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Abstract

We show that the prices of risk for factors that are nonlinear in the market return

are readily obtained using index option prices. We apply this insight to the price of

co-skewness and co-kurtosis risk. The price of co-skewness risk corresponds to the

spread between the physical and the risk-neutral second moments, and the price of

co-kurtosis risk corresponds to the spread between the physical and the risk-neutral

third moments. The option-based estimates of the prices of risk lead to reasonable

values of the associated risk premia. An out-of-sample analysis of factor models with

co-skewness and co-kurtosis risk indicates that the new estimates of the price of risk

improve the models� performance. Models with higher-order market moments also

robustly outperform standard competitors such as the CAPM and the Fama-French

model.
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1 Introduction

The speci�cation and performance of factor models are of paramount importance for �nan-

cial research and practice, and have been the subject of intense debate for a long time. The

Capital Asset Pricing Model (CAPM) has been criticized from di¤erent angles, and although

its performance improves substantially when evaluating the model conditionally rather than

unconditionally, there is widespread consensus that models with better out-of-sample ex-

planatory power are badly needed.

Many alternative models have been proposed over the past four decades, with limited

success. One class of models attempts to �nd new factors using economic intuition or more

formal economic modeling. The performance of these models in cross-sectional pricing has

been mixed. For instance, the existing literature is divided on the performance of aggregate

consumption growth, the most important state variable suggested by theory.1 Another

class of models constructs factors using a more reduced-form approach, partly based on

well-documented stylized facts. The standard examples in this literature are the three-

factor model of Fama and French (1993), which includes market, book-to-market and size

factors, and the four-factor model suggested by Carhart (1997), which additionally includes

a momentum factor. The cross-sectional explanatory power of these models is often judged

as satisfactory in-sample, but the lack of economic and theoretical foundations is cause for

concern.2

Given the state of the literature, further evidence on the pricing of the cross-section of

stock returns is therefore a priority. This paper contributes to a literature that goes back to

Kraus and Litzenberger (1976), who argue that if investors care about portfolio skewness,

co-skewness enters as a second pricing factor in addition to the market portfolio.3 This

argument has later been applied to investor preferences over portfolio kurtosis, leading to

co-kurtosis as an additional factor (see, for instance, Ang, Chen, and Xing (2006), Dittmar

1Early studies such as Breeden, Gibbons, and Litzenberger (1989) and Mankiw and Shapiro (1986) argue
that the consumption-based model performs poorly in pricing the cross-section of stock returns. For a more
positive assessment of the performance of the conditional consumption-based model, see for instance Bansal,
Dittmar and Lundblad (2005), Dittmar and Lundblad (2015), and Lettau and Ludvigson (2001).

2An extensive literature has sprung up that attempts to provide economic underpinnings for the Fama-
French and Carhart factors. See for example Liew and Vassalou (2000) for a risk-based explanation, and
Chan, Karceski, and Lakonishok (2003) for a behavioral explanation.

3In a related literature, Ang, Hodrick, Xing, and Zhang (2006) analyze the performance of volatility as a
pricing factor. Schneider, Wagner, and Zechner (2015) o¤ers an insightful comparison of the role of volatility
and skewness in cross-sectional studies.
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(2002), Guidolin and Timmermann (2008), and Scott and Horvath (1980)).4 Despite several

important contributions by among others Bansal and Viswanathan (1993), Leland (1997),

Lim (1989), Harvey and Siddique (2000), and Dittmar (2002), and despite the theory�s

obvious intuitive appeal, there seems to be no widespread consensus on the importance of

this literature for cross-sectional asset pricing.

One possible drawback of co-skewness and co-kurtosis as cross-sectional pricing factors

is measurement. Measurement is especially di¢ cult when analyzing conditional co-skewness

and co-kurtosis.5 Most existing papers estimate and test the importance of co-skewness

and co-kurtosis using two-stage cross-sectional regressions. For a classical example of this

type of conditional analysis, see for instance Harvey and Siddique (2000). This approach

necessitates the estimation of co-skewness betas in a �rst stage. These betas are subsequently

used in the second-stage cross-sectional regression. It is well-known that the estimation of

betas in the �rst-stage regression is noisy, and these errors carry over in the second-stage

cross-sectional regression.6 While these problems apply to virtually all implementations of

cross-sectional models, including the CAPM, they may be especially serious in the case of

co-skewness and co-kurtosis. The reason is that the higher the moment, the more di¢ cult

it is to estimate precisely. This argument applies a fortiori to the estimation of co-measures

of higher moments, such as co-skewness and co-kurtosis, and the betas for these factors.

Therefore, errors in estimated betas may be large for these models, leading to biases in the

cross-sectional estimation of the price of risk that are potentially much larger than in the

competing case of the CAPM or the Fama-French three-factor model.

We propose a new strategy to estimating the price of co-skewness and co-kurtosis risk,

which avoids the problems inherent in the second-stage cross-sectional regression. Our ap-

proach can also be used to estimate the price of other risks, provided that they are nonlinear

functions of the market return. We derive our result based on the well-known representation

of cross-sectional asset pricing models that relies on the stochastic discount factor or SDF

(see Cochrane (2005)). The CAPM corresponds to the assumption of linearity of the SDF

with respect to the market return. A quadratic SDF implies that investors require compensa-

tion not only for the exposure to market returns but also for the exposure to squared market

returns.7 SDFs that are higher-order functions of the market return lead to progressively

4See also Arditti (1967), Rubinstein (1976), and Golec and Tamarkin (1998) for related work.
5Kraus and Litzenberger (1976) provide an unconditional empirical analysis of co-skewness.
6See, e.g. Jagannathan and Wang (1998), Shanken (1992), Kan and Zhang (1999), Kleibergen (2009),

and Gospodinov, Kan, and Robotti (2014).
7See Dittmar (2002) for an investigation of higher moments in cross-sectional pricing using this approach.
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more complex co-movements with market returns as pricing factors.

The key di¤erence between our approach and existing studies is that we explicitly impose

restrictions on the pricing of both stocks and contingent claims. This allows us to derive

explicit formulas for the time-varying price of risk for the exposure to any nonlinear function

of the market return. Remarkably, we can show that the price of co-skewness risk corresponds

to the spread between the physical and the risk-neutral second moment. Similarly, the price

of co-kurtosis risk is given by the spread between the physical and the risk-neutral third

moment.

To provide intuition for this result, consider the special case where the SDF is a linear

function of the market return, which corresponds to the CAPM. In this case, our general

result implies that the price of risk corresponds to the spread between the physical and risk-

neutral �rst moment. This equals the market return minus the risk-free rate, which is of

course the classical CAPM result. While information from index options is not particularly

useful in the linear SDF case, we show that whenever the SDF is nonlinear then informa-

tion from index option prices can be used to pin down the price of risk of the nonlinear

factor. Fortunately, we have particularly rich option information on the market index, as

index options are among the most heavily traded contracts on the market. This makes our

theoretical results very practical to implement.

We empirically investigate the performance of our approach for the pricing of co-skewness

and co-kurtosis risk. Using monthly data for the period 1996-2012, we �nd that the price of

co-skewness risk has the expected negative sign in almost every month in our sample, and

the price of co-kurtosis risk has the expected positive sign in most months. On average, both

estimated prices of risk are larger in absolute value than the traditional estimates obtained

using a two-stage Fama-MacBeth approach. While the average prices of risk obtained using

the Fama-MacBeth approach have the theoretically anticipated signs, the estimates have

the opposite sign in many months, which explains the smaller averages. We evaluate the

cross-sectional performance of our newly proposed estimates out-of-sample, and �nd that

they outperform implementations of the CAPM and the Fama-French three factor model

that use cross-sectional regressions to estimate the price of risk.

The paper proceeds as follows. Section 2 describes our alternative approach to the mea-

surement of (nonlinear) market risk. In Section 3 we motivate our approach by discussing

traditional regression-based estimates. Section 4 presents an empirical investigation of co-

See Bakshi, Madan, and Panayotov (2010) for evidence that the pricing kernel is U-shaped as a function of
market return.
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skewness risk using our approach. Section 5 investigates co-kurtosis risk. Section 6 concludes.

2 MeasuringMarket Risks: An Option-Based Approach

In this section we provide an overview of multifactor asset pricing models in which cross-

sectional di¤erences in expected returns between assets are determined by their exposure to

risk factors that are nonlinear functions of the market return. This setting corresponds to

assuming SDFs that are nonlinear in the market return. We proceed to propose an option-

based approach to measuring the price of risk for these types of exposures. We investigate

two special cases that are of signi�cant empirical interest: exposure to the squared market

return R2m, which captures co-skewness risk; and exposure to the third power of the market

return R3m, which captures co-kurtosis risk.

2.1 Measuring Co-Skewness Risk

Before we introduce the general case, we �rst discuss two speci�c examples to provide more

intuition for our approach. We begin with co-skewness risk. Let mt+1 denote the stochastic

discount factor

mt+1 = at + b1;t
�
Rm;t+1 � EPt (Rm;t+1)

�
+ b2;t

�
R2m;t+1 � EPt (R2m;t+1)

�
; (1)

where Rm denotes the stock market return, and EPt (:) denotes the expectation under the

physical probability measure. Similar to Harvey and Siddique (2000), henceforth, HS, our

setup is based on the assumption of a quadratic SDF. As explained by HS (2000), a quadratic

SDF is consistent with several utility-based asset pricing models. The performance of

quadratic pricing kernels is studied in Bansal and Viswanathan (1993) and Chabi-Yo (2008)

among others.

Given this SDF, we can establish pricing restrictions on any asset return. The key feature

of our approach is that we jointly consider theoretical restrictions on stocks and contingent

claims, whereas the existing cross-sectional asset pricing literature focuses exclusively on the

underlying assets. Our approach enables the speci�cation of new estimators for the price of

co-skewness risk which can be easily implemented using short data windows provided that

information on option prices is available.

Denote the return on a stock by Rj and the return on the market index by Rm. The

existing literature contains several measures of co-skewness risk, which all capture covariation
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between the stock return and the squared market return. Kraus and Litzenberger (1976,

henceforth KL) de�ne co-skewness risk by
EP [(Rj�Rj)(Rm�Rm)2]

EP [(Rm�Rm)3]
. HS (2000) mainly focus on

cov(Rj; R
2
m) in their theoretical analysis but consider four di¤erent co-skewness measures in

their empirical analysis. Our measure of co-skewness risk is the beta with respect to R2m in a

multivariate regression. This measure allows for mathematical tractability in the derivation

of the price of risk as shown in the following proposition. The proposition presents the

pricing implications of the SDF de�ned in equation (1).

Proposition 1 In the absence of arbitrage opportunities, if the stochastic discount factor
(SDF) has the following form

mt+1 = at + b1;t
�
Rm;t+1 � EPt (Rm;t+1)

�
+ b2;t

�
R2m;t+1 � EPt (R2m;t+1)

�
; (2)

then the cross-sectional pricing restriction on stock returns is

EPt (Rj;t+1)�Rf;t = �MKT
t �MKT

j;t + �COSKt �COSKj;t ; (3)

where �MKT
j;t and �COSKj;t are the loadings from the projection of the asset returns on Rm;t+1

and R2m;t+1. The price of covariance risk, �
MKT
t , is

�MKT
t = EPt (Rm;t+1)�Rf;t; (4)

and the price of co-skewness risk, �COSKt , is

�COSKt = EPt (R
2
m;t+1)� E

Q
t (R

2
m;t+1): (5)

where EPt (:) and E
Q
t (:) denote the expectation under the physical and risk-neutral probability

measures, respectively.

Proof. Linear factor models, in which the stochastic discount factor is mt+1 = at +

b0t

�eft+1 � EPt (eft+1)� = at + b
0
tft+1, are equivalent to beta-representation models with the

vector of mean zero risk factors f satisfying

EPt (Rj;t+1)�Rf;t = �0t�j;t; (6)

where �0t =
�1
at
b0tE

P
t (ft+1f

0
t+1), (1+Rf;t) =

1
at
= 1

EPt (mt+1)
, and �j;t =

�
EPt (ft+1f

0
t+1)

��1
EPt (ft+1Rj;t+1),

see for instance Cochrane (2005). Since the pricing kernel prices all the assets, the above
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equation also holds for any contingent claim with payo¤ 	, which can be a function of the

market index return or of the stock return. Consequently, applying equation (6) to 	 gives

EPt (R	;t+1)�Rf;t = EPt
�
	t+1 � Pt

Pt

�
�Rf;t = �0t�	;t; (7)

where Pt is the price of the contingent claim 	 and R	 is the return on the contingent claim.

Using the de�nition of �	;t we have

EPt

�
	t+1 � Pt

Pt

�
�Rf;t = �0t

�
EPt (ft+1f

0
t+1)

��1
EPt

�
ft+1

�
	t+1 � Pt

Pt

��
. (8)

Rearranging and using the fact that EPt (ft+1) = 0 gives

EPt (	t+1)� Pt (1 +Rf;t) = �0t
�
EPt (ft+1f

0
t+1)

��1
EPt (ft+1	t+1)

= �0t~�	;t; (9)

where ~�	;t is from the projection of 	 on f . The no-arbitrage condition ensures the existence

of at least one risk-neutral measure Q such that Pt =
EQt (	t+1)

(1+Rf;t)
. Therefore, we get

EPt (	t+1)� E
Q
t (	t+1) = �

0
t
~�	;t: (10)

To obtain the result in equation (4) from equation (10), we now consider the contingent

claim 	t+1 � Rm;t+1. If a return is also a factor, it has a loading of one onto itself and zero
onto the other factors. Given the SDF (2), this gives ~�	;t = [1 0]

0 and equation (10) reduces

to equation (4). Similarly, using 	t+1 � R2m;t+1, we obtain ~�	;t = [0 1]0 which applied to

equation (10) gives the result in equation (5).

Proposition 1 shows that the price of co-skewness risk corresponds to the spread between

the physical and the risk-neutral second moments for the market return. A number of

existing studies relate the volatility spread to risk aversion (see Bakshi and Madan (2006))

or the price of correlation risk (see Driessen, Maenhout and Vilkov (2009)). Proposition 1

shows that if the pricing kernel is quadratic, then the volatility spread is equal to the price

of co-skewness risk.

The spread between the physical and risk neutral market variance is often termed the

variance risk premium and it has been found to be one of the best predictor of market returns.

See, for example, Bollerslev, Tauchen, and Zhou (2009) and Bollerslev, Marrone, Xu and
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Zhou (2014). Our analysis above suggests that the variance risk premium is a predictor of

market returns because it provides information about the price of co-skewness risk.

Proposition 1 allows for separate identi�cation of the price of covariance (�MKT
t ) and

co-skewness (�COSKt ) risk. Note that this result is simply an application of the general result

that if the factor is a portfolio, then the expected return on the factor is equal to the factor

risk premium. Importantly, the result holds regardless of assumptions on other risk factors.

This is in stark contrast with risk premia estimated from two-pass cross-sectional regressions

for which the empirical results depend on the other risk factors considered in the regression.

In our empirical implementation, we show that an additional advantage of our approach is

that the period-by period estimates of the conditional price of risk are rather reliable and

precise, in contrast with the estimates obtained using the regression-based approach.

The existing empirical evidence clearly indicates that risk-neutral variance is larger than

physical variance, therefore suggesting a negative price of co-skewness risk. See for instance

Bakshi and Madan (2006), Bollerslev, Tauchen, and Zhou (2009), Carr and Wu (2009), and

Jackwerth and Rubinstein (1996). A negative price of risk is consistent with theory. Assets

with lower (more negative) co-skewness decrease the total skewness of the portfolio and

increase the likelihood of extreme losses. Assets with lower co-skewness are thus perceived

by investors to be riskier and should command higher risk premiums.

Unlike other moments, the second moment is fairly easy to estimate under both the

physical and risk-neutral probability measures. The literature contains a wealth of robust

approaches for modeling the physical volatility of stock returns. The risk-neutral moment

can be estimated from option market data either by the implied volatility of option pricing

models, or alternatively using a model-free approach as in Bakshi and Madan (2000) and

Bakshi, Kapadia, and Madan (2003).

While our approach to estimating the price of co-skewness risk is di¤erent from the

existing literature and the betas are de�ned (and/or scaled) di¤erently, the implications for

the risk premia on the assets are of course the same. Using the fact that EPt (Rm;t+1)�Rf;t =
�MKT
t and EPt (R

2
m;t+1)� E

Q
t (R

2
m;t+1) = �

COSK
t , we can re-write equation (3) of Proposition

1 as follows

EPt (Rj;t+1)�Rf;t = �MKT
j;t

�
EPt (Rm;t+1)�Rf;t

�
+�COSKj;t

h
EPt (R

2
m;t+1)� E

Q
t (R

2
m;t+1)

i
; (11)
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which can also be written as

EPt (Rj;t+1)�Rf;t = ct + �MKT
j;t EPt (Rm;t+1) + �

COSK
j;t EPt

�
R2m;t+1

�
; (12)

where ct = ��MKT
j;t Rf;t � �COSKj;t EQt (R

2
m;t+1). Equation (12) shows the link between our

method and the approaches in KL (1976) and HS (2000). It is equivalent to equation (6) of

KL (1976) and equation (8) of HS (2000).

The crucial di¤erence between our approach and the one in KL (1976) and HS (2000)

is that we explicitly impose no-arbitrage restrictions on contingent claims prices so that the

pricing kernel prices all assets in the economy. These additional innocuous restrictions lead

to a very simple estimator of the price of risk.

2.2 Measuring Co-Kurtosis Risk

A natural extension of the quadratic pricing kernel discussed in the previous section is the

cubic pricing kernel studied in Dittmar (2002), given by

mt+1 = at + b1;t
�
Rm;t+1 � EPt (Rm;t+1)

�
+ b2;t

�
R2m;t+1 � EPt (R2m;t+1)

�
+b3;t

�
R3m;t+1 � EPt (R3m;t+1)

�
: (13)

A cubic pricing kernel is consistent with investors�preferences for higher order moments,

speci�cally skewness and kurtosis. See Dittmar (2002) and HS (2000) for more details.

As before, we �rst make an assumption on the shape of the SDF and then derive pricing

restrictions. In this case, the expected excess return on any asset will be related to co-kurtosis

risk, in addition to covariance risk and co-skewness risk. As explained by Dittmar (2002),

kurtosis measures the likelihood of extreme values and co-kurtosis captures the sensitivity

of asset returns to extreme market return realizations. If investors are averse to extreme

values, they require higher compensation for assets with higher co-kurtosis risk, meaning

that the price of co-kurtosis risk should be positive. See Guidolin and Timmermann (2008)

and Scott and Horvath (1980) for a more detailed discussion. Similar to co-skewness risk,

co-kurtosis risk has been de�ned in various ways in previous studies. For instance, Ang, Chen

and Xing (2006) measure co-kurtosis risk using
EP [(Rj�Rj)(Rm�Rm)3]q

EP [(Rj�Rj)2](EP [(Rm�Rm)2])
3=2 , and Guidolin

and Timmermann (2008) use cov(Rj; R3m). In this paper, we measure co-kurtosis risk by the

return�s beta with respect to the cubic market return R3m. We denote the co-kurtosis beta

of a stock by �COKUj;t .
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The following proposition presents the estimator for the co-kurtosis price of risk and the

cross-sectional pricing restrictions.

Proposition 2 In the absence of arbitrage opportunities, if the stochastic discount factor
(SDF) has the following form:

mt+1 = at + b1;t
�
Rm;t+1 � EPt (Rm;t+1)

�
+ b2;t

�
R2m;t+1 � EPt (R2m;t+1)

�
+b3;t

�
R3m;t+1 � EPt (R3m;t+1)

�
; (14)

then the cross-sectional restriction on stock returns is

EPt (Rj;t+1)�Rf;t = �MKT
t �MKT

j;t + �COSKt �COSKj;t + �COKUt �COKUj;t ; (15)

where �MKT
j;t , �COSKj;t , and �COKUj;t are from the projection of asset returns on Rm;t+1, R2m;t+1

and R3m;t+1, respectively. The prices of covariance, �
MKT
t , and co-skewness risk �COSKt are

�MKT
t = EPt (Rm;t+1)�Rf;t; (16)

�COSKt = EPt (R
2
m;t+1)� E

Q
t (R

2
m;t+1); (17)

and the price of co-kurtosis risk, �COKUt , is

�COKUt = EPt (R
3
m;t+1)� E

Q
t (R

3
m;t+1); (18)

where EPt (:) and E
Q
t (:) denote the expectation under the physical respectively risk-neutral

probability measure.

Proof. The structure of the proof largely follows the proof of Proposition 1. Given
equation (14), applying equation (10) for 	t+1 � Rm;t+1 as in Proposition 1, we recover

equation (16), and applying equation (10) for 	t+1 � R2m;t+1, we recover equation (17). In
addition, applying equation (10) for 	t+1 � R3m;t+1, we obtain equation (18). This again

uses the results that a return which is also a factor has a loading of one onto itself and zero

on the other factors.

Proposition 2 shows that the price of co-kurtosis risk is equal to the spread between

the market physical and risk-neutral third moments. Existing empirical evidence (see for

instance Bakshi, Kapadia, and Madan (2003)) indicates that the risk-neutral distribution for

the market return is more left skewed than the physical distribution, therefore suggesting a
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positive price of co-kurtosis risk. This is consistent with theory, as explained earlier in this

section.

2.3 The General Case

We now examine more general nonlinearities in the SDF. Preference theory is relatively

silent about the sign of terms in the SDF higher than the third order, and therefore we

do not extend our empirical analysis beyond the cubic SDF. While the empirical focus of

this paper is on co-skewness and co-kurtosis risk, our approach can be used for virtually

any source of risk that is an integrable function of the market return. This does not just

include expectations of powers of the market return, it includes more complex nonlinear

relationships, such as for instance measures of downside risk as in Ang, Chen, and Xing

(2006). We now present the general case which nests the results in Propositions 1 and 2 of

the previous Section.

Proposition 3 In the absence of arbitrage opportunities, if the stochastic discount factor
(SDF) has the following form:

mt+1 = at +
P
k

bk;t
�
Gk(Rm;t+1)� EPt (Gk(Rm;t+1))

�
+
P
l

cl;t
�
fl;t+1 � EPt (fl;t+1)

�
; (19)

then the cross-sectional pricing restriction for stock returns is

EPt (Rj;t+1)�Rf;t =
P
k

�kt �
k
j;t +

P
l

lt�
l
j;t; (20)

where �kj;t and �
l
j;t are from the projection of asset returns on Gk(Rm;t+1) and fl;t+1 respec-

tively, and l is the price of risk associated with the factor fl. The price of risk associated

with the exposure to a nonlinear function, Gk, of the market return, �
k
t , is

�kt = E
P
t (Gk(Rm;t+1))� E

Q
t (Gk(Rm;t+1)); (21)

where EPt (:) and E
Q
t (:) denote the expectation under the physical respectively the risk-neutral

probability measure.

Proof. The structure of the proof is again similar to the proof of Proposition 1. Given
equation (19), then applying equation (10) for 	t+1 � Gk(Rm;t+1), we obtain equation (21).
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Proposition 3 shows that the reward for exposure to any nonlinear function G(:) of

the market return is determined by the spread between the physical and the risk-neutral

expectations of this function. The proposition also demonstrates that we can easily allow

for factors that are not necessarily functions of the market return.

3 Regression-Based Estimates of the Price of Co-Skewness

Risk

The main purpose of the paper is to present estimates of the price of co-skewness and co-

kurtosis risk using the newly proposed methods in Section 2. Before we do so, we �rst

present traditional regression-based estimates of the price of co-skewness risk. The purpose

of this exercise is twofold. First, these estimates serve as a benchmark for our new estimates.

Second, we will use these results to highlight problems that arise with estimating the price

of risk for higher moments. Here we limit ourselves to a discussion of regression-based

estimates of co-skewness risk. We brie�y discuss regression-based estimates of co-kurtosis

risk in Section 5.2 below.

3.1 Portfolios Sorted on Co-Skewness Exposure

We �rst present estimates of co-skewness risk obtained using portfolios that are formed by

sorting the cross-section of stocks according to co-skewness exposure. We present results for

the period 1986-2012, which coincides with the sample period we will use for our option-

based estimates. It could be argued that this sample period is relatively short to reliably

estimate the price of co-skewness risk using a regression approach. We therefore also report

on the period 1966-2012. We present results from Fama-MacBeth regressions using the

classical setup. We obtain betas using sixty monthly returns, and subsequently we run a

cross-sectional regression for the next month.

For this exercise we consider the entire cross-section of CRSP stocks and restrict our

sample to common shares. In any given month, we do not use �rms with fewer than seventeen

consecutive monthly observations preceding the estimation month or with fewer than thirty-

six observations in total (i.e. sixty percent of the length of the estimation window). These

�lters ensure that the �rms in our sample have su¢ ciently rich data available for reliably

estimating the exposures. Based on the co-skewness and CAPM betas, we double sort stocks

into quintile portfolios and compute the value-weighted monthly returns on the resulting
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twenty-�ve portfolios. We use these portfolios as test assets to estimate the price of co-

skewness risk and study patterns in co-skewness exposure.

Table 1 presents the results. The two left-side columns of Panel A report on the 1986-

2012 sample. The two right-side columns report on the 1966-2012 sample. For both sample

periods, we report on two models. The �rst model incorporates co-skewness exposure and

exposure to the market factor. The second model also includes the Fama-French and mo-

mentum factors.

The estimates of the price of co-skewness risk are negative in all four cases, consistent

with theory, and they are of a similar order of magnitude. However, none of the estimates

are statistically signi�cant. These results are not surprising. It is well known that using a

regression-based approach, it is di¢ cult to obtain precise estimates of the price of co-skewness

risk, and the price of higher moment risk more generally.

Panel B provides some insight into the underlying reason for these �ndings. We report

on the co-skewness and CAPM pre-formation and post-formation exposures for both sample

periods. The �rst four columns from the left report on co-skewness exposures. The four

columns on the right present the exposure to covariance risk. Note that by de�nition the

pattern for the pre-formation exposure is monotonic for both factors. The spread in the

exposures is also substantial.

More interestingly, the full sample post-formation results suggest an important di¤erence

between market exposure and co-skewness exposure. In the case of market exposure, the

di¤erences between the exposures of the quintile portfolios are of course smaller than in the

pre-formation case, but the post-formation di¤erences are substantial and the exposures are

monotonic as a function of the portfolios. For the co-skewness exposure, this is not the

case. The reason is that to reliably estimate higher moment risk exposure, it is important to

observe extreme market and stocks returns. In practice, the relative infrequent occurrence

of extreme returns renders the estimation of co-skewness betas di¢ cult, and this explains

the post-formation patterns.

A potential solution is to use longer estimation windows to increase the occurrence of

extreme observations. However, it is well-known that co-skewness exposure is not very

persistent, and in this case the longer regression samples do not lead to better estimates of

co-skewness exposure. In summary, there are inherent problems with the use of regression-

based methods to estimate higher moment risk.
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3.2 Other Portfolios

One possible reasons for the �ndings in Table 1 is that it is di¢ cult to measure the co-

skewness exposure for individual stocks. We therefore also present regression-based results

obtained using portfolios that are not formed and sorted based on co-skewness exposure.

This means that we do not have to compute the co-skewness exposure of individual stocks.

Instead we directly compute the exposure of the portfolios, and these estimates are less noisy.

We again present results for 1986-2012 and 1966-2012 using Fama-MacBeth regressions.

We obtain betas using sixty monthly returns, and subsequently we run a cross-sectional

regression for the next month. Similar to Table 1, Table 2 reports results for two models.

The �rst model incorporates co-skewness exposure and exposure to the market factor. The

second model also includes the Fama-French (1993) size and book-to-market factors, and the

momentum factor. Figure 1 reports on a third model, the univariate model that exclusively

contains co-skewness exposure.

For each regression, following Fama and MacBeth (1973), we report the average of the

cross-sectional regression estimates as well as the t-statistics on these averages. We report

on four cross-sectional datasets that are commonly used in the existing literature. We use

portfolios formed on size and book-to-market ratio, on size and momentum, on size and

short-term reversal, and portfolios formed on size and long-term reversal. The data on these

portfolios, as well as the data on the Fama-French and momentum factors we use to analyze

competing models, are collected from Kenneth French�s online data library.

Consider �rst the results for 1986-2012 in Panel A of Table 2 and Figure 1. An important

conclusion is that the estimates of the price of co-skewness risk critically depend on the assets

used in estimation. For the univariate model displayed in Figure 1 (note that the exposures

for this model are estimated using bivariate regressions with the market factor and the

market factor squared), the estimate of the price of co-skewness risk is �0:084 when using
the twenty-�ve size and book-to-market portfolios.8 When using the twenty-�ve size and

momentum portfolios, the estimate is �0:182. However, when using the size and short-term
reversal portfolios and the size and long-term reversal portfolios, the estimates are positive.

The only estimate that is statistically signi�cant is the one obtained using the twenty-�ve

size and momentum portfolios. Panel A of Table 2 indicates that when including the market

factor in the regressions, the results do not change much. The estimates for the size and

short-term reversal portfolios and the size and long-term reversal portfolios are now negative

8For expositional convenience we report the estimated prices of co-skewness and co-kurtosis risk, as well
as the moments used to construct these estimates, in percentage terms, i.e. multiplied by 100.
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but they are not statistically signi�cant.

Including additional factors in the cross-sectional model does not change this conclusion

either. Table 2 reports results for the price of co-skewness risk when the Fama-French factors

as well as the momentum factor are included in the regressions. The resulting estimates are

smaller in absolute value and are never statistically signi�cant.

As mentioned before, we focus on the 1986-2012 period to compare the results to our

newly proposed estimates, which are limited to this sample period because of the availability

of risk-neutral second moments. Panel B of Table 2 also reports results for the longer 1966-

2012 period. The resulting estimates of the price of co-skewness risk are very similar to those

obtained for the 1986-2012 period, and also strongly di¤er across test assets.

Our �rst conclusion is that the choice of test assets is important for the point estimates

and signi�cance of the price of co-skewness risk.

Figure 2 reports on the model that includes the co-skewness and market factors for

the 1986-2012 sample. We report the time-series of the month-by-month cross-sectional

regression estimates of the price of co-skewness risk. The estimates for the price of co-

skewness risk reported in the �rst model in Panel A of Table 2 are the averages of the time

series in Figure 1. Figure 2 yields several important conclusions. Based on the results in

Figure 1 and Table 2, we concluded that the choice of test assets substantially impacts the

estimates of the price of risk. Figure 2 instead suggests substantial commonality between

test assets in the month-by-month estimates of the price of risk. The four time series in

Figure 2 clearly have common features. Table 2 indicates that the only test assets that yield

a signi�cantly negative price of co-skewness risk are the twenty-�ve size and momentum

portfolios. Figure 2 indicates that this can be explained by the fact that the regression

estimates are noisy, and the estimates for these test assets vary less over time compared to

the estimates for other test assets, even though the monthly estimates are also often positive.

The essence of the Fama-MacBeth procedure is of course to estimate the price of risk by

averaging the time series of cross-sectional estimates. The fact that the estimates in Figure 2

are positive for some months therefore does not constitute a problem in itself. But it is clear

that the cross-sectional estimates vary a lot over time, and that they are often positive, even

when the averages reported in Panel A of Table 2 are negative. Figure 2 therefore suggests

that noise in the month-by-month estimates is an important problem with regression-based

estimation of the price of co-skewness risk.
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4 New Estimates of the Price of Co-Skewness Risk

We now present estimates of the price of co-skewness risk using the estimators presented

in Proposition 1. The implementation of our approach requires the estimation of physical

and risk-neutral conditional expectations. For the price of co-skewness risk, we need to

estimate the second conditional moment under the risk-neutral measure, EQt (R
2
m;t+1), and

under the physical measure, EPt (R
2
m;t+1). We �rst discuss the estimation of these moments.

Subsequently we estimate the price of co-skewness risk and discuss the di¤erences between

our new estimates and conventional regression-based estimates.

4.1 Estimating the Risk-Neutral Second Moment

We estimate the risk-neutral variance in two ways. In our benchmark analysis, we use the

square of the VIX index as our estimate for the risk-neutral variance.9 The VIX provides

a very simple benchmark because the data are readily available from the Chicago Board of

Options Exchange (CBOE). Using the VIX has a number of advantages. The construction

of the VIX is exogenous to our experiment, and so it is not possible to design it to maximize

performance. Even more importantly, the VIX is available for a longer sample period than

the available alternatives. We use data for the ticker VXO throughout and obtain data for

the period January 1986 to December 2012. For existing studies that use the VIX squared

as a proxy for the expected risk-neutral second moment with one month horizon, see for

instance Bollerslev, Tauchen, and Zhou (2009). In the robustness analysis in Section 4.5,

we use an alternative approach to compute the risk-neutral variance, following Bakshi and

Madan (2000).

4.2 Estimating the Physical Second Moment

The literature contains a large number of models for estimating physical variance. In our

benchmark analysis, we use a simple and robust implementation of the heterogeneous au-

toregressive model (HAR) of Corsi (2009), de�ned as follows

V mt+1;t+K = �0 + �1V
m
t�1;t + �2V

m
t�4;t + �3V

m
t�20;t+K + "V;t+K ; (22)

9The theoretical results in Section 2 are based on the uncentered moments. Throughout our empirical
work we use both centered and uncentered moments. For instance, the VIX is an estimate of the centered
second moment. It is well known that centering does not impact estimates of second and third moments
much, and we veri�ed that this is indeed the case here.
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where V mt+1;t+K denotes the market index K-days ahead integrated variance. In the previous

equation, the variance terms satisfy

V ms;s+� = V
m
s + V ms+1 + ::::+ V

m
s+� ; (23)

with the daily variance given as in Rogers and Satchell (1991) by

V mt = ln(SHight =SOpent )
h
ln(SHight =SOpent )� ln(SCloset =SOpent )

i
(24)

+ ln(SLowt =SOpent )
h
ln(SLowt =SOpent )� ln(SCloset =SOpent )

i
; (25)

where SCloset (SOpent ) is the close (open) price of the market index, measured by the S&P 500,

and SHight (SLowt ) denotes the market index highest (lowest) price on day t. We estimate the

HAR model using OLS and a recursive ten-year window. To ensure consistency with our

measure of the risk-neutral variance, we generate the one-month forecasts of the physical

variance V̂ mt+1;t+30 at the end of every month. The HAR model in (22)-(24) parsimoniously

allows for a highly persistent dynamic in volatility and employs the intraday information

available in our relatively long historical sample. For related applications of high-low infor-

mation in dynamic volatility models, see Azalideh, Brandt and Diebold (2002), Chou (2005),

and Brandt and Jones (2006).10

In the robustness analysis in Section 4.5, we use several alternative approaches to estimate

the physical variance. We use a simple autoregressive model on realized variances, the

NGARCH model of Engle and Ng (1993), and the Heston (1993) stochastic volatility model.

For each of these models, we also use a recursive ten-year window.

4.3 Option-Based Estimates of the Price of Co-Skewness Risk

Using our benchmark HAR estimate of the physical second moment, and our benchmark

VIX risk-neutral second moment, the estimated price of co-skewness risk for month t is now

simply b�COSKt = bEPt (R2m;t+1)� bEQt (R2m;t+1):
Table 3 reports descriptive statistics for the estimates of the moments and the price of risk.

Figure 3 depicts the time series of the price of co-skewness with the corresponding estimated

10Corsi (2009) and subsequent HAR papers typically rely on high-frequency intraday returns to compute
daily variance proxies. However, high-frequency returns are not readily available in the beginning of our
sample period.
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physical and risk-neutral moments required to compute these prices. The plots exhibit

spikes surrounding the 1987 stock market crash, the 1998 LTCM collapse, the WorldCom

bankruptcy in 2002, and the subprime crisis. These spikes occur for both the risk-neutral

and the physical moments, but the spikes in the physical variance are relatively smaller than

the risk-neutral spikes except for the case of the subprime crisis. This may be partly due

to the model we use for the physical variance. Other approaches for modeling the physical

variance in some cases yield larger spikes, but they do not a¤ect our results for cross-sectional

pricing. We discuss this further in Section 4.5 below.

Table 3 and Figure 3 indicate that the co-skewness price of risk is negative for almost all

months. On average it is equal to �0:271. This negative sign is consistent with theory. The
regression-based estimates in Section 3 are also most often negative, and several existing

empirical studies document a negative price of co-skewness risk as well, see for instance KL

(1976) and HS (2000). However, there are some very important di¤erences between our

empirical results and regression-based estimates.

First, our newly proposed estimate of the price of co-skewness risk in Table 3, which is

equal to �0:271, is much larger (in absolute value) than any of the estimates obtained using
the regression approach in Section 3. This of course does not necessarily mean that our

estimate is superior; in order to demonstrate that we have to show that the larger estimate

leads to improved �t. We address this in Section 4.4 below.

Second, it is interesting to compare the time-series of conditional estimates in Figure 3

with the time-series for the regression-based estimates in Figure 2. The monthly estimates

in Figure 3 are almost all negative, and the di¤erence with Figure 2 is striking. This of

course also explains why the negative average estimate of �0:271 for our approach is so
much larger (in absolute value), because the negative estimates are not cancelled out by

positive estimates in other months.

This comparison between the time series in Figures 3 and 2 must of course be interpreted

with some caution. Existing studies report averages of the price of risk over several years.

They estimate prices of risk using a two-pass Fama-MacBeth (1973) setup and report the

average estimates of the month-by-month cross-sectional regressions, rather than the time

series in Figure 2. Indeed, it can be argued that the focus of the Fama-MacBeth approach is

to obtain estimates of the price of risk by averaging the time-series in Figure 2, and therefore

the time series itself is not meaningful. The month-by-month estimates of the price of risk

may not have the theoretically expected negative sign, but this does not invalidate the

unconditional estimate.

19



From this perspective, what is truly remarkable about our new results in Figure 3 is that

we have genuinely conditional month-by-month estimates of the price of risk that have the

theoretically expected sign in almost every month. The regression-based approach obviously

does not provide us with such results. Moreover, while there is no guarantee that these

negative estimates for the price of co-skewness risk will continue to obtain in the future, we

know that implied variances usually exceed historical variances. Because of this stylized fact,

our approach is more likely to yield plausible estimates of co-skewness risk.

In summary, a comparison of our newly proposed estimates of the price of co-skewness

risk with regression-based estimates yields three important conclusions. First, regression-

based estimates critically depend on the test assets used in estimation, whereas our approach

is by design independent of the test assets. Second, our unconditional estimate of the price

of co-skewness risk is �0:271 and indicates a role for co-skewness that is much larger in
magnitude compared to regression-based approaches. Third, we consistently obtain negative

estimates of the price of conditional co-skewness risk in our approach, which does not obtain

with regression-based methods.

We therefore conclude that our approach is economically appealing. To show that it

improves on regression-based estimates, we have to demonstrate that it leads to a better �t.

This is the subject to which we now turn.

4.4 Comparing Out-of-Sample Model Fit

When using regression-based methods, the cross-sectional or Fama-MacBeth regressions

which provide estimates of the prices of risk are also used to evaluate cross-sectional �t

and assess the model�s performance. For instance, Table 2 reports on model performance

using the R-square. Even though there are many other related evaluation criteria, in the

overwhelming majority of cases these criteria are in-sample as in Table 2. Table 2 highlights

a common drawback of such in-sample comparisons in which models with more factors often

lead to a better �t.

It is important to note that in our proposed approach betas and loadings are constructed

in exactly the same way as in the traditional Fama-MacBeth setup, but the price of risk is

not estimated from a cross-sectional regression. Instead it is estimated as a historical risk

premium, and subsequently it is used to assess cross-sectional �t. This di¤erence can best be

understood by referring to the well-known case of the CAPM. The CAPM is often evaluated

using the Fama-MacBeth approach, by �rst estimating betas and then running cross-sectional
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regressions. But alternatively the price of risk for the CAPM can be estimated using the

historical market risk premium, and the cross-sectional �t of the CAPM can be evaluated

using this price of risk and (the same) estimated betas. It does not make sense to compare

the in-sample cross-sectional R-square of the CAPM when the price of risk is estimated in

the regression with an R-square obtained by inserting the historical risk premium in the

same sample. This amounts to comparing an in-sample �t with an out-of-sample �t. We

therefore compare our models using a genuine out-of-sample approach for all models. Out-

of-sample comparisons of cross-sectional models is becoming increasingly popular, see for

instance Simin (2008) and Ferson, Nallareddy, and Xie (2012).

Simin (2008) and Ferson, Nallareddy, and Xie (2012) use root mean squared errors to

compare cross-sectional models out of sample. We use the out-of-sample R-square forecast

evaluation criterion suggested by Campbell and Thompson (2008), which has become the

standard in the time-series literature, see for instance Rapach and Zhou (2013). The out-

of-sample R-squares lead to the same model ranking as root mean squared errors but their

magnitudes are easier to interpret. The out-of-sample R2j;OS for a security j is de�ned by

R2j;OS = 1�

P
t

�
Rj;t+1 � bRModel

j;t+1

�2
P

t

�
Rj;t+1 �Rj;t�59:t

�2 (26)

where Rj;t�59:t = 1
60

Pt
s=t�59Rj;s is the benchmark forecast constructed as the average of the

past 60 monthly returns. We report the average R2OS across portfolios for each model.

Note that this out-of-sample R-square uses the historical average return on the test

portfolio as a benchmark. If a candidate model performs as well as the historical average

return on the test portfolio, the resulting R-square will be zero. R-squares can be negative

for models that do not perform well in out-of-sample forecasting. Consequently, the values

of this out-of-sample R-square should not be confused with the R-squares one typically

obtains from a cross-sectional or time-series regression, for example. In fact, R-squares can

be expected to be very small, and a small positive R-square is an indicator of success. See

Campbell and Thompson (2008), Rapach, Strauss, and Zhou (2010), and Rapach and Zhou

(2013) for a detailed discussion.

We compare the cross-sectional performance of our newly proposed estimates of the price

of co-skewness risk to a number of other speci�cations based on these two evaluation criteria.

One set of speci�cations is based on historical risk premia, in the other risk premia are

estimated using cross-sectional regressions. The models that use cross-sectional regressions to
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estimate the risk premia are the model with market covariance risk (the CAPM), the model

with market covariance and co-skewness risk (CAPM + COSK), and the Fama-French

three-factor model (FF ). The speci�cations based on historical risk premia are: CAPM ,

COSK, and CAPM + COSK. We also include a hybrid approach, labeled CSCAPM +

COSK, where the market risk premium is estimated using a cross-sectional regression.

To provide more intuition, consider the implementation of the two types of speci�cations

using the CAPM as an example.

For the CAPM , the one step-ahead forecast of bRCAPMj;t+1 using information available up to

time t is bRCAPMj;t+1 = b�MKT

t
b�MKT

j;t (27)

The betas for both implementations are the same, and are obtained by regressing Rj on Rm,

using a rolling window of 60 months from t� 59 to t. However, estimates of the covariance
price of risk, b�mktt , are obtained in two ways. The �rst approach uses the sample mean of

the market excess return over the past 60 months. The second approach estimates the price

of risk using a cross-sectional regression:

Rt = �
MKT
t

b�MKT

t�1 + ut; (28)

where the vectors R and b� contain the cross-section of portfolio returns and CAPM betas

respectively. Note that in principle we can at each time t use this price of risk �t to construct

the forecast of bRCAPMj;t+1 . However, we found that this leads to extremely poor forecasts, which

is due to the time variation in these cross-sectional estimates, as evidenced by the estimates

for co-skewness in Figure 2. To obtain better out-of-sample competitors for our estimators of

co-skewness risk that are based on historical risk premia, we therefore use 60-month averages

of the cross-sectional �t. Arguably, this approach is also more in line with the conventional

(in-sample) implementation of Fama-MacBeth regressions.

Table 4 presents the results. Recall that a positive out-of-sample R-square means that

the model forecasts better than the historical average return on the asset. The performance

of our newly proposed co-skewness measure COSK in the second column of the top four

rows is promising. It yields a positive R-square for all four sets of test portfolios. The out-

of-sample performance of the other models is mixed. Arguably the best competitor is the

regression-based implementation of the CAPM , but this model does poorly for the twenty-

�ve size and book-to-market portfolios. The out-of-sample performance of the Fama-French

model is disappointing. It may seem surprising that the FF model performs so poorly for
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the case of the 25 size and book-to-market portfolios, but note that the FF model is not

typically evaluated in a out-of-sample setting.

It is also interesting to investigate the forecasting performance of the newly proposed

co-skewness measure during di¤erent market conditions. Table 5 presents the out-of-sample

R-squares of the models studied in Table 4 for good and bad times separately. Bad (Good)

times correspond to years with negative (positive) market returns. A comparison of Panel A

and Panel B indicates that the forecasting performance is better during bad economic times

for all models. The COSK model performs exceptionally well in bad times. The model�s

average out-of-sample R-square ranges from 3:38% to 4:83% across test assets, which is

impressive. While the COSK model has a negative out-of-sample R-square in good times,

its performance is roughly similar that of other models such as the CAPM implemented

using historical risk premia.

It is important to keep in mind that in a genuine out-of-sample setting, these very small

positive R-squares are economically meaningful. This criterion is typically used in the time-

series literature, and even then R-squares of 1� 2% are the exception rather than the rule,

with many candidate forecasts yielding negative R-squares, see Campbell and Thompson

(2008), Welch and Goyal (2008), Rapach, Strauss, and Zhou (2010), and Rapach and Zhou

(2013). The performance of the newly proposed estimate of the price of co-skewness risk is

therefore noteworthy, especially because forecasting the cross-section of returns is arguably

even harder than time series forecasting.

4.5 Robustness

We now report on several robustness exercises, using alternative measures of conditional

physical and risk-neutral second moments.

We used the VIX as our measure of the risk-neutral second moment in our benchmark

results. In the robustness analysis we use an alternative following Bakshi and Madan (2000)

and Bakshi, Kapadia, and Madan (2003). This approach is based on a continuum of out-

of-the money call and put options which is approximated using cubic spline interpolation

techniques.

Let St denote the value of the market index and Rm;t+� = lnSt+� � lnSt its return over
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the horizon � . We can get the risk-neutral second moment via

EQt
�
R2m;t+�

�
= er�

1R
St

2 (1� ln [K=St])
K2

Ct (� ;K) dK (29)

+er�
StR
0

2 (1 + ln [St=K])

K2
Pt (� ;K) dK:

where Ct (� ;K) and Pt (� ;K) are call and put options quoted at time t with maturity � and

strike price K. See Appendix A for more details on the implementation and the option data

used.

We investigate three alternative approaches for modeling the conditional physical vari-

ance. We �rst consider a simple autoregressive model on realized variances. The one-step

ahead forecast of the physical second moment is estimated from the following monthly re-

gression

V mt = a0 + a1V
m
t�1 + uV;t; (30)

where V mt =
P

d2tR
2
m;d;t, Rm;d;t denotes the daily market index return in day d of month t,

and uV;t is the variance innovation.

In addition to the autoregressive model we also use an NGARCH model (Engle and Ng,

1993) to estimate the physical variance

Rm;t =
p
V mt zt zt � N(0; 1); (31)

V mt = a0 + b0V
m
t�1 (zt�1 � d0)

2 + c0V
m
t�1: (32)

The T -days ahead aggregate volatility forecast can be computed as follows

Et[R
2
m;t+1:t+T ] = TV

m
0 + (V mt+1 � h20)

1� (b0 + c0 + b0d20)T
1� b0 � c0 � b0d20

; (33)

where V m0 = a0
1�b0�c0�b0d20

. Finally we also use the Heston (1993) stochastic volatility model

in which the market index return follows

dSt
St

= �dt+
p
V mt dWS;t; (34)

and the instantaneous variance dynamic is

dV mt = �(� � V mt )dt+ �
p
V mt dWV;t; (35)
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where WS;t and WV;t are two correlated Brownian motion processes with dWV;tdWS;t = �dt.

We estimate this model using maximum likelihood and the particle �lter.

Table 6 presents the results. Panel A contains the estimates of the price of risk obtained

using the di¤erent approaches. Panel B contains the out-of-sample R-squares R2OS for the

COSK model.

The estimates of the price of risk in Panel A vary between �0:123 and �0:316. Recall
that our benchmark estimate in Table 3 was �0:271. These estimates are quite similar and
they are all larger (in absolute value) than the cross-sectional estimates in Table 2. The

out-of-sample R-squares in Panel B are positive in twenty-six out of twenty-eight cases,

which is quite impressive when compared with the models in Table 4. We conclude that

our newly proposed estimates of the price of risk are rather robust across di¤erent empirical

implementations, and that the resulting out-of-sample performance is much better than that

of regression-based implementations of models with co-skewness risk, as well as competing

factor model speci�cations.

5 The Price of Co-Kurtosis Risk

We now provide estimates of the price of co-kurtosis risk using the estimator presented in

Proposition 2. To estimate the price of co-kurtosis risk, we need to estimate the third condi-

tional moment under the risk-neutral measure EQt (R
3
m;t+1) and under the physical measure

EPt (R
3
m;t+1).

Estimating the third moment is much harder than estimating the second moment, espe-

cially in the case of the physical third moment. We �rst discuss our benchmark implementa-

tion, which is as simple as possible to minimize the impact of modeling choices. Subsequently

we discuss more sophisticated approaches.

5.1 Estimating Risk-Neutral and Physical Third Moments

Evaluating the pricing of co-kurtosis risk is arguably most meaningful if lower moment risk

is also considered. The empirical results in this section thus not only require estimates

of risk-neutral and physical third moments, but also of risk-neutral and physical second

moments. For the physical second moment we again use the benchmark HAR model in

equation (22)-(24), and for the risk-neutral second moment we use the VIX benchmark.

With respect to the modeling of the third moment, it is well known that capturing the
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time-variation in the physical third moment is extremely di¢ cult, see for instance Jondeau

and Rockinger (2003). It is also well known that for index returns, the risk-neutral third

moment is on average much larger (in absolute value) than the physical third moment, see

for instance Bakshi and Kapadia (2003).

Given these stylized facts, we proceed as follows. We estimate the risk-neutral third

moment using the method of Bakshi and Madan (2000). We implement this approach using

data on S&P500 index options from OptionMetrics for the period January 1996 to December

2012. Note that this sample period is di¤erent from the one used in Section 4. As in equation

(29) above let St denote the value of the market index and Rm;t+� = lnSt+� � lnSt its return
over the horizon � . We can get the option-implied third moment via

EQt
�
R3m;t+�

�
= er�

1R
St

6 ln [K=St]� 3 (ln [K=St])2

K2
Ct (� ;K) dK (36)

�er�
StR
0

6 ln [St=K] + 3 (ln [St=K])
2

K2
Pt (� ;K) dK:

where Ct (� ;K) and Pt (� ;K) are call and put options quoted at time t with maturity � and

strike price K. See Appendix A for more details on the implementation and the data.

With respect to the physical third moment, we simply set it to zero throughout the

sample in our benchmark implementation. Con�rming existing results, the unconditional

third moment estimate for monthly S&P500 returns during 1996-2012 is not statistically

di¤erent from zero at conventional con�dence levels, and moreover it is very small compared

to the estimates of risk-neutral moments in our sample. Setting the physical third moment

to zero may therefore be preferable to using noisy estimates. In Section 5.3, we explore

the results using several alternative estimates for the physical third moments: unconditional

sample moments and estimates provided by a dynamic model of the physical third moment.

5.2 Estimates of The Price of Co-Kurtosis Risk

The price of co-kurtosis risk for month t can now simply be computed as

b�COKUt = bEPt (R3m;t+1)� bEQt (R3m;t+1):
For our benchmark implementation this gives

b�COKUt = � bEQt (R3m;t+1):
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Figure 4 depicts the time series of the price of co-kurtosis risk for our benchmark imple-

mentation, which is simply the negative of the risk-neutral third moment. Consistent with

theory, the price of co-kurtosis risk in Figure 4 is positive throughout the period. It is equal

to 0:022 on average.11 Existing empirical studies have also documented positive prices of

co-kurtosis risk. See for instance Ang, Chen, and Xing (2006), who �nd that stocks with

higher co-kurtosis earn higher returns.

Figures 5 and 6 report on estimates of co-kurtosis risk obtained using Fama-MacBeth

regressions. Figure 5 indicates that the month-by-month estimates of the price of co-kurtosis

risk vary considerably over time, and that they are often negative. Compared to the

regression-based time series of the prices of co-skewness risk in Figure 2, the time series

of the prices of co-kurtosis risk are less correlated across test assets. When averaging over

time, the estimate is signi�cantly negative for the twenty-�ve size and momentum portfolios.

This is also the case for the univariate regressions in Panel A of Figure 6. However, Panel

B of Figure 6 indicates that this may be due to the relatively short sample period. When

using the longer 1966-2012 time period, all four estimates of co-skewness risk are positive,

although not always statistically signi�cant.

For the 1996-2012 sample period in Panel A of Figure 6, only one set of test portfolios

yields a statistically signi�cant positive result, the twenty-�ve size and short term reversal

portfolios. The resulting estimate of the price of co-kurtosis risk is 0:020. The estimates

obtained for the 1966-2012 sample period in Panel B of Figure 6 are of the same order

of magnitude, but somewhat larger. We conclude that our new estimates of the price of

co-kurtosis risk are rather similar to regression-based estimates, which contrasts with our

�ndings on the price of co-skewness risk.

Table 7 presents out-of-sample R-squares using these estimates of the prices of co-

skewness and co-kurtosis risk, and compares the resulting �t with the �t of regression-based

approaches. As in Table 4, the price of risk is estimated using cross-sectional regressions

or historical risk premia. When using historical risk premia, we provide out-of-sample pre-

dictions for the CAPM , the model with a co-skewness premium COSK, the model with

a co-kurtosis premium COKU , and the model with market and co-skewness factors and

market and co-kurtosis factors, CAPM +COSK and CAPM +COKU respectively. When

using cross-sectional regressions, we provide predictions for the CAPM , CAPM + COSK,

CAPM +COKU , and the Fama-French three-factor model FF . We also use hybrid models

11Recall that for expositional convenience these estimates of the moments and the prices of co-skewness
and co-kurtosis risk are reported in percentage terms, i.e. multiplied by 100.
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with regression-based co-variance premium and historical co-skewness and co-kurtosis pre-

miums, CSCAPM+COSK and CSCAPM+COKU . Furthermore, we use the HAR+VIX

benchmark model in order to obtain the time-series of the price of co-skewness risk used in

the COSK, CAPM + COSK, and CSCAPM + COSK speci�cations.

Note that the sample period is di¤erent from the one used in Section 4.3. However, the

resulting estimates of the price of co-skewness risk are similar to the ones obtained in Section

4.3, and it is therefore not surprising that the resulting R-squares are similar to the ones in

Table 4.

The model with co-kurtosis risk performs well when using price of risk estimated from

historical risk premia. It has large, positive out-of-sample R-squares for the 25 size and

book-to-market portfolios and for the 25 size and short-term reversal portfolios. For the 25

size and momentum portfolios, the R-square is positive but not large and for the 25 size

and long-term reversal it is slightly negative. These option-based results for the co-kurtosis

model compare very favorably with those for the other models in Table 7.

5.3 The Dynamics of the Physical Third Moment

It is well known that modeling the conditional third moment is challenging, partly because

it is much less persistent than the second moment�particularly so at the monthly frequency.

Our own empirical implementation con�rmed these challenges. Together with the knowledge

that the risk-neutral third moment is much larger than the physical third moment, this

motivated us to set the physical third moment equal to zero in our empirical implementation.

We now investigate if improvements can be made through alternative modeling assumptions.

Table 8 reports on the COKU model using three alternative estimates for the physical

third moment: �rst, a constant third moment computed using daily data; second, a constant

third moment computed using monthly data; and �nally a fully dynamic physical third

moment. To implement the dynamic physical third moment, we use a version of the dynamic

moment model in Jondeau and Rockinger (2003) described in Appendix B. Note that this

model includes the speci�cation of a dynamic second moment. Our implementation is close

to the model Jondeau and Rockinger (2003) refer to as Model 2, which is among the more

parsimonious models they consider and which is su¢ ciently richly parameterized for our

purposes.

The results in Panel A of Table 8 indicate that the resulting estimates of the price of

co-kurtosis risk are on average similar to the estimate of 0:022 obtained using a zero physical
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third moment. Note from Panel B that the out-of-sample performance of the co-kurtosis

model when allowing for a dynamic physical third moment is substantially worse than when

using zero or a constant for the physical estimate. This may suggest that our estimates of

the conditional physical third moment are too noisy, which may a¤ect the cross-sectional

out-of-sample �t. We therefore suggest simply setting the physical third moment equal to

zero as we do in Table 7 until methods become available that make it possible to estimate

the dynamic third moment more accurately and precisely.

6 Conclusion

We propose an alternative strategy for estimating the price of possibly nonlinear exposures

to market risk that avoids the errors inherent in the cross-sectional regression approach. The

key di¤erence between our approach and existing methods is that we explicitly impose the

consistent pricing restrictions on both stocks and contingent claims. We study two important

applications of our general approach: The price of co-skewness risk in our framework corre-

sponds to the spread between the physical and the risk-neutral second moment. The price

of co-kurtosis risk is similarly given by the spread between the physical and the risk-neutral

third moment.

Using monthly data for the period 1996-2012, we �nd that the price of co-skewness risk has

the theoretically expected negative sign in almost every month, and the price of co-kurtosis

risk has the theoretically expected positive sign in most months. In contrast, the prices of risk

obtained using regression-based approaches do not always have the theoretically anticipated

signs even on average. Our approach also provides genuinely conditional estimates of the

price of risk at monthly or even higher frequencies. When using a regression-based approach,

monthly estimates are available, but they are very imprecise, and they are therefore usually

averaged over a large number of months. An out-of-sample analysis of factor models with

co-skewness and co-kurtosis risk indicates that the new estimates of the price of risk improve

the models�performance. The models also robustly outperform competing factor models

such as the CAPM and the Fama-French model.

Several questions remain, and a number of extensions could prove interesting. First, while

the estimated price of co-skewness risk leads to a more than satisfactory out-of-sample cross-

sectional �t when used by itself, its performance is worse when combined with the CAPM

risk factor. It may prove useful to further investigate the resulting biases. Second, alternative

computations of the physical and risk-neutral moments are needed, especially for the case of
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co-kurtosis. It may prove interesting to use the CBOE SKEW index, which, like the VIX,

is readily available. Third, the focus of this paper is on improving measurement. While we

believe that our measure of the price of co-skewness risk improves on existing techniques, we

worry that the estimated betas we use in the analysis may be noisy. Improved estimation

of betas may be worth exploring, and may lead to better out-of-sample performance. The

estimation approach proposed by Bali and Engle (2010) may be especially promising in this

regard. Finally, it would be useful to reliably assess the statistical signi�cance of the price of

co-skewness and co-kurtosis risk that takes into account the uncertainty in the various steps

involved in the computation.
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Appendix A: Extracting Option-Implied Moments

We estimate the risk-neutral second and third moments using the method of Bakshi and

Madan (2000). We implement this approach using data on S&P500 index options from

OptionMetrics for the period January 1996 to December 2012. We use the implied volatility

estimates reported in OptionMetrics to approximate a continuum of implied volatilities,

which are in turn converted to a continuum of prices. For strike prices outside the available

range, we simply use the implied volatility of the lowest or highest available strike price.

Following standard practice, we �lter out options that (i) violate no-arbitrage conditions;

(ii) have missing or extreme implied volatility (larger than 200% or lower than 0.01%); (iii)

with open-interest or bid price equal to zero; and (iv) have a bid-ask spread lower than the

minimum tick size, i.e., bid-ask spread below $0.05 for options with prices lower than $3 and

bid-ask spread below $0.10 for option with prices equal or higher than $3.

Let St denote the value of the market index and Rm;t+� = lnSt+� � lnSt its return over
the horizon � . We can get the risk-neutral second moment via

EQt
�
R2m;t+�

�
= er�

1R
St

2 (1� ln [K=St])
K2

Ct (� ;K) dK

+er�
StR
0

2 (1 + ln [St=K])

K2
Pt (� ;K) dK:

where Ct (� ;K) and Pt (� ;K) are call and put options quoted at time t with maturity � and

strike price K. We can get the option-implied third moment via

EQt
�
R3m;t+�

�
= er�

1R
St

6 ln [K=St]� 3 (ln [K=St])2

K2
Ct (� ;K) dK

�er�
StR
0

6 ln [St=K] + 3 (ln [St=K])
2

K2
Pt (� ;K) dK:

When computing these moments, we eliminate put options with strike prices of more than

105% of the underlying asset price (K=S > 1:05) and call options with strike prices of less

than 95% of the underlying asset price (K=S < 0:95). We only estimate the moments for

days that have at least two OTM call prices and two OTM put prices available.

Since we do not have a continuum of strike prices, we calculate the integrals using cubic

splines. For each maturity, we interpolate implied volatilities using a cubic spline across mon-

eyness levels (K=S) to obtain a continuum of implied volatilities. For moneyness levels below

31



or above the available moneyness level in the market, we use the implied volatility of the

lowest or highest available strike price. After implementing this interpolation-extrapolation

technique, we obtain a �ne grid of implied volatilities for moneyness levels between 1% and

300%. We then convert these implied volatilities into call and put prices using the following

rule: moneyness levels smaller than 100% (K=S < 1) are used to generate put prices and

moneyness levels larger than 100% (K=S > 1) are used to generate call prices using trape-

zoidal numerical integration. Linear interpolation between maturities is used to calculate

the moments for a �xed 30-day horizon.

Appendix B: Modeling Dynamic Physical Third Mo-

ments

We implement the Jondeau and Rockinger (2003) model using monthly data. The model is

given by

Rm;t =
p
V mt zt zt � GT (ztj�t; �t);

where Rm;t is the return on the market in month m, GT denotes the generalized student-t

distribution, and where the higher-moment dynamics are modeled via

V mt = a0 + b
+
0

�
R+m;t�1

�2
+ b�0

�
R�m;t�1

�2
+ c0V

m
t�1;e�t = a1 + b

+
1 R

+
m;t�1 + b

�
1 R

�
m;t�1;e�t = a2 + b

+
2 R

2
m;t�1;

�t = g]2;+30] (e�t) ; and �t = g]�1;1] �e�t� ;
where R+m = max(Rm; 0) and R

�
m = max(�Rm; 0). The logistic map

g]xL;xU ] (x) = xL +
xU � xL

1 + exp(�x) ;

ensures that 2 < �t <1 and �1 < �t < 1, which are necessary conditions for the existence
of the GT distribution. Note that we have set the conditional mean return to zero. We do

so for two reasons. First, the mean is di¢ cult to estimate reliably. Second, and maybe most

importantly, the �rst moment of the market returns has little impact on the dynamics of

higher moments.
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The density of Hansen�s (1994) GT distribution is de�ned by

GT (ztj�t; �t) =

8>>><>>>:
btct

�
1 + 1

�t�2

�
btzt+at
1��t

�2��(�t+1)=2
if zt < �at=bt;

btct

�
1 + 1

�t�2

�
btzt+at
1+�t

�2��(�t+1)=2
if zt � �at=bt;

where

at � 4�tct
�t � 2
�t � 1

; bt � 1 + 3�2t � a2t ; ct �
� ((�t + 1) =2)p
� (�t � 2)� (�t=2)

:

We need the non-centered second and third conditional moments, which can be computed

as follows

EPt
�
R2m;t+1

�
= V mt+1;

and

EPt
�
R3m;t+1

�
=
�
V mt+1

�3=2 �
m3;t+1 � 3at+1m2;t+1 + 2a

3
t+1

�
=b3t+1:

where

m2;t = 1 + 3�
2
t ; m3;t = 16ct�t

�
1 + �2t

� (�t � 2)
2

(�t � 1) (�t � 3)
;

Note that the third moment exists in the model so long as �t > 3.
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Figure 1: The Cross-Section of Returns and Co-Skewness Betas

We plot average excess returns (monthly, in percentages), E[Rj ] � Rf , against co-skewness betas, �COKUj ,

for four sets of portfolios. The co-skewness beta, �COSKj , is computed from the regression of monthly excess

returns on market returns and squared market returns. We consider two periods, 1986-2012 (Panel A),

and 1966-2012 (Panel B), and four sets of test portfolios. The �s are multiplied by 100 for expositional

convenience.
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Panel B. 1966 - 2012
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Figure 2: Regression-Based Estimates of the Price of Co-Skewness Risk

We plot time series of the cross-sectional prices of co-skewness risk, multiplied by 100 for expositional
convenience. Each month, we estimate the co-skewness beta using a 60-month rolling window of monthly
returns from the following time series regression

Rj;t �Rf;t = �j;t + �MKT
j;t Rm;t + �

COSK
j;t R2m;t + "j;t:

We then run the following cross-sectional regression using the estimated betas and returns for the next month

Rj;t+1 �Rf;t+1 = �0t+1 + �MKT
j;t �MKT

t+1 + �COSKj;t �COSKt+1 + ej;t+1:

We consider four sets of test portfolios: 25 Size/Book-to-Market, 25 Size/Momentum, 25 Size/Short-Term
Reversal and 25 Size/Long-Term Reversal. The sample period is from January 1986 through December 2012.
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Figure 3: The Option-Based Price of Co-Skewness Risk

We plot the time series for the conditional physical and risk-neutral second moments (monthly in percentage)

and the price of co-skewness risk, multiplied by 100 for expositional convenience. The physical second moment

is estimated using an HAR model and the risk-neutral second moment is proxied by the VIX squared. The

time-varying price of co-skewness risk is equal to the spread between the physical and risk-neutral moments.

The sample period is from January 1986 to December 2012.
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Figure 4: The Option-Based Price of Co-Kurtosis Risk

We plot the price of co-kurtosis risk, multiplied by 100 for expositional convenience. We report on the

benchmark case where the physical third moment is set equal to zero. The risk-neutral moment is estimated

using the model-free approach in Bakshi and Madan (2000) and Bakshi, Kapadia, and Madan (2003). The

sample period is from January 1996 to December 2012.
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Figure 5: Regression-Based Estimates of the Price of Co-Kurtosis Risk

We plot the time series for the cross-sectional price of co-kurtosis risk, multiplied by 100 for expositional
convenience. Each month, we estimate the co-kurtosis beta using a 60-month rolling window of monthly
returns from the following time series regression

Rj;t �Rf;t = �j;t + �MKT
j;t Rm;t + �

COSK
j;t R2m;t + �

COKU
j;t R3m;t + "j;t:

We then run the following cross-sectional regression using the estimated betas and returns for the next month

Rj;t+1 �Rf;t+1 = �0t+1 + �MKT
j;t �MKT

t+1 + �COSKj;t �COSKt+1 + �COKUj;t �COKUt+1 + ej;t+1:

We consider four sets of portfolios: 25 Size/Book-to-Market, 25 Size/Momentum, 25 Size/Short-Term Re-
versal and 25 Size/Long-Term Reversal. The sample period is from January 1996 to December 2012.
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Figure 6: The Cross-Section of Returns and Co-Kurtosis Betas

We plot average excess returns (in percentage per month), E[Rj ]�Rf , against co-skewness betas, �COKUj ,

for four sets of portfolios. The co-skewness beta, �COKUj , is computed from the regression of monthly excess

returns on market returns, squared market returns and cubic market returns. We consider two periods,

1996-2012 (Panel A) and 1966-2012 (Panel B), and four sets of test portfolios. The �s are multiplied by 100

for expositional convenience.
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Panel B. 1966 - 2012
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Table 1: The Price of Co-Skewness Risk: Regression-Based Estimates for Port-
folios Sorted on Co-Skewness

The table shows the results of Fama-MacBeth regressions using monthly returns. Each month, we estimate

the CAPM and co-skewness betas jointly using a 60-month rolling window and calculate the value-weighted

returns of 25 double-sorted COSK/CAPM portfolios. Using these portfolios as test assets, we run time-series

regressions of the returns on the factors and then run cross-sectional regressions using returns for the next

month to estimate the prices of covariance and co-skewness risks. Panel A reports the time-series average of

the monthly estimates and the Fama-MacBeth t-statistics with Newey-West correction for serial correlation,

using 1 lag. The �s are multiplied by 100 for expositional convenience. Panel B presents the pre- and

post-formation betas. The pre-formation betas correspond to the average across the entire sample of the

value-weighted betas, and the averages of the monthly value-weighted t-statistics are given in parentheses.

The post-formation betas and their t-statistics are obtained by regressing the monthly sorted portfolio returns

on the factors. We consider two periods, 1986-2012 and 1966-2012.

Panel A: Co-Skewness Risk
25 COSK/CAPM

1986-2012 1966-2012
�0 0.121 -0.166 0.242 0.087

(0.42) (-0.54) (1.13) (0.37)
�MKT 0.468 0.794 0.246 0.441

(1.18) (1.99) (0.83) (1.47)
�HML 0.183 0.075

(0.84) (0.47)
�SMB 0.062 0.087

(0.33) (0.61)
�MOM 0.893 0.779

(2.57) (3.13)
�COSK -0.014 -0.034 -0.028 -0.030

(-0.44) (-1.02) (-1.25) (-1.28)

Adj R2 22.62 30.89 25.57 32.43

Panel B: Pre- and Post-Formation Betas

Co-Skewness Factor CAPM Factor

1986-2012 1966-2012 1986-2012 1966-2012

Pre- Post- Pre- Post- Pre- Post- Pre- Post-

Rank Form. Form. Form. Form. Form. Form. Form. Form.

1 -9.831 0.502 -8.995 0.319 0.246 0.817 0.383 0.649

(-1.80) (0.63) (-1.78) (0.68) (1.43) (12.59) (2.34) (22.86)

2 -4.289 0.331 -3.883 0.226 0.617 1.045 0.736 0.861

(-1.18) (0.80) (-1.10) (0.83) (3.04) (21.02) (3.87) (35.34)

3 -1.235 0.419 -1.031 0.394 0.913 1.207 1.026 1.027

(-0.41) (1.08) (-0.34) (1.44) (4.16) (25.21) (4.79) (41.42)

4 1.618 -0.011 1.663 0.079 1.254 1.396 1.351 1.229

(0.47) (-0.12) (0.51) (0.23) (5.15) (32.75) (5.51) (47.15)

5 6.368 -0.626 6.175 -0.434 1.893 1.700 1.932 1.566

(1.55) (-1.32) (1.63) (-1.28) (5.59) (30.67) (5.78) (42.35)

47



Table 2: Regression-Based Estimates of the Price of Co-Skewness Risk

The table shows the results of cross-sectional Fama-MacBeth regressions using monthly returns. Each month,

we estimate betas using a 60-month rolling window of monthly returns from a time series regression of the

following form

Rj;t �Rf;t = �j;t + �MKT
j;t Rm;t + �

HML
j;t RHML;t + �

SMB
j;t RSMB;t + �

MOM
j;t RMOM;t + �

COSK
j;t R2m;t + "j;t:

We then run the following cross-sectional regression using the estimated betas and returns for the next month

Rj;t+1�Rf;t+1 = �0t+1+�MKT
j;t �MKT

t+1 +�HML
j;t �HML

t+1 +�SMB
j;t �SMB

t+1 +�MOM
j;t �MOM

t+1 +�COSKj;t �COSKt+1 +ej;t+1:

We report the mean (in percentage) of the estimates and the Fama-MacBeth t-statistics with Newey-West

correction for serial correlation, using 1 lag. The �s are multiplied by 100 for expositional convenience. We

consider two periods, 1986-2012 and 1966-2012, and four sets of test assets.

Panel A: 1986 - 2012
25 Size/BM 25 size/Mom 25 size/STR 25 size/LTR

�0 0.968 1.197 0.069 0.871 0.215 0.111 0.133 0.274
(2.28) (3.33) (0.17) (2.81) (0.59) (0.26) (0.45) (0.85)

�MKT -0.396 -0.600 0.486 -0.154 0.372 0.477 0.569 0.417
(-0.85) (-1.58) (1.07) (-0.42) (0.83) (1.05) (1.67) (1.14)

�HML 0.043 0.103 -0.090 0.125
(0.24) (0.53) (-0.50) (0.60)

�SMB 0.274 -0.177 0.116 0.101
(1.45) (-0.68) (0.39) (0.43)

�MOM 0.737 0.532 -0.507 0.113
(1.82) (1.90) (-1.18) (0.35)

�COSK -0.080 -0.059 -0.148 -0.037 -0.008 0.023 -0.058 -0.035
(-1.21) (-1.16) (-2.45) (-0.87) (-0.13) (0.42) (-0.92) (-0.60)

Adj R2 26.75 46.30 25.05 54.54 29.71 48.70 21.58 43.38

Panel B: 1966 - 2012
25 Size/BM 25 size/Mom 25 size/STR 25 size/LTR

�0 0.755 0.892 0.107 0.807 -0.538 -0.152 0.252 0.647
(2.40) (3.48) (0.35) (3.42) (-1.68) (-0.49) (1.11) (2.67)

�MKT -0.251 -0.440 0.397 -0.258 1.017 0.555 0.364 -0.123
(-0.70) (-1.60) (1.17) (-0.96) (2.70) (1.67) (1.32) (-0.44)

�HML 0.193 0.227 0.138 0.229
(1.39) (1.56) (0.96) (1.50)

�SMB 0.372 -0.068 0.199 0.231
(2.72) (-0.39) (0.92) (1.42)

�MOM 0.433 0.680 -1.116 0.042
(1.58) (3.56) (-3.71) (0.17)

�COSK -0.046 -0.045 -0.146 -0.060 -0.027 0.034 -0.040 -0.049
(-1.05) (-1.32) (-3.56) (-2.12) (-0.58) (0.91) (-0.95) (-1.35)

Adj R2 30.16 48.95 26.37 54.40 30.26 49.61 23.07 43.47

48



Table 3: The Option-Based Price of Co-Skewness Risk

The table provides descriptive statistics for the physical and risk-neutral expectations and the price of co-

skewness risk. The data are monthly. The physical second moment is estimated using a HAR model and

the risk-neutral second moment is proxied by the VIX squared. The time-varying price of co-skewness risk

is equal to the spread between the physical and risk-neutral moments. The moments and prices of risk are

multiplied by 100 for expositional convenience. The data are monthly and the sample period is from January

1986 to December 2012.

EPt [R
2
m;t+1] EQt [R

2
m;t+1] EPt [R

2
m;t+1]� E

Q
t [R

2
m;t+1]

mean 0.1675 0.4381 -0.2707

std 0.2158 0.4133 0.3105

skew 10.5092 3.4318 -3.5761

kurt 145.8792 19.0463 23.1180

�(1) 0.4013 0.7525 0.4949
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Table 4: Out-of-Sample Fit

We compare the out-of-sample performance of several competing models. The price of risk is estimated

using cross-sectional regressions or historical risk premia. Using historical risk premia, we provide out-of-

sample predictions for the CAPM , the model with a co-skewness premium COSK, and the model with

market and co-skewness factors CAPM + COSK. Using cross-sectional regressions, we provide predictions

for the CAPM , the model with market and co-skewness factors CAPM + COSK, and the Fama-French

three-factor model FF . We also use a hybrid model with regression-based co-variance premium and historical

co-skewness premium. This model is referred to as CSCAPM + COSK. We consider four sets of portfolios.

We compute out-of-sample R-squares for each portfolio and report the average. The sample period is from

January 1986 to December 2012.

Out of Sample R-squares

Prices of Risk Estimated from Historical Risk Premia

CAPM COSK CAPM CSCAPM

+COSK + COSK

25 Size/Book-to-Market -0.252 1.690 -0.005 -2.061

25 Size/Momentum -0.553 0.377 -1.623 0.353

25 Size/Short-Term Reversal -0.301 1.362 -0.676 0.304

25 Size/Long-Term Reversal -0.420 0.888 -0.533 0.720

Prices of Risk Estimated from Cross-Sectional Regressions

CAPM CAPM FF

+COSK

25 Size/Book-to-Market -3.905 -4.534 -7.141

25 Size/Momentum 0.879 -0.214 -6.237

25 Size/Short-Term Reversal 0.469 0.524 -0.691

25 Size/Long-Term Reversal 0.440 0.509 -0.750
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Table 5: Out-of-Sample Fit During Good and Bad Times

We compare the out-of-sample performance of several competing models in good and bad times. Bad (Good)

times correspond to years with negative (positive) market returns. The price of risk is estimated using cross-

sectional regressions or historical risk premia. As in Table 4, we consider seven models and four sets of

portfolios. We compute out-of-sample R-squares for each portfolio and report the average. The sample

period is from January 1986 to December 2012.

Panel A: Out of Sample R-squares During Bad Times

Prices of Risk Estimated from Historical Risk Premia

CAPM COSK CAPM CSCAPM

+COSK + COSK

25 Size/Book-to-Market 1.274 4.809 1.502 5.758

25 Size/Momentum 0.527 3.375 -0.577 1.363

25 Size/Short-Term Reversal 0.237 4.066 -0.295 1.976

25 Size/Long-Term Reversal 1.397 4.827 1.770 1.902

Prices of Risk Estimated from Cross-Sectional Regressions

CAPM CAPM FF

+COSK

25 Size/Book-to-Market 4.610 4.806 -0.556

25 Size/Momentum 2.372 0.589 3.816

25 Size/Short-Term Reversal 2.395 2.745 0.099

25 Size/Long-Term Reversal 1.346 1.915 1.951

Panel B: Out of Sample R-squares During Good Times

Prices of Risk Estimated from Historical Risk Premia

CAPM COSK CAPM CSCAPM

+COSK + COSK

25 Size/Book-to-Market -1.275 -0.545 -0.982 -7.816

25 Size/Momentum -1.268 -1.661 -2.342 -0.271

25 Size/Short-Term Reversal -0.722 -0.693 -0.970 -0.931

25 Size/Long-Term Reversal -1.666 -1.702 -1.953 0.039

Prices of Risk Estimated from Cross-Sectional Regressions

CAPM CAPM FF

+COSK

25 Size/Book-to-Market -10.243 -11.468 -12.289

25 Size/Momentum -0.078 -0.681 -13.351

25 Size/Short-Term Reversal -0.970 -1.122 -1.264

25 Size/Long-Term Reversal -0.180 -0.438 -2.673
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Table 6: The Price of Co-Skewness Risk and Out-of-Sample Performance: Ro-
bustness

In Panel A, we provide estimates of the price of co-skewness risk using alternative estimators of the physical

and risk-neutral second moments. In Panel B, we document the out-of-sample performance of the model

with co-skewness risk (COSK) using these di¤erent moment estimators. In Panel B we consider four sets of

portfolios. The moments and prices of risk are multiplied by 100 for expositional convenience. The sample

periods di¤er dependent on data availability.

Panel A: Price of Co-Skewness Risk

Sample Period EPt [R
2
m;t+1] EQt [R

2
m;t+1] EPt [R

2
m;t+1]� E

Q
t [R

2
m;t+1]

NGARCH + VIX 1986 - 2012 0.2960 0.4381 -0.1421

NGARCH + BKM 1996 - 2012 0.3445 0.5153 -0.1708

Heston + VIX 1986 - 2012 0.1539 0.4386 -0.2847

Heston + BKM 1996 - 2012 0.2132 0.5167 -0.3035

AR + VIX 1986 - 2012 0.3152 0.4381 -0.1229

AR + BKM 1996 - 2012 0.3462 0.5153 -0.1691

HAR + BKM 1996 - 2012 0.1990 0.5153 -0.3163

Panel B: Out-of-Sample R-squares

Sample Period 25 Size/BM 25 Size/Mom 25 Size/STR 25 Size/LTR

NGARCH + VIX 1986 - 2012 1.976 0.762 1.679 1.236

NGARCH + BKM 1996 - 2012 2.165 0.345 1.709 1.056

Heston + VIX 1986 - 2012 1.521 0.492 1.243 0.750

Heston + BKM 1996 - 2012 1.437 -0.070 1.076 0.120

AR + VIX 1986 - 2012 0.974 0.618 1.352 0.333

AR + BKM 1996 - 2012 0.925 0.278 1.442 -0.091

HAR + BKM 1996 - 2012 1.999 0.203 1.602 0.765
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Table 7: Option-Based Prices of Co-Skewness and Co-Kurtosis Risk. Out-of-
Sample Fit.

We compare the out-of-sample performance of several competing models. The price of risk is estimated

using cross-sectional regressions or historical risk premia. Using historical risk premia, we provide out-of-

sample predictions for the CAPM , the model with a co-skewness premium COSK, the model with a co-

kurtosis premium COKU , and the model with market and co-skewness factors and market and co-kurtosis

factors, CAPM + COSK and CAPM + COKU respectively. Using cross-sectional regressions, we provide

predictions for the CAPM , CAPM + COSK, CAPM + COKU , and the Fama-French three-factor model

FF . We also use hybrid models with regression-based co-variance premium and historical co-skewness and

co-kurtosis premiums, CSCAPM + COSK and CSCAPM + COKU . We use the Bakshi-Madan (2000)

method and zero physical skew to obtain the time-series of the price of cokurtosis risk used in the COKU ,

CAPM + COKU , and CSCAPM + COKU speci�cations. We use the HAR+VIX benchmark model in

order to obtain the time-series of the price of co-skewness risk used in the COSK, CAPM + COSK, and

CSCAPM +COSK speci�cations. We consider four sets of portfolios and report out-of-sample R-squares.

The sample period is from January 1996 to December 2012.

Out-of-Sample R-squares

Prices of Risk Estimated from Historical Risk Premia

CAPM COSK COKU CAPM CAPM CSCAPM CSCAPM

+COSK +COKU +COSK +COKU

25 Size/Book-to-Market -0.402 2.279 0.934 0.100 -0.339 -0.011 -2.674

25 Size/Momentum -0.732 0.630 0.400 -1.855 -1.080 1.035 0.763

25 Size/Short-Term Reversal -0.418 1.847 1.007 -0.653 -0.660 0.811 0.645

25 Size/Long-Term Reversal -0.645 1.143 0.214 -0.771 -0.977 1.579 0.685

Prices of Risk Estimated from Cross-Sectional Regressions

CAPM CAPM CAPM FF

+COSK +COKU

25 Size/Book-to-Market -1.944 -2.472 -3.931 -7.967

25 Size/Momentum 1.596 0.961 0.615 -4.681

25 Size/Short-Term Reversal 1.048 1.736 0.008 -0.393

25 Size/Long-Term Reversal 0.998 1.046 0.179 0.055
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Table 8: The Price of Co-Kurtosis Risk and Out-of-Sample Performance: Ro-
bustness

Panel A provides estimates of the co-kurtosis price of risk using the COKU model and alternative measures

of the physical third moment. The estimates of the third moment and the price of co-kurtosis risk reported in

Panel A are multiplied by 100 for expositional convenience. Panel B reports out-of-sample R-squares using

these alternative estimates. Panel B considers four sets of portfolios. We compute out-of-sample R-squares

for each portfolio and report the average. The sample period is from January 1996 to December 2012.

Panel A: The Price of Co-Kurtosis Risk

EPt [R
3
m;t+1] EQt [R

3
m;t+1] EPt [R

3
m;t+1]� E

Q
t [R

3
m;t+1]

const skew (daily) -0.0006 -0.0220 0.0214

const skew (monthly) -0.0015 -0.0220 0.0205

Jondeau and Rockinger (2003) -0.0104 -0.0220 0.0116

Panel B: Out-of-Sample R-squares

25 Size/BM 25 Size/Mom 25 Size/STR 25 Size/LTR

const skew (daily) 1.088 0.510 1.098 0.360

const skew (monthly) 1.038 0.385 0.974 0.172

Jondeau and Rockinger (2003) 0.396 -0.432 0.397 -0.332
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