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Abstract

In this paper, we derive uniform convergence rates of nonparametric estimators for continuous
time di¤usion processes. In particular, we consider kernel-based estimators of the Nadaraya-Watson
type with introducing a new technical device called a damping function. This device allows us to
derive sharp uniform rates over an in�nite interval with minimal requirements on the processes: The
existence of the moment of any order is not required and the boundedness of relevant functions can
be signi�cantly relaxed. Restrictions on kernel functions are also minimal: We allow for kernels
with discontinuity, unbounded support and slowly decaying tails. Our proofs proceed by using the
covering-number technique from empirical process theory and exploiting the mixing and martingale
properties of the processes. We also present new results on the path-continuity property of Brownian
motions and di¤usion processes over an in�nite time horizon. These path-continuity results, which
should also have an independent interest, are used to control discretization biases of the nonpara-
metric estimators. The obtained convergence results are useful for non/semiparametric estimation
and testing problems of di¤usion processes.
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1 Introduction

In this paper, we derive the uniform convergence rates of kernel-based nonparametric estimators for
continuous time processes. We speci�cally consider di¤usion processes described by the following type of
stochastic di¤erential equation (SDE):

dXs = � (Xs) ds+ � (Xs) dWs; (1)

where fWsg is the standard Brownian motion. � (�) and �2 (�) are called the drift and di¤usion (volatil-
ity) functions, respectively, which are of our interest in the estimation. To estimate � (�) and �2 (�)
nonparametrically, it is standard to use the Nadaraya-Watson (NW) type estimators:

~� (x) :=
(1=T )

Pn�1
j=1 Kh (Xj� � x)

�
X(j+1)� �Xj�

�
(�=T )

Pn
j=1Kh (Xj� � x)

; (2)

~�2 (x) :=
(1=T )

Pn�1
j=1 Kh (Xj� � x)

�
X(j+1)� �Xj�

�2
(�=T )

Pn
j=1Kh (Xj� � x)

; (3)

where Kh (z) := K (z=h) =h; K is a kernel function; and h is a bandwidth. Florens-Zmirou (1993) �rst
considered this type of estimator, and several authors, such as Jiang and Knight (1997), Bandi and Phillips
(2003), Nicolau (2003) and Aït-Sahalia and Park (2013), have further developed these estimators. While
they have established asymptotic properties of the estimators, such as the consistency and the asymptotic
(mixed) normality, they have focused on the pointwise convergence. The uniform convergence has not
yet been fully considered in the literature. This study presents the uniform convergence rates of the NW
type estimators for continuous time di¤usion processes of the type (1).
In the discrete time setting, several authors, including Bierens (1983), Andrews (1995), Liebscher

(1996), Masry (1996), Bosq (1998), Fan and Yao (2003), Ango Nze and Doukhan (2004), Hansen (2008),
Kristensen (2009), Kong, Linton and Xia (2010), and Gao, Kanaya, Li and Tjøstheim (2015), have studied
the uniform convergence of kernel-based estimators. Their results may not be directly imported to our
continuous time setting; however, some of their techniques may be used in our context to some extent.
There are several di¢ culties in dealing with di¤usion processes: First, the results in the discrete time
setting require the existence of the higher order moment of the process and the (uniform) boundedness
of some relevant functions. These requirements may be too strong for some class of di¤usion processes,
which, in fact, are not satis�ed by several parametric models used in the econometrics literature.
Second, the estimators (2) and (3) are based on the discrete time sample fXj�gnj=1 and incur biases

due to the discretization, which do not appear in the discrete time setting. Note that our estimation
targets � (�) and �2 (�) are the instantaneous conditional mean and variance functions, respectively. In
estimating such objects without assuming the availability of a continuously recorded path of the process,
we generally experience the discretization biases, unless some parametric restriction or the so-called cross
restriction are exploited (see arguments in Hansen and Scheinkman, 1995; Aït-Sahalia, 1996a; Bandi and
Phillips, 2002; Kristensen, 2010a). To control the discretization biases, we consider the in�ll assumption,
which means that the time distance between adjacent observations, �, shrinks to zero as the sample size
n tends to in�nity. Given the in�ll, we have the e¤ects due to the discretization asymptotically negligible
(and obtain the consistency). Our derivation of the rate of discretization bias is based on the (sample)
path continuity of the process. However, the existing results on the path continuity are not su¢ cient for
our purpose. We prove new results on the uniform/global modulus of continuity of Brownian motions
and di¤usion processes, which should also have an independent interest.
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Third, the aforementioned studies that consider the discrete time setting exploit the asymptotic
independence property of the process for the uniform results, which is (typically) implied by the mixing
condition. While our proofs also use this property (through the large deviation type inequality), we need
to consider a di¤erent treatment since we work with the in�ll. The dependence between consecutive
observations becomes stronger as n ! 1 under the in�ll (� ! 0), which leads to slower convergence
(than in the standard discrete time setting). Note that we also work with the longspan assumption
where the time horizon of the observations, T (= n�)!1. This is necessary to exploit the asymptotic
independence.
To circumvent the di¢ culties in the continuous time setting, we propose to introduce a technical

device B (�), which we call a damping function, and consider the following modi�ed estimators for the
drift and di¤usion functions, instead of (2) and (3):

�̂ (x) := 	̂� (x) =�̂ (x) ; (4)

�̂2 (x) := 	̂�2 (x) =�̂ (x) ; (5)

where

	̂� (x) := (1=T )
Xn�1

j=1
Kh (Xj� � x)B (Xj�)

�
X(j+1)� �Xj�

�
; (6)

	̂�2 (x) := (1=T )
Xn�1

j=1
Kh (Xj� � x)B (Xj�)

�
X(j+1)� �Xj�

�2
; (7)

�̂ (x) := (�=T )
Xn

j=1
Kh (Xj� � x)B (Xj�) : (8)

Unlike the standard estimators in (2) and (3), each component of the new estimators includes B (Xj�).
We call (4) and (5) the damped versions of the NW estimators. We subsequently derive the uniform
convergence rates of �̂ (x) and �̂2 (x). The function B (�) should take strictly positive values over the
entire support of the process. The econometrician may choose this function arbitrarily so that the
products of B (�) and relevant functions, e.g., B (x)� (x) and B (x)�2 (x), are uniformly bounded. Note
that � (x) and/or �2 (x) are not bounded in many parametric models found in the literature. However,
we can let B (x)� (x) and B (x)�2 (x) uniformly bounded by choosing B (x) with exponential decay rate
(to zero as jxj ! 1), if � (x) and �2 (x) are at most of polynomial order (we provide conditions on
B (�) and an example of B (�) in Section 3). We also note that by using the damping function, we can
also work with a process whose invariant density is unbounded, allowing for highly skewed distributions.1

This point is discussed in the Supplementary Material.
The introduction of the damping function does not a¤ect the consistency property of the estimators.

This is because 	̂� (x) and 	̂�2 (x) converge to B (x)� (x)� (x) and B (x)�2 (x)� (x) respectively, where
� (x) denotes the invariant density of the process, and �̂ (x) converges to B (x)� (x). Thus, our new
estimators (4) and (5) are respectively consistent for � (x) and �2 (x), since B (x) (as well as � (x)) is
cancelled out. We also note that the limit normal distributions are the same for the new and standard
estimators while asymptotic biases of the estimators are a¤ected by the damping function (see discussions
in Section 5 and the Supplementary Material). The uniform rate we have derived for the di¤usion function
estimator is optimal in the sense of Stone (1982). We also conjecture that the rate for the drift function
estimator is also optimal since our uniform rate is

p
(log T )=Th and the pointwise rate (derived in the

previous studies) is
p
1=Th, while further studies are need to con�rm the optimality.

1For example, we allow for the gamma distribution with the shape parameter less than 1, whose density is unbounded
(1) at the left endpoint 0.
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There are several advantages of introducing the damping function device. It enables us to employ
a technique from empirical process theory, i.e., the method by the covering number. As discussed in
Andrews (1994), van der Vaart (1998) and others, empirical process theory provides very useful techniques
for establishing asymptotic theory in econometric and statistical problems. However, it often requires
relatively strong conditions, such as the uniform boundedness of relevant functions, and thus may have
limited applications. As stated above, even when some function f (x) is not bounded, we can choose
B (x) so that B (x) f (x) is (uniformly) bounded. Given this induced boundedness, we can more easily
employ the technique from empirical process theory. The use of the covering number allows us to proceed
without the so-called truncation technique, as used in Bosq (1998) and Hansen (2008), to prove the
uniform convergence over an unbounded support, which in turns allows us to proceed without assuming
the existence of the moment of the process (of any order). We can comfortably accommodate the in�nite
mean/variance case, for example. This is in contrast to the results in Andrews (1995), Bosq (1998) and
Hansen (2008), which require the existence of the higher order moments to derive uniform convergence
rates. We note that the covering number technique can work with almost all forms of the kernels functions,
e.g., ones with discontinuity, unbounded support, and/or slowly decreasing tails. We also note that B (x)
plays an important role in controlling the discretization biases. As mentioned previously, for this purpose,
we use the path continuity property of the di¤usion processes, the so-called modulus of continuity. This
property, unfortunately, may not generally hold under the longspan (with T !1) due to the potential
unboundedness of the drift and di¤usion functions. However, we prove the modi�ed version of the
modulus of continuity, i.e., the continuity with a weighted sup-norm (setting the damping function as
weight), which allows us to proceed.
Our uniform convergence results are useful in various econometric/statistical problems for di¤usion

processes. In fact, the author applies the results of the paper to nonparametric speci�cation testing of
Markov processes (Kanaya, 2014). They may be used for deriving asymptotic distributions results in
speci�cation testing problems of volatility components as found in Li (2007) and Corradi and Distaso
(2010), as well as in derivative-security pricing problems as in Aït-Sahalia (1996a) and Kristensen (2008).
Some ideas found in econometrics and statistics may seem as similar to those of the damping function.

For example, the so-called trimming device is often used to eliminate aberrant behaviors of nonparametric
estimators (see Sec. 6 of Ichimura and Todd, 2007 for an overview) in two-step semiparametric estimation
problems (e.g., as in Robinson, 1988; Ai, 1997; Cosslett, 2004). This is similar in its concept to our
damping device. However, trimming completely discards some part of estimated values, typically very
large ones (or small ones if the estimator is in the denominator). In contrast, the damping function puts
less weight on some observations and does not discard any part of observations or estimated values. Chen
and Fan (2006) consider a weighting function to verify asymptotic results of copula-based semiparametric
models. Roughly, they show the convergence of the (rescaled) empirical distribution function based on a
weighed norm, supx jf (x)� g (x)j ~w (x), instead of the usual sup-norm supx jf (x)� g (x)j (Sec. 4 in Chen
and Fan, 2006). The function ~w (x) is introduced to suppress large values in their semiparametric score
function (and its derivative) near the boundaries. Our damping function plays the same role as Chen
and Fan�s weighting function, in that it is used to suppress large values in the nonparametric estimators.
However, we note that Chen and Fan�s weighting function is used only to modify the de�nition of the
metric. In contrast, our damping function is used to modify the estimators themselves.
In related studies, Fan and Zhang (2003) and Xu (2009, 2010) also consider kernel-based nonparamet-

ric estimators for di¤usion processes, working with the local polynomial and/or re-weighted estimators.
It is known that these estimators in general possess better bias properties compared to the simple NW
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type as (2) and (3). While their results are pointwise, our techniques of the damping function may also
be used to establish the uniform results of their estimators. Krinsenten (2008) consider convergence rates
of nonparametric estimators with respect to the L2 integral norm (the proof of Theorem 5 in p. 405),
which is required for his derivations of asymptotic results for estimators of derivative-security pricing.
Our uniform convergence theorems can be used to derive such L2-convergence results, and complement
his results. Koo and Linton (2012) consider a kind of time varying semiparametric di¤usion model and
present the uniform convergence results for their semi/nonparametric estimators. Since they exploit the
drift function�s parametric restriction as well as the (so-called) cross restriction of stationary di¤usions,
the in�ll assumption is not required. As a result, their estimators are free of the discretization biases,
where the existing results for the discrete time processes may be applied directly. Finally, Kutoyants
(1999) and van Zanten (2000) consider the (invariant) density estimation for di¤usion processes and
present the uniform convergence of the kernel-based density estimator. However, their results are distinct
from ours since they assume the availability of a continuous path of the process.

The rest of the paper is organized as follows: In Section 2, we set up our framework. In Section 3,
we derive new results on the path continuity of Brownian motions and di¤usion processes. Section 4
presents general convergence theorems for functionals of di¤usion processes. Section 5 presents uniform
convergence theorems for our new estimators (4) and (5). Proofs are found in an Appendix, and some
additional proofs, results and discussions are provided in Supplementary Material to this article.
For de�nitional equations, we write A := B and C =: D throughout the text. The former means that

A is de�ned by B, and the latter means that D is de�ned by C. We also write @f (x) and @kf (x) to
denote the �rst and k-th derivatives of a function f (x), respectively.

2 Framework

This section formally describes our framework. Let fXsgs�0 be a time-homogeneous Markov di¤usion
process described by the stochastic di¤erential equation (1) with fWsgs�0 a standard Brownian motion.
The processes are de�ned on a �ltered probability space (
;F; fFsgs�0;Pr), which satis�es the usual
conditions. The functional forms of � (�) and � (�) are assumed to be unknown and are of our interest in
the estimation. The domain of Xs is denoted by I, which is a real interval whose left and right boundaries
are given by l and r respectively (�1 � l < r � 1). While we mainly consider I = R := (�1;1),
all the subsequent discussions and results hold true for some other choices of I upon suitable/slight
modi�cations. In the Supplementary Material, we provide some discussions/results in particular for
I = (0;1) and [0;1).
We require the following conditions for establishing the uniform convergence results of the estimators

over x 2 (l; r):

A1. (i) � (�) (: (l; r) ! R) and � (�) (: (l; r) ! (0;1)) are twice continuously di¤erentiable on (l; r).
(ii) The process fXsg, as a solution to (1), is recurrent.

A2. (i) It holds that
R r
l
m (x) dx <1, where m (�) is the speed density:

m (x) := ��2 (x) exp
�
2
R x
c

�
� (u) =�2 (u)

�
du
	
for x 2 (l; r) : (9)

(ii) fXsg is strictly stationary with the invariant probability density � (�) which is bounded at any
interior point of I (i.e., � (x) < 1 for each x 2 (l; r)), and is �-mixing (strongly mixing) with

5



mixing coe¢ cients � (s) satisfying

� (s) � As�� for some � > 0 and A > 0: (10)

These conditions are standard. (A1.i) is su¢ cient for the existence of a unique strong solution to (1)
up to an explosion time (and up to at least the �rst hitting time on l = 0 if I = [0;1)) for any initial
distribution of X0.2 Given (A1.ii), the solution to (1) should be non-explosive and should not be killed
at any point in I. Under (A1.i), a simple su¢ cient condition for (A1.ii) is that

S (x)! �1 as x! l; and S (x)!1 as x! r; (11)

where S (x) is the scale function:

S (x) :=
R x
c
exp

�
�2
R y
c

�
� (u) =�2 (u)

�
du
	
dy for x 2 (l; r) ; (12)

with c representing a generic element in (l; r) (see Proposition of 5.22(a) in p. 345 of Karatzas and Shreve,
1991; henceforth, KS91). The condition in (11) means that neither the left nor the right boundary is
attracting (at the same time, neither is attainable). Therefore, the process is non-explosive. If either
of the boundaries is bounded, we allow Xs to attain boundaries in some �nite time with a positive
probability. For example, if l = 0 and I = [0;1), limx!l S(x) may be �nite (see Sec. 6 in Ch. 15 of
Karlin and Taylor, 1981; KT81, henceforth). In this case, the SDE (1) by itself may not be able to fully
describe the behavior of the process through in�nite time horizon, in particular after the hit on l = 0,
while we need some additional speci�cation.3

(A2.i) is su¢ cient (and necessary) for the process to be positively recurrent and to have the invariant
probability density � (�) under (A1). In particular, � (�) is given as � (x) = m (x) =

R r
l
m (z) dz (see, e.g.,

Ch. 15 of KT81). Then, given (A1.i), � (x) is twice continuously di¤erentiable at x 2 (l; r). We also note
that (A1.i) guarantees the existence of the transition density ps (x; y) dy = Pr[Xt+s 2 dyjXt = x] (for any
s; t � 0; see, e.g., McKean 1956, Sec. 5), which, together with the existence of the invariant density, in
turn implies the existence of joint density of (Xt; Xt+s), �t;t+s (x; y) dxdy = Pr[Xt 2 dx;Xt+s 2 dy]. This
fact is e¤ectively used to derive sharp convergence rates (see the proof of Lemma 4).

2This statement can be illustrated as follows: The continuity of � (�) and �2 (�) in (A1.i) is su¢ cient for the existence
of a unique weak solution up to an explosion time (and up to the �rst hitting time on l = 0 if I = [0;1)), given any
initial distribution (Theorem 5.15 in p. 341 of Karatzas and Shreve, 1991; KS91, henceforth). The di¤erentiability in (A1.i)
implies the local Lipschitz continuity of � (�) and �2 (�), and thus the pathwise uniqueness of the solution to (1) (Theorem
2.5 in p. 287 and Remark 3.3 in p. 301 of KS91). Then, by applying Yamada and Watanabe�s theorem (Corollary 3.23 in
p. 310 of KS91), which states that weak existence and pathwise uniqueness imply strong existence, we obtain the desired
result.

3We can impose such a speci�cation as follows. Let l be an instantaneously re�ecting boundary (that is, the process,
having attained at l = 0, returns to the interior immediately (with the Lebesgue measure of time spent at l equal to zero).
In particular, we consider that fXsg is a di¤usion in Feller�s sense determined by the scale function S (�) given by (12) and
the speed measure M(�), where M(�) is a Borel measure with M(f0g) = 0; M((a; b]) =

R b
a
m(x)dx for 0 < a < b < 1;

and m(�) given by (9). We note that M (f0g) = 0 means that the boundary l = 0 is instantaneously re�ecting. For the
de�nition of di¤usion processes in terms of the scale function and the speed measure, see e.g., Ch. I-III of Mandl (1968),
or Sec. 8-9 of Kent (1978). The process fXsg constructed in this way, by S(�) and M(�), is a weak solution to the SDE
(1), which can be veri�ed by using the same arguments as in V.48 of Rogers and Williams (2000). By regarding fXsg as a
weak solution to (1), we can proceed in the same way as in the case where (1) fully determines the behavior of fXsg.
We also note that given that limx!l S (x) is �nite and S (x) ! 1 as x ! r, fXsg is recurrent if l is made an instan-

taneously re�ecting boundary, which can be proved by arguments similar to those for natural-scale di¤usions, as Theorem
20.15 of Ch. 20 of Kallenberg (2002).
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Under (A2.i) and boundedness condition on � (�) in (A2.ii), it is not restrictive to further assume that
� (�) is uniformly bounded if I = R (as we do so in Section 5). While we might be able to construct
some pathological example where � is not uniformly bounded on R, many parametric models found in
the literature satisfy this uniform boundedness. On the other hand, if either of the boundaries is �nite,
e.g., l = 0, we allow � (x) to be unbounded around 0, i.e., it may hold that � (x) ! 1 as x ! 0.
fXsg typically has this kind of unbounded density when l = 0 is attainable, as we exemplify in the
Supplementary Material. Even in this unbounded case, we can derive the uniform convergence results by
suitably choosing the form of a damping function B, as we discuss in the Supplementary Material.
The strict stationarity condition in (A2.ii) is imposed for simplicity. We can work with some hetero-

geneous processes and remove this condition by using arguments similar to those in Kristensen (2009)
(as long as the other conditions are ful�lled). Almost all (parametric) models found in the econometrics
literature can satisfy the mixing condition in (A2.ii). We may use various results to check the condition
(10) (see, e.g., Doukhan, 1994; Hansen and Scheinkman, 1995; Hansen, Scheinkman and Touzi, 1998;
Veretennikov, 1987, 1997, 1999, Kusuoka and Yoshida, 2000; Chen, Hansen and Carrasco, 2010).4 Some
previous studies which consider the uniform convergence rates of the nonparametric estimators, such as
Andrews (1995) and Hansen (2008), assume that � is su¢ ciently large (e.g., � > 2 at least). In contrast,
our uniform convergence results are applicable to any �(> 0), while the corresponding rate may be slower
for smaller � (see Theorem 7 in the Supplementary Material). Chen et al. (2010) present a class of
di¤usion processes with very slowly decaying mixing coe¢ cients (small �), and argue that such processes
may exhibit a property resembling long memory. These processes are in the scope of our convergence the-
orems. Note that our results on the path continuity (presented in Section 3) do not require the conditions
in (A2) and they are applicable to both stationary and nonstationary processes if (A1) is satis�ed.

Asymptotic Scheme: Before concluding this section, we describe the asymptotic scheme we consider
throughout the paper. We assume that the continuous-time process fXsg is observed at discrete time
points, s = �; 2�; : : : n� over the time interval (0; T ], where T is some positive number; n is the number
of observations; and � = T=n is the time distance between adjacent observations. We work under the
in�ll and longspan asymptotic scheme, i.e., � ! 0 and T ! 1 (as n ! 1). The availability of the
equi-spaced data fXj�gnj=1 is assumed only for (notational) simplicity. All of our convergence theorems
may be applied to non equi-spaced data fXtjgnj=1 if the shrinking rates of �� and � are the same as
that of � given in each theorem, where �� and � are de�ned as: �� := max1�j�n�1(tj+1 � tj) and
� := min1�j�n�1(tj+1 � tj).
We note that the long-span is generally required to identify the drift term nonparametrically without

relying on the cross-restriction (see arguments in Bandi and Phillips, 2003; Kristensen, 2010b). In
contrast, it is not necessary to obtain the pointwise consistency in the di¤usion function estimation (see,
e.g., Florens-Zmirou, 1993; Bandi and Phillips, 2003). However, our proofs for the uniform convergence
exploit the asymptotic independence between distant observations as T ! 1, which is implied by the
mixing condition of the process, and thus we need to work with the longspan assumption.

4If fXsg satis�es (A1) and (A2.i) and is strictly stationary, it is necessarily �-mixing (with an unknown rate). This is
because a strictly stationary Markov process is �-mixing if and only if it is (Harris) recurrent and aperiodic (see, p. 157 of
Chen et al., 2010), and (A1) and (A2.i) imply the recurrency and aperiodicity of fXsg.
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3 Path Continuity of Di¤usion Processes

In this section, we present some new results on the path continuity of di¤usion processes. Since we
suppose only the availability of discretely sampled data from fXsg (instead of its full and continuously-
recorded trajectory), our estimators for continuous time processes incur biases due to discretization.
To control the discretization biases and obtain the consistency of the estimators, we rely on the in�ll
assumption � ! 0, under which the e¤ects due to the discretization are expected to be asymptotically
negligible. Several approaches can verify its negligibility: for example, 1) computing the moments of
the discretization biases; 2) using the (almost sure) path continuity based on the Kolmogorov-µCentsov
criterion (see, e.g., Theorem 2.8 in p. 53 of KS91); and 3) using the Brownian/di¤usion modulus of
continuity (see the arguments subsequently). The �rst approach allows us to derive the sharpest rate,
and it has been used in Florens-Zmirou (1989), Yoshida (1992), Kessler (1997), Nicolau (2003), Jacod
(2006) and Phillips and Yu (2009), for example. However, it generally requires the existence of the higher-
order moment. The second approach also requires the existence of the higher order moment, particularly
for obtaining a sharper rate. It is applicable not only to di¤usion processes and Brownian semimartingales
but also to a wider class of general processes including ones based on the fractional Brownian motion (see
Embrechts and Maejima, 2002). This approach has been used in Fan, Fan and Jiang (2007), and Kanaya
and Kristensen (2015) for example.
In this study, we adopt the third approach, since it works without assuming the existence of the mo-

ment and it always gives us a sharper rate than the second approach. While the convergence rate obtained
by our approach is inferior to that obtained by the �rst, its loss is only minor.5 The Brownian/di¤usion
modulus of continuity states that the increments of the process, jXs+� � Xsj, are Oa:s:(

p
� log (1=�))

uniformly over s 2 [0; T ] (as �!1). This result is local in that it should be applicable to the case where
T = �T <1. As previously mentioned, we work with the longspan assumption of T !1, and this local
result is not su¢ cient for our purpose. The modulus of continuity might still hold under the longspan
(T ! 1) or even globally over s 2 [0;1). However, such result has not been fully investigated. We
subsequently discuss this point, present some new results on the global modulus of continuity, and clarify
required conditions. Indeed, we have not been able to show that the modulus of continuity holds under
the longspan or globally for general di¤usion processes (with potentially unbounded � (�) and �2 (�)), and
thus, we pursue an alternative approach. We show that weighted increments, B (Xs) jXs+� � Xsj, are
Oa:s:(

p
� log (1=�)). To discuss this point, we start by reviewing a classical result.

McKean�s Classical Result: The following property of a di¤usion process (as a solution to (1)) is
well-known (McKean, 1969, pp. 46-47 and 96-97): If the process fXsgs�0 is stopped at some �xed time
T = �T <1, then there exists some random variable CT = Oa:s: (1) such that

Pr[lim sup�&0 sups;t2[0;T ]; jt�sj2(0;�] jXt �Xsj =
p
� log (1=�) � CT ] = 1; (13)

where we write CT = Oa:s: (1) if and only if CT <1 for each ! 2 
� with some 
� such that Pr[
�] = 1
(i.e., almost surely all ! 2 
; we often use this notation in the sequel). In the estimation of di¤u-
sion/volatility functions, we can generally obtain the consistency under T <1 (without letting T !1).
Then, this local path-continuity property (13) ensures that the discretization biases of the di¤usion esti-
mators are negligible with the almost sure rate

p
� log (1=�) as �! 0 (see, e.g., Florens-Zmirou, 1993;

5In general, we obtain the discretization bias of order
p
� by using the �rst approach, but we have its order

p
� log(1=�)

in the third approach. We also note that Jeong and Park (2014) consider an approach based on extremal processes.
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Jiang and Knight, 1997; Bandi and Phillips, 2003; Xu, 2009). However, this may not hold under the
longspan asymptotic scheme where T ! 1, which is necessary for our uniform results. To the author�s
knowledge, the longspan/global counterpart of (13) has not been available in the literature.6 The local
result (13) depends up on the following two facts: (i) each path of the Brownian motion fWsg is uniformly
continuous over s 2 [0; T ] with the degree of continuity

p
� log (1=�) (in the almost sure sense); and (ii)

sups2[0;T ] j� (Xs) j and sups2[0;T ] �2 (Xs) are Oa:s: (1). We note that (ii) is trivially satis�ed if T is �nite (as
long as � (�) and �2 (�) are continuous and fXsg is nonexplosive) but may not be so for various processes
if T !1, where we can generally consider the bound CT in (13) as follows:

CT := sups2[0;T ] j� (Xs)j+max
�
1; sups2[0;T ] �

2 (Xs)
	
: (14)

We refer to the proof of Theorem 1 to see how this bound can be derived (or McKean, 1969, pp. 96-97).

New Results on the Global Modulus of Continuity: Here, we show a version of (13) with allowing
for T ! 1. For obtaining such a new result, we need to tackle the two points (i) and (ii) mentioned
in the previous paragraph. As for (i), we prove that the modulus of continuity of the Brownian motion
fWsg actually holds globally over the in�nite interval [0;1):

Pr[lim sup�&0 sups;t2[0;1); jt�sj2(0;�] jWt �Wsj =
p
2� log (1=�) = 1] = 1; (15)

which is stated formally with its proof in the Appendix. While this result does not seem to have been
available in the literature, it can be obtained by a slight modi�cation of the proof for the �nite-interval
case, where we use factorial rationals (instead of dyadic rationals) to construct partitions of a certain
time interval.
An immediate consequence of (15) is the modulus of continuity of a Brownian martingale, that is, for

each ! 2 
� where 
� is an event satisfying Pr[
�] = 1, there exists some ~� > 0 such for any � 2 [0; ~�],

sups;t2[0;1); jt�sj2[0;�]

���R ts �udWu

��� �q2� log(1=�)maxf1; sups2[0;1) �2sg; (16)

where f�sgs�0 is a uniformly bounded process (over s 2 [0;1)) with which a (local) martingale process
fMsgs�0 through a stochastic integral Ms :=

R s
0
�udWu is well-de�ned (e.g., if f�sg is also adapted and

predictable, then such fMsg is well-de�ned); and sups2[0;1) �2s > 0. This result (16) seems to have an
independent interest, which can be a theoretical basis for jump thresholding (as in Mancini, 2009) under
the longspan asymptotics (see Kanaya and Kristensen, 2015). The proof of this statement, which is
provided in the Appendix, is based on (15) and the so-called time-change argument.
While the result (16) is often used in our subsequent proofs, it is not necessarily su¢ cient for our

purpose to uniformly control discretization biases of the nonparametric estimators. To see this, note that
if both the drift and di¤usion functions, � (x) and �2 (x), were bounded uniformly over x 2 I, then (16)
would imply the almost sure uniform continuity of fXsg with the degree of

p
� log (1=�). However,

such uniform boundedness excludes many (parametric) models commonly used in the economics/�nance
literature. In particular, provided that I is unbounded as R or (0;1), the boundedness of � (x) and �2 (x)
does not generally guarantee the stationarity/ergodicity of the process.7 To handle the unboundedness of

6Note that the longspan is often necessary in identifying the drift function nonparametrically. It seems that some
previous studies concerning the drift estimation simply assume that the modulus of continuity of di¤usion processes holds
globally over s 2 [0;1).

7It is known that any di¤usion process (on R) whose drift function is compactly supported and whose di¤usion function
is (uniformly) bounded is null recurrent (see, e.g., Has�minski¼¬, 1980, Ch. IV). See also discussions in Nicolau (2005) and
Chen et al. (2010) on volatility-induced stationarity.
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� (x) and �2 (x), we introduce a technical devise of a damping function B (x) (> 0), and verify a modi�ed
version of the modulus of continuity with the damping function as a weight:

B (Xs) j (Xs+�)�  (Xs)j = Oa:s:(
p
� log(1=�)) uniformly over s 2 [0; T ] as T !1; (17)

by imposing some additional conditions on B (�), where  (�) is some function, such as f (�), � (�) or �2 (�)
(f (x) = x). Quantities of the form on the left-hand side (LHS) of (17) frequently appear in analyzing
our nonparametric estimators. To obtain the result as in (17), we restrict a class of functions of  (�).
Restrictions imposed on  (�) depend upon the damping function B (�), which the econometrician can
choose arbitrarily, as well as the property of the underlying process fXsg. To clarify such restrictions,
we introduce the following conditions:

A3. (i) There exists some constant p � 0 such that jxj ! 1, j� (x) j = O(jxjp+1) and �2 (x) = O(jxjp+2).
(ii) Let f�TgT�0 be a sequence of positive real numbers, satisfying maxs2[0;T ] jXsj = Oa:s:(�T ) as
T !1. Then, �pT

p
� log (1=�) = O (1) as T !1 and �! 0.

B1. B (�) (: I ! (0;1)) is twice di¤erentiable; supx2I B (x) < �B for some �B 2 (0;1); and

B (x) = O
�
expf�c1 (log jxj)1+c2g

�
as jxj ! 1, for some c1; c2 > 0: (18)

The polynomial growth condition (A3.i) on � (�) and �2 (�) is quite mild. While p = 0 corresponds
to the the classical linear condition for the existence of SDE solutions (e.g., Sec. 5.2 of Karatzas and
Shreve, 1991), (A3.i) is much milder, allowing for any p � 0. For example, it allows for hyperbolic
di¤usion models (see Bibby and Sørensen, 1997, 2003), and models with volatility-induced stationarity
(see Conley, Hansen, Luttmer and Scheinkman, 1997; Nicolau, 2005), where di¤usion functions of these
models are generally unbounded. Indeed the author does not know of a parametric di¤usion model with
its state space I = R (used in economics and �nance) that would violate (A3.i).
(A3.ii) restricts the growing rate of the extremal/maximal processmaxs2[0;T ] jXsj through the shrinking

rate of �, while no restriction on �T is required for p = 0. We can �nd similar conditions on the extremal
processes in Aït-Sahalia and Park (2013), Jeong and Park (2014), and Kanaya and Kristensen (2015).
While it is generally not an easy task to �nd the exact rates of extremal processes, they have been
investigated in the literature (e.g., Davis, 1982; Borkovec and Klüpperlberg, 1998; Jeong and Park,
2014). Their results mainly imply Op rates of extremal processes, but we conjecture that such results can
be strengthened to a.s. results with some extra e¤orts. As an instructive example, we can check that the
Brownian motion fWsg satis�es sups2[0;T ] jWsj = oa:s:(T

1=2 log T ) as T ! 1 (the proof of this result is
provided in Kanaya and Kristensen, 2015).
The condition (B1) presents requirements for the damping function. Its tail needs to decay su¢ ciently

fast: The decaying rate should be faster than any polynomial functions (but need not to be of an
exponential order). In a numerical example in Section 11 in the Supplementary Material, we set B (x) =
exp f�cx2g (a scaled version of the standard-normal density) with some c > 0. We also provide some
discussions on a choice of B (x) in Sections 5 and 11. We note that (A3.ii) may be removed at the price of
having more rapidly decaying B. That is, we can verify all the subsequent theorems and related results
without (A3.ii) if (B1) is replaced by

B1�. B (x) satis�es the same conditions as those in (B1) but the tail-decay condition (18) is replaced by
the following one: B (x) = O(expf�c1 jxjp+c2g) as jxj ! 1, for some c1; c2 > 0, where p � 0 is the
constant given in (A3.i).8

8The proof of Theorem 1 under this alternative condition is provided in the Appendix.
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Given these conditions, we formally state the result (17) as the following theorem:

Theorem 1. Suppose that fXsg is a solution to (1) with (A1.i) and (A2) satis�ed, and (B1) holds. Let
 : I ! R be a continuously di¤erentiable function satisfying j 0 (x) j = O(jxjq) as jxj ! 1 for some
q � 0 (i.e., the �rst derivative of  grows at most with a polynomial order). Then, there exists some
positive-valued random variable �C = Oa:s: (1) satisfying

Pr
h
lim sup�&0; T!1 sups;t2[0;T ]; jt�sj2(0;�]B (Xs) j (Xt)�  (Xs) j=

p
� log (1=�) � �C

i
= 1: (19)

While the formal proof of this theorem is provided in the Appendix, we see its basic idea here. To
this end, write the LHS of (17) as

B (Xs) j (Xs+�)�  (Xs) j = B
�

�1 (Ys)

�
j 
�

�1 (Ys+�)

�
�  

�

�1 (Ys)

�
j;

where 
 is some function which transform Xs into Ys = 
 (Xs) (2 I
 =
�
�l; �r
�
). E.g., we can set the

range I
 of fYsg as a bounded set (�1; 1), so that fYsg is well behaved in that it is globally uniformly
continuous with the degree of continuity

p
� log (1=�) (we use the result (16)). However, as the price

for obtaining the well-behaved process fYsg, the tail behavior of  (
�1 (�)) may be aberrant since the
slope of 
�1 (y) is very steep as y ! �r or �l (this is the case if I
 is bounded). To suppress/damp such tail
behavior, we put B (Xs), or equivalently B (
�1 (Ys)), as a weight.
We use the result of Theorem 1 to control the discretization bias of our nonparametric estimators. Its

important implication is that a component such as B(Xj�) (Xs) is bounded almost surely as n ! 1
and �! 0 uniformly, that is,

B(Xj�) (Xs) = Oa:s: (1) uniformly over j 2 f1; : : : ; n� 1g and s 2 [j�; (j + 1)�]: (20)

This holds because B(Xj�) (Xs) can be decomposed into a uniformly bounded part and the other
negligible part:

B (Xj�) (Xs) =
n
B(Xj�) (Xj) +B(Xj�) [ (Xs)�  (Xj�)]1fB(Xj�)j (Xs)� (Xj�)j�

p
�log(1=�)g

o
+B(Xj�) [ (Xs)�  (Xj�)]1fB(Xj�)j (Xs)� (Xj�)j>

p
� log(1=�)g:

The �rst term on the right-hand side (RHS) is uniformly bounded, given the uniform boundedness of
B (x) (x) (which is imposed in De�nition 1 below). By Theorem 1, for each ! 2 
� with Pr[
�] = 1, we
can �nd some ~�(= ~�(!)) > 0 such that for any � � ~�, B(Xj�)j (Xs)� (Xj�) j � �C

p
� log (1=�) �p

� log (1=�). This means that the second term on the LHS of (20) almost surely converges to zero with
an arbitrary fast rate (since it is exactly zero for any small �). From these, we can conclude (20).

4 General Convergence Results

We here present general convergence theorems used for deriving the convergence of the nonparametric
estimators. To set out additional conditions on the damping function, we introduce the following class:

De�nition 1. D (B; �) is a class of functions de�ned for each pair of the damping function B (�) (which
satis�es (B1)) and the invariant density � (�) of the process. A function  : I! R is said to belong to
D (B; �) if it is continuously twice di¤erentiable on I and satis�es the following conditions: (i) There
exists some constant �B1 > 0 such that supx2I jB (x) (x)j � �B1; (ii) There exists some constant �B2 > 0
such that supx2I

���dk=dxk�H (x)�� � �B2 for k = 0; 2; where H (x) := B (x) (x)� (x).
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This class D (B; �) is introduced to derive convergence results for the so-called smoothing-bias and
variance terms of the nonparametric estimators.  (�) is typically set as the drift or di¤usion function
� (�), �2 (�). In the sequel, we suppose that some relevant functions belong to D (B; �) (see the subsequent
theorems� conditions). The condition (ii) in De�nition 1 is a weakening of the stationary version of
Andrews�(1995) condition in the discrete time setting. He assumes that m (x)� (x) and its derivatives
are uniformly bounded over x 2 R (see Assumption NP3 in Andrews, 1995), wherem (x) is the conditional
expectation function E [YtjXt = x] in a discrete time process fYt; Xtg and � (x) is the invariant density of
fXtg. Note that m (x) needs not to be bounded if the tail decay of � (x) is su¢ ciently fast. For example,
his condition is satis�ed if � (x) decays geometrically andm (x) grows at most polynomially (as jxj ! 1).
However, we may not be able to expect � (x) to decay in that way withm (x)� (x) uniformly bounded. In
fact, the heavy-tailed distribution is often a key feature in a �nancial time series, where � (x) approaches
zero very slowly (only polynomially) as jxj ! 1. Moreover, we can easily �nd several examples of
parametric di¤usion models (used in economics and �nance) which violate a continuous-time-process
analogue of Andrews�condition. For example, in a model with � (x) = x= (1 + x2) and �2 (x) = 1 + x2

(Nicolau, 2005), neither of � (x)� (x) nor �2 (x)� (x) is bounded. We can �nd many examples violate
the analogue of Andrew�s condition in a class of processes with volatility-induced stationarity. By having
B (�), we allow for the case where the boundedness of � (x)� (x) and/or �2 (x)� (x) is not satis�ed.
Before presenting our convergence theorems, we provide a set of conditions for the kernel function:

B2. K (�) (: R ! R) is of bounded variation and satis�es the following conditions: (i)
R1
�1K (x) dx =

1 and
R1
�1 xK (x) dx = 0; (ii) There exists some �K 2 (0;1) such that supx2R jK (x)j � �K andR1

�1 x
2 jK (x)j dx � �K.

(B2) allows for most of symmetric kernels, including the normal kernel and the polynomial kernels
while excluding the Dirichlet kernel K (x) = sin (x) = (�x). We do not require the continuity and may
choose the uniform kernel, which is excluded in Hansen (2008). It also allows for so-called higher-order
(bias-reducing) kernels as considered �rst in Bartlett (1963). For simplicity, we only consider the second-
order kernels (and, as a result, the smoothing biases of the nonparametric estimators are of order h2).
However, when imposing appropriate conditions on the di¤erentiability of relevant functions, the use of
the higher-order kernel also leads to the faster convergence rates in our case as in Andrews (1995) and
Hansen (2008). Bosq (1998) and Hansen (2008) assume the tail decay of the kernel function is su¢ ciently
fast (e.g., the conditions of Corollary 2.2 in Bosq, 1998; Assumption 3 and the conditions of Theorem 4
in Hansen, 2008). They use the tail decay assumption, together with the condition on the existence of
the higher order moment and the Markov inequality, to show that the outside of the expanding compact
set is asymptotically negligible (or to use the so-called truncation argument). In contrast, (B2) does
not impose any condition on the tail of the kernel except for the one implied by the integrability. The
�exibility in the choice of the kernel is a bene�t by using the covering-number technique. Note that we
subsequently impose some continuity and compact-support conditions for obtaining a sharp convergence
rate of the di¤usion function estimator (Theorem 5), while such conditions are not required for a less
sharp rate (Theorem 10 in the Supplementary Material)

Convergence Theorems: We here present two convergence theorems for components which constitute
the functional estimators for di¤usion processes. First, we investigate the uniform convergence rate of an
object of the following form:

Gn;T (x) := (1=T )
Xn�1

j=1
Kh (Xj� � x)B (Xj�)

Z (j+1)�

j�

 (Xs) ds; (21)
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to the expectation of its discretized version �Gn;T (x) := E [Kh (X� � x)B (X�) (X�)], where we note
that Gn;T (x) may be regarded as an estimator of H (x) = B (x) (x)� (x):

Theorem 2. Suppose that fXsg is a solution to (1) with (A1)-(A3) and supx2I � (x) <1. Let B (�) be the
damping function satisfying (B1), and  (�) 2 D (B; �) with its �rst derivative satisfying j 0 (x) j = O(jxjq)
as jxj ! 1 for some q � 0. Suppose also that the kernel function K (�) satis�es (B2), and there exists
some � 2 (0; 1) such that as T !1 and h! 0,

(log T ) =T �h! 0; (22)

� � 5 (1 + �) = (1� �) : (23)

Then, it holds that as n; T !1 and �; h! 0,

supx2I
��Gn;T (x)� �Gn;T (x)

�� = Op(
p
� log (1=�)) +Op(

p
(log T ) =Th): (24)

The two terms on the RHS of (24) correspond to the discretization bias and the variance-e¤ect compo-
nent. Note that Bandi and Phillips (2003) assume that

p
� log (1=�)=h! 0 to control the discretization

bias, whose order is given by
p
� log (1=�)=h. In contrast, we only require

p
� log (1=�) ! 0 for the

discretization bias to be negligible, where h is not involved and we can work with weaker conditions on
h and �. This relaxation of the conditions is made possible by considering a fully discretized process as
Gn;T;2 (x) := (1=n)

Pn�1
j=1 Kh (Xj� � x)B (Xj�) (Xj�) for deriving the rate of the variance-e¤ect compo-

nent. In this case, the discretization bias corresponds toGn;T;1 (x) := (1=T )
Pn�1

j=1 Kh (Xj� � x)B (Xj�)�R (j+1)�
j�

[ (Xs) �  (Xj�)]ds, where we note that Gn;T (x) = Gn;T;1 (x) + Gn;T;2 (x). We can also think
of an alternative decomposition of Gn;T (x), based on a fully continuous-time process, which is conve-
nient to consider a wider class of nonstationary di¤usion processes but in general requires some stronger
conditions on the rates of h and �. For details, see Section 3.2 of Kanaya (2015).
The condition (23) requires that the exponent of the mixing coe¢ cients � is necessarily larger than

5 (since � 2 (0; 1)). We can still derive the convergence result even when � 2 (0; 5], while its rate is
slower than that in Theorem 2 (i.e., for smaller �, the second term on the RHS of (24) is replaced by
Op(

p
(log T ) =T �h)). Previous studies have only considered the case where � is su¢ ciently large (see the

previous arguments concerning the condition (A2.ii)), and uniform results for small � seem to be new
and are presented as Theorem 7 in the Supplementary Material.
The rate

p
(log T ) =Th in (24) is an in�ll counterpart of that presented in Hansen (2008, Theorem 2) for

discrete time processes, where he derived
p
(log n) =nh. Our rate is necessarily slower than Hansen�s rate

due to the in�ll assumption �(= T=n) ! 0. Under the in�ll asymptotics, the dependence between the
consecutive observations becomes stronger as n!1, and therefore, we achieve a slower rate. Hansen�s
rate of

p
(log n) =nh is optimal for discrete time processes, which is the same as Stone�s (1982) optimal rate

for independent and identically distributed (i.i.d.) data. While it seems that no study has investigated the
uniform optimal rate for the continuous time case with the in�ll and longspan assumptions, we conjecture
that the rate in (24) is optimal for an object of the form (21) in such cases (note that if � were �xed, then
our rate should coincide with Hansen�s rate since T = �n = O (n)). For the di¤usion function estimator
�̂2 (x), we can derive the optimal rate of

p
(log n) =nh under the in�ll and longspan (in Theorem 5),

but this is because �̂2 (x) consists of some components whose variance property is di¤erent from that of
Gn;T (x) (see decomposition into �ve terms in the proof of Theorem 5). We also note that the condition
imposed on � is di¤erent from that in Hansen (2008). This is because we use the covering-number-based
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technique in Lemma 2, while he uses arguments based on the truncation of variables, expanding compact
sets and the Markov inequality (see the proof of Theorem 2 in Hansen, 2008). Some other remarks on
Theorem 2 are in order:

Remark 1. (i) If the mixing coe¢ cients have geometric decay, i.e., � (s) � ~A expf�~�sg for some ~�,
~A > 0 (corresponding to � = 1 in (A2.ii)), then the result of Theorem 2 holds under (log T ) =Th ! 0

instead of (log T ) =T �h ! 0 (this result can be proven analogously, whose proof is omitted for brevity).
The same/similar remark also applies to Theorems 4, 5 and 10.
(ii) If  = 1, Gn;T (x) = �̂ (x), where �̂ (x) is the estimator of the damped invariant density �(x) =
B (x)� (x), de�ned in (8). In this case, we do not need to consider the discretization bias. Accordingly,
we can drop Op(

p
� log (1=�)) on the RHS of (24).

As seen in (1), the increments of di¤usion processes consist of two components, the conditional mean
part and the martingale (di¤erence) one. The previous theorem concerns an object involving the former
component. As a general form involving the latter component, we consider the following quantity:

Mn;T (x) := (1=T )
Xn�1

j=1
Kh (Xj� � x)

Z (j+1)�

j�

�sdWs;

where f�sgs�0 is an adapted and predictable process uniformly bounded over s (� 0) with which a sto-
chastic integral

R t
0
�sdWs is well-de�ned for any t > 0. The next theorem derives the convergence property

of Mn;T (x):

Theorem 3. Suppose that fXsg is a solution to (1) with (A1)-(A2) and supx2I � (x) <1, and the kernel
function K satis�es (B2). Then, as n; T !1 and �; h! 0, it holds that for each a(> 0) large enough,
and for each x 2 I,

Pr[jMn;T (x)j � a
p
(log T ) =Th] � 2T�a2=2 + T�aCM + 4AT��h�(�+1) (log T )1�� ; (25)

where CM (> 0) is some constant independent of x; n; T and a.

For generality, we write this theorem without explicitly specifying the form of �s, which is set as
B (Xs)� (Xs) for proving the convergence of the drift estimator, for example. (25) is based on the
exponential inequality for continuous martingales and that for mixing processes, where we note that
Mn;T (x) can be represented as a continuous martingale. The application of the former inequality requires
some boundedness condition on the quadratic variation process of Mn;T (x). The quadratic variation in
fact grows as T !1 and is not bounded, but we can control its growing rate by the latter inequality.
Note also that Theorems 2-3 require the uniform boundedness of the invariant density �. While this

requirement does not seem restrictive for the case I = R, we can �nd some processes with an unbounded
� in particular when the either of the end points is bounded, say I = (0;1) or [0;1). Even in such
unbounded cases, we can still verify the convergence results as in Theorems 2-3, given slight modi�cations
of the condition and a suitable choice of B (see discussions in the Supplementary Material).

5 Uniform Convergence Rates of Nadaraya-Watson Type Es-
timators

In this section, we present two theorems on the uniform convergence rates for the drift and di¤usion
estimators (4) and (5), respectively. We require the following conditions:
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Assumption 1. fXsg is a solution to (1) satisfying (A1)-(A3) with the state space I = R. Let B (�) be
the damping function satisfying (B1) and K (�) be the kernel function satisfying (B2).

Theorem 4 (Drift Function Estimation). Suppose that Assumption 1 holds; supx2R j� (x) j < 1; the
observation interval � and the bandwidth h satisfy

��1 = O(T �) and (log T ) =T �h! 0, (26)

as T !1 and �; h! 0, for some constants � (> 0) and � 2 (0; 1);

� (�) 2 D (B; �) ; and j@� (x) j+ j@� (x) j = O(jxj�q1) as jxj ! 1 for some �q1 � 0. (27)

Let
a?n;T := h2 +

p
� log (1=�) +

p
(log T ) =Th. (28)

Then, if � � max f5 (1 + �) = (1� �) ; (3� + 2 + 2�) = (1� �)g, it holds that as n; T !1 and �; h! 0,

supx2R j	̂� (x)�B (x)� (x)� (x) j = Op(a
?
n;T ); (29)

and further if a?n;T=�n;T ! 0,

supjxj�cT j�̂ (x)� � (x) j = Op(a
?
n;T=�n;T ), (30)

where cn;T is any sequence tending to in�nity (as n; T !1), and �n;T := inf jxj�cn;T B (x)� (x) > 0.

Theorem 5 (Di¤usion Function Estimation). Suppose that Assumption 1 holds; maxk=0;1;2 supx2R j@k� (x) j <
1; the observation interval � and the bandwidth h satisfy

��1 = O(n{), (log n)=n#h = O (1) and nh5= (log n) = O (1) , (31)

as n!1 and �; h! 0, for some constants { 2 (0; 1=2) and # 2 (0; 1) with (1� #� {) > 0; the kernel
function K is Lipschitz continuous (i.e., jK (u)�K (v)j � CK ju� vj for some CK > 0), whose support
is included in [�cK ; cK ] with some cK > 0; �2 (�) is three-times continuously di¤erentiable;

�2 (�) 2 D (B; �) ; j@� (x) j+
P3

k=0 j@k� (x) j = O(jxj�q2) as jxj ! 1 for some �q2 � 0;
maxk=1;2 j@kB (x) j < CB �B (x) for some CB > 0:

(32)

Let a�n;T := h2+� log (1=�)+
p
(log n) =nh. Then, if � > max f(2 + 3#� 2{) = (1� #� {) ; 2= (1� 2{)g,

it holds that as n; T !1 and �; h! 0,

supx2R j	̂�2 (x)� �̂ (x)�2 (x) j = Op(a
�
n;T ); (33)

and further if a�n;T=�n;T ! 0,

supjxj�cT j�̂
2 (x)� �2 (x) j = Op(a

�
n;T=�n;T ),

where cn;T and �n;T are sequences de�ned in Theorem 4.
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The form we consider in (29) for the drift estimation is di¤erent from the one in (33) for the di¤usion
estimation. Instead of the expression in (33), we can also consider the uniform convergence of j	̂�2 (x)�
B (x)�2 (x)� (x) j as in (33) (see Theorem 10 in the Supplementary Material), which can lead to the
uniform rate of

���̂2 (x)� �2 (x)
�� (with the penalty ��1n;T ) as well. The rate we can derive for j	̂�2 (x) �

�̂ (x)�2 (x) j is faster than that for j	̂�2 (x) � B (x)�2 (x)� (x) j (compare the form of V5 with that of
U2 in the proofs of Theorems 5 and 4, respectively). However, we need to work with some stronger
conditions for the former, where we impose the continuity and the compact-support conditions of the
kernel K as well as the boundedness conditions in the derivatives of the density, which are not required
for Theorem 10. This is because the potential unboundedness of �2 (x) can be directly suppressed by the
multiplication of B (x) in j	̂�2 (x)�B (x)�2 (x)� (x) j while it is not so in j	̂�2 (x)� �̂ (x)�2 (x) j, where
we note that the boundedness of the latter component can be induced to some extent by the combination
of the damping function and the compactly-supported kernel.
The growing condition of ��1 in (26) or (31), controlled through the restriction on � or {, is required

mainly to control the rate of the martingale components of the estimators. This can be signi�cantly
relaxed for the di¤usion estimation case: We only require ��1 to grow at most with some polynomial
rate of T (Theorem 10 in the Supplementary Material), which essentially impose no restriction on the
growing rate of ��1 while it results in a slower convergence rate.
The sequence a�n;T which determines the rate for the di¤usion estimation involves

p
(log n) =nh. If

we let h = O([(log n) =n]1=5) (i.e., # = 1=5) and { 2 (2=5; 1=2), then we can obtain a�n;T = [(log n) =n]2=5
for � large enough, which is known to be Stone�s optimal rate for the i.i.d. case with estimation objects
being twice di¤erentiable. The pointwise convergence rate of the di¤usion function estimator is 1=

p
nh,

and this is obtained only under the in�ll without the longspan T !1 (see arguments/results in Bandi
and Phillips, 2003). However, Theorem 5 requires the longspan since ��1 = O(n{) for { < 1 (note
that we must have { = 1 if the �xed span T = �T < 1 were assumed). The pointwise asymptotic
normality/distribution results for �̂ (x) and �2 (x) rely on the central limit theorems for martingales (cf.
the second term on the RHS of the SDE (1)). While our uniform results also exploit the martingale
property of the process (as in Theorem 3), we need to show uniform convergence of some terms which
are not martingales. To show uniform convergence of such terms, we apply the Bernstein exponential
inequality for mixing processes, exploiting the asymptotic independence implied by the mixing, and
this is the reason why we need the longspan "T ! 1" even for the di¤usion estimation case (see also
discussions after Theorem 2). It is uncertain if we can derive a sharp uniform convergence rate of the
di¤usion estimator as a�n;T under the �xed span case.

Penalized Uniform Rates: The uniform rates of �̂ (x) and �̂2 (x) are penalized by ��1n;T , which are of
the ratio types. The rate of �n;T depends upon the tail thickness/thinness of B (x)� (x). By the nature
of the damping, the tail of B (x)� (x) is necessarily thinner than that of � (x). For some sequence of cn;T ,
the growing rate of ��1n;T may be very fast. However, given the uniform boundedness of � (�), we may be
able to use the following modi�ed estimators in order to avoid such the fast growing ��1n;T :

�� (x) := 	̂� (x) =B (x) �̂ (x) ; and ��2 (x) := 	̂�2 (x) =B (x) �̂ (x) ;

where �̂ (x) is the estimator of the invariant density: �̂ (x) := (�=T )
Pn

j=1Kh (Xj� � x). Let ��n;T :=
inf jxj��cT � (x) (> 0). Then, corresponding to Theorems 4 and 5,

supjxj��cT B (x) j�� (x)� � (x) j = Op

�
a?n;T=

��T
�
; and supjxj��cT B (x) j��

2 (x)� �2 (x) j = Op

�
a�n;T=

��T
�
:
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These convergence results with the weighted sup-norm may be similar to that found in Chen and Fan
(2006), who consider the uniform convergence of the empirical distribution function.
In applying our uniform results to semiparametric estimation, we may not necessarily take into account

the penalty due to �n;T or ��n;T . For example, Ai (1997) and Coslette (2004) consider the trimming device
in their semiparametric problems to establish distribution theory. They use the ratio-type nonparametric
estimators to construct the objective function for the estimation of a �nite dimensional parameter, where
very small values of the nonparametric estimator in the denominator are trimmed. Then, a sequence
used for trimming may be chosen as irrelevant to the tail decay of the object in the denominator (in
our case, it may be chosen independently from the tail thinness of B (x)� (x)). This argument seems to
apply to various semiparametric problems, where the uniform convergence results for the estimators in
the numerator and the denominator may be su¢ cient.

E¤ects of the Damping Function: Here, we brie�y consider the choice of the damping function and
its e¤ects on the estimators. One way is to select the form of B (�) so that it is only e¤ective in the
region where only few observations exist. In this case, there is practically no e¤ect due to damping. This
may re�ect the view that the damping function is only a technical device for establishing theoretical
properties.
Alternatively, we may be able to select a form of the damping function through minimizing mean-

squared errors (MSE; or some other objective) of the estimators with respect to B (�), as the Epanechnikov
kernel is obtained as the MSE-optimal one (Epanecnikov, 1969). However, it seems generally di¢ cult to
select such an optimal B. To see this point, observe that an approximation (leading component) of the
pointwise bias of the estimator f̂ (x) = �̂ (x) or �̂2 (x) can be obtained as

Bf (x) = h2
�
(d=dx) [B (x) f (x)]� �0 (x)

B (x)� (x)
+
(d2=dx2) [B (x) f (x)]

2B (x)

�Z
z2K (z) dz;

where f = � or �2; and B� (x) is an approximated bias of �̂ (x) and B�2 (x) is that of �̂2 (x). While the
choice of B (�) a¤ect the bias expressions, it has no e¤ect on the (asymptotic) variances (since we have
some cancellation between the numerator and denominator; see the Supplementary Material for details).
Therefore the MSE minimization problem is reduced to minimizing B� (x) or B�2 (x), given unknown �,
and � or �2, with respect to B (probably with some regularization restriction such as

R
B (x) dx = 1).

While one can select the optimal kernel independent of the underlying process�structure, the optimal
B (if it could be found) depends up on unknown components. We may be able to develop a two-step
procedure to estimate some optimal damping function based on preliminary estimators of � (�) and �2 (�),
but we leave it to future research.
Finally, we provide some graphical illustration of the �nite-sample e¤ects of the damping function

in the Supplementary Material, which compares the standard NW estimator and our damped one. Our
graphical result seems to suggest that the damping function B does not have signi�cant e¤ects, as its
e¤ects are cancelled out between numerator and denominator parts.

Extensions: We here brie�y discuss two possible extensions of our results. First, while our current
results are on univariate di¤usion processes, we can derive uniform convergence rates of nonparametric
estimators of multivariate di¤usion processes without signi�cant changes in proof arguments. We note
that the arguments on the degree of path continuity in Section 3 hold true irrelevant of the univariate
or multivariate settings, upon a suitable choice of a multivariate version of a damping function, and the
exponential inequalities for mixing processes and continuous martingales can still hold for the multivariate
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case.9 We expect the orders of the smoothing and discretization biases in the multivariate case are the
same as those in the univariate case, i.e., the �rst two terms in a?n;T and a

�
n;T . In contrast, the orders

of variance e¤ect terms should be changed to (log T ) =
p
Thd and (log n) =

p
nhd for drift and di¤usion

estimators, respectively, where d is the dimension of the process. These slower convergence rates for
high-dimension cases are analogous to those in the standard discrete-time setting as in Hansen (2008).
Second, we can also think of an extension to general non-ergodic/non-stationary cases. A key is the

use of Bernstein-type exponential inequalities, where we have used those for mixing processes and martin-
gales. The mixing property does not necessarily hold for non-ergodic di¤usion processes, and accordingly
we cannot use the exponential inequality as in Lemma 3, while the martingale-based inequality can be
still used. Instead, we may exploit implications of the Markov property of general di¤usion processes.
That is, under the assumption of recurrence, we can split a process fXsgs2[0;T ] into blocks which pos-
sess some independent property, and remaining negligible parts, by using a continuous-time counterpart
of Nummelin�s (1984) Markov regeneration/splitting method as in Fukasawa (2008), Löcherbacha and
Loukianova (2008), and Loukianova and Loukianov (2008). Then, we can apply the exponential inequal-
ity for independent/mixing processes to the constructed blocks. Nummelin�s method has been used in
Gao, Kanaya, Li and Tjøstheim (2015) for deriving sharp uniform convergence rates of kernel-based es-
timators in a discrete-time setting. We expect that its continuous-time version can be e¤ectively used
to derive uniform convergence rates of drift and di¤usion function estimators, while the application of
the exponential inequality requires establishing some uniform moment bounds of the continuous-time
processes (e.g., ones corresponding to Lemmas B.1-B.3 of Gao et al., 2015), which may not be trivial.
We note that the order of discretization biases which we can derive through these techniques should bep
� log (1=�)=h (see discussions after Theorem 2), and variance e¤ects�rates should be slower than those

in the ergodic/mixing case, as found in Gao et al. (2015).

6 Concluding Remark

We have proposed to use the damping function device for establishing the uniform convergence results
of the NW type estimators of the di¤usion processes. Using the damping function and the covering-
number technique allows us to work with quite mild conditions on the underlying processes and the
kernel functions. Our results should be useful in various estimation and testing problems for di¤usion
processes. Note that the same idea/method may also be applied to the discrete time setting, where we
can signi�cantly relax various restrictions imposed in previous studies to obtain uniform convergence
results of the nonparametric kernel estimators. This idea will be pursued in future studies.
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7 Appendix

7.1 Proofs of Path Continuity Results

In this section, we provide proofs of results on the path continuity of a di¤usion process, as well as several
auxiliary results. We start with the global modulus of continuity of a Brownian motion:

Theorem 6. Let fWsgs�0 be a standard Brownian motion on a �ltered probability space (
;F; fFsgs�0 ;Pr)
which satis�es the usual conditions. Then, the global Brownian modulus of continuity (15) holds.

Proof of Theorem 6. Our proof resembles that of Theorem 2.9.25 in Karatzas and Shreve (1991) where
s; t are supposed to take values in some �nite interval [0; T ] (T � �T �xed), but extends it to the case
with an in�nite interval [0;1). For notational simplicity, de�ne g (�) :=

p
2� log (1=�) for � > 0.

First, we prove lim sup � 1. Look at

Pr[max1�j�m!
��Wjm=m! �W(j�1)m=m!

�� � (1� �)1=2 g (m=m!)] = (1� �)m! � exp f��m!g ; (34)

where � := 2Pr[(m=m!)�1=2Wm=m! � x] and x :=
p
(1� �) 2 log(m!=m). The inequality in (34) holds

since (1� �)m! � expf��m!g. From the inequality:
R1
x
e�u

2=2du � xe�x
2=2= (1 + x2), we have

� � 2x[
p
2�
�
1 + x2

�
]�1 exp

�
�x2=2

	
� C (1� �)1=2 [1 + 2 log (m!=m)]�1 (m=m!)1��

with some appropriate constant C > 0, which implies that

Pr

�
max
1�j�m!

��Wjm=m! �W(j�1)m=m!
�� � (1� �)1=2 g (m=m!)

�
� exp

(
�C (1� �)1=2

1 + 2 log (m!=m)
m1�� (m!)�

)
:

By the Borel-Cantelli lemma, there exists an event 
� with Pr (
�) = 1 such that for any ! 2 
�, 9M�,
8m �M�,

[1=g (m=m!)]max1�j�m!
��Wjm=m! �W(j�1)m=m!

�� > (1� �)1=2 :

Letting � = m=m!, we have for any ! 2 
�, 9M�, 8m �M�,

[1=g (�)]maxs;t2[0;1); jt�sj�� jWt �Wsj � [1=g (m=m!)]max1�j�m!
��Wjm=m! �W(j�1)m=m!

��
and thus, for any ! 2 
�,

lim sup�&0[1=g (�)]maxs;t2[0;1); jt�sj�� jWt �Wsj � (1� �)1=2 :

We can conclude lim sup � 1 by letting � & 0.
For the proof of lim sup � 1, let � 2 (0; 1) and " > (1 + �) (1� �)�1 � 1. Observe the following

inequalities:

Pr
h
max0�i<j�m!; k=j�i�(m!=m)�

1
g(km=m!)

��Wjm=m! �Wim=m!

�� > 1 + "i
�
Xd(m!=m)�e

k=1
Pr
�
max0�i<i+k�m!

��W(k+i)m=m! �Wim=m!

�� > (1 + ") g �km
m!

��
� m!

Xd(m!=m)�e

k=1
Pr

�
jWkm=m!jp
km=m!

> (1 + ")
q
2 log

�
m!
km

��
� m!p

2�

Xd(m!=m)�e

k=1
k(1+")

2
�m
m!

�(1+")2
� (1=

p
2�)m!

�m
m!

�(1+")2 [(m!=m)�+1]1+(1+")2
1+(1+")2

� const.� m(1��)(1+")2��

(m!)�
;
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where dxe denotes the largest integer that is less than or equal to x; � = (1� �) (1 + ")2 � (1 + �) >
0; and the third and fourth inequalities hold since

R1
x
e�u

2=2du � 1
x
e�x

2=2 and
Pd(m!=m)�e

k=1 k(1+")
2 �R (m!=m)�+1

0
x(1+")

2

=
[(m!=m)�+1]

1+(1+")2

1+(1+")2
, respectively. By the Borel-Cantelli lemma, 9M� such that

(M�=M�!)
1�� � 1=e; (35)

8m �M�; max0�i<j�m!; k=j�i�(m!=m)�
1

g(km=m!)

��Wjm=m! �Wim=m!

�� � 1 + ": (36)

Now, �x ! 2 
� and m � M�, and de�ne Em
l := fkm=l! j k = 0; 1; : : : ; l!g. We prove the following

lemma (whose proof is given below):

Lemma 1.

jWt �Wsj � (1 + ")
h
2
Pl

j=m+1 J
2g
�

J+1
(J+1)!

�
+ g (max fjt� sj ;m= (l � 1)!g)

i
(37)

is valid for every pair (s; t) in 8t; s 2 Em
l = fkm=l! j k = 0; 1; : : : ; l!g with 0 < jt� sj < (m!=m)� �

m=m! = (m=m!)1��.

Given this lemma, we de�ne Em :=
S1
l=1E

m
l and let l!1 in (37). Then,

8t; s 2 Em with 0 < jt� sj < d�me!�m=m!;

jWt �Wsj � (1 + ") [2
P1

j=m+1 J
2g
�

J+1
(J+1)!

�
+ g (jt� sj)]: (38)

For any s; t satisfying s; t 2 Em for some m and 0 < jt� sj < (M�=M�!)
1��, we can select ~m (�M�) that

satis�es s; t � ~m and
f( ~m+ 1) = ( ~m+ 1)!g1�� � �(:= t� s) < ( ~m= ~m!)1�� : (39)

Since g is increasing on (0; 1=e], we haveP1
j= ~m+1 J

2g
�

J+1
(J+1)!

�
�
P1

j= ~m J
2g
�

J+1
(J+1)!

�
� C ~m2g

�
~m+1

( ~m+1)!

�
� C ~m2

p
1��

�
~m+1

( ~m+1)!

��=2
g (�) ;

for some constant C > 0. We conclude from (38), (39) and the continuity of W� (!) that for every ! 2 
�
and ~m �M�,

1
g(�)

sup0�s<t�m; t�s=� jWt �Wsj � (1 + ")
�
2C ~m2
p
1��

�
~m+1

( ~m+1)!

��=2
+ 1

�
(40)

holds for any � 2 [f( ~m+ 1) = ( ~m+ 1)!g1�� ; ( ~m= ~m!)1��). Since the strict increasingness of g on (0; 1=e]
and the continuity of the Brownian path, we may replace the condition t � s = � by t � s � �. Since
(40) holds with any m, we have

sups;t2[0;1); jt�sj��
1

g(�)
jWt �Wsj � (1 + ")

�
2C ~m2
p
1��

�
~m+1

( ~m+1)!

��=2
+ 1

�
for all � 2 [f( ~m+ 1) = ( ~m+ 1)!g1�� ; ( ~m= ~m!)1��). Letting ~m!1, we obtain

lim sup�&0 sups;t2[0;1); jt�sj�� jWt �Wsj =g (�) � (1 + ") :

Finally, by letting � & 0 and hence simultaneously "& 0 along the rationals, we establish that

lim sup�&0 sups;t2[0;1); jt�sj�� jWt �Wsj =g (�) � 1;

as desired.
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Proof of Lemma 1. Note that g is strictly increasing on (0; 1=e]. To show (37), we use the inductive
method. First, for l = m, (37) follows from (36), since jWt �Wsj � (1 + ") g (jt� sj) for s; t 2 Em

m

with jt� sj < (m=m!)1��. Second, suppose that (37) is valid for l = m + 1; : : : ; L � 1: For s; t 2 Em
L

with s < t and 0 < t � s < (m=m!)1��, consider the numbers s1 := min
�
u 2 Em

L�1 : u � s
	
and t1 :=

max
�
u 2 Em

L�1 : u � t
	
, and notice the relationships s1; t1 2 Em

L�1 � EL+1
L+1 ; s; t 2 Em

L � EL+1
L+1 ; s1 � s �

m= (L� 1)!; and t� t1 � m= (L� 1)!. Then, by the inequality (36),
jWs1 (!)�Ws (!)j � mL (1 + ") g ((L+ 1) = (L+ 1)!) ;

jWt (!)�Wt1 (!)j � mL (1 + ") g ((L+ 1) = (L+ 1)!) :

There are two possible relationships among s; t; s1 and t1: (i) If jt� sj � m= (L� 1)!, it holds that
s � s1 � t1 � t (with at least one inequality strict); (ii) If jt� sj < m= (L� 1)!, either of jt� sj <
js1 � t1j = m= (L� 1)! or js1 � t1j = 0. Noting that � 2 (0; 1), we have

jt1 � s1j � max fjt� sj ;m= (L� 1)!g � maxfjt� sj ; (m=m!)1��g � (m=m!)1��

with at least one inequality strict. Thus,

jWt1 (!)�Ws1 (!)j � (1 + ")
h
2
PL�1

J=m+1 J
2g
�

J+1
(J+1)!

�
+ g (max fjt� sj ;m= (L� 1)!g)

i
;

by the induction assumption with l = L� 1. By the triangle inequalities,

jWt (!)�Ws (!)j � 2mL (1 + ") g ((L+ 1) = (L+ 1)!)

+ (1 + ")
h
2
PL�1

J=m+1 J
2g
�

J+1
(J+1)!

�
+ g (max fjt� sj ;m= (L� 1)!g)

i
� (1 + ")

h
2
PL

J=m+1 J
2g
�

J+1
(J+1)!

�
+ g (max fjt� sj ;m= (L� 1)!g)

i
:

Now, we have shown (37) for any l (> m), as desired.

Proof of the Statement (16). De�ne a process fMsgs�0 by Ms :=
R s
0
�udWu. Since fMsg is a local mar-

tingale, its quadratic variation process ft (s)g is given by t (s) :=
R s
0
�2udu, which satis�es

R s
0
�2udu < 1

almost surely for each s 2 [0;1) since f�sg is uniformly bounded. By the representation theorem for
continuous local martingales (see Sec. 7 of Ikeda and Watanabe, 1981), we have a time-changed Brown-
ian motion f ~Wsg such that ~Wt(t) =Mt almost surely, where we consider an enlarged probability space if
necessary (i.e., if t (1) < 1; see Theorem 7.2�of Ikeda and Watanabe, 1981). Now, by Theorem 6, it
almost surely holds that

1 = lim sup
�&0

sup
t(s);t(t)2[0;1);
jt(s)�t(t)j2(0;�]

j ~Wt(t) � ~Wt(s)jp
2� log (1=�)

� lim sup
�&0

sup
s;t2[0;1);

jt�sjmaxf1;supu2[0;1) �
2
ug��

j ~Wt(t) � ~Wt(s)jp
2� log (1=�)

; (41)

where the inequality follows from the fact that if jt� sjmaxf1; supu2[0;1) �2ug � �, then jt (t)� t (s) j =R t
s
�2udu � �; and that u 2 [0;1) implies that t (u) 2 [0;1) by the non-explosiveness of ft (s)g. Then,

it almost surely holds thatq
maxf1; supu2[0;1) �2ug

� lim sup
�&0

sup
s;t2[0;1); jt�sj� ~�

j ~Wt(t) � ~Wt(s)jq
2[�=maxf1; supu2[0;1) �2ug] log(maxf1; supu2[0;1) �2ug=�)

= lim sup
~�&0

sup
s;t2[0;1); jt�sj� ~�

j ~Wt(t) � ~Wt(s)jq
2 ~� log(1= ~�)

= lim sup
~�&0

sup
s;t2[0;1); jt�sj� ~�

jMt �Msjq
2 ~� log(1= ~�)

; (42)
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where ~� = �=maxf1; supu2[0;1) �2ug; the �rst inequality follows from (41) and the fact that maxf1,
supu2[0;1) �

2
ug � 1; and the equalities hold since "�! 0" is equivalent to " ~�! 0" for each ! 2 
� with

Pr[
�] = 1 (as supu2[0;1) �
2
u <1) and ~Wt(t) =Mt almost surely. Now, letting � denote the time interval

(instead of ~�), (42) means that

Pr[lim sup�&0 sups;t2[0;1); jt�sj�� j
R t
s
�udWuj=

p
2� log (1=�) �

q
maxf1; supu2[0;1) �2ug] = 1;

leading to the desired result.

Given the result (16), we are ready to prove our main result on the weighted version of the global
modulus of continuity:

Proof of Theorem 1. We �rst consider the case where p > 0. Let 
 : I ! (�1; 1) be a strictly increasing
function:


 (x) = �1 + jxj�p if x < �1; = 
m (x) if x 2 [�1; 1] ; = 1� x�p if x > 1; (43)

where 
m (�) is a bridging function on [�1; 1] which is picked so that 
 (�) is strictly increasing and twice
continuously di¤erentiable (such 
m (�) can be constructed by some polynomial function). Then, by the
Ito lemma,


 (Xt)� 
 (Xs) =
R t
s

�

0 (Xu)� (Xu) + 
00 (Xu)�

2 (Xu) =2
�
du+

R t
s

0 (Xu)� (Xu) dWu:

By the construction of 
 (�) and the growth condition of � and � in (A3), [
0 (x)� (x) + 
00 (x)�2 (x) =2]

and [
0 (x)� (x)] are uniformly bounded. Thus, by the result (16), there exists some random variable ~C

such that for each ! 2 
� with Pr (
�) = 1,

sups;t2[0;1); jt�sj2(0;�] j
 (Xt)� 
 (Xs)j � ~C

p
� log (1=�); (44)

for any � small enough, where we note that ~C
 is bounded for each !(2 
�) and is independent of �.
Now, look at

sup
s;t2[0;T ]; jt�sj2(0;�]

B (Xs) j (Xt)�  (Xs)j

= sup
s;t2[0;T ]; jt�sj2(0;�]

B
�

�1 (
 (Xs))

�
�
�� �
�1 (
 (Xt))

�
�  

�

�1 (
 (Xs))

���
= sup

s;t2[0;T ]; jt�sj2(0;�]
B
�

�1 (
 (Xs))

�
j�([1� �s;t] 
 (Xs) + �s;t
 (Xt))j � sup

s;t2[0;1); jt�sj2(0;�]
j
 (Xt)� 
 (Xs) j

(45)

where � (y) = (d=dy) (
�1 (y)) =  0 (
�1 (y)) =
0 (
�1 (y)); and �s;t is some random variable whose values
are in [0; 1] (which depends on s and t). Since the second term on the RHS of (45) is Oa:s:(

p
� log (1=�)),

we can obtain the desired result if we show that the �rst term is Oa:s: (1).
To show the �rst term�s Oa:s: (1)-boundedness, note that given the a.s. growth rate of the extremal

process speci�ed in (A3), for each ! 2 
� with Pr (
�) = 1, we can �nd some c = c (!) such that
jXsj ; jXtj � c�T (for s; t � T ) and thus, j
 (Xs)j ; j
 (Xt)j � 1� (c�T )

�p. Given (B.2), we can �nd some
continuous function ~B (x) such that B (x) � ~B (x) for any x 2 R, and ~B (x) = jxj�(p+q+1) for jxj � cB
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with cB su¢ ciently large (independent of ! 2 
�). Then, the �rst term on the RHS of (45) can be
bounded as

sup
s;t2[0;T ]; jt�sj2(0;�]

B
�

�1 (
 (Xs))

�
j� ([1� �s;t] 
 (Xs) + �s;t
 (Xt))j

� sup
jyj;jwj2[0;(1�(c�T )�p]; jy�wj� ~C


p
�log(1=�)

~B
�

�1 (y)

�
j� (w)j

� sup
jyj;jwj2[0;(1�(c�T )�p]; jy�wj� ~C


p
�log(1=�)

~B (
�1 (y))
~B (
�1 (w))

� sup
w2(�1;1)

~B
�

�1 (w)

�
j� (w)j =: B1 �B2: (46)

To bound the term B1, we consider some random variable �c = �c (!) > 0 that is close enough to 1 (but
with with �c < (1� (c�T )

�p) so that 
�1 (z) = (1� z)�1=p for z 2 [�c; (1� (c�T )
�p], where we can �nd such

�c independent of T when T is large enough. Then,

B1 � sup
y;w2[��c;�c]; jy�wj� ~C


p
� log(1=�)

~B (
�1 (y))
~B (
�1 (w))

+ sup
y;w2[�c;(1�(c�T )�p]; jy�wj� ~C


p
� log(1=�)

~B (
�1 (y))
~B (
�1 (w))

+ sup
y;w2[�1+(c�T )�p;��c]; jy�wj� ~C


p
� log(1=�)

~B (
�1 (y))
~B (
�1 (w))

=: B11 +B12 +B13:

By the continuity of ~B and 
�1 (�), as well as by the compactness of the domain of y and w for each
! 2 
�, we can check B11 = Oa:s: (1). To bound B12, look at

B12 = supjyj;jwj2[0;(1�(c�T )�p]; jy�wj� ~C

p
� log(1=�)

f(1� w) = (1� y)g1+(q+1)=p

� supjyj;jwj2[0;(1�(c�T )�p]; jy�wj� ~C

p
�log(1=�)

f1 + jy � wj = (1� y)g1+(q+1)=p

� f1 + ~C

p
� log (1=�)� (c�T )

pg1+(q+1)=p = Oa:s: (1) ;

where the last equality follows from the condition (A.3). By an analogous argument, we can also show
B13 = Oa:s: (1). As for the term B2, we note that 1= j
0 (x)j and j 0 (x)j are bounded by a (p + 1)-th
polynomial function and a q-th polynomial one respectively, and therefore, for some �C > 0,

B2 � supjxj�cB ~B (x) j 
0 (x) =
0 (x)j+ supjxj�cB jxj

�(p+q+1) �C
�
1 + jxjp+q+1

�
<1;

where we have used the continuity of ~B (x) j 0 (x) =
0 (x)j. Now, we have shown that the �rst term on
the RHS of (45) is bounded by B1 �B2 = Oa:s: (1).
For the case p = 0, we outline only main points. Instead of (43), we set


 (x) = �1� (log jxj) if x < �1; = ~
m (x) if x 2 [�1; 1] ; = 1 + (log x) if x > 1;

with some suitable bridging function ~
m (x). By the linear growth condition and this speci�cation of

 (�), we can obtain the result (44). We also consider ~B (x) such that ~B (x) = jxj�(p+q+1) for jxj large
enough (instead of ~B (x) = expf� (log jxj)2g as above). Then we can check the term corresponding to
B2 is bounded. Since 
�1 (y) = exp fy � 1g for su¢ ciently large y, the term corresponding to B12 is
bounded by exp f(p+ q + 1) jy � wjg � expf(p+ q + 1) ~C


p
� log (1=�)g. The rest of the proof is quite

analogous and we omit details for brevity, completing the proof.
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Proof of Theorem 1 without (A3.ii). We note that (A3.ii) imposes no restriction if p = 0, and we here
let p > 0. The proof proceeds quite analogously to that for the case with (A3.ii) and p > 0, and we
only outline main points. We select the same ~
 as in (43) but a di¤erent ~B. That is, by (B1�), we can
�nd some ~B (x) = �B expf� jxjpg satisfying B (x) � ~B (x) for x 2 R (with some constant �B > 0 large
enough). Then, the LHS of (46) is bounded by

supjy�wj� ~C

p
� log(1=�)

expf� jy � wjg � supw2(�1;1) ~B
�

�1 (w)

�
j� (w)j ;

where the �rst term is Oa:s:(1), and the boundedness of the second term also follows by arguments similar
to previous ones.

7.2 Proofs of Convergence Results: Theorems 2-4 and Related Results

Here, we provide proofs of two general convergence results (Theorems 2 - 3) in Section 4, and that of the
drift estimator�s convergence (Theorem 4) in Section 5. The proof of the di¤usion estimator�s convergence
can be found in the Supplementary Material. Here, we present two useful results on the covering number
and the Bernstein exponential inequality, which we below use repeatedly.

Covering Number for Kernel Transformations: We start with some discussions on conditions
for the kernel function K. As stated in the Introduction, we establish the uniform convergence results
of the kernel-based estimators over an unbounded support. The technical di¢ culty arises due to this
unboundedness. Two methods are commonly used to circumvent this di¢ culty. The classical method
uses a Fourier transformation. This was probably �rst considered by Parzen (1962) and has been used in
several studies, including Bierens (1983) and Andrews (1995), which exploit the multiplicative expression
of the kernel function by the inversion formula and the boundedness of exp fixg (i is the imaginary
unit). Some studies, including Bosq (1998) and Hansen (2008), employ another method. They verify the
uniform convergence over a compact set which expands as the sample size increases, and show that the
outside of the compact set is asymptotically negligible. Our method di¤ers from these, which is based
on a covering-number technique from empirical process theory. The advantage of our method is that it
does not require the process��nite moments. The classical method requires the existence of the moment
in order to bound a component involving the Fourier inversion (see Sec. 2 of Bierens, 1983; or Lemma
A-1 of Andrews, 1995). The aforementioned second method also requires the existence of the moment to
show the negligibility of the outside of the expanding compact set (see the proof of Corollary 2.2 of Bosq,
1998) or to use the so-called truncation argument (see the proofs of Theorems 2-4 of Hansen, 2008). The
use of the covering-number technique also allows for a very �exible form of the kernel function, which
imposes only minimal restrictions. The classical method requires the Fourier invertibility of the kernel
function. In addition, some studies assume that the kernel function is continuous and/or has truncated
support (or su¢ ciently fast tail decay). We do not require any of these (see the conditions in (B2) and
its discussions in Section 4).
Here, we formally introduce the covering number. To this end, let Lr(Q) denote the set of functions

g : R! R such that kgkQ;r := [
R
jgjrdQ]1=r <1, where r � 1 and Q is a probability measure on R. The

covering number N(�;G;Lr(Q)) is the minimum number of �-balls in Lr (Q) needed to cover G, where an
�-ball in Lr(Q) around a function g 2 Lr(Q) is the set ff 2 Lr(Q) j kf � gkQ;r < �g. For a collection of
balls to cover G, all elements of G must be included in at least one of the balls, but the centers of the
balls need not to belong to G. An envelope function for G is any function G such that jgj � G for all g
2 G. Given these notions, we have the following lemma:
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Lemma 2. Suppose that a function K (�) (: R! R) is of bounded variation and that there exists some
constant �K 2 (0;1) such that supx2R jK (x) j � �K. Let K be a set of all rescaled translates of K, i.e.,

K :=
�
K
�
p�x
h

� �� x 2 R and h > 0	 : (47)

Then, the covering numbers of K satisfy

supQN
�
�8 �K;K;Lr(Q)

�
� ���4r for � 2 (0; 1) ; (48)

where the supremum is over all probability measures on R; and � > 0 is some constant independent of
Q.

A set of functions is called Euclidean if its covering number increases at the rate of ��V with some
constant V > 0. This lemma says that K is Euclidean with V � 4r. Several studies, including Pollard
(1984), Nolan and Pollard (1987), and Pakes and Pollard (1989), have argued that the set K de�ned in
(47) is Euclidean, but they have not provided a further result on the bound of V (a similar result can
be also found in Lemma B.3 of Escanciano, Jacho-Chávez and Lewbel, 2014). The proof of this lemma,
which is based on several basic results in empirical process theory, is provided in the Supplementary
Material.

The Bernstein-Type Exponential Inequality for Strong Mixing Arrays: We next present a
useful inequality, which is presented in Liebscher (1996) (see Theorem 2.1 and the arguments in Section
3, p. 73) and is derived from Theorem 5 of Rio (1995):

Lemma 3. Let fZn;jgnj=1 be a stationary zero-mean real-valued triangular array such that jZn;jj � CZ,
with strong mixing coe¢ cients � (s). Then, for each positive integer m � n and each real number � such
that m � �=4CZ,

Pr(j
Pn

j=1 Zn;jj � �) � 4 expf��2
�
64n

�
�2m=m

�
+ (8=3)CZ�m

��1g+ (4n=m)� (m�) ; (49)

where �2m := E[(
Pm

j=1 Zn;j)
2].

Given two lemmas, we are ready to prove Theorem 2. For notational simplicity, we often write the
product of functions as f � g (x) := f (x) g (x) in the subsequent proofs.

Proof of Theorem 2. By the triangle inequalities, the LHS of (24) is bounded by the sum of three terms:

supx2I
��Gn;T (x)� �Gn;T (x)

�� � R1 +R2 + (1=n) supx2I
�� �Gn;T (x)

�� ; (50)

where

R1 := supx2I

���(1=Th)Pn�1
j=1 K

�
Xj��x

h

�
B (Xj�)

R (j+1)�
j�

[ (Xs)�  (Xj�)] ds
��� ;

R2 := h�1 supx2I

���(�=T )Pn�1
j=1

h
K
�
Xj��x

h

�
B �  (Xj�)�

R
K
�
p�x
h

�
B �  � � (p) dp

i��� :
We subsequently show that

R1 = Op(
p
� log (1=�)); (51)

R2 = Op(
p
(log T ) =Th); (52)
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where � is given in the statement of the theorem. Since we can easily check that supx2I j �Gn;T (x) j = O (1)

(as in (55, provided that supx2I � (x) <1 and  2 D(B; �)), (51)-(52) imply the desired result.

Proof of (51). We also look at

R1 � supx2I (�=Th)
Pn�1

j=1

���K �Xj��xh

�����max1�j�n�1 sups2[j�;(j+1)�]B (Xj�) j (Xs)�  (Xj�)j
= : R11 �R12; (53)

To �nd the bound of R11, observe that

R11 � supx2I
���(1=nh)Pn�1

j=1

���K �Xj��xh

����� E[
���K �Xj��xh

����]���+ supx2I R 1
h

��K �p�x
h

��� � (p) dp; (54)

where the stationarity of the process is used; the �rst term on the RHS is op (1), which can be veri�ed
by the same arguments as those for R2 (below) using the boundedness of � (�) in (A2); and the second
term is bounded since

supx2I
R
K (q)� (qh+ x) dq �

R
jK (q)j dq � supx2I � (x) <1: (55)

Then, we haveR11 = Op (1). Since  satis�es the conditions of Theorem 1, we haveR12 = Oa:s:(
p
� log (1=�)).

From these, we can obtain (51) as desired.

Proof of (52). De�ne two measures on R, Qn and Q0, as follows: for every Borel set E on R,

Qn (E) := n�1
Pn�1

j=1 1fXj�2EgB �  (Xj�) ; Q0 (E) :=
R
E
B �  � � (p) dp: (56)

Qn and Q0 can be considered to be weighted versions of an empirical measure and a probability measure,
respectively, with a weight B �  . Recalling the conditions in De�nition 1, we can check that both
are �nite measures, i.e., Qn (I) � supp2I jB �  (p)j < �B1 for any n, and Q0 (I) =

R
B �  � � (p) dp �

supp2I jB �  (p)j < �B2. Since we do not assume  is positive-valued, Qn (E) and Q0 (E) may take
negative values for some E. Thus, they are �nite signed measures (instead of usual �nite measures). It is
known that any �nite signed measure v can be expressed as a di¤erence of two (positive) �nite measures v1
and v, that is, v = v1�v2, which can be checked by letting v1 = (jvj+ v) =2 � 0 and v2 = (jvj � v) =2 � 0.
While our empirical-process technique based on Lemma 2 is designed for probability measures, we can
still apply it to general �nite signed measures by considering the decomposition as v = v1 � v2 and
re-normalization of Qn and Q0. For brevity, we regard Qn and Q as probability measures throughout this
proof.
Now, consider the following set of functions (indexed by x) for each h (> 0): K (h) := fK ((p� x) =h)

j x 2 Rg. For any h, K (h) � K where K is de�ned in (47) of Lemma 2. (B2) implies all the conditions
of Lemma 2. Thus, by Lemma 2, the covering numbers satisfy

supQN
�
8" �K;K (h) ;Lr (Q)

�
� supQN

�
8" �K;K;Lr (Q)

�
� �"�4r for " 2 (0; 1) ; (57)

uniformly over any h > 0. Here, we consider the case with r = 1. Then, for each h, we can construct a
partition of K (h), fKk (h)g�(h)k=1 , which satis�es

K (h) �
S�(h)
k=1 Kk (h) ; each Kk (h) has the center gk (�) := K

� ��xk
h

�
, such that

8" 2 (0; 1) ; 8g 2 Kk (h) ;
R
jg � gkj dQ � 8" �K for any probability measure Q.

(58)
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To �nd the bound of R2, we write it in terms of two measures Qn and Q0 (de�ned in (56)) and the
partition of K (h):

R2 = (1=h) supx2I
��R gdQn �

R
gdQ0

�� � R21 +R22; (59)

where

R21 := (1=h)maxk2f1;:::;�(h)g supg2Kk(h)
��R (g � gk) dQn �

R
(g � gk) dQ0

�� ; (60)

R22 := (1=h)maxk2f1;:::;�(h)g
��R gkdQn �

R
gkdQ0

�� ; (61)

where we subsequently derive the bounds these two terms. Given any " in (58), we can bound R21 as

R21 � (1=h)
�
8" �K + 8" �K

	
= O ("=h) ; (62)

By setting
" = h [(log T ) =Th]1=2 ; (63)

which tends to zero, we have R21 = O([(log T ) =Th]1=2).
To �nd the probability bound of R22, we write R22 = (1=nh)maxk2f1;:::;�(h)g j

Pn�1
j=1 Yn;j (k; h) j, where

fYn;j (k; h)gnj=1 is a triangular array de�ned as

Yn;j (k; h) := K
�
Xj��xk

h

�
B �  (Xj�)�

R
K
�
p�xk
h

�
B �  � � (p) dp;

for each (k; h). We apply the Bernstein inequality in Lemma 3 to
Pn�1

j=1 Yn;j (k; h) (with Zn;j =

Yn;j (k; h) and �2m = �2m (k; h) := E[j
Pm

j=1 Yn;j (k; h) j2] for each (k; h)). To this end, we note that
supj;k jYn;j (k; h)j � 2 �K �B2 =: CY (by the boundedness of K and B �  ), and the following bound:

Lemma 4. If the mixing exponent � > 1, there exists some constant ~$ such that for m � (n� 1) with
n su¢ ciently large

�2m (k; h) = E[j
Pm

j=1 Yn;j (k; h) j2] � ~$mh
�
1 + h1�2=���1� ; uniformly over k and h. (64)

Given this, we look at

Pr(R22 � a [(log T ) =Th]1=2) �
P�(h)

k=1 Pr(j
Pn�1

j=1 Yn;j (k; h) j � a
p
(log T ) =Thnh)

� 4�"�4
�
4 exp

�
� a2 (log T )

64$ (� + h1�2=�) + (8=3)CY a

�
+ 4AT 1=2��=2 (log T )�=2�1=2 h�1=2��=2

�
� 4�T 2 (log T )�2 h�2

�
exp

�
� a2 (log T )

64$ + (8=3)CY a

�
+ AT 1=2��=2 (log T )�=2�1=2 h�1=2��=2

�
� 4� (log T )�4

n
T 2+2��a

2=[64$+(8=3)CY a] + A (log T )�1 T 5=2��=2+(5=2+�=2)�
o
;

where the second inequality holds by (57), (49) and (64) with setting � = a[(log T ) =Th]1=2nh and m =

[Th= (log T )]1=2��1 (m � (n� 1) and m < �=4CY are satis�ed for large T and a); the third holds
by (63) and "� + h1�2=� � 1" (as h;� ! 0 for � � 2), and the last inequality holds since h�1 �
T � (log T )�1 (which follows from (log T ) =T �h ! 0). Therefore, if 5=2 � �=2 + (5=2 + �=2) � � 0 ,
� (1� �) � 5 (� + 1), we have Pr(R22 � a [(log T ) =Th]1=2) ! 0 for large a (> 0), which means that
R22 = op([(log T ) =Th]

1=2). This, together with the rate of R21, leads to the desired result: R2 =

Op([(log T ) =Th]
1=2).
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Proof of Lemma 4. We consider bounding the covariance in two ways. First, for any j � 1,

E [Yn;1 (k; h)Yn;j+1 (k; h)]

= h2
R R

K (r)K (s)B �  (r + xkh)B �  (s+ xkh)��;(j+1)� (r + xkh; s+ xkh) drds

� h2
R
jB �  (r + xkh)j2 � (r + xkh)K

2 (r) dr � h2 �B1 �B2 �K
R
jK (r)j dr = $h2; (65)

where ��;(j+1)� is the joint density of X� and X�(j+1), whose existence can be checked by (A1.i); the �rst
equality holds by changing variables; the inequalities follows from the Schwartz inequality and (i)-(ii) of
De�nition 1; and the last equality holds with $ := �B1 �B2 �K

R
jK (q)j dq (<1). Second, by the Billingsley

inequality (Bosq, 1998, Corollary 1.1), for j � 1,

E [Yn;1 (k; h)Yn;j+1 (k; h)] � 4� (j�)� kY1;n(k; h)k21 � 4A (j�)
�� C2Y : (66)

We also have the moment bound:

E
�
Y 2
n;j (k; h)

�
= h

R
K2 (q)B2 �  2 � � (qh+ xk) dq � $h; (67)

for any j, k and h, which follows from the stationarity of the process, changing variables and (i)-(ii) of
De�nition 1. Then,

E[j
Pm

j=1 Yn;j (k; h) j2] � 2m
P

2�j+1���1h�2=� E [Yn;1 (k; h)Yn;j+1 (k; h)]

+ 2m
P

j+1>��1h�2=� E [Y1;n (k; h)Yj+1;n (k; h)] +
P

1�j�mE
�
Y 2
n;j (k; h)

�
� 2m��1h�2=�$h2 + 2m

P
j+1>��1h�2=� 4A (j�)

�� C2Y +m$h

� 2mh2�2=���1 �$ + 4AC2Y = (� � 1)�+$mh;

where the �rst inequality holds by the stationarity; the second by (65)-(67); and the last inequality uses
the following fact:P

j+1>��1h�2=� j
�� �

R1
��1h�2=�x

��dx �
�
��1h�2=�

�1��
= (� � 1) = ���1h2�2=�= (� � 1) ; (68)

(note that � > 1 and ��1h�2=� � 1 for small � and h). We now have shown that (64) holds with
~$ = 3$ + 8AC2Y = (� � 1).

Proof of Theorem 3. For each (x; h; n; T ), let fNr (x; h;n; T )gr2[0;1] be a process on [0; 1] de�ned as

Nr (x; h;n; T ) :=

Z r

0

K
�
Xdsne��x

h

�
B
�
Xdsne�

�
�sn�dWsn�;

where dze is the largest integer which is less than or equal to z. For notational simplicity, we write
Nr (x; h) = Nr (x; h;n; T ) in the sequel. Then, we can write

Mn;T (x) = (1=Th)N1 (x; h) : (69)

Note that for each (x; h), fNr (x; h)g is a continuous martingale with respect to the �ltration fGrgr2[0;1]
where Gr := Frn�. This martingale vanishes at r = 0, and its quadratic variation process is given by
hN (x; h)ir =

R r
0
K2
�
Xdsne��x

h

�
�2sn�d (sn�). We can write hN (x; h)i1 =

Pn�1
j=1 K

2
�
Xj��x

h

� R (j+1)�
j�

�2udu.
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To �nd the probability bound of N1 (x; h), we apply the Bernstein-type inequality for continuous martin-
gales (see, e.g., Ex. 3.16 in Ch. IV of Revuz and Yor, 1999): for any a > 0 and y > 0,

Pr (jN1 (x; h)j � �; hN (x; h)i1 � y) � 2 exp
�
��2=2y

	
: (70)

Then, let a (> 0) be any constant.

Pr(jMn;T (x)j � a
p
(log T ) =Th)

� Pr(jN1 (x; h)j � aTh
p
(log T ) =Th; hN (x; h)i1 � y) + Pr (hN (x; h)i1 > y)

� 2 exp
�
�a2 (log T ) =2

	
+ Pr (hN (x; h)i1 > aTh) = 2T�a

2=2 + Pr (hN (x; h)i1 > aTh) ; (71)

where the second inequality holds by (70) with � = aTh
p
(log T ) =Th and y = aTh.

We next derive the probability bound of hN (x; h)i1. To this end, de�ne an array f ~Zn;j (x; h)g by

~Zn;j (x; h) := K2
�
Xj��x

h

� R (j+1)�
j�

�2udu� E[K2
�
Xj��x

h

� R (j+1)�
j�

�2udu];

Observe that j ~Zn;j (x) j � ~C� for some constant ~C > 0 (uniformly over x), and

hN (x; h)i1 =
n�1P
j=1

~Zn;j (x; h) +
n�1P
j=1

E[K2
�
Xj��x

h

� R (j+1)�
j�

�2udu] �
n�1P
j=1

~Zn;j (x; h) + C�Th;

where the last inequality holds with some C� 2 (0;1) by the change-of-variable argument. Given this,
we have

Pr (hN (x; h)i1 > aTh) � Pr(j
Pn�1

j=1
~Zn;j (x; h) j � (a=2)Th) + Pr (C�Th � (a=2)Th) ; (72)

where the second term on the RHS is zero for any a large enough (and thus is negligible). To �nd the
bound of the �rst term, we use the Bernstein-type inequality in Lemma 3 with the following bound of
~�m (x; h):

~�m (x; h) := E[j
Pm

j=1
~Zn;j (x; h) j2] � ~C��

2hm2 for m � (n� 1) ; (73)

which holds by the change-of-variable argument. Then,

Pr(j
Pn�1

j=1
~Zn;j (x; h) j � (a=2)Th) � 4 exp

8<:� (a2=4)T 2h2

64n
�
~C��2hm

�
+ (8=3) ~C� [(a=2)Th]m

9=;+ 4Anm�1�����

� 4 exp
(
� (a2=4) (log T )

64 ~C� + (4=3) ~Ca

)
+ 4AT��h�(�+1) (log T )�1�� � T�aCM + 4AT��h�(�+1) (log T )�1�� ;

(74)

where the �rst two inequalities use (49) with (73), m = nh= (log T ) and � = (a=2)Th, which satisfy
m � minf(n� 1) ; �=4( ~C�)g; and the last inequality holds with CM = 1=4[1+(4=3) ~C] for a large enough
with 64 ~C�=a � 1. Now, (71), (72) and (74) imply the desired result.

Proof of Theorem 4. We consider the following decomposition: supx2R j	̂� (x) � B (x)� (x)� (x) j �P3
i=1 Ui, where

U1 : = supx2R

���(1=Th)Pn�1
j=1

h
K
�
Xj��x

h

�
B(Xj�)

R (j+1)�
j�

� (Xs) ds� E[K
�
Xj��x

h

�
B � �(Xj�)]

i��� ;
U2 : = supx2R

���(1=h)E[K �Xj��xh

�
B � � (Xj�)]�B � � � � (x)

��� ;
U3 : = supx2R

���(1=Th)Pn�1
j=1 K

�
Xj��x

h

�
B (Xj�)

R (j+1)�
j�

� (Xs) dWs

��� :
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Then, applying Theorem 2 to U1 (with  = �), we can immediately obtain U1 = Op (a
?
T ). We can also

easily derive U2 = O (h2), which is the smoothing bias term, by standard change-of-variable and Taylor-
expansion arguments for kernel estimators with the condition that  2 D (B; �). Therefore, if we have
shown that U3 = Op(

p
(log T ) =Th), we obtain the desired result (29). Given the rate result (29) we can

verify the convergence result for �̂ (x) in the same way as in the proof of Theorem 8 of Hansen (2008)
(we omit details for brevity).
It remain to derive the rate of U3. To this end, let B (Xj�)

R (j+1)�
j�

� (Xs) dWs =
R (j+1)�
j�

�sdWs +R (j+1)�
j�

~�sdWs for each j, where f�sg and f~�sg are de�ned as

�s := B � �(Xds=�e�) +B(Xds=�e�)[� (Xs)� �(Xds=�e�)]1fB(Xds=�e�)j�(Xs)��(Xds=�e�)j�
p
� log��1g; (75)

~�s := B(Xds=�e�)
�
� (Xs)� �(Xds=�e�)

�
1fB(Xds=�e�)j�(Xs)��(Xds=�e�)j>

p
� log��1g: (76)

Recalling the conditions in (27) and the result (20), we can see that �s is uniformly bounded over s � 0
and ~�s is zero a.s. for any su¢ ciently small �. Therefore, the convergence rate of U3 is determined by
that of �U3 := supx2R j (1=Th)

Pn�1
j=1 K(

Xj��x
h
)
R (j+1)�
j�

�sdWsj. To derive the rate of �U3, de�ne a class of
functions as K (h) :=

�
K
�
p�x
h

��� x 2 R	 for each h (> 0). By Lemma 2 (with r = 1), we can construct a
�nite covering fKk (h)g�(h)k=1 of K (h) satisfying the following conditions: K (h) �

S�(h)
k=1 Kk (h); each Kk (h)

has the center gk (�) := K
� ��xk

h

�
such that for any probability measure Q,

8" 2 (0; 1) ; 8g 2 Kk (h) ;
R
jg � gkj dQ � "8 �K; and � (h) � �"�4 for each " 2 (0; 1) ; (77)

for some constant � (> 0) (independent of h). Using this covering, we can obtain

�U3 � (1=Th)maxk2f1;:::;�(h)g supg2Kk(h)
���Pn�1

j=1 [gk (Xj�)� g (Xj�)]
R (j+1)�
j�

�sdWs

���
+maxk2f1;:::;�(h)g

���(1=Th)Pn�1
j=1 K

�
Xj��xk

h

� R (j+1)�
j�

�sdWs

��� =: �U31 + �U32: (78)

We subsequently derive the bounds of �U31 and �U32. Now, consider the bound of �U31:

�U31 � (n�1)
Th

maxk2f1;:::;�(h)g supg2Kk(h)
1

n�1
Pn�1

j=1 jgk (Xj�)� g (Xj�)j �max1�j�n�1 j
R (j+1)�
j�

�sdWsj

� (n�1)
Th

"8 �K �Oa:s:(
p
� log (1=�)) = Oa:s:("

p
� log (1=�)� (1=�h)); (79)

where the second inequality holds by the following two results: (i) for Qn (E) :=
1

n�1
Pn�1

j=1 1fXj�2Eg (the
empirical probability measure),

maxk2f1;:::;�(h)g supg2Kk(h)
1

n�1
Pn�1

j=1 jgk (Xj�)� g (Xj�)j = maxk2f1;:::;�(h)g supg2Kk(h)
R
jgk � gj dQn � "8 �K;

which follows from (77); (ii) max1�j�n�1 j
R (j+1)�
j�

�sdWsj = Oa:s:(
p
� log (1=�)), which follows from (16)

since f�sg is uniformly bounded. Next, we consider the probability bound of �U32. By Theorem 3 (with
�s = �s) and the bound of � (h) in (77), we can �nd some constant CM (> 0) satisfying

Pr( �U32 � a
p
(log T ) =Th) � �"�4[2T�a2=2 + T�aCM + 4AT��h�(�+1) (log T )1��]: (80)

Now, by letting " =
p
�h=T , we obtain �U31 = Oa:s:(

p
(log T ) =Th) since log (1=�) = log T by the �rst

condition in (26). Given this " and (26), we have "�4 = T 2��2h�2 � T 2+2�+2� (log T )�2 as well as
T��h�(�+1) � T��+�(�+1) (log T )�(�+1). Therefore,

Pr( �U32 � a
p
(log T ) =Th) = O(T 2+2�+2� (log T )�2 [T�a

2=2 + T�aCM ] + T��+2+2�+2�+�(�+1) (log T )�(2+�)):

This implies that �U32 = Op(
p
(log T ) =Th) if ��+2+2�+2�+� (� + 1) � 0() 3�+2+2� � � (1� �).

From these arguments, we have now shown that U3 = Op(
p
(log T ) =Th), completing the proof.
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8 Proof of Lemma 2 (Covering Number of Kernel Transforma-
tions)

Terminologies in this proof follow those of van der Vaart and Wellner (1996; hereafter referred to as
VW96). First, observe that K can be decomposed into

K (z) = K1 (z)�K2 (z) ; (S.2)

since it is of bounded variation, where K1 and K2 are bounded monotone functions. By (S.2) and
re-parametrization, we have

K � fK1 �K2 j K1 2 K1; K2 2 K2g ; (S.3)

where Kl := fKl (ap+ b) j a 2 (0;1) ; b 2 Rg for l = 1; 2. Since K is bounded by �K, there exists an
envelope function Ml for Kl (l = 1; 2).
Note that the set of subgraphs of functions fap+ b j a 2 (0;1) ; b 2 Rg is a VC-class with the VC

index 3, which is shown by a similar argument to the proof of Lemma 2.6.16 of VW96 (the set of
subgraphs of functions fap+ b j a 2 (0;1) and b 2 Rg cannot shatter any three-point set while it can
shatter some two-point set in R2). Then, since Kl is monotone, Kl is also a VC-class with the VC-index
at most 3, which follows from Lemma 9.9 (viii) of Kosorok (2008). We now have shown that each Kl is
a VC-class with the VC-index of the set of subgraphs of functions in Kl is 3.
By Theorem 2.6.7 of VW96, we can �nd the uniform covering number of Kl, i.e., the exists some

constant �l (> 0) that is independent of Q satisfying

supQN(� kMlkQ;r ;Kl;Lr (Q)) � �l��2r for � 2 (0; 1) : (S.4)

Then, it holds that for each Q,

N(�4 kM1 +M2kQ;r ;K;Lr (Q)) � N(�4 kM1 +M2kQ;r ;K1 �K2;Lr (Q))
� N(� kM1kQ;r ;K1;Lr (Q))N(� kM2kQ;r ;�K2;Lr (Q))
=

Q
l=1;2N(� kMlkQ;r ;Kl;Lr (Q)); (S.5)

where the �rst inequality holds by (S.3); the second holds by Lemma 16 of Nolan and Pollard (1987);
and the last equality by the fact �K2 and K2 have the same covering number. From (S.4) and (S.5), it
holds that

supQN(�4 kM1 +M2kQ;r ;K;Lr (Q)) �
Q

l=1;2 supQN(� kMlkQ;r ;Kl;Lr (Q))
� �1�2�

�4r:

Since 4 kM1 +M2kQ;r � 8 �K, we have shown that (48) holds with some constant � = �1�2, completing
the proof. �
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9 Proof of Theorem 5 (Uniform Convergence of the Di¤usion
Estimator)

Using the Ito lemma: �
X(j+1)� �Xj�

�2 ���2 (x) = 2R (j+1)�
j�

[Xs �Xj�]� (Xs) ds

+2
R (j+1)�
j�

[Xs �Xj�]� (Xs) dWs +
R (j+1)�
j�

�
�2 (Xs)� �2 (x)

�
ds; (S.6)

we have the following decomposition:

sup
x2R

j	̂�2 (x)� �̂ (x)�2 (x) j �
P5

i=1 Vi;

where

V1 := 2 sup
x2R

���(1=Th)Pn�1
j=1 K

�
Xj��x

h

�
B (Xj�)

R (j+1)�
j�

[Xs �Xj�]� (Xs) ds
��� ;

V2 := 2 sup
x2R

���(1=Th)Pn�1
j=1 K

�
Xj��x

h

�
B (Xj�)

R (j+1)�
j�

[Xs �Xj�]� (Xs) dWs

��� ;
V3 := sup

x2R

���(1=Th)Pn�1
j=1 K

�
Xj��x

h

�
B (Xj�)

R (j+1)�
j�

[�2 (Xs)� �2 (Xj�)]ds
��� ;

V4 := sup
x2R

��n�1
n

R
K
�
p�x
h

�
B (p)� (p) [�2 (p)� �2 (x)]dp

�� ;
V5 := sup

x2R
(1=nh)

���Pn�1
j=1 f�j� (x)� E[�j� (x)]g

��� ;
and

�j� (x) := K
�
Xj��x

h

�
B (Xj�) [�

2 (Xj�)� �2 (x)]:

We below verify the following results:

V1 = Op(� log (1=�) +
p
(log n)=nh); (S.7)

V2 = Op(
p
(log n) =nh); (S.8)

V3 = Op(� +
p
(log n)=nh); (S.9)

V4 = O(h2); (S.10)

V5 = Op(
p
(log n)=nh); (S.11)

under the stated conditions, which imply the �rst part of the theorem. The convergence of �̂ (x) can be
veri�ed in the same way as in the proof of Theorem 8 of Hansen (2008) and its proof is omitted.

Proof of (S.7). Plugging the expression Xs �Xj� =
R s
j�
� (Xu) du+

R s
j�
� (Xu) dWu, we have

B(Xj�)
R (j+1)�
j�

[Xs �Xj�]� (Xs) ds =
R (j+1)�
j�

B1=2(Xj�) [Xs �Xj�]B
1=2(Xj�)[� (Xs)� �(Xj�)]ds

+B1=2(Xj�)�(Xj�)
R (j+1)�
j�

R s
j�
B1=2 (Xj�)� (Xu) duds

+B (Xj�)�(Xj�)
R (j+1)�
j�

R s
j�
� (Xu) dWuds:

The �rst and second terms on the RHS areOa:s:(�
2 log (1=�)) andOa:s:(�

2) uniformly over j, respectively,
which holds by Theorem 1 and (20), where we note that � (�) is at most of polynomial growth (as supposed
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in (A3.i)). Therefore, we can write

V1 � 2 sup
x2R

(1=nh)
Pn�1

j=1

���K �Xj��xh

����� [Oa:s:(� log (1=�)) +Oa:s:(�)]

+2 sup
x2R

(1=nh)
Pn�1

j=1 K
�
Xj��x

h

�
B (Xj�)�(Xj�)

R (j+1)�
j�

R s
j�
� (Xu) dWuds

= : 2V11 + 2V12:

By the uniform boundedness of � (�), we have supx2R (1=nh)
Pn�1

j=1

���K(Xj��xh
)
��� = Op (1), which is derived

in the proof of Theorem 2 (see the term R11), and therefore, V11 = OP (� log (1=�)). For deriving the
rate of V12, observe thatR (j+1)�

j�

R s
j�
� (Xu) dWuds =

R (j+1)�
j�

R (j+1)�
u

ds� (Xu) dWu

=
R (j+1)�
j�

[(j + 1)�� u]� (Xu) dWu;

which holds by changing the order of (stochastic) integrals. Therefore, V12 can be written as the sum
of martingale di¤erences. It can be represented by a continuous martingale with index r 2 [0; 1] (in the
same way as the term U3 in the proof of Theorem 4), and we can show that V12 = Op(

p
(log n) =nh) in

the same way as for V2 below (and we omit details for brevity).

Proof of (S.8). Let

%s;j� : = B (Xj�) [
R s
j�
� (Xu) du+

R s
j�
� (Xu) dWu]� (Xs) ;

e� (s; j) : = 1fsupv2[j�;s]B1=2(Xj�)[j�(Xv)��(Xj�)j+j�(Xv)��(Xj�)j]�1g;

where e� is an indicator function de�ned for each (s; j) with s 2 [j�; (j + 1)�]. Using this e�, we also
de�ne

�%s;j� : =
�R s

j�
fB1=2 (Xj�)� (Xj�) +B1=2 (Xj�) [� (Xu)� � (Xj�)]e� (u; j)gdu

+
R s
j�
fB1=2 (Xj�)� (Xj�) +B1=2 (Xj�) [� (Xu)� � (Xj�)]ge� (u; j) dWu

	
�
�
B (Xj�)� (Xj�) +B (Xj�) [� (Xs)� � (Xj�)] e� (s; j)

	
: (S.12)

Then, we can write
%s;j� = �%s;j� + ~%s;j�;

where ~%s;j� is de�ned through the same form as �%s;j� with e� (u; j) and e� (s; j) replaced by [1�e� (u; j)]
and [1� e� (s; j)], respectively. Therefore, we can also write

V2 = 2 sup
x2R

j (1=Th)
Pn�1

j=1 K
�
Xj��x

h

� R (j+1)�
j�

�%s;j�dWsj

+2 sup
x2R

j (1=Th)
Pn�1

j=1 K
�
Xj��x

h

� R (j+1)�
j�

~%s;j�dWsj

= : 2V21 + 2V22:

By Theorem 1, there exists some ~� > 0 such that for any� � ~�,max1�j�n�1 sups2[j�;(j+1)�] j1� e� (s; j)j =
0 almost surely, implying that V22 = 0 almost surely for su¢ ciently small �. Therefore, the convergence
rate of V2 is determined by that of V21.
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To derive the rate of V21, we note that

�%s;j� � C0

n
�+

R s
j�
fB1=2 (Xj�)� (Xj�) +B1=2 (Xj�) [� (Xu)� � (Xj�)]ge� (u; j) dWu

o
(S.13)

for some constant C0 > 0, which follows from the de�nition of �%s;j�. Since the integrand of the stochastic
integral on the RHS of (S.13) is uniformly bounded over j and u 2 [j�; s], we can apply the same
argument as those for (16) and (20) again. That is, we let

�%s;j� = �%s;j�1f�%s;j��
p
� log��1g + �%s;j�1f�%s;j�>

p
� log��1g;

where the second term is exactly zero for su¢ ciently small � (uniformly over j and s 2 [j�; (j + 1)�]),
implying that the rate of V21 is determined by that of

�V21 := sup
x2R

j (1=Th)
Pn�1

j=1 K
�
Xj��x

h

� R (j+1)�
j�

�%s;j�1f�%s;j��
p
� log��1gdWsj:

To derive the rate of �V21, we consider a �nite covering fKk (h)g�(h)k=1 of a set of functions K (h) := fK
�
p�x
h

�
j x 2 Rg (for each h). By Lemma 2, we can �nd fKk (h)g�(h)k=1 such that each Kk (h) has the center
gk (�) := K

� ��xk
h

�
; for any probability measure Q,

8" 2 (0; 1) ; 8g 2 Kk (h) ; f
R
jg � gkj�r dQg1=�r � "8 �K; and � (h) � �"�4�r for each " 2 (0; 1) ; (S.14)

for some constant � (> 0) (independent of h) and for any �r � 1. Then, we have

�V21 � n�1
Th

max
k2f1;:::;v(h)g

sup
g2Kk(h)

1
n�1

Pn�1
j=1 jgk (Xj�)� g (Xj�)j j

R (j+1)�
j�

�%s;j�1f�%s;j��
p
� log��1gdWsj

+(1=Th) max
k2f1;:::;v(h)g

j
Pn�1

j=1 gk (Xj�)
R (j+1)�
j�

�%s;j�1f�%s;j��
p
� log��1gdWsj

= : �V211 + �V212:

By the Hölder and Burkholder-Davis-Gundy (BDG) inequaliites, we have for any �r > 1,

�V211 � n�1
Th

�
max

k2f1;:::;v(h)g
sup

g2Kk(h)

1
n�1

Pn�1
j=1 jgk (Xj�)� g (Xj�)j�r

	1=�r
�
�

1
n�1

Pn�1
j=1 j

R (j+1)�
j�

�%s;j�1f�%s;j��
p
� log��1gdWsj�r=(�r�1)

	(�r�1)=�r
� n�1

Th
"8 �K �

�
Op(�

�r=(�r�1)(log��1)�r=(�r�1))
	(�r�1)=�r

= Op(h
�1" log��1) = Op(h

�1" log n) = Op(
p
(log n)=nh); (S.15)

where the last two equalities have used the condition ��1 � n{, implying that log��1 = O(log n), as
well as

" =
p
h=n(log n): (S.16)

To �nd the probability bound of the second term �V212, we note that
Pn�1

j=1 gk (Xj�)
R (j+1)�
j�

�%s;j�dWs

can be written as a continuous martingale indexed by r 2 [0; 1] in the same was as in the proof Theorem
3 (see the expression for the term U3), whose quadratic variation at r = 1 is given by

Jn;T (k) =
Pn�1

j=1 K
2
�
Xj��xk

h

� R (j+1)�
j�

�%2s;j�1f�%s;j��
p
� log��1gds
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with xk being a point in R satisfying g2k (�) = K2
� ��xk

h

�
. This Jn;T (k) satis�es

Jn;T (k) � �K2T�[log (1=�)]2 uniformly over k,

as well as

E[Jn;T (k)] � n max
1�j�n�1

E[K2
�
Xj��xk

h

�
�%2s;j�]

� CJTh�[log(1=�)]
2 uniformly over k,

for some constant CJ > 0, which follows from the BDG inequality (with the upper bound (S.13)) and the
change-of-variable argument (with the uniform boundedness of �). Applying the exponential inequality
for continuous martingales (Ex. 3.16 in Ch. IV of Revuz and Yor, 1999), for each a > 0 and each y, we
have

Pr(�V212 � a
p
(log n)=nh)

� v (h)

�
Pr
�
(1=Th) j

Pn�1
j=1 gk (Xj�)

R (j+1)�
j�

�%s;j�1f�%s;j��
p
� log��1gdWsj � a

p
(log n)=nh; Jn;T (k) � y

�
+Pr (jJn;T (k)� E[Jn;T (k)]j � y=2) + Pr (E[Jn;T (k)] � y=2)

�
� O(n2�rh�2�r(log n)2�r)�

�
2 exp

�
�a

2[(log n)=nh]T 2h2

aTh�

�
+ Pr (jJn;T (k)� E[Jn;T (k)]j � aTh�)

�
= O(n2�rh�2�r(log n)2�r � n�a) +O(n2�rh�2�r(log n)2�r)� Pr (jJn;T (k)� E[Jn;T (k)]j � aTh�) ; (S.17)

where the second inequality holds with y = 2aTh� (for su¢ ciently large a) since v (h) � �"�4�r, "�4�r =
O (n2�rh�2�r(log n)2�r) (recall " =

p
h=n(log n) in (S.16)) and

Pr (E [Jn;T (k)] � y=2) � Pr (CJTh� � aTh�) = 0:

The �rst term on the RHS of (S.17) tends to zero as n!1 (for n large enough). To �nd the bound of
the second term on the RHS of (S.17), we apply the Bernstein inequality in Lemma 3. To this end, write

Jn;T (k)� E [Jn;T (k)] =
Pn�1

j=1 fZj;n � E [Zj;n]g ;

where
Zj;n := K2

�
Xj��xk

h

� R (j+1)�
j�

�%2s;j�1f�%s;j��
p
�log��1gds:

By the boundedness of K and the de�nition of �%s;j� in (S.12), we can �nd some constant CZ > 0 such
that max1�j�n�1 jZj;nj � �K2�2 (log��1)

2. By the change-of-variable argument and the BDG inequality,
we can also �nd some constant $Z satisfying E[j

Pm
j=1Zj;nj2] � $Zm

2h�4. Given these, we have for

m � minfaTh�=4 �K2�2 (log��1)
2
; n� 1g, and for each a > 0,

Pr (jJn;T (k)� E [Jn;T (k)]j � aTh�) = Pr(
Pn�1

j=1 Zj;n � aTh�)

� 4 exp

�
� �a2T 2h2�2

64n ($Zm�4h) + (4=3) [CZ �K2�2 (log��1)2] (aTh�)m

�
+ 4Anm�1�����

� 4 exp

�
� �a2 (log n)
64$Z= (log��1)2 + (4=3)CZ �K2a

�
+O(h�1��n�� (log n)3(1+�)���)

= O(n�a + h�1��n�� (log n)3(1+�)���);
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where we have set m = nh= (log n) (log��1)
2 and used log��1 = O (log n) to derive the last two lines.

Therefore, using h�1 = O(n# (log n)�1) and ��1 = O(n{), we can write the second term on the RHS of
(S.17) as

O(n2�rh�2�r(log n)2�r)[n�a + h�1��n�� (log n)3(1+�)���]

= O(n�a+2�r+4# + n��(1�#�{)+2�r+#(2�r+1)(log n)4�r+4(1+�));

which tends to zero as n!1 for a large enough if

2�r + #(2�r + 1)

1� #� �
< �:

Since we may pick any �r > 1 in (S.15), we have this inequality satis�ed as long as

2 + 3#

1� #� �
< �:

Therefore, given this condition on �, we have shown that �V212 = Op(
p
(log n)=nh), completing the proof

of (S.8).

Proof of (S.9). The convergence rate of V3 can be derived in the same way as those of V1 and V2, and
we here outline only main points. Since �2 (�) is twice continuously di¤erentiable, we can apply the Ito
lemma to �2 (Xs)� �2 (Xj�) to obtain

V3 � sup
x2R

���(1=Th)Pn�1
j=1 K

�
Xj��x

h

�
B (Xj�)

R (j+1)�
j�

R s
j�
m3 (Xu) duds

���
+sup

x2R

���(1=Th)Pn�1
j=1 K

�
Xj��x

h

�
B (Xj�)

R (j+1)�
j�

R s
j�
@�2 (Xu)� (Xu) dWuds

��� ;
where m3 (x) := @�2 (x)� (x) + @2�2 (x)�2 (x) =2. Since this  (x) = m3 (x) satis�es the conditions of
Theorem 1, we have B (Xj�)m3 (Xu) = Oa:s: (1) uniformly as discussed in (20), and we can show that
the �rst term on the RHS is Op (�). The second term is Op(

p
(log n) =nh), which follows from the same

arguments as those for V12 and V2 (we omit details for brevity).

Proof of (S.10). We look at

V4 =
R
K (q) [H (qh+ x)�H (x)] dq +

R
K (q) [l (qh+ x)� l (x)]�2 (x) dp

�
�
h2=2

� R
q2K (q) dq � sup

x2R
jH 00 (x)j+

�
h2=2

� R
q2K (q) jl00 (�qh+ x)j�2 (x) dq;

where we have set H (x) = B (x)� (x)�2 (x) and l (x) = B (x)� (x); the inequality follows from the usual
Talyor-expansion argument with � 2 [0; 1] (which depends on q; h and x). Then, we can check that
V4 = O (h2), since we have supx2R jH 00 (x)j < 1 (by the condition that �2 2 D(B; �)), as well as the
compactness of the support of K and the following bound:

jl00 (�qh+ x)j�2 (x)1fjqj�cKg � 4CB
�
maxk=0;1;2 supx2R

��@k� (x)���� sup
x;y2R

B (y)�2 (x)1fjx�yj�cKhg

� 4CB
�
maxk=0;1;2 supx2R

��@k� (x)���� sup
x;y2R

B (y) �C0[1 + jxj�q2 ]1fjx�yj�cKhg

� �C1 + �C1B (y) [jyj+ jx� yj]�q2+1 1fjx�yj�cKhg
� �C1 + �C1B (y) 2

�q2
�
jyj�q2+1 + jx� yj�q2+1

�
1fjx�yj�cKhg

� �C1 + �C12
�q2
�
supy2RB (y) jyj

�q2+1 + supy2RB (y) (cKh)
�q2+1

�
<1; (S.18)
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where the �rst inequality holds since maxk=0;1;2 supx2R
��@k� (x)�� < 1 and maxk=1;2 j@kB (x) j � CB �

B (x); the second holds since there exists some constant �C0 > 0 such that �2 (x) � �C0
�
1 + jxj�q2+1

�
(by the condition that �2 (x) = O(jxj�q2) as jxj ! 1 for �q2 � 0); the third holds with a constant
�C1 = 4CB

�
maxk=0;1;2 supx2R

��@k� (x)��� �C0 2 (0;1); and the fourth follows from the Jensen inequality.

Proof of (S.11). To bound the term V5, we consider a compact set [�Tn; Tn] � R with Tn !1 whose
growing rate is speci�ed below, and its �nite covering fIkg�(n)k=1 such that [�Tn; Tn] � [

�(n)
k=1Ik, each Ik is

a closed ball in R with its center xk and radius rn, and � (n) = Tn=rn. Then, we can write

V5 (x) � sup
jxj>Tn

(1=nh)
Pn�1

j=1 j�j� (x)� E [�j� (x)] j

+ max
k2f1;:::;�(h)g

sup
x2Ik

(1=nh)
Pn�1

j=1fj�j� (x)� �j�(xk)j+ jE[�j� (x)]� E[�j�(xk)]jg

+ max
k2f1;:::;�(h)g

���(1=nh)Pn�1
j=1f�j�(xk)� E[�j�(xk)]g

���
= : V51 + V52 + V53;

where we below consider the bounds of these three terms.
To �nd the bound of V51, let

��j� (x) := �j� (x)1fjXj�j�Tn=2g; and ~�j� (x) := �j� (x)1fjXj�j>Tn=2g;

and observe that

V51 � sup
jxj>Tn

(1=nh)
Pn�1

j=1 j��j� (x)� E[��j� (x)]j+ sup
jxj>Tn

(1=nh)
Pn�1

j=1 j~�j� (x)� E[~�j� (x)]j; (S.19)

For jxj > Tn and jXj�j � Tn=2, it holds that (Xj� � x) =h � Tn=2h. Therefore, for su¢ ciently large n
with Tn=2h � cK , K ((Xj� � x)=h) = 0 and the �rst term on the RHS of (S.19) is zero. To �nd the
bound of the second term, we observe that

sup
jx�yj�cKh

B1=2 (y)
���2 (y)� �2 (x)

�� = sup
jx�yj�cKh

B1=2 (y)
��@�2 (y + �(x� y))

�� jx� yj

� sup
jx�yj�cKh

B1=2 (y) �C2
�
1 + jy + �(x� y)j�q2+1

�
cKh

� O (h) + �C2 sup
jx�yj�cKh

B1=2 (y) 2�q2
�
jyj�q2+1 + j�(x� y)j�q2+1

�
cKh = O(h); (S.20)

for some constant �C2 > 0, where the �rst equality follows from the mean-value theorem with some
� 2 [0; 1] (which depends on x and y); the two inequalities use the polynomial growth condition of @�2
and the Jensen inequality. Then, we have

sup
jxj>Tn

(1=nh)
Pn�1

j=1 j~�j� (x) j

� (1=nh) �K
Pn�1

j=1 1fjXj��xj�cKhgB
1=2(Xj�)

���2(Xj�)� �2 (x)
���B1=2(Xj�)1fjXj�j>Tn=2g

� (1=nh) �K
Pn�1

j=1 sup
jx�yj�cKh

B1=2 (y)
���2 (y)� �2 (x)

���B1=2 (Xj�) jXj�j
�d= (Tn=2)

�d

= O(1=T �d
n );

for any �d > 0, where the last equality holds since B1=2 (x) jxjd is uniformly bounded. We can also show
that supjxj>Tn (1=nh)

Pn�1
j=1 j~�j� (x) j = O(1=T �d

n ) exactly in the same way, and therefore, can conclude
that V51 = O(1=T �d

n ).
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To bound the term V52, note that for any x 2 Ik, jx� xkj � rn. This implies that for an event

En;j�(x; xk) := fmaxfjXj� � xj ; jXj� � xkjg � cKh+ rng ;

which is de�ned in 
 for each (n; j�; x; xk), we have

fjXj� � xj � cKhg = fjXj� � xj � cKh & jXj� � xkj � cKh+ rng � En;j�(x; xk);

fjXj� � xkj � cKhg � En;j�(x; xk):

Therefore, for any x 2 Ik,

j�j� (x)� �j� (xk)j
� B (Xj�)�

2 (Xj�)
���K �Xj��xh

�
�K

�
Xj��xk

h

����+K
�
Xj��x

h

�
B (Xj�)1En;j(x;xk)

���2 (x)� �2 (xk)
��

+B (Xj�)�
2 (xk)1fjXj��xj�cKh or jXj��xj�cKhg

���K �Xj��xh

�
�K

�
Xj��xk

h

����
�

�
supx2RB (x)�

2 (x)
	
�K jxk � xj =h+ �KB (Xj�)1En;j(x;xk)

���2 (x)� �2 (xk)
��

+B (Xj�)�
2 (xk)1En;j(x;xk)

�K jxk � xj =h
� O (rn=h) +O (rn) +O (rn=h) = O (rn=h) ;

uniformly over x; xk and j, where the �rst inequality uses the triangular inequalities as well as the fact that
if jXj� � xj > cKh and jXj� � xj > cKh, thenK(

Xj��x
h
) = K(

Xj��xk
h

) = 0 and 1fjXj��xj�cKh or jXj��xj�cKhg
� 1En;j(x;xk); the second inequality uses the Lipschitz continuity and uniform boundedness of K; and the
third inequality holds since we have

B (Xj�)1En;j(x;xk)
���2 (x)� �2 (xk)

��
� B (Xj�)1En;j(x;xk)

��@�2 (�x+ (1� �)xk)
��� jx� xkj

�
�
B (Xj�)

��@�2 (Xj�)
��+B (Xj�)

��@�2 (Xj�)� @�2 (�x+ (1� �)xk)
��	1En;j(x;xk) � jx� xkj

�
�
supx2RB (x)

��@�2 (x)��+ supjx�yj�cKh+rn B (x) ��@�2 (x)� @�2 (y)
��	� rn

= O (rn) ; and

B (Xj�)�
2 (xk)1En;j(x;xk) = O (1) ;

uniformly over x; xk and j, which follow from the same arguments as used to derive (S.18) and (S.20).
From these we can conclude that V52 = O(rn=h

2). Now, by setting Tn = [nh= (log n)]1=2
�d and rn =p

h3 (log n) =n, we can let both V51(= (1=T �d
n )) and V52 be OP (

p
(log n) =nh).

Finally, to investigate the rate of V53, we derive the bound �2�;m :=
Pm

j=1f�j�(xk)� E[�j�(xk)]g for
m � (n� 1) and apply the exponential inequality. For this purpose, we observe that

E[jf�j� (xk)� E[�j� (xk)]gj2]
� 2h

R
K2 (q)B2 � � (qh+ xk) [�

2 (qh+ xk)� �2 (xk)]
2dq = O(h3);

uniformly over k and j, where the last equality follows from (S.20). Then, we can �nd some constant
~! 2 (0;1) such that �2�;m � ~!m2h3, and also some constant C� > 0 satisfying

�j� (x) = K
�
Xj��x

h

�
B (Xj�)

��@�2 (�Xj� � (1� �)x)
�� jXj� � xj 1fjXj��xj�cKhg

� �K sup
x;y2R; j�j���

B (x)
��@�2 (y)�� cKh � C�h;
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which follows from the compactness of the support of K. Then, applying Lemma 3, we have for each
a > 0,

Pr(V53 � a
p
(log n) =nh)

�
P�(n)

k=1 Pr
����Pn�1

j=1f�j�(xk)� E[�j�(xk)]g
��� � a

p
(log n) =nhnh

�
� � (n)

(
4 exp

(
� a2 (log n)

64~!mh2 + (8=3) (2C�h) a
p
(log n) =nhm

)
+
4n

m
A (m�)��

)

� (Tn=rn)
(
4 exp

(
� a2 (log n)

64~!
p
nh5= (log n) + 16C�a=3

)
+ 4Anm�1�����

)
= (Tn=rn)� 4n�a

2=[64~! ~C+16C�a=3] + 4A (Tn=rn)nm�1�����; (S.21)

where the third inequality holds by setting m =
p
n=h (log n) (� minf(a

p
(log n) =nhnh)=C�h; n � 1g

for a large enough), and the last equality holds since nh5= (log n) � �C5 for some constant C5 > 0 (31).
Now, by the de�nitions of Tn(= [nh= (log n)]1=2 �d) and rn(=

p
h3 (log n) =n), we have

� (n) = Tn=rn = (log n)�(1+1=
�d)=2 h�(3�1=

�d)=2n(1+1=
�d)=2;

which is a polynomial order of n, and the �rst term on the RHS of (S.21) tends to zero as n!1 for a
large enough. As for the second term, recalling the de�nition of m and the conditions ��1 � n�, we have

(Tn=rn)� nm�1����� � (log n)�(�+2+1= �d)=2 h(��2+1= �d)=2n(��+2��+2+1= �d)=2;

which tends to zero (as n!1) if

�� + 2��+ 2 < 0() 2= (1� 2�) < �;

where we note that �d can be any arbitrarily large integer. Now, the proof of Theorem 5 is completed. �

10 Convergence ResultsWhenMixing Coe¢ cients Decay Slowly

In this section, we present some results which complement convergence results in Theorems 2-5, focusing
on the case when the decaying rate of the mixing coe¢ cients in (10) is slow.

General Convergence Results with Possibly Small �: Theorem 2 requires at least � > 5 as in the
condition (23), but the following theorem allows for any � > 0. At the price of possibly small �, we must
have a slower convergence rate of

p
(log T ) =T �h (than that of

p
(log T ) =Th in Theorem 2). We also

note that the smaller � requires the smaller �, implying the slower convergence rate of the bandwidth h
through (22).

Theorem 7. Suppose that the same conditions as in Theorem 2 hold with the condition (23) replaced by
� � 5�= (1� �). Then, it holds that as n; T !1 and �; h! 0,

sup
x2I

jGn;T (x)� E[Gn;T (x)]j = Op(
p
� log (1=�) +

p
(log T ) =T �h):
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Proof of Theorem 7. The proof proceeds in the same way as in that of Theorem 2. Since only the rate
of the term R2 di¤ers, we omit details and outline only main points for R2 � R21+R22. To �nd the rate
of R21, we set

" = h
p
(log T ) =T �h; (S.22)

instead of (63). This means that R21 = O(
p
(log T ) =T �h). For deriving the rate of R22, we use the

Bernstein inequality. To this end, observe the following moment bound:

E[j
Pm

j=1 Yn;j (k; h) j2] � m
Pm

j=1E
�
Y 2
n;j (k; h)

�
� $m2h;

uniformly over k and h, where the �rst inequality holds by the Jensen inequality for m � (n� 1), and
the second by the moment bound derived in (67).
Now, we apply (49) to

Pn�1
j=1 Yn;j (k; h) with Zn;j = Yn;j (k; h) and�2m = �

2
m (k; h) := E[(

Pm
j=1 Yn;j (k; h))

2]

for each (k; h). Let � = a
�
(log T ) =T �h

�1=2
nh and m = T (1��)=� in (49), where m � (n� 1) and

m < �=4CY are satis�ed for large T (since � 2 (0; 1) and (log T ) =T �h! 0). Then, it holds that for any
a > 0,

Pr(R22 � a
p
(log T ) =T �h)

�
P�(h)

k=1 Pr(j
Pn�1

j=1 Yn;j (k; h) j � a
p
(log T ) =T �hnh)

� � (h)

(
4 exp

(
�

a2
�
(log T ) =T �h

�
n2h2

64n$mh+ (8=3)CY a
p
(log T ) =T �hnhm

)
+
4n

m
� (m�)

)

� 4�"�4
(
exp

(
� a2 log T

64$ + (8=3)CY a
p
(log T ) =T �h

)
+ AT ���(1��)

)
� 4� (log T )�4

n
T 4��a

2=[64$+(8=3)CY a] + AT 5���(1��)
o
; (S.23)

where the second inequality holds by (49) and (67); the third inequality uses (10) in (A2), "� (h) � �"�4"
and "m = T (1��)=�"; and the last inequality holds for large T since " = h

p
(log T ) =T �h (which is set in

(S.22)), h�2 � T 2� (log T )�2 and
p
(log T ) =T �h � 1 (for large T ). Therefore, for a > 0 large enough,

Pr(R22 � a
p
(log T ) =T �h)! 0 as T !1; (S.24)

if 5� � � (1� �) � 0 (, � � �= (5 + �)). This, together with the rate of R21, we have R22 =
Op(

p
(log T ) =T �h) as desired.

The next theorem also concerns the small-� case. While Theorem 3 allows for any � > 0 (unlike
Theorem 2), its probability bound is associated with the convergence rate of

p
(log T ) =Th. If we have

a slower rate of
p
(log T ) =T �h (as in Theorem 7), we can derive a sharper inequality for the probability

bound of Mn;T (x):

Theorem 8. Suppose that the same conditions as in Theorem 3 hold. Then, as n; T !1 and �; h! 0,
it holds that for each a(> 0) and each x 2 I,

Pr(Mn;T (x) � a
p
(log T ) =T �h) � 2T�a2=2 + 4 expf�aCM (Th)1��g+ 4AT��h��(�+1); (S.25)

for each � 2 (0; 1), where CM (> 0) is some constant independent of x.
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Proof of Theorem 8. Since we use the same arguments as those for Theorem 3, we only outline main
points. Given the same notation as in the proof of Theorem 3 we have for any � 2 (0; 1),

Pr(Mn;T (x) � a
p
(log T ) =T �h)

� Pr(jN1 (x; h)j � aTh
p
(log T ) =T �h)

� Pr(jN1 (x; h)j � aTh
p
(log T ) =T �h; hN (x; h)i1 � y) + Pr (hN (x; h)i1 > y)

� 2 exp
�
�a2 (log T ) =2

	
+ Pr

�
hN (x; h)i1 > aT 2��h

�
= 2T�a

2=2 + Pr
�
hN (x; h)i1 > aT 2��h

�
; (S.26)

where the third inequality holds by (70) with � = aTh
p
(log T ) =T �h and y = aT 2��h. By applying the

Bernstein inequality for mixing arrays in Lemma 3 to hN (x; h)i1, and using arguments quite analogous
to those for (72)-(74), we can also derive

Pr(hN (x; h)i1 > aT 2��h) � 4 expf�aCM (Th)1��g+ 4AT��h��(�+1);

which, together with (S.26), implies the desired result.

Uniform Convergence Rates of Nadaraya-Watson Type Estimators with Possibly Small �:
The next two theorems are small-� counterparts of Theorems 4-5 in Section 54. While Theorem 10 on the
convergence of the di¤usion function estimator provides rates in terms of T (slower than

p
(log n)=nh), it

imposes only minimal conditions, allowing for discontinuous kernels with unbounded support and relaxing
conditions on derivatives of � and �:

Theorem 9 (Drift Function Estimation with Possibly Small �). Suppose that the same conditions as in
Theorem 4 hold, but replace the condition on the exponent of the mixing coe¢ cient � by

� � max
�
5�= (1� �) ;

�
4� + �2 + 2�

�
=
�
1� �2

�	
.

Then the convergence results in (29)-(30) hold with a?n;T replaced by

a�n;T := h2 +
p
� log (1=�) +

p
(log T ) =T �h:

Proof of Theorem 9. Proof arguments proceed in the same way as those for the proof of Theorem 4, while
we employ convergence results of Theorems 7-8, instead of those of Theorems 2-3. We omit details for
brevity.

Theorem 10 (Di¤usion Function Estimation with Possibly Small �). Suppose that Assumption 1 holds;
supx2R � (x) <1; the observation interval � and the bandwidth h satisfy

��1 = O(T �) and (log T ) =T �h! 0;

as T !1 and �; h! 0, for some constants � > 0 and � 2 (0; 1);

�2 (�) 2 D (B; �) ; [j@� (x)j+ j@� (x)j] = O(jxj~q2) as jxj ! 1 for some ~q2 � 0.

Let cn;T , �n;T , a?n;T and a
�
n;T be sequences de�ned in Theorems 4 and 9. Then, the following results hold

(as n; T !1 and �; h! 0):
(i-a) If

� � max
�
5�= (1� �) ;

�
4� + �2

�
=
�
1� �2

�	
,
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then,
sup
x2R

j	̂�2 (x)�B (x)�2 (x)� (x) j = Op

�
a�n;T

�
: (S.27)

(i-b) Further if a�n;T=�n;T ! 0,

sup
jxj�cT

j�̂2 (x)� �2 (x) j = Op

�
a�n;T=�n;T

�
: (S.28)

(ii) If
� � max f5 (1 + �) = (1� �) ; (2 + 3�) = (1� �)g ,

then, the convergence results in (i-a) and (i-b) hold with a�n;T replaced by a
?
n;T .

Proof of Theorem 10. Using (S.6), we split the LHS of (S.27) into three terms:

sup
x2R

j	̂�2 (x)�B (x)�2 (x)� (x) j �
P4

i=1 Vi;

where

V1 := sup
x2R

���(2=Th)Pn�1
j=1 K

�
Xj��x

h

�
B (Xj�)

R (j+1)�
j�

[Xs �Xj�]� (Xs) ds
��� ;

V2 := sup
x2R

���(2=Th)Pn�1
j=1 K

�
Xj��x

h

�
B (Xj�)

R (j+1)�
j�

[Xs �Xj�]� (Xs) dWs

��� ;
V3 := sup

x2R

�
(1=Th)

Pn�1
j=1 K

�
Xj��x

h

�
B (Xj�)

R (j+1)�
j�

�2 (Xs) ds

� (1=h)E[K
�
Xj��x

h

�
B (Xj�)�

2 (Xj�)]
	
;

V4 := sup
x2R

��(1=h) RK �p�x
h

�
B (p)�2 (p)� (p) dp�B (x)�2 (x)� (x)

�� :
We below investigate these four terms. First, by Theorem 1 and (20), we have

B (Xj�) [Xs �Xj�]� (Xs) = B1=2 (Xj�) [Xs �Xj�]�B1=2 (Xj�)� (Xs)

= Oa:s:(
p
� log (1=�));

uniformly. This implies that V1 = Op(
p
� log (1=�)), since supx2R (1=nh)

Pn�1
j=1

���K(Xj��xh
)
��� = OP (1),

which is derived in the proof of Theorem 2. Next, applying Theorem 7 (Theorem 2) to V3 with  (�) =
�2 (�), we can immediately obtain V3 = Op (a

�
T ) (resp. Op (a

?
T )) under the condition on � in part (i) (resp.

part (ii)). We can also show that V4 = O (h2) in the same arguments as those for the term U2 in the
proof of Theorem 4. We subsequently show that

V2 = Op(
p
(log T ) =T �h) for part (i); and Op(

p
(log T ) =Th) for part (ii), (S.29)

under the stated conditions. Given these, we have obtained the desired convergence results for supx2R j	̂�2 (x)�
B (x)�2 (x)� (x) j, which in turn allow us to drive the desired convergence results for j�̂2 (x)� �2 (x) j in
the same way as in the proof of Theorem 8 in Hansen (2008) (we omit the details for brevity).

Proof of (S.29). We derive the convergence rates of V2 by using arguments analogous to those for U2
in Theorem 4. Thus, we only outline main points. Look at

B (Xj�) [Xs �Xj�]� (Xs)

= B1=2 (Xj�) [
R s
j�
� (Xu) du+

R s
j�
� (Xu) dWu]�B1=2 (Xj�)� (Xj�)

+B1=2 (Xj�) [
R s
j�
� (Xu) du+

R s
j�
� (Xu) dWu]�B1=2 (Xj�) [� (Xs)� � (Xj�)] ;
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and de�ne

f� (s; j) := 1n
B1=2(Xj�)[j

R s
j�

�(Xu)duj+j
R s
j�

�(Xu)dWuj+j�(Xs)��(Xj�)j]��1=2 log(1=�)
o:

Then,

V2 = (2=Th) sup
x2R

j
Pn�1

j=1 K
�
Xj��x

h

� R (j+1)�
j�

B (Xj�) [Xs �Xj�]� (Xs) f� (s; j) dWsj

+(2=Th) sup
x2R

j
Pn�1

j=1 K
�
Xj��x

h

� R (j+1)�
j�

B (Xj�) [Xs �Xj�]� (Xs) [1� f� (s; j)]dWsj

= : �V2 + ~V2:

By the same arguments as in deriving the result (S.8) in the proof of Theorem 5, we have ~V2 = 0 almost
surely for su¢ ciently small �. Therefore, the convergence rate of V2 is determined by that of �V2. Letting

q (s; j�) := B (Xj�) [Xs �Xj�]� (Xs) f� (s; j) ;

we have

�V2 � (1=Th) max
k2f1;:::;�(h)g

sup
g2Kk(h)

Pn�1
j=1 jgk (Xj�)� g (Xj�)j

���R (j+1)�j�
q (s; j�) dWs

���
+ max

k2f1;:::;�(h)g

���(1=Th)Pn�1
j=1 K

�
Xj��x

h

� R (j+1)�
j�

q (s; j�) dWs

���
= : �V21 + �V22;

where fKk (h)g�(h)k=1 is the �nite covering of K (h) as de�ned in the proof of Theorem 5 satisfying (S.14)
with � (h) � �"�4�r (for some constant � > 0 and any �r > 1). In the same way as in (S.15), we can show
that

�V21 = Op(h
�1" log��1): (S.30)

By Theorems 8 and 3, for any a > 0,

Pr( �V22 � a
p
(log T ) =T �h) � �"�4�r[2T�a2=2 + 4 expf�aCM (Th)1��g+ 4AT��h��(�+1)]; (S.31)

Pr( �V22 � a
p
(log T ) =Th) � �"�4�r[2T�a2=2 + T�aCM + 4AT��h�(�+1) (log T )1��]: (S.32)

Now, we can derive the convergence result of �V2 under the condition on � of part (i). We let " =p
h=T �(log T ) and obtain �V21 = Op(

p
(log T ) =T �h) since ��1 = O(T �) and log��1 = O(log T ). Then,

by using (S.31) and the condition that h�1 = O(T �= (log T )), we can show that as T !1,

Pr( �V22 � a
p
(log T ) =T �h)! 0;

for any a large enough if

"�4�r � T��h��(�+1) = O((log T )2�r��(�+1) � T��+4�r�+�
2(�+1))

tends to zero, which occurs as long as

�� + 4�r� + �2 (� + 1) < 0() 4�r� + �2 < �
�
1� �2

�
:
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Recalling that any �r > 1 can be selected, we can see that the last inequality is satis�ed if 4� + �2 <

�
�
1� �2

�
. We now have �V2 = Op(

p
(log T ) =T �h) as desired for the part (i) case.

Finally, suppose that the condition on � of part (ii) holds. In this case, plugging " =
p
h=T (log T )

into (S.30) and (S.32), we have �V21 = Op(
p
(log T ) =Th), and Pr( �V22 � a

p
(log T ) =Th) ! 0 as T ! 1

for any a large enough if

"�4�r � T��h�(�+1) (log T )1�� = O((log T )2�r��(�+1) � T��(1��)+2�r+(2�r+1)�)

tends to zero, which occurs as long as

2�r + (2�r + 1) � < � (1� �) :

We can obtain this inequality if 2 + 3� < � (1� �) since any �r > 1 can be picked. The proof is now
completed.

11 E¤ects of the Damping Function

In this section, we brie�y investigate e¤ects of the damping function by presenting bias, variance and
mean-squared-error (MSE) expressions of the estimators (4) and (5), as well as by providing some results
in �nite samples.

Bias and Variance Expressions: The exact expressions are hard to analyze, and we derive their
approximations: for each x 2 (l; r),

E
�
(�̂ (x)� � (x))2

�
' B2� (x) + V� (x) ; E

h�
�̂2 (x)� �2 (x)

�2i ' B2�2 (x) + V�2 (x) ;
where

B� (x) := h2
�
(d=dx) [B (x)� (x)]� �0 (x)

B (x)� (x)
+
(d2=dx2) [B (x)� (x)]

2B (x)

�Z
z2K (z) dz;

V� (x) := (1=Th)
�
�2 (x) =� (x)

� Z
K2 (z) dz;

B�2 (x) := h2
�
(d=dx)

�
B (x)�2 (x)

�
� �0 (x)

B (x)� (x)
+
(d2=dx2) [B (x)�2 (x)]

2B (x)

�Z
z2K (z) dz;

V�2 (x) := (1=nh) 2
�
�4 (x) =� (x)

� Z
K2 (z) dz:

We can derive these approximations from using the standard method as in Pagan and Ullah (1999). For
their validation, we require some conditions on the existence of moments, the decay rate of the mixing
coe¢ cients and the shrinking rate of �. For brevity, we omit the detailed conditions and derivations for
the approximations, which are obtained analogously to ones provided in Kanaya and Kristensen (2014),
who also provide the precise meaning of "'." B� (x) and B�2 (x) correspond to the biases of the estimators.
V� (x) and V�2 (x) correspond to their variances, which are the same as the variances of the asymptotic
normal distributions. Obviously, the damping function a¤ects only the bias properties, and the variance
components are of the same form as those of the standard NW estimators.
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Graphical Illustration of E¤ects of the Damping Function: To see the e¤ects of B (�) in �-
nite samples, we compare the standard NW estimator ~� (x) and its damped version �̂ (x) with B (x) =
exp f�cx2g with c = 0:1 and 10. The following �gures are based on the same simulated path of the
Ornstein-Uhlenbeck process dXs = � (m�Xs) dt+�dWs, where (�;m; �2) = (0:85837; 0:089102; 0:0021854),
which is Aït-Sahalia�s, (1996a) estimate for short-term interest rates; (T;�; n) = (25; 1=52; 1300); h =
4ŝn�1=5 (this bandwidth has been used in Stanton, 1997; see p. 360 of Chapman and Pearson, 2000);
~� (x) and �̂ (x) are evaluated over equally-spaced 50 grid points between 1 and 99 percentiles of the
invariant distribution of the process (0:0061 and 0:1721, respectively). As we can see in the two �gures,
the NW estimates and its damped version perfectly coincide both for c = 0:1 and 10, even with the
one-hundred time di¤erence in the scale parameter c. While these are only based on one sample, it has
been quite di¢ cult to obtain some other samples/examples in which ~� (x) and �̂ (x) look signi�cantly
di¤erent for some other choices of date-generating-process, sample-size and bandwidth settings. We have
found a similar result for the di¤usion function estimation. From these, we conclude that the e¤ects of
the damping function B are not signi�cant, where we again note that its e¤ects are cancelled out between
the numerator and denominator parts.
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12 Estimation of Non-Negative Valued Processes

In this section, we provide some discussions and results for estimating processes with I = (0;1) or
[0;1), where we note that many parametric models for short-term interest rates have such state space I.
While we here focus on the case where the left-end point of I is 0, we can also think of some other cases
(e.g., the left-end point is �nite and non-zero and/or the right one is also bounded), to which results for
I = (0;1) or [0;1) carry over with suitable modi�cations.
When I has a �nite end point, the choice of B (�) = exp f�cx2g as considered in Sections 3 and (11)

may not be su¢ cient. For example, Aït-Sahalia (1996b, 1999) considers a parametric di¤usion model
with I = (0;1) and the drift function �� (x) := �0 + �1x + �22 + �3=x, which diverges as x ! 0. To
accommodate this kind of models, we can think of a damping function such as

B (x) = xb exp
�
�x2

	
; (S.33)

with some b > 2. This choice of B allow us to establish Theorem 1, even with a drift function such as
�� (x).
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When the left end point of I is 0, we can also think of a case where the invariant density � may not
be bounded around x = 0. Processes with this feature can be easily found. Among others, we can think
of the CIR process:

dXs = �(� �Xs)ds+ �
p
XsdWs; (S.34)

with �; �; � > 0. If 2��=�2 > 0, the stationary solution to (S.34) can exist whose invariant density � (�) is
given by the Gamma distribution with 2��=�2 and �2=2� representing the shape and scale parameters,
respectively. Given that 2��=�2 2 (0; 1), the left boundary l = 0 is attainable. In this case, the process
can have the Gamma distribution as its invariant distribution by making l instantaneously re�ecting (for
construction of this kind of process, see discussions in Section 2 on the behavior of the process running
over in�nite time horizon, after the hit on l = 0; see also discussions in p. 441 of Forman and Sørensen,
2008). In this case, � (x)!1 as x! 0. This process with 2��=�2 2 (0; 1) satis�es the mixing condition
in (A2.ii) with a geometric decaying rate (i.e. � =1).10 This sort of process with unbounded � (x) at the
end point can be also handled through the choice of B as in (S.33), by which we can ensure the uniform
boundedness of B (x)� (x), where we note that the integrability of the density implies that � (x) � x�q

(with some q 2 (0; 1)) in the neighborhood of 0 and thus the divergence rates of �0 (x) and �00 (x) around
zero are also at most of the polynomial order.
For the case � (x) ! 1 as x ! 0, we can still verify the uniform convergence of �̂ (x) and �̂2 (x)

over I = (0;1) (or [0;1)), given the damping function as in (S.33). In Theorem 2, we have supposed
the uniform boundedness of �, but this condition can be removed if we make slight changes of relevant
conditions such as replacing " (�) 2 D (B; �)" with

 (�) 2 D
�
B1=2; �

�
and sup

x2(0;1)
B1=2 (x)� (x) <1; (S.35)

for example. As seen in the proof of Theorem 2, we need to show that the following object:

sup
x2(0;1)

(�=Th)
Xn�1

j=1
K
�
Xj��x

h

�
; (S.36)

is bounded (in probability). However, it may not be so if � (x) is unbounded. In this case, instead of
(S.36), we consider

sup
x2(0;1)

(�=Th)
Xn�1

j=1
K
�
Xj��x

h

�
B1=2 (Xj�) ; (S.37)

whose Op-boundedness is guaranteed under the condition that supx2(0;1)B
1=2 (x)� (x) < 1, where we

note that even for the case with I = [0;1) (i.e., the process may attain the point 0), the supremum of
x needs to be taken over (0;1), instead of [0;1), if �(0) is unbounded. The same argument applies to
Theorem 3, for which the conditions in (S.35) can be used to relax the uniform boundedness of � (x).
Under the condition as in (S.35), we can still verify the same convergence rates of the variance e¤ect

terms as in Theorems 2-3 even with an unbounded � (x) around x = 0. However, the boundedness of
the end point in general makes the convergence rate of the smoothing bias slower. This observation is
summarized as the following remark:
10This can be checked by noting the following facts: i) the process is conservative and reversible (see Sections 8-9 in Kent,

1978); ii) the spectrum of its (in�nitesimal) generator is discrete and has a gap left to zero, which is given by f�jg with
�j = ��j (see, e.g., p. 334 of KT81); and iii) i) and ii) imply fXsg is geometrically �-mixing (see discussions in p. 799 of
Hansen and Scheinkman, 1995, as well as those in Hansen et al., 1998). Note that in the case 2��=�2 > 1, neither of the
boundaries is attracting, and we can also check the geometric mixing property of the process by the same argument or by
using, for example, Corollary 5.5 of Chen et al. (2010).
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Remark 2. (i) Let I = (0;1) or [0;1). Then, given the conditions in (S.35) and the kernel function
K satisfying (B2), it holds that as h! 0,

sup
x2(0;1)

�� �Gn;T (x)�H (x)
�� = O(h); (S.38)

where H (x) = B (x) (x)� (x). This slower convergence occurs because we cannot use the symmetricity
property of the kernel in the neighborhood of zero (i.e.,

R
xK (x) dx = 0) to kill the �rst-order term of

the smoothing bias (therefore, if I 6= R, the use of higher-order kernels does not improve the uniform
convergence rate over I). This kind of phenomenon, the so-called boundary bias, is observed if the
endpoint of the support is bounded and the symmetric kernel is used (see the arguments in Bouezmarni
and Scaillet, 2005), while the boundary bias may be avoided by using asymmetric kernels as in Bouezmarni
et al. (2005) and Gospodinov and Hirukawa (2012). We note that the supremum is taken over the open
set (0;1) in (S.38), which is for avoiding the inde�niteness at x = 0 when I = [0;1) and � (0) is
unbounded (we may have [0;1) in (S.38) if 0 is a point attainable by the process and �(0) <1).
(ii) If we use some special kernel and restrict the domain of x, we can recover the smoothing-bias rate
of h2. That is, we suppose that K (�) is a non-negative valued kernel with bounded support (resp. the
normal kernel), then under the conditions in (S.35),

sup
x2[r(h);1)

�� �Gn;T (x)�H (x)
�� = O

�
h2
�
; (S.39)

as h! 0, where r (h) (! 0) is a trimming sequence with r (h) = �cKh and cK := inf fc < 0 : K (c) > 0g
(resp. r (h) = 2h

p
log (1=h)).

We can apply the results (S.38)-(S.39) to obtain the uniform rates of �̂ (x) and �̂2 (x) when I = (0;1)
or [0;1).

Proof of the Statements in Remark 2. Let I = (0;1) or I = [0;1). (i) We prove (S.38) here:�� �Gn;T (x)�H (x)
�� = sup

x2(0;1)

���R1�x=hK (q) [H (qh+ x)�H (x)] dq
���

= sup
x2(0;1)

���R1�x=hK (q)H 0 (~x) qhdq
���

� sup
x2(0;1)

jH 0 (x)jh
R1
�1 jqK (q)j dq = O (h) ;

where we note that qh + x 2 I (if x 2 I and q 2 (�x=h;1)) for the second inequality, and the third
equality holds by the Taylor expansion (~x is on the line segment connecting x to qh+x and the expansion
is valid for any x 2 (0;1)).
(ii) Suppose that K (�) is a non-negative valued kernel with a bounded support or it is the normal kernel.
We prove (S.39) here:�� �Gn;T (x)�H (x)

��
= sup

x2[r(h);1)

���R1�x=hK (q) �H 0 (x) qh+ (1=2)H 00 (~x) (qh)2
�
dq
���

� h sup
x2(0;1)

jH 0 (x)j � sup
x2[r(h);1)

���R1�x=hqK (q) dq���+ �h2=2� R1�x=hq2 jK (q)j dq sup
x2(0;1)

jH 00 (x)j ; (S.40)
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where we can easily check that the second term on the RHS is O(h2). If the support of K (�) is bounded
and r (h) = �cKh(> 0) with cK = inf fc < 0 : K (c) > 0g, then the �rst-order term on the RHS is zero
since

R1
�x=h qK (q) dq =

R1
cK
qK (q) dq = 0 for any x 2 [�cKh;1). If K (�) is the normal kernel and

r (h) = 2h
p
log (1=h), then

sup
x2[r(h);1)

���R1�x=hqK (q) dq��� = sup
x2[r(h);1)

���R1x=hqK (q) dq���
� (2�)�1=2

R1
r(h)=h

[q exp
�
�q2=4

	
] exp

�
�q2=4

	
dq

� (2�)�1=2
R1
0
q exp

�
�q2=4

	
dq � expf� (r (h) =h)2 =4g

= O (h) ;

where the �rst equality holds since
R1
�1 qK (q) dq = 0. From these arguments, we can show that the RHS

of (S.40) is O (h2), completing the proof.
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