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Abstract

Equilibrium electricity spot prices and loads are often determined simultaneously
in a day-ahead auction market for each hour of the subsequent day. Hence daily
observations of hourly prices take the form of a periodic panel rather than a time
series of hourly observations. We consider novel panel data approaches to analyse
the time series and the cross-sectional dependence of hourly Nord Pool electricity
spot prices and loads for the period 2000-2013. Hourly electricity prices and loads
data are characterized by strong serial long-range dependence in the time series di-
mension in addition to strong seasonal periodicity, and along the cross-sectional
dimension, i.e. the hours of the day, there is a strong dependence which necessa-
rily has to be accounted for in order to avoid spurious inference when focusing on
the time series dependence alone. The long-range dependence is modelled in terms
of a fractionally integrated panel data model and it is shown that both prices and
loads consist of common factors with long memory and with loadings that vary con-
siderably during the day. Due to the competitiveness of the Nordic power market
the aggregate supply curve approximates well the marginal costs of the underlying
production technology and because the demand is more volatile than the supply,
equilibrium prices and loads are argued to identify the periodic power supply curve.
The estimated supply elasticities are estimated from fractionally co-integrated rela-
tions and range between 0.5 and 1.17 with the largest elasticities being estimated
during morning and evening peak hours.
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1 Introduction

For the past 15 years, electricity power markets have been subject to deregulation and
liberation to ensure competitive price determination driven by the market forces of de-
mand and supply. Electricity markets differ from most other commodity markets due to
the non-storability of electricity and clearly this has a major impact on the way such mar-
kets function. In particular, it has consequences for the price behaviour with characte-
ristics such as excessive electricity price volatility, price spikes, strong intra-day, weekly,
and yearly seasonality, long memory features, possible negative prices and many other
features, see e.g. |[Knittel and Roberts| (2005) and |[Longstaff and Wang| (2004) and the
review article by Weron| (2014)). Such characteristics can lead to significant price risk
faced by market participants which has consequences for the financial electricity mar-
kets where future and forward contracts traded on electricity address delivery over an
extended period of time rather than for a particular moment in time. Thus, it is of great
importance to understand the dynamic nature of the price behaviour for forecasting,
derivative pricing, and risk management more generally in such markets.

The literature on econometric electricity market modelling is expanding these
years. Many papers focus on dynamic models of electricity prices for forecasting pur-
poses, see e.g. the review by |Weron| (2014). 'Weron and Misiorek| (2008)) compare the
forecasting performance for a range of linear and non-linear time series models such as
autoregressive models, jump-diffusion models, and regime-switching models. Several
papers address the predictive content from covariates such as fuel prices, the level of
demand, and temperature level information amongst other things, see Karakatsani and
Bunn| (2008) and [Huurman et al. (2012)). Often the models focus on price volatility
or prediction of the occasional extreme spikes observed in electricity prices, see e.g.
Christensen et al.|(2012). In Koopman et al. (2007), Haldrup and Nielsen| (2006b)), and
Haldrup et al.| (2010) the focus is on the feature of electricity prices that their auto-
correlation function decays at a hyperbolic rate and suggest the series to be modelled
as fractionally integrated processes. In these papers, area prices within the Nord Pool
Spot Exchange are modelled and account for the possibility of regime dependent long-
memory dynamics subject to the presence or absence of transmission congestion across
neighbour areas.

Most electricity price models focus on the modelling of the daily average price
which plays a key role in electricity markets. The daily price acts as a proxy for the
spot price of electricity and is a reference price for forward and futures contracts in
addition to many other derivative products traded in the financial electricity market.
In most electricity markets, including the Nord Pool Spot Exchange considered in the
present paper, the daily average price is established in a day-ahead market. Prices are
determined in a double auction where the participants trade power for delivery during
the 24 hours of the subsequent day. At noon before the delivery day all buy and sell
orders are gathered and the market price, called the system price, is determined as the
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intersection of the aggregated demand and supply curves. Based on the 24 hourly prices
the daily average system price is calculated.

Even though the daily average price may be of primary focus, it is of interest to
understand the price dynamics for the single hours constituting the daily average calcu-
lation. For instance Raviv et al.|(2015) show that the daily average of the disaggregated
hourly forecasts contain useful predictive information for the daily average price in the
Nord Pool market. Hence it is important to properly model the hourly prices for gaining
insights about the underlying electricity price dynamics.

The modelling of hourly electricity prices as well as the loads has reached some
attention in the literature. Often the single hourly prices or loads for each day are
modelled as univariate autoregressive time series processes, see €.g. Ramanathan et al.
(1997), (Cuaresma et al. (2004)), [Soares and Medeiros| (2008)), and [Kristiansen| (2012)).
However, an important consideration which is frequently overlooked when modelling
the hourly (intra-day) prices is that the vector of 24 hourly prices is determined simul-
taneously in the day-ahead market. Hence the proper form of the data set is a panel of
prices and naturally it is to be expected that there is a considerable amount of cross-
sectional dependence across the panel. The panel data set is somewhat special as the
cross-section dimension has a natural ordering, and hence we may refer to this particular
type of panel as a periodic panel. Given this observation it is not appropriate to model
the hourly data series as a single time series since consecutive prices are determined si-
multaneously and ignoring important cross-sectional dependence may potentially lead
to spurious inference. Only few other papers consider the hourly electricity prices as a
panel; exceptions include Huisman et al.| (2007)), Hardle and Triick (2010), and Raviv
et al.[(2015). In principle, it could be considered to model the panel as a (possibly co-
fractional) VAR model, Johansen and Nielsen! (2012), but the size of the cross-sectional
dimension would be too large for practical implementation in this case.

The present paper considers a panel of hourly Nord Pool system prices and loads
for 14 years of daily observations covering the years 2000-2013. The prices and loads
for the single hours exhibit a considerable degree of long memory but generally this
feature is ignored in the vast majority of papers analysing the dynamics of electri-
city markets. We use a novel panel data framework for fractionally integrated panels
with fixed effects and cross-section dependence which is particularly well suited for
the present type of high dimensional data. The analysis makes it possible to determine
the fractional integration orders of the single (hourly) panel data elements and their
likely fractional cointegration features. We consider two different approaches. The first
approach consists in the estimation of a fractionally integrated panel data model with
fixed effects, proposed by [Ergemen and Velasco (2015), where appropriately defined
common factors are treated as covariates in the individual models for prices and loads.
The second approach employs the fractionally integrated panel data system with fixed
effects proposed by Ergemen| (2015) to allow for feedback effects between electricity



prices and loads, which is introduced through the allowance for contemporaneous corre-
lation in the model. Both of these approaches account for long memory, seasonality, and
spikes that make them well suited to our analysis given the stylized facts of electricity
data. The methodology makes it possible to examine the time series and cross-sectional
dynamics of both prices and loads as well as their common dynamics that we argue help
identify the periodic supply elasticity of the underlying power production technology.

When analyzing the panel of electricity prices and loads we find that fractional
cointegration is present for all 24 hours of the day. This means that both series are
driven by a common (non-stationary and mean-reverting) fractional trend component.
In fact, these results are much in line with the dynamics of the common factors that can
be extracted from the factor analysis.

Rather than considering conditioning on common factors used as input from factor
analysis, the second approach considers a panel data model where the loads are used as
a covariate variable. We find that fractional cointegration between prices and loads
primarily exists in the day hours from 7 a.m. to 7 p.m. which is consistent with the
analysis of prices and loads when they are modelled separately. Because the main varia-
bility in loads is due to changing demand within the day, and across the week and the
year, the price-load scheme is likely to identify the supply curve of the power market
technology. The supply elasticity is shown to be periodically varying with the hour of
the day in the interval 0.50-1.17. Not surprisingly, the elasticity is highest during the
peak hours in the mornings and evenings and lowest during the night.

The paper is organized as follows. In section 2, some background information is
provided regarding the functioning of the Nord Pool power market with particular fo-
cus on the day-ahead spot market. Section 3 presents the data and discusses time series
properties of the daily observations of hourly data. This includes the seasonal and perio-
dic features of the data and its long memory properties. The panel feature of the data is
used to conduct common factor analysis of the price and load data where the extracted
factors will be used in the subsequent panel data analysis. In section 4 the novel frac-
tional panel data analysis of Ergemen and Velasco| (2015) is conducted separately for
the price and load series, and finally the joint estimation using the approach of Ergemen
(2015) is used to examine the possible fractional cointegration between prices and loads
and to provide estimates of the periodically varying supply elasticity. The final section
concludes.

2 The operation of the Nord Pool power market

The data to be used in this paper is from the Nordic power exchange, Nord Pool Spot,
which is owned by the transmission system operators within the Nordic and Baltic coun-
tries. For reviews of the functioning of the Nord Pool market, see e.g. NordPool (2013)),
NordPool (2015), Weron| (2007), and Weron| (2014). There are almost 400 companies



from 20 countries trading in the Nord Pool Spot markets and includes producers and
large consumers. Nord Pool has a number of different auction markets targeted for
different purposes along different time scales. Elspot is a day-ahead auction market
which determines spot prices and loads for each hour of the subsequent day. The mar-
ket participants act in a double auction and submit their supply and demand orders for
each individual hour of the next day through the on-line trading system. Orders are
placed between 8 a.m. and 12 a.m. Buy and sell orders are then gathered into demand
and supply curves for each delivery hour. The equilibrium price, called the system price
per megawatt hour (MWh), is determined by the intersection of the demand and supply
curves where also the transmission capacity of the power system is accounted for. The
hourly prices and the loads are announced to the market at 12.42 p.m. and the trades are
invoiced the following couple of hours. Note that the system prices announced is a 24
dimensional price vector which is determined simultaneously.

The system price is important because it serves as the Nordic reference price for
the trading and clearing of most financial contracts and hence is crucial for derivative
pricing and risk management. It should be noted that the system price is the (uncons-
trained) equilibrium price for the entire Nordic region in case all power could be trans-
mitted smoothly without any capacity constraints. In practice, however, the system price
does not clear all areas within the Nordic market and hence the Elspot market is divided
into several bidding areas. The transmission capacity available in the different regions
may vary and potentially congest the flow of electricity power between the bidding a-
reas and hence different price areas will be established. For neighbouring regions where
there is no congestion, the prices will be the same whereas congestion results in different
area prices.

We only consider the system prices in the present paper, but area prices may be
equally important. In fact, some financial contracts are made for an area rather than the
system prices. In addition to the day-ahead market, Nord Pool has a real time intraday
auction market which serves as a balancing market (called Elbas) to support the day-
ahead market and to refine physical positions before the final balancing measures are
taken by the local transmission system operators (TSO). These markets operate at a 15,
30, (for TSOs) and 60 minutes, (for Elbas) horizon to offer the flexibility needed for
each market.

The annual average power generation in the Nordic and Baltic countries is about
420 Twh and about half of the production is from hydro power plants. Norway has al-
most all of its power generated from hydro power whereas Sweden and Finland produce
from a mix of hydro, nuclear and thermal power plants. Denmark, Estonia, and Lithua-
nia produce predominantly thermal power, but renewable energy in the form of wind
power plays an increasing role, particularly in Denmark. During years where the water
reservoirs in Norway are low, the countries are dependent upon import from Russia, the
Netherlands, Poland, and Germany.



Gas turbines

Production
cost Annual Nordic
consumption

Condensing,
oil

Combined heat “
and power
Combined heat Nuclear

& Power industry
Hydro (average)

100 200 300 400 TWh

\

Figure 1: The production costs and the typical annual Nordic consumption for various

sources of power. Source: [NordPool| (2015)).

The production costs vary to a considerable degree and Figure [I] shows the typi-
cal production costs of the various power sources for the annual Nordic consumption.
Hydro power (and wind) have relatively low marginal costs and hence the market is
generally much dependent on rainfall and water reservoir levels over a yearly cycle.

For a given hour the system price is determined from the bids of supply and de-
mand orders. When the demand for power is low the equilibrium price will be low and
the plants with the lowest marginal costs will primarily produce the power needed. On
the other hand, when the demand is high the marginal costs will be high and so will
be the prices. With intra-day electricity demand that varies considerably and because
both supply and particular demand depend upon seasonal variation over the year, the
shape of the marginal cost (supply) curve of electricity may result in much volatility
and spikes in power prices, see e.g. [Weron| (2007)) and Kirschen (2003). Figure 2] shows
the typical shape of the marginal cost (supply) curve of power and it is clear that even
small changes in demand may result in large price changes depending on the scale of
production. Even though equilibrium prices are determined in a double auction the ma-
jor variability in production is due to changes in demand. Because of deregulation and
liberalization Nord Pool Spot can be considered a highly competitive market and we
would expect prices to clear close to the short-run marginal cost, especially because of a
substantial amount of forward contracting in the market, see Bunn| (2000) and Kirschen|
(2003). From an empirical point of view we would thus anticipate that the equilibrium
prices and loads will identify the marginal cost or supply curve as the demand curve
shifts.
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Figure 2: Electricity power supply and demand and the source of power reflecting the
increasing marginal costs of production. Source: NordPool| (2015)).

3 The data

3.1 Time series features

The data set under consideration is a balanced (periodic) panel consisting of 24 hourly
prices and loads for each day for the period 1 January 2000 to 31 December 2013, yiel-
ding a total of 5114 daily (or 122,736 hourly) observations. The series are downloaded
from the Nord Pool ftp server. The prices are denominated in euros per Mwh of load.
Both panels are shown in Figures [3] and [4] after log transformation. The descriptive
statistics of the price and load series are reported in Table[I]

It is clear from Figures [3| and 4| that electricity system prices and loads vary con-
siderably over the years and especially the price series show several spikes. Both series
exhibit a strong seasonal variation. Figures[SH§|show the average hourly prices and loads
across the day of week and month of year. The shape of the graphs demonstrates that
prices and loads co-vary positively with a similar annual seasonal and weekly perio-
dic pattern. Average prices and loads are highest during the winter season and lowest
during the summer. Over the week the average prices and loads are rather similar du-
ring the work days Monday through Thursday. On Friday afternoons prices and loads
gradually change towards the weekend level where the demand and prices of Saturdays
and Sundays are significantly lower than for the rest of the week. Note that the intra-day
variation for Saturday and Sunday is still rather different.

Even though the data has a panel structure, we consider initially the individual
panel elements as time series, that is, for each variable twenty-four separate time series



are treated individually. From Table (1] it is seen that both prices and loads have con-
siderable variation across the hours of the day (as measured by the standard deviation).
Skewness and kurtosis is rather constant during the day except for the morning hours (5
a.m.-8 a.m.) where especially the price series show excess kurtosis.

In addition to weekday periodicity and annual seasonality there are also other
(deterministic) factors that need to be accounted for prior to the analysis. A number of
events in the delineation and market infrastructure of Nord Pool has changed in the sam-
ple period which may have an impact on the price and load behaviour. We have iden-
tified seven such events: i) 02/01/2002 when Nord Pool’s spot market activities were
Western Denmark joined the Elbas market, iv) 01/01/2006 when Elbas was launched
in Germany, v) 01/04/2010 when Nord Pool Spot opened a bidding area in Estonia,
vi) 01/01/2011 when Elbas began operation in the intraday market in the Netherlands
and Belgium, and vii) 26/06/2012 when Nord Pool Spot opened a new bidding area in
Lithuania.

Given the observations above we suggest to seasonally adjust and detrend each
panel element of both series by the least-squares filtering,

Yir = o+ oy Dy+BiA;+aus cos(35E) +auy cos(32) +ags cos(ZE )4y, (1)

where B; is a vector of shift dummies which captures level changes caused by struc-
tural breaks. D; is a dummy variable for holidays that takes the value of 1 if any of the
countries participating in the Nord Pool system suspend or reduce normal business ac-
tivities by custom or law, and 0 otherwise. The data for non-working days in each of the
countries of the Nord Pool System is extracted from the Bloomberg platform, which is
then incorporated into the analysis due to the strong effect of holidays in the electricity
market, see Koopman et al.| (2007).

In the filtering of the data we accommodate a yearly (365 day) cycle in the data
together with a weekly and a two-cycles per week periodicityﬂ The series y;; is the
unadjusted log price or log load series, and v, is the resulting adjusted series. For the
rest of the analysis in this paper we use the filtered series, ¥}, to represent each panel
element. For notational economy we shall continue denoting the filtered series y;;.

To see the effect of data filtering Figures [ and [I0] show the scatter plot of non-
filtered and filtered log prices and loads respectively, where the data has been pooled
across all hours in the panel. Hence each figure contains more than 122,000 data points.
The graphs clearly demonstrate how deterministic components (breaks and seasonal
cycles) account for a significant variation in the data. The graphs also separate obser-
vation points into working hours and non-working hours and as can be seen there is a
clear pattern in working hours mainly contributing to the hours with high demand and

IThe remaining cycles associated with the harmonic weekly frequencies were insignificant in estima-
tions.



hence high prices. This reflects the relatively high marginal costs of production when
the demand is high.
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Figure 3: Hourly electricity system prices (in logs) within the Nord Pool area, 1 January
2000 to 31 December 2013.



Table 1: Descriptive statistics for the log prices and log loads for each hour of the day.

Log electricity prices
01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00

Min 1.03 090 -0.04 -0.04 -391 -391 -391 034 102 141 149 150
Mean 337 333 329 327 327 332 339 347 352 352 353 352
Median 343 339 337 335 336 340 346 351 355 355 356 355
Max 474 472 470 470 472 476 476 530 570 567 534 513

Std.dev 049 052 054 056 057 055 053 050 048 046 045 044
Skewness -0.82 -094 -1.01 -1.06 -140 -147 -153 -081 -051 -0.50 -0.54 -0.55
Kurtosis 452 480 5.02 510 9.62 10.78 1228 493 453 416 395 391

13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

Min 148 146 147 146 146 148 152 149 148 146 147 1.14
Mean 350 349 347 347 347 350 350 349 347 346 344 339
Median 353 352 351 350 350 352 353 352 351 350 348 345
Max 502 497 495 478 501 542 535 514 491 477 475 475

Std.dev 044 045 045 046 047 048 047 046 045 045 045 047
Skewness -0.59 -0.61 -0.62 -0.64 -0.58 -047 -054 -0.65 -0.69 -0.69 -0.66 -0.75
Kurtosis ~ 3.89 391 394 399 403 414 407 411 414 415 401 429

Log loads
01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00
Min 879 876 875 872 868 870 870 874 882 884 886 887
Mean 989 986 985 984 985 9.89 996 10.03 10.06 10.07 10.08 10.07
Median 10.09 10.06 10.04 10.03 10.03 10.06 10.12 10.19 1024 10.27 10.28 10.29
Max 10.77 10.72 11.11 10.71 10.73 10.80 1091 10.96 1097 10.96 1097 10.96

Std.dev 051 051 051 051 051 051 053 054 054 054 053 054
Skewness -0.44 -044 -043 -043 -043 -042 -040 -038 -040 -041 -041 -041
Kurtosis 183 185 188 1.8 190 192 191 190 188 1.84 181 1.79

13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

Min 888 887 889 889 890 89 891 891 890 890 889 888
Mean 10.06 10.05 10.05 10.04 10.05 10.06 10.06 10.05 10.03 10.02 999 9.93
Median 10.28 10.27 10.26 10.25 10.24 10.25 1025 1024 10.23 1022 10.20 10.15
Max 1096 10.95 1095 10.95 1096 10.97 1097 1096 10.93 1090 10.87 10.80

Std.dev 054 054 054 054 054 055 055 055 054 053 052 052
Skewness -0.42 -0.41 -041 -041 -041 -041 -041 -041 -042 -043 -0.44 -044
Kurtosis 179 179 179 181 184 186 187 187 185 182 179 1.80
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Figure 4: Hourly electricity system loads (in logs) within the Nord Pool area, 1 January
2000 to 31 December 2013.

11



3.65

T T T
= Saturday
L == Sunday U
36 Monday
= Tuesday
3.55— = Wednesday
= Thursday
— Friday
35
345~ -
34 4
3.35 -
33 -
3251 -
321 —
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Figure 5: Average hourly prices across the day of a week.

1015 T T T
= Saturday
= Sunday

Monday
01 —— Tuesday
= \Wednesday
= Thursday
10.05— = Friday
10— -
9.95 —
99— -
9.85 —
98 | | | | | | | | | | | | | | | | | | | | | | | |

Figure 6: Average hourly loads across the day of a week.

12



38

37

36

35

34

33

32

31

105

== January
=8— February
== March
== April
== May
= June
—July

== August

= = = September
= = = October
= = =November
=@— December

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 7: Average hourly prices across the month of a week.

== January
=@ February

== March 4

= April
== May
= June
— July
= August .
= = =September = e Emamm=
= = =October d D

= = = November (4 P ~ —

=—@— December .

~

Figure 8: Average hourly loads across the month of a week.

13



o Working hours
»  Mon-working hours

Figure 9: Scatter plot of non-filtered log prices and loads.

-4
i)

Figure 10: Scatter plot of filtered log prices and loads.

14



3.2 Long memory

A time series z; is said to be a type-II fractionally integrated process of order d if
v = Afhe,

where ¢; corresponds to 7(0) short-memory innovations. Throughout the paper, the
subscript at the fractional differencing operator attached to a vector or scalar ¢; has the
meaning

t
Ajfher = A1t > 0) = Y mi(—d)ery,
=0

A I +d)
PEOT G @

where 1(-) is the indicator function, and I'(-) denotes the gamma function such that
I'(d) = oo ford = 0,—1,—2,..., but I'(0)/T'(0) = 1. The parameter d bestows po-
ssible stationary long memory when 0 < d < 0.5 and non-stationary long memory
d > 0.5 upon x;. The use of the truncated filter, A, ﬁl, is motivated by a desire to allow
for d > 0.5 when the untruncated filter, A~¢, does not converge, see e.g. Davidson and
Hashimzade| (2009).

In this subsection we also treat the panel elements as daily time series of hourly
observations and hence abstract from possible panel data dependence. Several papers
in the literature have addressed the issue of long-range dependence in electricity prices
and loads, see e.g. |[Haldrup and Nielsen| (2006a) and Koopman et al.| (2007). Justi-
fying this claim, Figure [[T|reports the fractional integration parameter estimates of the
hourly electricity prices and loads based on univariate local Whittle estimation (Kuen-
sch| (1987)) and [Robinson| (1995)), an extended local Whittle estimation (Abadir et al.
(2007)) and an extended multivariate local Whittle method (Nielsen| (2011))). Table 2]
collects the numerical estimation results of the memory parameters along with their
asymptotic standard deviations.

As seen from Figure [IT) and Table [2] there is a semi-cyclical variation in the me-
mory index estimates of prices while the memory for loads seems to be rather constant.
Given the asymptotic standard errors the difference between the highest memory es-
timates (late evenings) and the smallest memory (early mornings) for the price series
seems to be significant. The results further indicate that both electricity prices and loads
exhibit non-stationarity and mean-reversion throughout the day since the parameter es-
timates d; € [0.5, 1).

3.3 Factor analysis of the panel observations

So far we have discussed the time series properties of the single elements of the panel
data series. It is obvious that the time series behaviour across the single hours for prices

15



Table 2: Univariate and multivariate estimates of fractional integration orders of hourly
electricity prices and loads

Fractional Memory Estimates

Prices Loads Prices Loads

LW EXLW EMLW | LW EXLW EMLW LW EXILW EMLW | LW EXLW EMLW

01:00 | 0.69 0.70 0.51 0.69 0.69 0.55 13:00 | 0.77  0.78 0.57 | 0.68 0.68 0.63
(0.01) (0.01) (0.01) (0.01)

02:00 | 0.65 0.66 0.50 | 0.70 0.70 0.55 14:00 | 0.78  0.78 0.57 | 0.68 0.68 0.63
(0.01) (0.01) (0.01) (0.01)

03:00 | 0.62  0.63 0.50 | 0.69 0.69 0.55 15:00 | 0.78  0.79 0.57 | 0.68 0.68 0.62
(0.01) (0.01) (0.01) (0.01)

04:00 | 0.61 0.62 0.52 10.70 0.70 0.55 16:00 | 0.77  0.78 0.58 | 0.69 0.70 0.62
(0.01) (0.01) (0.01) (0.01)

05:00 | 0.61  0.62 0.51 0.70  0.70 0.55 17:00 | 0.74  0.75 0.61 0.70  0.70 0.62
(0.01) (0.01) (0.01) (0.01)

06:00 | 0.66  0.66 0.50 | 0.71 0.71 0.56 18:00 | 0.69  0.70 0.61 0.71  0.71 0.64
(0.01) (0.01) (0.01) (0.01)

07:00 | 0.71  0.72 0.50 | 0.70 0.70 0.61 19:00 | 0.70  0.71 0.62 | 071 0.71 0.62
(0.01) (0.01) (0.01) (0.01)

08:00 | 0.69  0.69 0.54 | 0.68 0.68 0.64 | 20:00 | 0.78 0.79 0.61 [0.70 0.70 0.60
(0.01) (0.01) (0.01) (0.01)

09:00 | 0.63  0.64 0.54 |0.69 0.69 0.64 | 21:00 | 0.82 0.83 062 |0.70 0.70 0.58
(0.01) (0.01) (0.01) (0.01)

10:00 | 0.68  0.68 0.56 | 0.69 0.69 0.65 | 22:00 | 0.83 0.84 0.60 | 0.70 0.71 0.57
(0.01) (0.01) (0.01) (0.01)

11:00 | 0.70  0.71 0.56 | 0.69 0.69 0.64 | 23:00 | 0.80 0.81 0.57 |0.70 0.70 0.56
(0.01) (0.01) (0.01) (0.01)

12:00 | 0.74  0.75 0.57 |0.69 0.69 0.64 | 00:00 | 0.72 0.73 0.53 | 071 0.71 0.54
(0.01) (0.01) (0.01) (0.01)

Note. LW: Local Whittle, EXLW: Extended Local Whittle, EMLW: Extended Multivariate Lo-
cal Whittle. Standard errors are 0.0312 for the univariate estimates with bandwidth m = 7965
Standard errors of the multivariate estimates are in parentheses.
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Figure 11: Fractional integration parameter estimates for electricity prices (left panel)
and loads (right panel) corresponding to each hour of the day. Estimations are carried
out on filtered data. The number of Fourier frequencies used is m = T%% with T =
5,114 corresponding to m = 257. The standard error of the univariate estimates is
0.0312 while that of multivariate estimates lies between 0.007 and 0.009. See Table [2]
for details.

and loads tends to be rather similar and the question naturally arises as to whether the
panel variation can be described in terms of a limited number of (dynamic) factors. The
literature on modelling electricity prices and loads has mainly used information at an
aggregate, typically daily, level. However, the cross-sectional dependence of the dis-
aggregated series may be of separate interest for the analysis. For instance, one may
ask whether one should forecast the aggregated electricity price series or the single ele-
ments of the disaggregated series, see e.g. Raviv et al.| (2015)). Although there is a
vast literature on the modelling of intra-day prices using disaggregated data, the com-
plex dependence structure of hourly electricity prices or loads has not been extensively
considered; exceptions include |Raviv et al.| (2015), Huisman et al. (2007) and |Hardle
and Triick| (2010). Figure[I2]displays a correlation heat map of hourly prices and loads
before and after pre-filtering and shows that the series are highly correlated across the
hours of the day, and hence stresses the necessity to jointly model the data as a panel.
It seems natural to consider a factor model as a dimension reduction device under these
circumstances, see e.g. Bat and Ng (2008).
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Figure 12: Correlation heat maps of the electricity prices (left panel) and loads (right
panel) of the Nord Pool area across each hour of the day. Top panels show the correlation
maps of the raw log series. Bottom panels show the correlation maps of the filtered
series.

To model the common properties of hourly electricity prices, a dynamic factor
model can be employed, with L denoting the lag operator such that Lz; = z;_1, as in

zy = N(L)fi + ea, (2)

where \;(L) = (1 — AL — -+ — \;sL®) are dynamic factor loading polynomials of
order s, the factors f; are assumed to evolve according to f; = C'(L)e, where ¢; are ¢ X 1
i.i.d. disturbances. The premise of the model in (2) is that f; drives the commonalities
of a high-dimensional vector of time series while \;(L) shows how much each cross-
section unit ¢ is affected by f;. The dynamic factor model in (2) can be represented as
a static factor model with r static factors as long as = ¢ (s + 1) > ¢. However, in
practice it is not possible to verify whether this constraint holds, and as a consequence
it is desirable to allow r < ¢(s+ 1) by holding r and ¢ fixed and letting s vary, see Forni
et al.|(2009). Empirically, the static and dynamic factor models have a similar predictive
ability but the static setup is clearly more parsimonious.
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To conduct a factor analysis of the price and load series we require the series to
be stationary. We previously found that both series have non-stationary long memory
and hence there is a need for pre-differencing prior to estimating the number of factors.
The pre-differenced series (pj;, [;) are obtained by fractionally differencing the filtered
series as

Py, =A%p;  and I, = A%, 3)

where

0, = max; d, and [ = max; d, ,

(3

for: =1,2,...,24, and cipi and 671 are the fractional differencing parameters of electri-
city prices and loads, respectively. Based on the maximum values of the extended local
Whittle estimates with bandwidth m = 7% Fourier frequencies we have 67 = 0.84
and §; = 0.71, according to Table 2}

We estimate a generalized dynamic factor model (GDFM), proposed by Forni
et al|(2005). The model assumes that the stochastic process x;; in model (2)) is stationary
as satisfied by the construction of p}, and [},. Estimation of the common factor structure
then requires determining the number of dynamic factors, ¢, and the number of static
factors, r. There are some criteria to determine the number of static or dynamic factors
such as analyzing a scree plot of the shared behaviour of the estimated number of factors
and the empirical variance. Another commonly used method is based on the percentage
of the total variability successfully explained by the common factors, which is compared
against a level determined by the econometrician. We consider both methods in the
present analysis.

First, we use a criterion initially proposed by Bai and Ng (2002) and later modified
by |Alessi et al.| (2010) (information criteria /C7) which has improved finite sample
properties by introducing a tuning multiplicative constant in the penalty function to fix
r. Second, we use the information criterion /C} proposed by Hallin and Liskal (2007)
to compute the number of dynamic factors, g. Scree plots suggest 7 = 3 and ¢ = 3
in both cases. However, when examining the total variance explained by factors, we
choose only two static factors due to the third common factor explaining only 6% and
4% respectively of the variation which we consider to be relatively small. With two
static factors, we explain 82% of the variation in the panel of electricity prices and 88%
of the variation of the panel of electricity loads.

Once we fix the number of static (r) and dynamic (¢) factors, we estimate (2))
in two steps. In the first step, the covariance matrices of common and idiosyncratic
components are obtained in order to produce generalized principal components of the
contemporaneous variables p}, and [, depending on the case, with minimum idiosyn-
cratic common variance ratio, see [Forni et al. (2005)).

After estimating the GDFM, we integrate back the r static factors of electricity
prices using the original filters ¢, and d;, respectively. The factor loadings are displayed
in Figures[I3]and[I5]and the common factors are displayed in Figures[I4]and [I6]
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Figure 13: Factor loadings of electricity prices.
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Figure 14: Common factors of electricity prices. The first and second factors explain
68% and 14% of the total variation, respectively.

The factor loadings corresponding to both first common factors are all negative,
see Figures [13]and [I35] with larger absolute magnitudes during work hours. In turn, fac-
tor loadings of both second common factors are positive and larger (in absolute terms)
than those of both first common factors during night hours. This indicates that both
second common factors play a key role from 1 a.m.-6 a.m. whereas the first factor
predominantly affects the remaining hours of the day.

At a first glance, Figures [I4] and [16] show that the estimated common factors of
electricity prices and loads exhibit volatility clustering and the factors associated with
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Figure 15: Factor loadings of electricity loads.

loads also show some annual periodicity. A similar result was found employing the
periodic seasonal ARFIMA-GARCH model by Koopman et al.[|(2007) who also consi-
dered electricity prices within Nord Pool area.

A further inspection on Figures [I4]and[16|indicates differences in the persistence
level between the first and second common factors of electricity prices while the same
cannot be concluded for electricity loads. As we have previously discussed, the elec-
tricity prices are characterized by having several price spikes. As seen from Figure
it appears that the second factor for this series manages to include many of these spikes
and hence may explain the reduced memory of this factor. Both common factors of the
electricity loads seem to capture a seasonally varying component.

To support the visual impression we estimate the fractional integration orders of
the common factors. All factors display mean-reversion with memory estimates less
than unity. However, as expected there are significant differences between price co-
mmon factors in terms of persistence: the first common factor is non-stationary with
estimated memory equal to 0.76, whereas the second factor is stationary with memory
0.41. On the other hand, there is no significant difference between the memory estimates
of the common factors for loads which are both estimated to have memory around 0.70.

4 Fractional panel data analysis

4.1 Preliminary discussion

Our preliminary analysis suggests that electricity spot prices and loads exhibit consi-
derable long-range dependence. Moreover, it is clear from Figures [3] and [] that hourly
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Figure 16: Common factors of electricity loads. The first and second factors explain
78% and 10% of the total variation, respectively.

electricity system prices and loads are heterogeneous. It is well known that time-series
or cross-sectional models per se cannot accommodate heterogeneity very flexibly. Al-
ternatively, panel data analyses lead to a more robust inference thanks to their ability to
control for individual heterogeneity and interactive fixed effects while also allowing for
the study of further complex dynamics.

As we have seen, both intraday electricity prices and loads have commonalities
that can be modelled as a cross-sectionally dependent panel employing a parametric
common-factor structure. This way, for example, the effect of specific actions or general
electricity market regulations and other factors that provoke common effects in hourly
prices can be isolated. Bearing this fact in mind, we consider two different approaches
in turn. The first approach consists in the estimation of a fractionally integrated panel
data model with fixed effects proposed by |[Ergemen and Velasco (2015)), in that the
common factors extracted in Section are treated as covariates in individual models
for prices and loads. The second approach employs the fractionally integrated panel data
system with fixed effects, proposed by Ergemen| (2015)) to allow for feedback effects
between electricity prices and loads, which is introduced through the allowance for
contemporaneous correlation in the model. Both of these approaches account for long
memory and seasonality that make them well suited for our analysis given the stylized
facts of the data.

Ergemen and Velasco| (2015) and Ergemen| (2015) propose a conditional-sum-of-
squares approach to estimate the slope and long-range dependence parameters. The
estimation procedure is based on defactored series which are computed after projecting
the prewhitened model on its cross-section average. First, fixed effects are removed
by taking first differences. The projection of defactored series is then performed by
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prewhitening the model variables to stationarity thus guaranteeing the asymptotic re-
moval of projection errors. In our case, taking first differences is enough. The esti-
mates are then obtained in the least-squares sense, which are consistent and asympto-
tically normally distributed under the regularity conditions that we also assume to hold
throughout the paper.

In order to assess the main source of persistence in the data, we first estimate
the basic model proposed by [Ergemen and Velasco (2015) which includes a common
memory parameter for the entire panel and no covariates while allowing for individual
and interactive fixed effects:

Yie = a; + NilFy + At_ﬁluit' 4)

Estimating (4)) yields a common memory parameter estimate of 0.47 for electri-
city prices and 0.61 for electricity loads, and for both estimates the standard error is
0.0022. These estimation results show evidence that the common factor is the main
source of persistence when compared to the results in Table 2] especially for the price
series. While this is readily established based on a homogeneous memory parameter,
this restriction still leaves something to be desired. In particular, there may be an in-
terest in allowing for heterogeneity in the fractional integration parameter to separately
examine the behaviour of the series and allowing for explicit interdependencies between
the hourly cross-sectional elements.

4.2 Fractional panel cointegration analysis

We now study a more general framework adopting the general model proposed by |[Erge-
men and Velasco| (20135)) that includes covariates and heterogeneous parameters.

We are primarily interested in understanding the common dynamics of the hourly
electricity prices and loads, each treated in separation. We consider the common factors
estimated in Section as covariates for each of the panels. The aim of this analysis
is twofold; first the behaviour of hourly electricity prices and loads is investigated, and
then possible cointegrating relationships between hourly electricity prices (or loads) and
their respective common factors are analysed with the goal of identifying the supply
curve.

We consider the following two-factor augmented panel data models for the price
and loads series:

it =i+ M fr o+ NS+ O + A, (5)

and
lit = i + ki, o+ K22, Pl + ADie, (6)

where p;; and [;; are the filtered series. flt and fgt are the respective common factors
previously estimated in Section[3.3]for prices and loads. As we discussed in the previous
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section, common factors exhibit long-range dependence, in particular fltmces ~ I(0p1),

f2tp'rices ~ I(ﬁiﬂ)’ fl%ads ~ [<I911)’ and fztloads
remaining unobservable common factors, which may also be persistent, F, . .~ I(g,)
and Iy, .~ [(Q).

Ergemen and Velasco (2015) present the regularity conditions of this estimation
method and show consistency and asymptotic normality of estimates. Under their set of
assumptions, we study @ and @) where the common unobservable component, ¢;[F;,
along with the other model parameters, is identified cf. Ergemen and Velasco| (2015),
Pesaran| (2006)), and [Bai (2009)).

In the estimation, first-differencing removes the unobserved heterogeneity terms.
Then, the unobserved common factor structure, ¢;[F,, is proxied by projecting the pre-
whitened data on its cross-sectional average. Tables [3| and 4] present the estimation
results for (5)) and (6)), respectively. Figure[I7]presents an overview of the long-memory
parameter estimates.

~ I(¥2). Ty is incorporated to capture

The main interest in this analysis is to shed light on the relationship between the
hourly electricity prices (or loads) and the common factors that drive them. Under
certain conditions the hourly prices (or loads) will exhibit intraday fractional cointegra-
tion. This happens when the covariates, f1t‘ and th', exhibit more persistence than the
idiosyncratic shocks, for example for prices when 9,;, 7,2 > d;, and for loads when
W1, V2 > 0; for some i.
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Figure 17: Comparison of the residual integration order estimates of models in (5) and
(6) with the original memory estimates of electricity prices and loads. Standard error of

the estimates is 0.011.

In this regard, a fractional cointegrating relationship in the panel of electricity
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Table 3: Residual integration order estimates and estimated slope parameters of the
model in @) (Prices).

01:00 | 0.43 -0.007+%* 0.013%* | 13:00 | 0.38 -0.008%** -0.004%**
0.001)  (0.002) (0.000)  (0.000)
02:00 | 0.43 -0.007+%* 0.019%%* | 14:00 | 0.43 -0.008%** -0.003%**
(0.000)  (0.001) (0.000)  (0.000)
03:00 | 0.34 -0.007%%% 0.025%% | 15:00 | 0.44 -0.008%%% -0.002%**
(0.000)  (0.001) (0.0004)  (0.001)
04:00 | 0.35 -0.007+%* 0.028%* | 16:00 | 0.43 -0.008%*%* -0.002%**
(0.001)  (0.001) (0.000)  (0.001)
05:00 | 0.31 -0.007+%* 0.028%%* | 17:00 | 0.43 -0.008%*% -0.002%**
0.001)  (0.001) (0.000)  (0.001)
06:00 | 0.31 -0.007+%% 0.025%%* | 18:00 | 0.44 -0.008%*% -0.003%**
(0.000)  (0.002) (0.000)  (0.001)
07:00 | 0.29 -0.007+%* 0.016%* | 19:00 | 0.41 -0.008%*%* -0.003%**
0.001)  (0.003) (0.000)  (0.001)
08:00 | 0.35 -0.008%* 0.006%* | 20:00 | 0.40 -0.008%** -0.003%**
(0.000)  (0.001) (0.000)  (0.001)
09:00 | 0.37 -0.009%** (.002% 21:00 | 0.44 -0.008%** -0.002%**
0.001)  (0.001) (0.000)  (0.001)
10:00 | 0.33 -0.008*** -0.002% | 22:00 | 0.47 -0.007*** -0.002%*
0.001)  (0.007) (0.000)  (0.001)
11:00 | 0.31 -0.008%** -0.004*%* | 23:00 | 0.49 -0.007*+* 0.002%*
(0.000)  (0.001) (0.000)  (0.001)
12:00 | 0.33 -0.008*** -0.005%+* | 00:00 | 0.42 -0.007*** 0.008%***
(0.000)  (0.001) (0.000)  (0.001)

Note: Residual integration order estimates. Standard error of the memory estimates is 0.011 and
robust Newey-West standard errors are given in parentheses. Asterisks (*,** and ***) indicate
significance at the 10%, 5% and 1% levels, respectively. Fitted seasonal models in (I)) were
subtracted from log series prior to estimation of the models.
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Table 4: Residual integration order estimates and estimated slope parameters of the
model in (@ (Loads).

| | 6 A fing | Y fini |
01:00 | 0.39 -0.001*** 0.005%** | 13:00 | 0.43 -0.003*** -0,001***
(0.000) (0.000) (0.000) (0.000)
02:00 | 0.41 -0.001%** 0.005*** | 14:00 | 0.49 -0.003*** -0.001%**
(0.000) (0.000) (0.000) (0.000)
03:00 | 0.32 -0.001*** 0.005*** | 15:00 | 0.52 -0.003*** -0.00]%***
(0.000) (0.000) (0.000) (0.000)
04:00 | 0.45 -0.001*** 0.005%** | 16:00 | 0.52 -0.003*** -0.001***
(0.000) (0.000) (0.000) (0.000)
05:00 | 0.44 -0.001*** 0.004*** | 17:00 | 0.52 -0.003*** -0,00]***
(0.000) (0.000) (0.000) (0.000)
06:00 | 0.45 -0.002%** (0.003*** | 18:00 | 0.48 -0.003*** -0.001%**
(0.000) (0.000) (0.000) (0.000)
07:00 | 0.47 -0.004*** (0.001 19:00 | 0.47 -0.002*** (.001%***
(0.000) (0.000) (0.000) (0.000)
08:00 | 0.49 -0.005*** -0.002*** | 20:00 | 0.47 -0.002*** (.001***
(0.000) (0.000) (0.000) (0.000)
09:00 | 0.47 -0.005%** -0.003*** | 21:00 | 0.45 -0.002*** (0.001%**
(0.000) (0.000) (0.000) (0.000)
10:00 | 0.41 -0.004*** -0.002*** | 22:00 | 0.43 -0.002*** (.001%*%*
(0.000) (0.000) (0.000) (0.000)
11:00 | 0.35 -0.004*** -0,002*** | 23:00 | 0.43 -0.001*** (.002%***
(0.000) (0.000) (0.000) (0.000)
12:00 | 0.36 -0.003*** -0.001*** | 00:00 | 0.39 -0.001*** (.003%**
(0.000) (0.000) (0.000) (0.000)

Note: Residual integration order estimates. Standard error of the memory estimates is 0.011 and
robust Newey-West standard errors are given in parentheses. Asterisks (*,** and ***) indicate
significance at the 10%, 5% and 1% levels, respectively. Fitted seasonal models in (I)) were
subtracted from log series prior to estimation of the models.
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prices is found for every hour and hence we may consider the electricity prices to be
driven by the same fractional trend. We find the same conclusion for electricity loads.

While the single price and load series are non-stationary of fractional orders for
all hours, the residual integration order estimates are in the stationary range throughout
the day for both series. Moreover, the slope parameters (\;;, ;) of both series have the
same sign as the loading factors estimated in Section [3.3| making our estimation results
consistent with the results previously presented.

5 Fractional panel cointegration analysis of the electri-
city prices and loads relationship

In this section, we address the supply curve relationship between electricity loads and
prices. As discussed in Section 2] the power demand curve varies more than the supply
curve which represents the marginal cost curve of the power production technology due
to the competitive environment of the electricity market. Hence equilibrium prices and
loads are believed to trace the power supply curve, see Bunn| (2000).

In the previous section, we considered the general model proposed by Ergemen
and Velasco (2015) which assumes independence of the idiosyncratic shocks in the sys-
tem. This first attempt, in which we estimate equations @) and @, allows us to see
whether neglected feedback effects between electricity prices and loads play an impor-
tant role while also providing interpretable results that may be used for policy decisions.
To contrast our findings, we next consider the panel data model proposed by |[Erge-
men| (2015) which allows for long-range dependence and contemporaneous correlation
among idiosyncratic shocks. The model considered can be written as

pit = o4+ Biliy + ¢1F + A;ﬁ{'e‘m,
e = vi+ 6oF+ Ao, (7)

where the dependent variable p;; is the filtered electricity prices, and [; is the fil-
tered electricity loads that are treated as a covariate. In (7), p; ~ I(max{d;,9;,6}),
liy ~ I(max{d;,d}) and Fy ~ I(0) for: = 1,--- ,24andt = 1,---,T where the
true integration orders are unknown. Since both idiosyncratic shocks can be contempo-
raneously correlated, we take €; = (€14, €2;1)’ to be a bivariate covariance stationary
process that is assumed to be governed by a first order vector autoregressive process
(VAR(1)). Furthermore, GARCH effects in the common factor can be incorporated as
discussed by Ergemen| (2015)), with the projection details readily following from the
arguments made therein.

The model in (7)) is similar to the model in (5] due to the allowance for cross-
sectional dependence through the unobservable common component, and heterogeneity
through the unobservable fixed effects «; and v;, and the unobservable factor loadings
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¢1,; and ¢, ;. However, the system in , unlike @) conditions p;; on the observable
series [;; with the purpose of identifying the supply curve. In (7)), the (observed) factor
estimates used in (5) are implicitly contained by [F; as though they were unobserved
since otherwise parameter identification would be impossible. By using (7)), possible
long-run fractional cointegrating relationship can be disclosed between the idiosyn-
cratic components of the observable series p;; and l;;, which departs from using (3]
that only considers single-equation estimation. Note that failure of accounting for the
cross-sectional factor [F; would potentially lead to spurious regression in a time series
context.
In the estimation, the fixed effects are removed by taking first differences in ,

Apy = [illlyy + ¢1,AF + A,}ﬁjiﬁma
Aly = ¢ AF, + A} o, (8)

and the model is estimated cf. [Ergemen! (2015). The estimation results are displayed
in Table 5| from which we can check for cointegrating relationships between electricity
prices and loads for the hours that satisfy 19@ > cZZ Statistical significance of Bz for all ¢
in Table [S|implies that the cointegrating relationships that exist are non-trivial. Based on
these facts, a long-run equilibrium relationship is confirmed between electricity prices
and electricity loads from 7 a.m. to 8 p.m., and this finding is mostly pronounced during
work hours.

Figure [1§] presents a comparison of the residual integration order estimates of
model (7)), the Extended Local Whittle estimates of the electricity prices in Table [2]and
of the cross-sectionally averaged time-stacked series constituting the maximum memory
of the unobserved common factor. As we showed earlier, the common factors are the
main source of persistence but nevertheless Extended Local Whittle estimates show
some variation (around the blue line in Figure [I8). This can simply be explained by
the fact that factor loadings can vary across hours and depending on their magnitude,
the series can be affected from common factors differently at each hour. Furthermore,
Figure [1§] visualises significant non-trivial long-run equilibrium relationships between
electricity prices and loads from (defining the power supply curve) 7 a.m. to 8 p.m.
that can be verified employing a t-test constructed as ¢ = (9; — d;)/s.e.(0; — d;) in the
direction ¥J; > d;.

Note that the estimates [3; represent the periodically varying power supply elasti-
cities. As [Kirschen| (2003) shows, a typical supply curve in an electricity market in
which prices do not vary significantly for most of the capacity offered (cheap generation
capacity), prices do increase abruptly during peak-load conditions due to the steepness
of the supply curve demonstrated also in Figure[2] This means that prices vary over time
depending on loads conditions, i.e. depending on the time of the day in our case. This
is consistent with the supply estimates presented in Table [5|and Figure As seen, the
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supply elasticities vary between 0.50 and 1.17 with the largest elasticities during peak
hours in the mornings and evenings and the lowest during night hours.

Table 5: Residual integration order estimates and estimated slope parameters of the
model in (@) (System model).

01:00 | 0.17#%% (.15%%% 0.62%%* | 13:00 | 0.03%%% (27#%% (.77%%*
(0.00) (0.00) (0.07) (0.00) (0.00) (0.05)
02:00 | 0.17#%% .22%%% (.73%%% | 14:00 | 0.01%%% (28%+% (.84%%*
(0.00) (0.00) (0.1) (0.00) (0.00) (0.05)
03:00 | 0.18%#% (Q21%%% (.91#%* | 15:00 | 0.04%%% (24%%% () Qk**
(0.00) (0.00) (0.05) (0.00) (0.00) (0.05)
04:00 | 0.16%%% (.21%%% (.93%%* | 16:00 | 0.08%%* (.28%%* (.94%%*
(0.00) (0.00) (0.13) (0.00) (0.00) (0.05)
05:00 | 0.15%%% (.17#%% 097+ | 17:00 | 0.1%%*% (27#%% (.95%**
(0.00) (0.00) (0.13) (0.00) (0.00) (0.05)
06:00 | 0.08%#% (.11#%% 1,178 | 18:00 | 0.04%%% (25%%% (. 95k#s*
(0.00) (0.00) (0.12) (0.00) (0.00) (0.05)
07:00 | 0.08%%% (.15%+% 1. 11%%* | 19:00 | 0.02%%% (21%%% (.89%**
(0.00) (0.00) (0.09) (0.00) (0.00) (0.05)
08:00 | 0.06%%* (.28%+% 1,03 | 20:00 | 0.08%** (.13%%% () gk**
(0.00) (0.00) (0.06) (0.00) (0.00) (0.05)
09:00 | 0.07#%% .31%%% Q1% [ 21:00 | 0.14%%% (.16%*% (.72%%*
(0.00) (0.00) (0.05) (0.00) (0.00) (0.04)
10:00 | 0.09%#% Q31+ (.92%%* | 22:00 | 0.14%%% (2]*%% (.63%%*
(0.00) (0.00) (0.04) (0.00) (0.00) (0.03)
11:00 | 0.05%%%  03%%%  (.84%%* | 23:00 | 0.17#%% (27#%% (.55%%*
(0.00) (0.00) (0.05) (0.00) (0.00) (0.04)
12:00 | 0.02%%% 028%+% (.78%%% | 00:00 | 0.16%* (.28%%% (.50%%*
(0.00) (0.00) (0.05) (0.00) (0.00) (0.05)

Note: Estimation results of the individual slope and memory parameters of the model in (7).
Robust Newey-West standard errors are given in parentheses. Asterisks (*,** and ***) indicate
significance at the 10%, 5% and 1% levels, respectively.
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Figure 18: Comparison of the memory estimates of the model in (7)) with the Extended
Local Whittle estimates of the electricity prices in Table [2] (white bars). Black solid
line is the residual integration order estimates of model in (7)) whereas the black dot
line indicates the values of 1J;. The flat dotted (blue) line shows the memory estimate
of cross-sectionally averaged stacked series that pertains to the integration order of the
unobservable common factor. Standard errors of the Extended Local Whittle estimates
are 0.053.
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Figure 19: Estimated periodic supply elasticities from the model . Dot lines indicate
confidence intervals at 95%.
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6 Conclusions

We have analysed the complex dynamics of Nord Pool electricity prices and loads in a
large periodic panel of hourly observations. Traditionally, hourly electricity spot prices
have been modelled in terms of univariate time series for the single hours or by trea-
ting the observations as a time series where the information set is updated by moving
from one observation to the next over time. However, this assumption is invalid for the
electricity spot market due to the particular market microstructure which does not allow
continuous trading. Prices and loads are determined in a day-ahead market where the
hourly prices of the next day are determined simultaneously in an auction. The hours can
thus be seen as a cross section that vary over the day, and hence the panel data structure.
The paper is novel because it takes advantage of this particular characteristic of the
data and accounts for the stylized features of electricity data such as seasonal variation,
spikes, as well as long-range dependence. Both prices and loads contain strong common
long-memory components in the cross section of hourly observations as well as across
the series themselves. The methodology adopted accounts for unobserved heterogeneity
and cross-section dependence and shows that both prices and loads themselves share
common fractional trends for all 24 hours of the day. It is also found that by conditioning
on the loads it is possible to empirically identify the hourly supply curves of the Nord
Pool power production technology. This relation is particularly strong during day-hours.

The analysis provides important insights into the dynamics of the Nord Pool
power market. Future research will address how such complex systems can be used
from a forecasting perspective. The model class is not directly applicable for forecasting
purposes due to the curse of dimensionality problem and the presence of unobservable
common factors. It is likely that data reduction methods should be considered under
these circumstances such as factor-augmented VARs or similar.

After all, the paper shows that cross-sectional dependence is a significant element
for the dynamics of electricity prices and loads.
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