s s
¢2 i=0 Ytikn tikp
oA, 4 At it 1)hn . _
-5 A (b,[s},ln)zj W (i, u)dW (i, u)
2 i=0 Liky,
2A71/4 dn=1 Lt ky [U
+ Tn” > oo of J J (Wy — Wy, )W (i, s)dW (i, u)
2 =0 ikp tiky,

_1/4 dp—1 t(i+1)kn "
2800yl g f f Gn(s — tax, YdsdW (i, u)
k t

wn tiky tikp
2 i=0

ikn ikn

—1/4 dn—1 Lty [U
4 28n > bt bt f f AW, W (i, u)dW (i, u) + op(AL4)

d)n tikp  Cikn
2 i=0 tiky tiky,

S RELLLI) +R£Ll.1.2) +R£Ll.1.3) +R£Ll.1.4) +0]P(A3L/4) (84)

Using (8.2), (8.3) and (8.4), we immediately observe that

oy AR RIE AR
R == D) (i, Weaw,)? — El(by, W, )|, ] and
2 =0

M, =R + RV 4+ RY).
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(1.2)

Regarding the term R;, ™, we proceed similarly and obtain

1/4 d,—1 Gty
R = 2 D f W (i, ) g (1 — o, oD
tikn

20, 1/4 dn— it ky (U
e WUk [ ants =t s gt =t )+ on(alf
1/)2 =0 tiky, tiky,

QA_1/4 dn Lt 1)kn )
Z b tiky, [?71" J’ W(Z, u)gn(u - tikn)du
=0 i

ikn

2A;1/4 n— L(it1)hy U
+—0 Z b[}gn tizki] J f AW W (3, w) gn (u — tig,, )du
1/}2 i=0 ikn t

ik
—1/4 d,,—1
AGY

2
o ti+t1)kn
+ =z > o) )? (j gn(u—tiwdu) +op(AY)
2 =0 t

= RI2D L AVAN, o + AVAN, 5 + op(AYY). (8.5)

ikp,

In view of (8.4) and (8.5), we note that Ito’s product rule yields

2A_1/4 dn L(it1)kn
Rél.l.?:) +R£L1.2.1) =" Z btzk k’ lk”J‘ gn(u —ti, )du
=0 k

k; A3/4 dn

1=

[fg Wi, = AN, (8.6)

“n

Finally, we look at R and V. For both terms we use

(BE)? = (b} )2 +2 J bl (bE'l]dWS + bE-Qst) + J (b[-1)2ds.
tiky tiky,
Then, recalling the definition of Z in (3.2) and the estimate (3.3), we get

dpkn Ay,

RIS _ A;1/4J' (BL1)2gy
0
_ 24, 1/4 dn t(it1)kn
S ) [T () ROV, — Wi
2 i=0 Liky,
A A At [1] .[1.2] [1.1] bt n)kn
+ ;S lZO I:thlkn btikn + (btikn )2] Jtik ((gn (u - tik”))Q - ;L)U’du

Using (8.4), (8.6)7 (8.7) and Ito’s formula, we obtain
R 4 R 4 Al ( N+ (2{) = AYAN, 1.

s

This finishes the proof of Proposition 3.1. U
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Proof of Theorem 5.4. We write

dp—1 dp—1
Zlev N_ZNnk+ZX127
dn—1 dp—1
Co=K,+ Y 3. Fu=Lo+ Y x4
=0 1=0
where
ATV
X?J = n ( fik” B E[aik” ‘Ftik"]) )
2
2A;1/2 L(it1)kn
Xip = bl f v (u)dW,+
2 " Jti,
2A,, 1/2 Lt Dky (U
Uik Anbl) + 0l ”J J AWdW (i,u) | |
1/}2 tiky, tikp,
An1/2 1 kzn
n [20‘) (AEzk + ) ]7
T2yt & d
ANtk ' ' .
= [ (@20 — Bl 01, ) et
(wQ) tik, —1
n 2A;3/4 4
= B o st )
AAH? Bl pnen -1
K=o, (22 S [ Bt i, Gl - © ).
(¥3) i=0 Ylikp—1 "
g AT/ dn 1

4

L= gy 2 (T —ok)

o 2A;1/2 dn—1 \
+ An n\2 Z E[atikn |‘7:tikn] - C ’

3(05)? &

and the quantity [da(i,u)]? has been introduced in (5.3). We observe that
K, £, 0 and L, %, 0. We recall that ay,, , conditionally on Fy,, -, is dis-

tributed as )
(o U2k A (0] )MLZ“’ )
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Then, for xi' = (Xi'1, XT'2, Xi'3s Xia) We obtain

dn—1 1

P
% BNl Fi, 5 | 2hds,
i=0 0

dy,—1 1
P
Z E[X’Ln,k(wt(i—}-l)kn - Wtikn)|]:tikn] > J des
1=0 0
dy—1

Z E[X;L,k(Bt(HUkn zkﬂ )|]:t1kn]
=0

20

for 1 < k,1 < 4, where the stochastic processes ©*! and p* are introduced in
Theorem 5.4. For any 6 > 0 and 1 < k < 4, we observe that

dn—1 dp—1
Z E[|X2k|21{\xﬁk\>6}|~7:tik"] < 672 Z ]E[|X”Zk|4|ftik"] < CeknAn — 0.
i=0 =0

Now, let @ be a bounded continuous martingale with {W, Q) = (B, Q) = 0. A
standard argument (see e.g. [5]) shows that

E[sz(Qt(i+l)kn - Qtikn)|]:tikn] =0

This implies

dp—1
Z E[in,k(Qt(iJrl)kn - Qtikn)|‘Ftikn] — 0.
i=0
Then, we are done using Theorem IX.7.28 of [7]. O

8.3 Nondegeneracy of '

[y2 | @Y1
_2ej <b 921/)2) du,

1
(e - 86 J ((bL”)Q :Q;pl)b[l](bl])Dﬁl)Xudu

For

we get

and DIP'C =0 for r e [0,1]. We write

Ta(t) = L t (80

Then C’s Malliavin covariance o¢ = 022(1), i.e. |DC|% = 022(1).

2

! w 1/)1
J ((bul])2+ 0, )b[”(b 11)’D§1>Xudu> dr.

T

We will work with the two-dimensional stochastic process X; = (Xt(l)7 Xt(2))
defined by the stochastic integral equation

+ t
Xt = Xo + J Vl(Xs) odWs + f V()(Xg)ds
0 0
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for t € [0,1], where o denotes the Stratonovich integral. The coefficients are

given by
bl (1)) bl (1)
=[] < [0
for x = (M, 2®), pl2] = pl2 — 2=1p[1(p[1Y and

w21 ?

Wy = 2 [ ((My)2 1
a(z'M) 9((1) (z'M)) +92¢2>
already defined. Condition [V] implies the Héormander condition

Lie[Vo; Vi](zV,0) = R* (Va2 e suppL{Xo})

where Lie[Vp; V1], the Lie algebra generated by Vi and Vj, is defined in the
following way. The Lie bracket of V and W is given by

[V, W](z) = DV (2)W () = DW (z)V(2),
where DV (z) is the derivative of V at z. Then, we define the Lie algebra
by Lie[Vo: V4] = span (UJ Y J), where Xg = {Vi} and %; = {[V,Vi]; V €
Y;_1,1=0,1} (j = 1). It is then possible to deduce that

o)t e ()L (8.8)

p>1

for every t € (0,1]. For details, we refer the reader to [10, 12, 13].

8.4 Setting s, and a local nondegeneracy of (M, C)

The Malliavin covariance matrix of (M;*, C') is denoted by

(M = o11(n,t)  o12(n,t)
(Mt ;C) 0.21(77/7 t) 0_22(1) .
Recall that
a(i, t) = bEgnW(i7t) +e(i, 1),
(it )by AL
Wi, t) = 4[ Gn (= tig, YAW,,
tiky, At

E(it1)ky—1 AT
WA VQJ —h(u — tig, )dB,,.
t

ikp—1 AT

e(i,t)

Denoting by {U) the quadratic variation process of U, we conclude that

Ei " t
@iy = o 2 [ gt )2
) t tikn gnlU ik u
tik, At
t(b+1>kn71At
+W2A J (u — tikn)Zdu.
tikyp—1 AL
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and

Dv(ﬂl)W(Za t) = gn(r - tikn)]]'(tikn At (i 1) kg, At (T)
= gn(r - tikn)]l(tikwt(iﬂ)kn](T)]l{rét}'
Obviously,
2 [1] \2.,n 24 —1 Hit1kn -1 2
Elog,, |Fti, ] = (b4 ) ¥3knAn +w AY hn(u — tix,, ) du.
tiky—1
Since

MP = a(i, u)da(i,u).

2A;1/4 dn—1 ~t(ipiye, At
,L/JTL
2 i=0 Yt

A4 dp1

- ;0 {a(i,0)* = {ali, e},

ik AT

it follows that

—1/4
(1) g = Bn

T t n
2

) {m(i,t)((b“h;i,meXmW(z',tm(o,tikn](r) + bk} DOW (i)

Lt 1)hp AT

o ngl] . (b[l]);kn D7('1)Xtikn J’
t

—-1/4 d,,—1 d,—1
AY [ .

gn(u - tikn)2du:ﬂ'(0’tikn] (T) }

ik AT

= ;n Z Z 2(b[1])tlknD”('l)thkn {Oé(l,t)W(l,t)
2

=0 I=i+1

[t Pdud 1 200 0 G 1
i, In(u — tig, ) du ¢ + 202, 0)by, Gi(r)L<ay |11, (7).

tiky, AT

and

i —1/4 dp—1

D,S,Q)Mtn = wn Z 20{(@, t)(AJA,Zl/th (T — tikn)]l(tq‘,kn—l At (1) hom —1 /\t] (7“)
2 i=0

B A;Ll/ll dn,—1

Py 2 2a(i7t)WAr_Ll/2Hi(r)]l{T<t} X ]l(tiknflat('i+1)kn71](T).
i=0

where I; = (tik,,t@+1)k,)s Lij = (tikn+j—1,tik,+5], and we use the notations
Gi(r) = X5 g(i/ka) s, , (r) and Hy(r) = Y57 0" =h(j/ka) 11, , (). Hence, the
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Malliavin covariance matrix of M;" is expressed by

CTMt" = Ull(n,t)

1 RG! oo 1/4 ¢ pyalll 1/4 R plil
= W Z f 2A; / O[(Z,t)btik” qu('r)]].{rgt} + A?’L/ Z 2( Lk, )
2 i=0 Ytikn I=i+1

1/2 [1] L+ 1)ky AT 9 ?
x D, Xy, A, / [ (W (l,t) — btlkn f gn(u—ti,) du] dr
tik, AT

dn—1
1

bt kn—1 A 1/4 1/2 2
+ e f [2A; Y4 a(i, t)wA; Y2 Hy(r)]? dr.
2 i=0 t

ik —1AT

The cross Malliavin covariance (M;*, C)y of (M}, C') is given by

dn—1 st 3
1 (i+1)kn
nalt) = 7 D J { 207 (i, ] Gi(r)Lery + 2004
2 =0 Ytikn

S 1 1/2 [1] Hitnrn At 2
> oMy, DX, ASPla(l W (I, t) — by, 92 (u — tik, )dul
l=i+1 tik, AT
x |80 J 1 ()2 4 ¢ V1 (61 DO X du | Y ar
r “ 927/}2 “ .

Now, let

ol t) = [all(n,t) o12(n, )].

t
o12(n,t)  o22(t)

Then, we modify o(n,t) for t = t(,41)x, by

~ _ 5’11(71775) 5’12(71,75) _
o(nt) = [&12 (n,t)  oaa(t) (¢ = toruk.)
with
1 p f(m)kn 2
o11(n,t) = ——= 2A7 g b[,l] Gi(r)| dr
11( ) (77[}3)2 Zgo o [ tikn ( )]
1 p J‘t(i+1)kn1 P rliiti)kn
e ATy WATVPH (M) dr + ——— J
o), A e, P dr + 2
» 2
<|AYE S o0ty DXy, ATV {an, W, —bEj}]nwgknAn]] dr.
I=i+1
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and

5 IR IR o e  DNVZER S PO x
012(n7t) = ¢n Z n 2 ( )tlk tik,
2 =0 Ytikn I=i+1

Ly AT

1
«| 86 j ((b[l) A jﬁ) 1y px, du”dr,

evaluated at ¢ = ¢(,4 1), , respectively. Let

172 _ [1] L(a+1)kn AL )
x AV [ar, Wi, — bi f gnlu — tig, ) du]
t

_ ti4+1)ky
I = AW, = A#MJ gn(s — UenAn)dW,
Elky,
and
ta+1)kn
J® - ATz, = —wApA J (s — U ) d By
tik,

Uy, = AiL/Al( [ : J(l) Jr(fl))

tiky,

— n —2 n _ N
Aty thkn - bgllgn ¢2 knAn = bgllgn (thk - wQ k A ) + gtlk thkn

AY2I®) 4 A2 Al ¢

where
L(141) kg s
Jn3l) = Anl/z Ellgn dW2gy,(s — lknAn)l[ AWygn(u — lkp Ay)dW,,
tik,, tik,
t(i+1)kn s
A A;”Qf AW, gu(s — Ukn ) f B, (~w) A 2 hy(u — i)
tik, Elky,
tit+1)kp s
0 = A;VQJ‘ dBA—uOA;VZMAs—fman AWgn( — Ui A,)
tiky, tlky,

We claim that for every ¢ > 1,

n

Aiﬂfcu,p)){q = o@l
=0

as n — oo for

( p) 1/4atk b[ﬂnﬁif“
P

l=i+1
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We have
cin) = (ORL ) +lL a2)
p
AV Y oy (Anuzj D,(})andr> (I8 + I+ a0)).
I=it1 L

Then the estimate (8.9) follows from Lemma 5 of [13]. By using (8.9), we see

1 P rtlit)kn 9
TM ik ()2 ;}L {[ n O, Oty (r)

ikn

r kn,

2
p
A1/4 E (b[l]n )/D(l)Xt A;l/z [ZOétlkn, ” ik, — 2b£l11]n ¢;knAn)]]

= G11(n tprapr,) + Ora(A)
as n — oo uniformly in p, for every ¢ > 1. That is,

sup lovi(n,t) =u(n,t)], = OAY)
(*'P)’=:’)=*(pd+1_)lfn>

for every ¢ > 1. In a similar fashion, we also obtain

oA

sup Hau(n,t) — 512(n,t)Hq
(t.p): =t (p1) kg
p=0,...,dp—1

as n — oo for every ¢ > 1. In this way, we obtain the following result.

Lemma 8.1.

sup ||U(n,t)—6(n,t)||q = O(AMY
(P t=t (1) epy
p=0,...,dpn—1

as n — oo for every g > 1.

Define m,,(p) by
1 2
mn(p) = ( J

t(it1)kn 2
|27 e, oY) G| dr

=0 Ytiky,
1 [fosen 1/4 1/2 2
+(1/)n)2 ZJ [2A, / Qg WAL / H;(r)]* dr.
2 =0 Ylikn—1

By the Cauchy-Schwarz inequality, we see

det & (n, tipenyn,) = 01100 tpriyk, )o22(tpetyr,) — G12(ns tpi 1y, )
= ma(p) o22(tpr1)k, )- (8.10)
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Let u,, = |d,./2|k, A, and let p, = |d,/2] — 1. Set i, = my,(p,). Define s,, by

Sp = % |:mn0'22(un) + ¢ (;hc?):l )

where ¢ : R — [0,1] in C*(R) and satisfies ¢(z) = 1 if || < 1/2 and ¢(x) =0
if |x| = 1. Then, we observe that s,, > 1/2 if 1, < ¢1, and s, = 27,092 (uy)
otherwise.

Lemma 8.2. For each q > 1,

limsupE[s;9] < oo

n—xw
Proof. The result easily follows from (8.8). O
Let
4 Pn _ — -~ n w2wn
mho= g D AT, W, Pt T, 1) (08, o s, + 220,
=0 n

Then, for every ¢ > 1 the orthogonality between Wtikn and g, ~gives
i —ml], = O(AYY)
Let II™ = {t;x, ;i =0, ...,d, — 1}.
Lemma 8.3. For sufficiently small positive number cq,

sup P[ det om0y < sn] = 0(A%)
t21/2
where & s arbitrary positive number.
Proof. With the help of (8.10), Lemmas 8.1 and 8.2, we have
sup P[det o(arp, 0y < sn] < sup P[deto(n,t) < s,]
t>1/2 ¢ t=1/2

< sup  P[deto(n,t) < 1.5s,]
telln;t=1/2

+ sup P[|det o(n,t) — det o(n, s)| > 0.5s,]
s,ty|s—t|<knAn

< sup  P[detd(n,t) < 2s,]
tellnst>1/2
+ sup  P[|g(n,t) — a(n,t)] > 0.55,] + O(AS)
teTlnst21/2
< sup P[mn(p) o22(t(ps1yk,) < 28]
PZPn
+ sup  P[lg(n,t) — o(n,t)] > 0.5s,] + O(A)
teTlnst=1/2
< Plma(pn) o22(un) < 2s,] + 0(AY)
< Pling <] +O(AY)
< Plmf, <o +0(AY) = 0(4A3)



where £ can be any positive number, if we chose a sufficiently small positive
number ¢y. O

8.5 Composition of &,

We again consider ¢ : R — [0,1] in C*(R) that satisfies ¢(z) = 1 if |z| < 1/2
and ¢(x) =0 if |x| = 1. For r,, = AY* let

¢ = 20, = C) + 21 + A, cysn T+ rffmcz,

n

where ¢f > 0, and ¢* € (2¢,1) for ¢ = (1 —a)/2 for a fixed a € (0,1/3). Let

& = f 108 = G O+ Ol g
" [0,1]2 |t — 3|3/8 7

where C* = (M™),. We compose &, as &, = £ + &,.

Tracing the derivation of the stochastic expansion, we can see the expansion
holds in D, sense and Condition [B2], holds for arbitrary ¢ € N. It is easy
to verify [B3] (i) by estimating P[2[1 4+ 4A(ps, sy, ']™" > 2/5] with the aid of
Lemma 8.3. Condition [B3] (ii) is immediate by definition. Condition [B3] (iii)
follows from Lemma 8.2.

8.6 Estimate of ¢

We shall verify Condition [B5] to prove the validity of the asymptotic expansion.
We know

1
#e0) = 4l B [ e w0,
0
with W(u,v) = exp((—u?) +iv)C). The FGH-decomposition ([13]) will be used:
er (u,0)¥(u,v) = Fi(u, )Gy (u)HY (u)
with
Fi(u,v) = exp(iuMy + ivC),
Gl = e (-5t - ).
B~ e (50CT ).

Applying the duality twice, we obtain the representation

—1/2 d,L
ATYADY (u,v) = m fl[dtdsf (u,v)
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where
M v)s = E[FP )G (w)H] (W), v)rs].
The functional = ((u,v) is given by
= (u,0)s
= iu(e?(u)\ll(u,v))f1
. {gn<s =t )t — tag B DUV <e::(u>b£i,1n DO (w(u, vm)
£ (s — b ) AT Rt — t B (—w) DI (e?<u>m<u, v)D%n)
b AT ho(s — ti, )galt — tix ) (~0) D) (e?(u)b&ﬂn DO (w(u, vwn))

F ARy (s — tap, )AL VPRt — tag, ) (—w)? D) (e?(u)w, v)D,S%n) }

After all, E7(u, v): s is a polynomial of densities of O(1) that are stable in LP

sense. We note that the functions ¢ +— A;l/th(t — tik, ) are stable as n — 0.
By the integration-by-parts formula applied at most 8 times, following the
(a)-(h) procedure (pages 911-912 of [13]), we can obtain the estimate

limsup  sup sup sup |(u, ) P|EF (u,v)e 6] < o0.
n—>%  §=0,...,d,—1¢,s5€[0,1] (u,v)€A? (2,9)

Indeed, for ¢ < 1/2, we take advantage of the decay of G}'(u) in uw and the
nondegeneracy of C for v, i.e., (8.8). For ¢t > 1/2, we can use nondegeneracy of
(M, C) for (u,v), i.e., Lemmas 8.3 and 8.2. Estimation of ®%(u, v) is similarly
done. In this way, Condition [B5] has been verified.

8.7 Proof of Proposition 5.5 and Theorem 5.6

Since e}(u) is an exponential martingale and C' is bounded on the event {t,, >
0}, we have

B (u,0) = E Ul e (u)d(iu M) (u, v)z/)n] ,

0

where
U (u,v) = exp ((—u?/2 +1iv)C).

We decompose A;1/4(I>n(u, v) as

A;1/4‘I>n(ua v) = Un(u,v) + Un(u,v),
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where

5 1t (it 1)kn
Ou(u,0) = A7F ST B \If(u,v)J en . (M), | |
i=0 t

ikp

=

=

. _ydnt (it 1)kn
Un(u,v) =A, 7 Y E l\IJ(u,v)J (el (u) — egkn_l(u))d(ith")wn] .
i=0 t

ikn

We will prove that U, (u,v) is the main term and U, (u,v) is negligible.
Let us first look at the term U, (u,v). We observe that

5 2A71/2 dn—1 A1 A1 5
Unp(u,v) = n Z J J;dtds EM(u,v), s

vy = Jo
where € (u,v); s has a representation similar to £ (u,v): s as
EM(u,v)ps = E[ezkn_l(u)\ll(u,v)é?(u,v)t,s]
with

EF(u,0)1s = du(ef, 1 () ¥(u,v)) 7

. {gn<s — i gt — W (bl DO (Dﬁ”(m, vwn))
(s — tie, )AL 2R (t — ti, JOET (—w)er () DY (wu, v)Dt‘Q’%)

+ A hn(s = tik, ) (t = tik, oL, (—w)ef, 1 ()b, DiY (\mu, v)Dwn)

+ A2 (5 = ik, ) AT 2R (E = tig, ) (—w) e, ()W (u, U)Dg2>D§2>¢n}.

For derivation of the above equality, the bounds of the supports of g, and h,
were used. The terms stemming from the last three terms in {...} are negligible
since P[|¢,| > 1] = O(AL) for arbitrary L > 0. By the same reason applied to

the first term there, we have

. 2A71/2 dn—1 A1 51 .
U, (u,v) = n Z J f dtds &' (u,v)s,s + o(1)
1/)2 i=0 0 Jo
where
EMu,v)es = Elep, 1(w)¥(u,0)E] (u, )]
and

E?(u, V)ts

= iu (6?“% _1(u) ¥ (u,v))
X g (5 — ti, )gn(t — tix,)(E) )2el (w)ip, DY DV W (u, v)

10 g (5 — tik, )gn (t — i, ) OF) )20, {2(DVCY (DM O) + 1DV DIV )

—1
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where [ = —% + iv. Therefore

—1/2 dnfl
o) = 2A detdsE[et ()W, 0) 10 g5 — tik, Vgt — tin,)
=0
1 )21/1”{12(1)9)0)([)( )c) +1D( C’}]
1
gj’gf E[iu exp (il + C“;)\I/(u,v)(bE])Q\{F(Dt(”C)2 + ZD§1>D§1>C}] dt
2 Jo
= E[\P(u v) 953 f u (M2 (2(D{M )2 + 1DV DV C} dt]
2 Jo
= IE[\I/(u,v) 7;/’3 iu {46°1Cy + 201(C3 + (34)}]
2

where Dgl)Dt(l)C = limgyy D{ 1)0 and

C, = Ll(b[l])z(Xt) (f c’(XT)Dt(”XTdr)2 dt,
Cs = Ll(b[”)z(Xt) (fc”(Xr)(Dﬁ”Xr)zdr>dt,
Cy = Ll(b[l])z(Xt) (fc’(XT)Dt(”Dt(”err) dt

2 .
for ¢(x) = [(b[l])z(a:) + ‘g;—:ﬁ;] . Convergence U, (u,v) — 0 is easy to show.
Moreover, it is possible to specify the limit ®* in a similar way to verify (4.3)
for FF = C. Hence, we obtain

o(iu,iv) = %IU[492CQZ2 +20(C3 + Cy)l].

Thus, Proposition 5.5 and hence Condition [B4]s 21 has been verified, which
concludes the proof of Theorem 5.6. O
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