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Abstract

It is commonly argued that observed long memory in time series variables can re-
sult from cross-sectional aggregation of dynamic heterogenous micro units. For instance,
Granger (1980) demonstrated that aggregation of AR(1) processes with a Beta distributed
AR coefficient can exhibit long memory under certain conditions and that the aggregated
series will have an autocorrelation function that exhibits hyperbolic decay. In this paper,
we further analyze this phenomenon. We demonstrate that the aggregation argument
leading to long memory is consistent with a wide range of definitions of long memory. In
a simulation study we seek to quantify Granger’s result and find that indeed both the
time series and cross-sectional dimensions have to be rather significant to reflect the the-
oretical asymptotic results. Long memory can result even for moderate T,N dimensions
but can vary considerably from the theoretical degree of memory. Also, Granger’s result
is most precise in samples with a relatively high degree of memory. Finally, we show
that even though the aggregated process will behave as generalized fractional process and
thus converge to a fractional Brownian motion asymptotically, the fractionally differenced
series does not behave according to an ARMA process. In particular, despite the auto-
correlation function is summable and hence the fractionally differenced process satisfy the
conditions for being I(0), it still exhibits hyperbolic decay. This may have consequences
for the validity of ARFIMA time series modeling of long memory processes when the
source of memory is due to aggregation.
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1 Introduction

Without specifically talking about long memory, the study of this concept in econometrics
goes back to Granger (1966) in his article about the spectral shape near the origin for eco-
nomic time series variables. He found that long-term fluctuations, if decomposed into frequency
components, are such that the amplitudes of the components decrease smoothly with decreasing
period (Granger, 1966, p. 155). This certainly applies for non-stationary I(1) processes and
more generally for the class of fractionally integrated processes as demonstrated by Granger
and Joyeux (1980). Such processes have long lasting correlations that decay hyperbolically
instead of the standard geometric decay characterizing ARMA processes.

This kind of behavior, along similar findings in other scientific areas, has given rise to several
definitions of long memory. In this study we consider the following definitions of long memory,
see Guégan (2005) for a review.

Definition. Let xt be a stationary time series with autocovariance function γx(k) and spectral
density function fx(λ), and let d ∈ (0, 1/2), then xt has long memory

(i) in the covariance sense if γx(k) ≈ Cxk
2d−1 as k →∞ with Cx a constant

(ii) in the spectral sense if fx(λ) ≈ Cfλ
−2d as λ→ 0 with Cf a constant

(iii) in the rate of the partial sum sense if Var(
∑T

t xt) = Op(T
1+2d) as T →∞

(iv) in the self-similar sense if m1−2dCov(x
(m)
t , x

(m)
t+k) ≈ Cmk

2d−1 as k,m→∞ where x
(m)
t =

1
m

(xtm−m+1 + · · ·+ xtm) with m ∈ N and Cm a constant

(v) in the distribution sense if Xn(ξ) = σ−1
n

∑[nξ]
t=1 xt

d→ BH(ξ), where σ2
n = E[(

∑n
t=1 xt)

2],

ξ ∈ [0, 1], BH(ξ) is a fractional Brownian motion, H = d + 1/2, and
d→ denotes conver-

gence in distribution.

Definition (ii) is the feature considered by Granger (1966) in his study of the typical spectral
shape for economic variables. The behavior of the spectrum near the origin is also used in one
of the most popular estimators for long memory due to Geweke and Porter Hudak (1983)
who proposed an estimation procedure based on semiparametric regression around the zero
frequency.

Diebold and Inoue (2001) based their work on spurious long memory on definition (iii).
They showed that structural breaks or regime switching schemes can be confused with long
memory by focusing on the rate at which the variance of partial sums grows in time. Their
paper demonstrates that certain stochastic processes are long memory by one definition but
not necessarily by other definitions.

Definitions (iv) and (v) are largely based on the work of Mandelbrot and Van Ness (1968)
for fractals. They defined the self-similarity condition and showed that the fractional Brownian
motion in particular has this property.

Finally, definition (i), concerned with the behavior of the autocorrelation function for large
lags, was one of the motivations behind the ARFIMA model due to Adenstedt (1974), Granger
and Joyeux (1980), and Hosking (1981). They extended the ARMA model to account for
fractional differencing. That is, for a stationary fractional process

(1− L)dA(L)xt = B(L)εt, (1)
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where εt is a white noise process, d ∈ (−1/2, 1/2), and A(L), B(L) are polynomials in the lag
operator with no common roots, all outside the unit circle. They used the standard binomial
expansion to decompose (1−L)d in a series with coefficients πj = Γ(j+d)/(Γ(d)Γ(j+1)) for j ∈
N. Using Stirling’s approximation it can be shown that these coefficients decay at a hyperbolic
rate (πj ≈ jd−1 as j →∞), which in turn translates to slowly decaying autocorrelations.

It is well known that ARFIMA processes are long memory by definitions (i) through (iii),
and an analogous derivation as in the proof of Theorem 1 below shows that it is also long memory
in the self-similar sense, definition (iv). Moreover, a scaled partial sum of an ARFIMA process
converges to fractional Brownian motion, see for instance Davydov (1970) and Davidson and
de Jong (2000). Thus, in the time series literature this has become the canonical construction
for modeling long memory.

Even though the ARFIMA model seems to be an appropriate specification to study long
memory, the source underlying its dynamic features is still not clear. Physical (turbulence,
see for instance Kolmogorov (1941)), as well as psychological reasons (Pearson (1902) personal
equation), have been used to explain the presence of long memory. More recently, Parke (1999)
proposed the error-duration model which relies on a decomposition of the time series into the
sum of a sequence of shocks of stochastic magnitude and duration. He shows that if only a
small proportion of the errors survive for large periods of time then the resulting series shows
long memory in the covariance sense, definition (i). Nonetheless, given the nature in which the
data is collected, one of the main arguments often given in economics to why the data seems
to have long memory features is due to cross-sectional aggregation. It is also commonplace to
see arguments for cross-sectional aggregation motivating fractional long memory in real data.

Granger (1980), in line with the results of Robinson (1978) on random AR(1) models,
showed that cross-sectional aggregation of AR(1) processes with random coefficients could
produce long memory. Using a Beta distribution for the generation of cross-sectional AR(1)
coefficients, he showed that, as the cross-sectional dimension goes to infinity, the autocovariance
function exhibits hyperbolic decay, rather than the standard geometric rate characterizing
ARMA processes. Thus, cross-sectional aggregation can produce long memory in the covariance
sense, definition (i).

In this paper we focus on the aggregation argument leading to long memory. We address
the particular specification considered by Granger because the Beta distribution is a rather
flexible specification but the analysis could be extended to other aggregation schemes. We
demonstrate that this aggregation scheme implies that the aggregated series is long memory
using all the definitions considered in this paper. Since the aggregation result is an asymptotic
property we conduct a Monte Carlo simulation study to quantify how aggregation can lead to
long memory in finite samples. The theoretical degree of memory of the aggregated series is
tied to a particular parameter of the Beta distribution which affects the density mass around
one. The simulations show that both the time series and the cross section dimensions have to
be significant for the theoretical degree of memory to apply. Finite samples will still exhibit
long memory but the estimated memory parameter (estimated by the GPH estimator) can be
rather large compared to its theoretical value, especially when the memory is only of moderate
degree. In the third part of the paper, we focus on the extent to which the memory implied by
aggregation can be removed by fractional differencing. In particular, we are interested in how
ARFIMA type of long memory models can be useful for practical model building. It occurs
that the fractionally differenced series, using the theoretical degree of differencing, does remove
the long memory of the process. The resulting series has absolutely summable autocorrelations
and thus it is I(0) by the definition of Davidson (2009). However, the series will still have
autocorrelations that decay hyperbolically and hence will decay slower than what an ARMA
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specification will be able to fit. This feature is most dominant when the degree of memory
is moderate as opposed to being close to non-stationarity, d ≥ 0.5. Our findings may have
implications for the argument that is often given for estimating ARFIMA models, namely
that the observed long memory of time series can occur due to cross-sectional aggregation.

In section 2, the Granger aggregation scheme is presented and the features of the aggregated
series are examined using the different long memory definitions that we consider. Section 3
presents the simulation study, and finally section 4 derives the features of fractional differencing
of cross-sectionally aggregated long memory processes. The final section concludes.

2 Long Memory and Cross-Sectional Aggregation

Granger (1980) showed that aggregating AR(1) processes with random coefficients can produce
long memory according to definition (i). He considered N series generated according to1

xi,t = αixi,t−1 + εi,t i = 1, 2, · · · , N ; (2)

where εi,t is a white noise process with E[ε2
i,t] = σ2

ε ∀i ∈ {1, 2, · · · , N}, ∀t ∈ Z and α2
i ∼

B(α; p, q) with p, q > 1 and B(α; p, q) is the Beta distribution with density:

B(α; p, q) =
1

B(p, q)
αp−1(1− α)q−1 for α ∈ (0, 1), (3)

where B(·, ·) is the Beta function.
Furthermore, define the cross-sectional aggregated series as:

xt =
1√
N

N∑
i=1

xi,t. (4)

Granger showed that, as N →∞, the autocorrelations of xt decay at a hyperbolic rate and
hence generates long memory in the covariance sense according to definition (i) with parameter
d = 1− q/2. In Theorem, 1 we extend his result to definitions (ii) through (iv).

Theorem 1. Let xt be defined as in (4) then, as N →∞, xt has long memory with parameter
d = 1− q/2 in the sense of definitions (i) through (iv).

Proof: See appendix.

Theorem 1 shows that a cross-sectional aggregated series of infinite AR(1) processes with
squared autoregressive coefficients from a Beta distribution has long memory with long memory
parameter d = 1 − q/2. Note that the parameters p, q are shape parameters of the Beta
distribution. In particular, q affects the density around one. Taking q ∈ (1, 2) the long memory
generated falls in the stationary range, d ∈ (0, 1/2). We will focus on this range for the rest of
the analysis. Furthermore, it appears that the value of p plays no role for this result as N →∞.
As a consequence, Granger conjectured that asymptotically the memory only depends on the
behavior of the distribution of the autoregressive coefficient near one. In Figure 1, we plot the
beta distribution (3) for p = 1.4 and different values of q. As can be seen, the closer q is to one,
the more density mass concentrates around one; which, as shown in Theorem 1, translates to
a greater degree of memory in the cross-sectionally aggregated series, xt.

1Granger also considered the case with dependence across series and allowing for different variances across
the cross-sectional units but for clarity we will focus on the scenario under independence and equal variance.
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Figure 1: Beta distribution.

Granger’s result has been extended by, among others Oppenheim and Viano (2004), allowing
for AR(s) processes (with s ≥ 1) and Linden (1999) changing the Beta distribution to the
Uniform; note that in Granger’s setting the Uniform distribution was ruled out given that
p, q > 1. Under the scenario of Oppenheim’s et al. the aggregated series exhibits seasonal
behavior along with long memory.

Granger’s finding about the dependence of the result on the behavior of the distribution
near one was further discussed by Zaffaroni (2004). He showed that if the distribution of the
autoregressive coefficient, αi, belongs to a family of absolutely continuous distributions on [0, 1),
depending upon a real parameter b ∈ (−1,∞), with density

G(α; b) ∼ cb(1− α)b as α→ 1−,

where 0 < cb <∞, then the aggregated series, letting N →∞, will be long memory. Moreover,
the more dense the distribution of αi is around one, the greater the degree of long memory of
the aggregate. Both the Uniform and Beta distributions are members of this family of distribu-
tions. Thus, the specific parametric assumption regarding the distribution of the autoregressive
coefficient is not needed for the long memory result to apply, but as we will see below, it allows
us to have closed-form expressions for one of the main results in the paper. Additionally, Zaf-
faroni (2004) extended the result for cross-sectional aggregation to general ARMA processes
of finite order.

In Theorem 1, we showed that cross-sectional aggregation satisfies long memory by defini-
tions (i) through (iv). We now argue that under one additional condition on εi,t, the scaled
partial sum of cross-sectional aggregated series converges to fractional Brownian motion; that
is it has long memory in the distribution sense, definition (v).

As previously discussed, ARFIMA processes are fractional differenced ARMA processes
using the (1 − L)d filter. The MA series resulting from expansion of the (1 − L)d filter has
hyperbolically decaying coefficients of the form πj = Γ(j+ d)/(Γ(d)Γ(j+ 1)) for j ∈ N and this
produces a series with hyperbolic decaying autocovariances. We can generalize this construction
to series that still show hyperbolic decaying coefficients, yet, the coefficients do not come from
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the fractional difference operator as defined above. We call these processes generalized fractional
processes (see Davidson and de Jong (2000)).

We prove in Lemma 1 that if εi,t are i.i.d., cross-sectional aggregated processes can be
expressed as a generalized fractional process.

Lemma 1. Let xt be defined as in (4) with N → ∞ and assume that εi,t is an i.i.d. process.
Then, xt can be expressed as

xt =
∞∑
j=0

φjνt−j,

where νj ∼ N(0, σ2
ε) are independent and φj = (B(p+ j, q)/B(p, q))1/2 , ∀j ∈ N.

Proof: See appendix.

Lemma 1 relies on the fact that when N goes to infinity the Central Limit Theorem can
be applied. In this sense, it is in line with the work of Davidson and Sibbertsen (2005) who
show that cross-sectional aggregated non-linear processes of appropriate form have linear rep-
resentations in the sense of having MA(∞) representations. Note also that in Lemma 1 we
could obtain a similar result if εi,t is not i.i.d. but satisfies Lyapunov’s condition. Furthermore,
the resulting series inherits the uncorrelated property of εi,t and, given normality, they are
independent.

By Stirling’s approximation the coefficients in the representation decay at a hyperbolic
rate, φj ≈ j−q/2 = jd−1 as j → ∞ with d = 1 − q/2, but without being associated with the
fractional differencing parameters, πj, defined above. Thus, cross-sectional aggregated processes
are generalized fractional processes. In Section 4, we will detail the study of the relationship
between cross-sectional aggregated long memory processes and ARFIMA processes.

Theorem 2 argues that the scaled partial sum of cross-sectional aggregated processes con-
verges to fractional Brownian motion.

Theorem 2. Let xt be defined as in (4) with N →∞ and assume that εi,t is an i.i.d. process.
Consider the scaled partial sum of xt defined as

Xn(ξ) = σ−1
n

[nξ]∑
t=1

xt,

with σ2
n = E[(

∑n
t=1 xt)

2] and ξ ∈ [0, 1]. Then, Xn(ξ)
d→ BH(ξ), where BH(ξ) is a fractional

Brownian motion, H = d+ 1/2, and
d→ denotes convergence in distribution.

Proof: See appendix.

Theorem 2 is in line with the results from Zaffaroni (2004) when restricting the analysis
to the Beta distribution. In this context, the parametric assumption allows us to find closed-
form solutions for the variance terms. This in turn translates into closed-form expressions for
the coefficients of the generalized fractional process. Given this, note that Theorem 2 follows
directly from the developments of Davydov (1970) and Davidson and de Jong (2000).

In summary, Theorems 1 and 2 show that a cross-sectional aggregated series has long mem-
ory by all the definitions considered. However, although the coefficients of the MA represen-
tation decay hyperbolically they are different from those arising from inversion of a fractional
difference filter.
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3 Finite Sample Study

In order to analyze the finite sample properties of Granger’s aggregation result, which holds
asymptotically, we conducted a Monte Carlo simulation experiment. Note that if we do not
consider enough AR(1) processes in the cross-sectional dimension, the resulting series may
not have long memory as predicted theoretically. Granger (1990) proposed a division between
cross-sectional aggregation in small scale, involving sums of a few time series variables, and
large scale, involving the sums of very many variables. In particular, Chambers (1998) shows
that when the number of variables is not large, the aggregation result can not be obtained.
Nonetheless, the numerical finite sample implications of these conclusions should be quantified.

To shed some light on this question we generate xt as in (4) under different parametric
settings focusing on three main dimensions: the density of the autoregressive coefficient near
one determined by the parameter q; the sample size T ; and the cross-sectional dimension N ,
that is, the number of AR(1) processes aggregated over.

The simulation proceeds as follows for R replications:

• Sample the N autoregressive coefficients from the density function, equation (3).

• Generate the individual AR(1) series of size T , equation (2), using the sampled coeffi-
cients. The error terms, εi,t, were sampled from independent standard normals.

• Aggregate the individual series cross-sectionally according to equation (4).

• Estimate the long memory parameter using Geweke and Porter Hudak (1983) [GPH].
For robustness we considered the bias-reduction method of by Andrews and Guggenberger
(2003) using second degree [AND(2)] and fourth degree polynomials [AND(4)].

We have chosen to estimate the long memory parameter using the GPH method since it
does not depend on a full parametric assumption. The importance of this will be made clearer in
Section 4 when discussing the relationship of cross-sectional aggregated series with ARFIMA
processes.

Throughout, we have used a bandwidth of T 0.5 as it is standard in the literature. As it is well
known, the bandwidth affects the bias-precision tradeoff. Results with different bandwidths are
available upon request showing this tradeoff; notwhistanding, the main conclusions maintain.
Moreover, for reasons of space we present simulations for p = 1.4 throughout so that the
density for the autoregressive coefficient takes the form shown in Figure 1. For robustness we
have tried different values of p, available upon request, with similar qualitative results despite
minor quantitative differences.

To analyze the importance of the density around one on the aggregation result, we report
in Table 1 the results from the simulations for different values of q in (3) which is related to
the degree of long memory d = 1 − q/2. We have conducted R = 10, 000 replications with
T = N = 10, 000. Additionally, for comparison we also simulate 10,000 FI(d) series using the
exact algorithm of Jensen and Nielsen (2014).

The table shows that for large degrees of memory we are close to the theoretical values but
rather distant when the memory is low. Thus, it shows that the density of the autoregressive
coefficient plays a key role in finite samples.2 It suggests that using cross-sectional aggregation
as a way to simulate long memory works poorly when working with small d. In contrast, Table
1 shows that fractional differencing remains precise for all values of d. In particular, note that

2Note that the Andrews and Guggenberger (2003) estimates do reduce the bias, however, this is at the cost
of more imprecise estimates.
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Table 1: Mean and standard deviation in parentheses of the estimated long memory parameter.
T = N = R = 10, 000. The last three columns show comparable FI(d) processes simulated
according to Jensen and Nielsen (2014) algorithm.

Theoretical Cross-sectional aggregated FI(d)
d GPH AND(2) AND(4) GPH AND(2) AND(4)

0.475 0.5117 0.4967 0.492 0.4818 0.4840 0.4849
(0.0711) (0.1126) (0.1463) (0.0710) (0.1116) (0.1467)

0.45 0.4894 0.4731 0.4671 0.4566 0.4582 0.4606
(0.0718) (0.1139) (0.1499) (0.0700) (0.1128) (0.1471)

0.4 0.4442 0.4255 0.4186 0.4029 0.4045 0.4051
(0.0723) (0.1135) (0.1482) (0.0699) (0.1120) (0.1465)

0.35 0.4041 0.3826 0.3744 0.3536 0.3542 0.3541
(0.0722) (0.1127) (0.1482) (0.0698) (0.1104) (0.1449)

0.3 0.3633 0.3394 0.3295 0.3017 0.3040 0.3043
(0.0723) (0.1155) (0.1508) (0.0693) (0.1102) (0.1453)

0.25 0.3251 0.2965 0.2829 0.2529 0.2532 0.2529
(0.0730) (0.1159) (0.1520) (0.0702) (0.1104) (0.1442)

0.2 0.2887 0.2573 0.2434 0.2009 0.2012 0.2013
(0.0738) (0.1183) (0.1552) (0.0700) (0.1112) (0.1464)

0.15 0.2547 0.2198 0.2075 0.1512 0.1509 0.1519
(0.0730) (0.1173) (0.1529) (0.0694) (0.1107) (0.1454)

0.10 0.2252 0.1888 0.1753 0.1004 0.1022 0.1029
(0.0741) (0.1174) (0.1536) (0.0683) (0.1103) (0.1448)

0.05 0.1938 0.1569 0.1422 0.0500 0.0494 0.0493
(0.0748) (0.1181) (0.1550) (0.0692) (0.1104) (0.1472)

for a sample size of 10,000 and using 10,000 AR(1) series, the cross-sectional aggregated series
tends to show a larger degree of memory than the asymptotic result implies, and that of a
comparable FI(d) process.3 This, coupled with the computational load required to generate
the aggregated series, suggests that the aggregation scheme is clearly dominated by fractional
differencing.

Moving on to analyze the importance of the cross-sectional dimension, we present in Figure
2 box-plots from simulations with a sample size of T = 10, 000 while varying the cross-sectional
dimension N . For ease of exposition we only present results for four theoretical degrees of long
memory with the GPH estimation method.

Figure 2 allows us to see how the long memory parameter evolves while increasing the
cross-sectional dimension. It further shows the dependence of the result on the density of the
autoregressive coefficient and the implied theoretical memory d. The larger the degree of mem-
ory (the denser the Beta distribution around one) the better we can approximate the asymptotic
result. For small values of N the figures show that the median is below the theoretical value in
all cases, which is line with the result by Chambers (1998) on small scale aggregation. It can
also be seen that the memory parameter is generally imprecisely estimated when N is relatively
small. Moreover, the box-plots show that the cutoff between small and large scale aggregation
varies with the density of the autoregressive coefficients. In general, with a sample size of

3We need a sample size T and cross-sectional dimension N of more than 100, 000 to obtain results mimicking
the FI(d) simulations.
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Figure 2: Box-plot long memory parameter estimator at different levels of aggregation. T =
R = 10, 000. In each box the central mark is the median, the edges of the box are the 25th and
75th percentiles and the whiskers extend to the 95% coverage assuming symmetry.

10,000, for larger degrees of memory, we need at least 250 AR(1) series so that the median of
the simulations is close to the theoretical values, while for smaller degrees of memory, as Table
1 showed, we are still far away even with 10,000 AR(1) series. Moreover, much estimation
uncertainty is still present in all cases.

Finally, to study the interaction between the sample size and the cross-section dimension,
Figure 3 presents the heat-maps of the mean of the GPH estimated parameters for 1,000
replications minus their theoretical values while varying T and N . We present four theoretical
values.

The figure shows the interaction between the cross-sectional dimension and the sample
size. For smaller sample sizes we are always overshooting the true long memory parameter.
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Figure 3: Heat-map estimated mean of the long memory parameter for R = 1000 minus the
theoretical value; T,N ∈ {50, 100, 250, 500, 750, 1000, 2500, 5000, 7500, 10000}.

This suggests that when working with a small sample size, the estimators do not have enough
information to discern the true nature of the process. On the other hand, as the sample size
T increases, the more cross-sectional units are needed to approximate the asymptotic result.
Thus, it quantifies the cutoff between small and large scale aggregation. This indicates that if
we were to use aggregation as a way to simulate long memory we need to increase the cross-
sectional dimension proportionally to the sample size, with the associated computational cost
that it implies.

In summary, the simulations show that the aggregation scheme to generate long memory
can be rather imprecise and generally requires many time series observations and many cross-
sectional units. In particular for small values of d.

4 Cross-Sectional Aggregation and ARFIMA processes

Theorems 1 and 2 together with Lemma 1 show that cross-sectional aggregated processes share
key properties with ARFIMA processes. Both processes satisfy all of the definitions of long
memory considered in this paper and both have MA(∞) representations with hyperbolic de-
caying coefficients.

These shared properties may explain why several authors have assumed that cross-sectional
aggregated processes are of the ARFIMA type. For instance, Balcilar (2004) and Gadea and
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Mayoral (2006) refer to cross-sectional aggregation as the explanation behind long memory
found in inflation and fit ARFIMA models using parametric methods.

Granger (1980), in his original article, also noted that although aggregated series were not
ARFIMA, the ARFIMA specification could provide a good approximation.

Others have suggested that the long memory of the cross-sectional aggregated series can be
eliminated by fractional differencing. Diebold and Rudebusch (1989) allude to aggregation as
the origin of long memory in output. They estimate the long memory parameter by the GPH
method, fractionally difference the series, and subsequently estimate an ARMA model. Kumar
and Okimoto (2007), refer to aggregation as the motive behind long memory and use Shimotsu
and Phillips (2005) estimator for the long memory parameter. This method relies on fractional
differencing.

Recall from (1) that an ARFIMA process is a fractionally differenced ARMA process.
Thus, if we were to take a d-th difference, (1− L)d, of an ARFIMA(a, d, b) process we would
recover the underlying ARMA(a, b) process. However, as Lemma 1 shows, the cross-sectional
aggregated process is a generalized fractional process. Thus, it may not appear from fractional
differencing. As a way to give an answer to this question, Theorem 3 presents the autocovariance
function of a fractionally differenced cross-sectionally aggregated process.

Theorem 3. Let yt = (1 − L)dxt where xt is defined as in (4) with N → ∞ and γy(k) =
E[ytyt−k] ∀k ∈ N. Then,

γy(k) =
γ∗(k)

B(p, q)

[
B(p, q − 1) (F1(k)− 1) +B(p+

1

2
, q − 1)F2(k)

]
,

where

γ∗(k) = σ2
ε

Γ(1 + 2d)

Γ(−d)Γ(1 + d)

Γ(−d− k)

Γ(1 + d− k)
,

is the autocovariance function of an I(−d) process with innovations with variance σ2
ε and

F1(k) := F

[{
1, p,

1− d+ k

2
,
−d+ k

2

}
,

{
p+ q − 1,

2 + d+ k

2
,
1 + d+ k

2

}
, 1

]
+

F

[{
1, p,

1− d− k
2

,
−d− k

2

}
,

{
p+ q − 1,

2 + d− k
2

,
1 + d− k

2

}
, 1

]
,

F2(k) :=
−d+ k

1 + d+ k
∗

F

[{
1, p+

1

2
,
1− d+ k

2
,
2− d+ k

2

}
,

{
p+ q − 1

2
,
2 + d+ k

2
,
3 + d+ k

2

}
, 1

]
+
−d− k

1 + d− k
∗

F

[{
1, p+

1

2
,
1− d− k

2
,
2− d− k

2

}
,

{
p+ q − 1

2
,
2 + d− k

2
,
3 + d− k

2

}
, 1

]
,

where F [·] is the generalized hypergeometric function.

Proof: See appendix.

Two main points can be drawn from Theorem 3.
First, looking at the resulting autocovariance function we find that it retains some memory

even for large lags. In particular, it does not belong to the class of autocovariance functions

11



for linear ARMA processes. This has implications for modeling and estimation. In particular,
Maximum Likelihood estimators rely on the fact that the resulting series after differencing is of
the ARMA type. The properties of the Quasi-Maximum Likelihood estimation of ARFIMA
models when the underlying process is a generalized fractional process remain an open question.

Second, note that as the proof of Theorem 3 shows, in reality we are calculating the au-
tocovariance function of cross-sectionally aggregated ARFIMA(1,−d, 0) series. Hence, the
individual series are antipersistent with parameter −d and the cross-sectionally aggregated AR
processes are overdifferenced. The autocovariance function of the overdifferencing filter (1−L)d

is given by γ∗(k) in Theorem 3 which is a negative function in k.
Figure 4 displays the shape of the autocovariance function for the fractionally differenced

cross-sectionally aggregated process γy(k), the autocovariance of the antipersistent component
γ∗(k), and its ratio τ(k) := γy(k)/γ∗(k).

Figure 4: Autocovariance function for the fractionally differenced cross-sectionally aggregated
series γy(k), the I(−d) process γ∗(k) (left scale), and its ratio τ(k) (right scale). p = 1.4,
q = 1.05 so that d = 0.475.

The following Corollary shows that the function τ(k) is a negative slowly varying function
in k and thus the autocovariance of the fractionally differenced cross-sectionally aggregated
process shows hyperbolic decay.

Corollary 1. As k → ∞, γy(k) ≈ τ(k)k−1−2d, where τ(k) is a slowly-varying function in the
sense that, for c > 0, limk→∞ τ(ck)/τ(k) = 1. Moreover, the autocorrelations are absolutely
summable, that is,

∑∞
i=0 |ρy(k)| =

∑∞
i=0 |γy(k)/γy(0)| <∞.

Proof: See appendix.

As seen in Figure 4 and proved in Corollary 1, the autocovariance function γy(k) decays
at a hyperbolic rate similar to the rate for antipersistent processes. However, the sign of the
function is positive as opposed to antipersistent processes, which is a feature induced by the
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cross-sectional aggregation. Despite the hyperbolic rate, the decay is still fast in the sense
that the autocorrelations are summable and hence satisfy the condition for I(0) considered by
Davidson (2009).

Note from the expression of γy(k) given in Theorem 3 that autocovariances for finite k
depend on the parameters p and q associated with the Beta distribution. Figure 5 displays
the autocovariance functions for p = 1.4 and q ∈ {1.2, 1.4, 1.6, 1.8}. Small values of q (and
hence large memory) result in relatively small autocovariances for finite k. As q increases,
and hence memory declines, the fractionally differenced series tend to have rather significant
autocovariances for small as well as for moderately large lags.4 This will clearly have a major
impact on the properties of estimated parametric models of the ARFIMA type which in general
will be misspecified.

Figure 5: Autocovariance functions for the fractionally differenced cross-sectionally aggregated
series γy(k) for p = 1.1 and q ∈ {1.2, 1.4, 1.6, 1.8}.

5 Conclusions

In many empirical studies, long memory is modeled as ARFIMA processes and often the
motivation used in this research relies on the Granger (1980) argument that cross-sectional
aggregation can lead to long memory. In this paper, we argue that both ARFIMA processes
and long memory processes generated according to Granger’s aggregation scheme satisfy a
range of long memory definitions. Despite these similarities, the two classes of processes have
features that are somewhat different. First of all, one should be aware that cross-sectional
aggregation leading to long memory is an asymptotic feature that applies for both the cross-
sectional and the time dimensions tending to infinity. In finite samples and for moderate
cross-sectional dimensions the observed memory of the series can be rather different from the
theoretical memory. Moreover, the aggregation result seems to be most apparent when the

4We also constructed graphs similar to Figure 5 while varying p. They show that the autocovariances increase
in size as p increases.
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memory tends to be relatively high, and hence the Beta distribution has concentrated mass
around one. Secondly, we have shown that when taking a fractional difference of a cross-
sectionally aggregated long memory process, the resulting process is not an ARMA process.
The fractionally differenced process has autocorrelations that are summable and the process is
I(0) according to Davidson (2009) definition, but the autocorrelations still decay at a hyperbolic
rate rather than a geometric one. Especially when the memory is moderate the autocorrelations
are more persistent than observed in ARMA processes. Granger (1980) noted that cross-
sectional aggregated long memory processes are likely to be well approximated as ARFIMA
processes in most cases. Our study shows that care should be taken regarding this common
belief. In many cases, ARFIMA specifications will not provide a satisfactory description of
the short run dynamics even though the long memory can be effectively removed by fractional
differencing.
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A Proof of Theorem 1

Let xt be defined as in (4).
To prove (i) note that xt has zero mean and thus its variance is given by

γx(0) = E[x2
t ] = E

( 1√
N

N∑
i=1

xi,t

)2
 =

1

N
E

( N∑
i=1

xi,t

)2


=
σ2
ε

N

N∑
i=1

E

[
1

1− α2
i

]
= σ2

ε

B(p, q − 1)

B(p, q)
,

where the third equality follows from the independence assumption and the last equality comes
from the fact that as N →∞ the sum can be approximated by an integral and thus,

E

[
1

1− α2
i

]
=

∫ 1

0

1

1− x
xp−1(1− x)q−1

B(p, q)
dx =

∫ 1

0

xp−1(1− x)q−2

B(p, q)
dx =

B(p, q − 1)

B(p, q)
.

As for the autocovariances, similar calculations show that

γx(k) = E[xtxt−k] =
σ2
ε

N

N∑
i=1

E

[
αki

1− α2
i

]
= σ2

ε

B(p+ k/2, q − 1)

B(p, q)
,

for k ∈ N. This in turn yields the autocorrelations

ρx(k) =
γx(k)

γx(0)
=
B(p+ k/2, q − 1)

B(p, q − 1)
=

Γ(q − 1)

B(p, q − 1)

Γ(p+ k/2)

Γ(p+ k/2 + q − 1)
,

which, by Stirling’s approximation shows that ρx(k) ≈ Ck1−q. So that the aggregated series
shows hyperbolic decaying autocorrelations. That is, long memory in the covariance sense with
parameter d = 1− q/2.

To prove (ii) note that given the autocorrelation function, Theorem 1.3 in Beran et al.
(2013) shows that the spectral density has a pole in the origin.

To prove (iii)

V ar

(
T∑
t=1

xt

)
=

1

N
E[(x1 + x2 + · · ·+ xT )2]

= E[x2
1 + · · ·+ x2

T + 2(x1x2 + · · ·+ xT−1xT )]

= TE[x2
1] + 2E

[(
T∑
t=2

x1xt + · · ·+
T∑

t=T−1

x1xt

)]
= TE[x2

1] + 2 ((T − 1)E[x1x2] + · · ·+ E[x1xT ])
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= 2γx(0)

(
T

2
+ 2 ((T − 1)ρ(1) + · · ·+ ρ(T − 1)])

)
≈ 2γx(0)

(
(T − 1) + (T − 2)21−q + · · ·+ (T − 1)1−q)

= 2γx(0)
T∑
t=1

(T − t)t1−q = Op(T
3−q) = Op(T

1+2d).

Finally, to prove (iv), we need to analyze the series while considering temporal aggregation.
Let m ∈ N and define

x
(m)
i =

1

m
(xim−m+1 + · · ·+ xim),

for i = {1, 2, · · · }. That is, let x
(m)
i be a temporal aggregation of xt at level m. Then, note that

∀t ∈ N and for large k ∈ N

E[x
(m)
t x

(m)
t+k] =

1

m2
E[(xtm−m+1 + · · ·+ xtm)(x(t+k)m−m+1 + · · ·+ x(t+k)m)]

=
1

m2
E[xtm−m+1x(t+k)m−m+1 + · · ·+ xtmx(t+k)m]

=
γxm(0)

m2
(ρ(km− 2m+ 1) + · · ·+mρ(km−m) + · · ·+ ρ(km− 1))

≈ γxm(0)

m2

(
(km− 2m+ 1)1−q +m(km−m)1−q + · · ·+ (km− 1)1−q)

≈ γxm(0)

m2

(
(km)1−q + · · ·+m(km)1−q + · · ·+ (km)1−q)

=
γxm(0)

m2
(1 + · · ·+m+ · · ·+ 1) (km)1−q

=
γxm(0)

m2
m2(km)1−q = (γxm(0)m1−q)k1−q,

Thus, with d = 1− q/2, m1−2dCov(x
(m)
t , x

(m)
t+k) ≈ Ck2d−1 as k,m→∞.

B Proofs of Lemma 1 and Theorem 2

Let xt be defined as in (4). Using the infinite series representation of each AR(1) process defined
as in (2) note that xt can be written as

xt =
∞∑
j=0

(
1√
N

N∑
i=1

αjiεi,t−j

)
.

Given the additional assumption on εi,t−j the classical Central Limit Theorem holds and thus

1√
N

N∑
i=1

αjiεi,t−j ∼ N(0, σ2
εB(p+ j, q)/B(p, q)),

∀j ∈ N. We have used analogous derivations as in the proof above to obtain the variance terms.
Note in particular that, in contrast to the proofs of Zaffaroni (2004), the parametric assumption
on the distribution of the autoregressive coefficient allows us to obtain closed-form expressions
for these terms.
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The above suggests an infinite series representation for the aggregated process of the form

xt =
∞∑
j=0

φjνt−j,

where νj ∼ N(0, σ2
ε) and φj = (B(p+ j, q)/B(p, q))1/2 , ∀j ∈ N. Note that νj inherits the

white noise properties of εi,t−j. Moreover, given Stirling’s approximation, the coefficients show
a hyperbolic rate of decay with parameter d = 1− q/2, that is, φj ≈ j−q/2 = jd−1 as j →∞.

Once we have proved that the cross-sectional aggregated series can be expressed as a gen-
eralized fractional process, Theorem 2 is a direct consequence of Theorem 4.6 in Beran et al.
(2013).

C Proof of Theorem 3 and Corollary 1

Let yt = (1− L)dxt where xt is defined as before, then

E[y2
t ] = E

[(
(1− L)dxt

)2
]

= E

((1− L)d
1√
N

N∑
i=1

xi,t

)2


= E

 1

N

(
N∑
i=1

(1− L)dxi,t

)2
 =

1

N
E

[
N∑
i=1

(
(1− L)dxi,t

)2

]
,

where the last equality is due to independence across units. Note that the term (1 − L)dxi,t
is an ARFIMA(1,−d,0); thus the variance of yt depends on the expected value of the AR(1)
coefficient of an ARFIMA(1,−d, 0) process.

Let γi(k) = E
[
(1− L)dxi,t(1− L)dxi,t−k

]
be the autocovariance function of (1 − L)dxi,t.

From Sowell (1992) we know that for k ∈ N

γi(k) = γ∗(k)
1

1− α2
i

(F [{−d+ k, 1}, 1 + d+ k;αi] + F [{−d− k, 1}, 1 + d− k;αi]− 1) ,

where

γ∗(k) = σ2
ε

Γ(1 + 2d)

Γ(−d)Γ(1 + d)

Γ(−d− k)

Γ(1 + d− k)
,

is the autocovariance function of an I(−d) process with innovations with variance σ2
ε and F [·]

is the hypergeometric function.
Thus,

γy(k) = E [γi(k)]

= E

[
γ∗(k)

1− α2
i

(F [{−d+ k, 1}, 1 + d+ k;αi] + F [{−d− k, 1}, 1 + d− k;αi]− 1)

]
=

γ∗(k)

B(p, q)

[∫ 1

0

(1− x)q−2xp−1F [{−d+ k, 1}, 1 + d+ k;x
1
2 ]dx+∫ 1

0

(1− x)q−2xp−1F [{−d− k, 1}, 1 + d− k;x
1
2 ]dx−

∫ 1

0

(1− x)q−2xp−1dx

]
=

γ∗(k)

B(p, q)

[
B(p, q − 1) (F1(k)− 1) +B(p+

1

2
, q − 1)F2(k)

]
,
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where

F1(k) := F

[{
1, p,

1− d+ k

2
,
−d+ k

2

}
,

{
p+ q − 1,

2 + d+ k

2
,
1 + d+ k

2

}
, 1

]
+

F

[{
1, p,

1− d− k
2

,
−d− k

2

}
,

{
p+ q − 1,

2 + d− k
2

,
1 + d− k

2

}
, 1

]
,

F2(k) :=
−d+ k

1 + d+ k
∗

F

[{
1, p+

1

2
,
1− d+ k

2
,
2− d+ k

2

}
,

{
p+ q − 1

2
,
2 + d+ k

2
,
3 + d+ k

2

}
, 1

]
+
−d− k

1 + d− k
∗

F

[{
1, p+

1

2
,
1− d− k

2
,
2− d− k

2

}
,

{
p+ q − 1

2
,
2 + d− k

2
,
3 + d− k

2

}
, 1

]
.

Note that in the calculations above we have used∫ 1

0

F [{a, 1}, b;x
1
2 ]xp−1(1− x)q−2dx =

∫ 1

0

[
∞∑
i=0

(a)i
(b)i

x
i
2

]
xp−1(1− x)q−2dx

=
∞∑
i=0

[
(a)i
(b)i

∫ 1

0

xp−1+ i
2 (1− x)q−2dx

]
=

∞∑
i=0

[
(a)i
(b)i

B

(
p+

i

2
, q − 1

)]
.

Now,

∞∑
i=0

[
(a)i
(b)i

B

(
p+

i

2
, q − 1

)]
=

∞∑
i=0

[
(a)i
(b)i

Γ(p+ i
2
)Γ(q − 1)

Γ(p+ q − 1 + i
2
)

]
= Γ(q − 1)

∞∑
i=0

[
(a)i
(b)i

Γ(p+ i
2
)

Γ(p+ q − 1 + i
2
)

]

= Γ(q − 1)

(
∞∑
i=0

[
(a)2i

(b)2i

Γ(p+ i)

Γ(p+ q − 1 + i)

]
+

∞∑
i=0

[
(a)2i+1

(b)2i+1

Γ(p+ 1
2

+ i)

Γ(p+ q − 1
2

+ i)

])

= Γ(q − 1)

(
Γ(p)

Γ(p+ q − 1)

∞∑
i=0

[
(a)2i

(b)2i

(p)i
(p+ q − 1)i

]
+

Γ(p+ 1
2
)

Γ(p+ q − 1
2
)
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i=0

[
(a)2i+1

(b)2i+1

(p+ 1
2
)i

(p+ q − 1
2
)i

])

= B (p, q − 1)
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i=0

[
(a)2i(p)i

(b)2i(p+ q − 1)i

]
+

B

(
p+

1

2
, q − 1

)
a

b

∞∑
i=0

[
(a+ 1)2i(p+ 1

2
)i

(b+ 1)2i(p+ q − 1
2
)i

]

= B (p, q − 1)
∞∑
i=0

[
(a

2
)i(

a+1
2

)i(p)i

( b
2
)i(

b+1
2

)i(p+ q − 1)i

]
+
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B

(
p+

1

2
, q − 1

)
a

b

∞∑
i=0

[
(a+1

2
)i(

a+2
2

)i(p+ 1
2
)i

( b+1
2

)i(
b+2

2
)i(p+ q − 1

2
)i

]

= B (p, q − 1) f1 +B

(
p+

1

2
, q − 1

)
a

b
f2,

where

f1 = F

[{
1, p,

a

2
,
a+ 1

2

}
,

{
p+ q − 1,

b

2
,
b+ 1

2

}
, 1

]
,

f2 = F

[{
1, p+

1

2
,
a+ 1

2
,
a+ 2

2

}
,

{
p+ q − 1,

b+ 1

2
,
b+ 2

2

}
, 1

]
,

(z)i := Γ(z+i)
Γ(z)

is the Pochhammer symbol, and noting that (a)2i = (1
2
)−2i(a

2
)i(

a+1
2

)i, i ∈ N.

For the corollary note that γy(k) can be written as

γy(k) =
γ∗(k)

B(p, q)

[
−B(p, q − 1) +

∞∑
i=0

(
Γ(−d+ k + i)Γ(1 + d+ k)

Γ(−d+ k)Γ(1 + d+ k + i)

)
B(p+ i/2, q − 1)

+
∞∑
i=0

(
Γ(−d− k + i)Γ(1 + d− k)

Γ(−d− k)Γ(1 + d− k + i)

)
B(p+ i/2, q − 1)

]
.

Let

τ(k) :=
1

B(p, q)

[
−B(p, q − 1) +

∞∑
i=0

(
Γ(−d+ k + i)Γ(1 + d+ k)

Γ(−d+ k)Γ(1 + d+ k + i)

)
B(p+ i/2, q − 1)

+
∞∑
i=0

(
Γ(−d− k + i)Γ(1 + d− k)

Γ(−d− k)Γ(1 + d− k + i)

)
B(p+ i/2, q − 1)

]
,

and note that, by Stirling’s approximation, for large k and c > 0, Γ(1 + d+ ck)/Γ(−d+ ck) ≈
(ck)1+2d, Γ(−d + ck + i)Γ(1 + d + ck + i) ≈ (ck)−1−2d and analogous approximations for the
terms in the second series show that

τ(ck) ≈ 1

B(p, q)

[
−B(p, q − 1) + 2

∞∑
i=0

B(p+ i/2, q − 1)

]
.

Which in turn shows that limk→∞ τ(ck)/τ(k) = 1.
Thus, for large k,

γy(k) = τ(k)γ∗(k) ≈ τ(k)k−1−2d,

where limk→∞ τ(ck)/τ(k) = 1.
Finally, note that

∑∞
i=0 |ρy(k)| =

∑∞
i=0 |γy(k)/γy(0)| ≈

∑∞
i=0 k

−1−2d = ζ(−1− 2d) where
ζ(z) is the Euler-Riemann zeta function which converges for z < 1.
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