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Abstract

The topic of this paper is testing the hypothesis of constant unconditional
variance in GARCH models against the alternative that the unconditional
variance changes deterministically over time. Tests of this hypothesis have
previously been performed as misspecification tests after fitting a GARCH
model to the original series. It is found by simulation that the positive size
distortion present in these tests is a function of the kurtosis of the GARCH
process. Adjusting the size by numerical methods is considered. The pos-
sibility of testing the constancy of the unconditional variance before fitting
a GARCH model to the data is discussed. The power of the ensuing test
is vastly superior to that of the misspecification test and the size distortion
minimal. The test has reasonable power already in very short time series. It
would thus serve as a test of constant variance in conditional mean models.
An application to exchange rate returns is included.
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1 Introduction
Testing constancy of the unconditional variance in GARCH processes is an im-
portant step in building useful GARCH models for forecasting. There is ample
evidence of the fact that for sufficiently long daily return series, be it exchange
rates or individual stock or index returns, the unconditional variance of the un-
derlying process does not remain constant over time. This has consequences for
modelling. It is possible to accommodate this feature into GARCH by using long-
memory models such as the Fractionally Integrated GARCH process in which
nonstationarity depends on the value of the fractionality coefficient, see for exam-
ple Teräsvirta (2009) and references therein. Another possibility, to be considered
here, is to explicitly model the nonstationarity by extending the GARCH frame-
work in a suitable way. There is an expanding literature on the topic beginning
with Feng (2004) and van Bellegem and von Sachs (2004), see also Engle and
Rangel (2008), Brownlees and Gallo (2010), Osiewalski and Pajor (2009) and
Mazur and Pipień (2012). For combining long memory and changes in the uncon-
ditional variance, see Baillie and Morana (2009).

In this paper, we consider the Time-Varying GARCH (TV–GARCH) model
in which the deterministic component is parametric. This model was introduced
by Amado and Teräsvirta (2008) and further discussed and applied in Amado and
Teräsvirta (2013, 2014, in press). In this framework it is possible to test constancy,
that is, the standard stationary GARCH model against TV–GARCH model using
a Lagrange multiplier (LM-) type test and standard asymptotic statistical infer-
ence. This is discussed and the resulting test applied in Amado and Teräsvirta
(in press), see also Amado and Teräsvirta (2014). But then, it is also possible to
test constancy of the unconditional variance without specifying the heteroskedas-
ticity using a similar LM-type test. This alternative strategy will be investigated
here. While the former test offers a way of testing the adequacy of an estimated
GARCH model and is thus a typical misspecification test, the latter one is rather
a tool for specifying a volatility model, i.e., a specification test.

Power properties of these two kinds of test will be compared. Both are consis-
tent. Simulations show that the power of the basic misspecification test considered
in Amado and Teräsvirta (in press) is weaker than that of the specification test.
When the sample size is sufficiently large, the differences in power are bound to
vanish because both tests are consistent.

The 1997 Asian Financial crisis aligns with a change in the volatility dynamics
in the local exchange rates. The aforementioned tests will be applied to a set of
currency returns (Indonesia, Korea, and Taiwan), also studied in Davidson (2004).
The drastic differences in results between the specification and misspecification
tests are highlighted.

The plan of the paper is as follows. The TV–GARCH model is presented in
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Section 2 and the two tests in Section 3. A simulation experiment is described
and results reported in Section 4. The application to exchange rates is presented
in Section 5. The conclusions appear in Section 6.

2 The model
The first-order multiplicative TV–GARCH model considered by Amado and Teräsvirta
(2008, 2013, 2014, in press) is used for describing the common situation in mod-
elling volatility in which the unconditional variance of the process such as daily
returns of an index or a single asset is not constant over time. To define the model,
assume that a return sequence {yt} has the form

yt = E(yt|Ft−1) + εt (1)

where Ft−1 contains the historical information available at time t − 1. For sim-
plicity, set E(yt|Ft−1) = 0. The innovation sequence {εt} has a conditional mean
E(εt|Ft−1) = 0 and variance σ2

t . Each εt is decomposed as follows:

εt = ζtσt (2)

where the variance σ2
t is further decomposed as

σ2
t = htgt. (3)

In (2), {ζt} ∼ iid(0, 1), Eζ3
t = 0, and E|ζ2

t |
2+φ < ∞, φ > 0. The function ht describes

the short-run dynamics of the variance of the returns, whereas gt is a positive-
valued deterministic component. Specifically, ht is modelled as a GARCH(p, q)
process of Bollerslev (1986) and Taylor (1986):

ht = α0 +

q∑
i=1

αiφ
2
t−i +

p∑
j=1

β jht− j (4)

where φt = εt/g
1/2
t . Equation (4) is assumed to satisfy a set of conditions for

positivity and weak stationarity of the conditional variance of φt, see Bollerslev
(1986) and Nelson and Cao (1992).

The standard GARCH(p, q) model is nested in (3) when gt ≡ 1. When gt . 1,
the unconditional variance component gt is smooth and time-varying, making σ2

t
nonstationary. It is a positive-valued linear combination of bounded transition
functions defined as follows:

g(θ1, t/T ) = gt = δ0 +

r∑
l=1

δlGl(t/T ; γl, cl) (5)
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where T is the number of observations, and θ1 = (δ′,γ′, c′1, ..., c
′
r)
′ ∈ Θ1 = (∆ ×

Γ×C),with δ = (δ0, δ1, ..., δr)′, γ = (γ1, ..., γr)′, c′l = (cl1, ..., clKl)
′, l = 1, ..., r, is an

element of the parameter space of gt. For identification reasons, δ0 = 1 (a known
constant). The transition function is the general logistic transition function:

Gl(t/T ; γl, cl) =

1 + exp

−γl

Kl∏
k=1

(t/T − clk)


−1

, γl > 0. (6)

The function (6) is a continuous and non-negative function bounded between zero
and one. When γl → ∞, the transitions or shifts around clk, k = 1, ..,Kl, become
abrupt.

3 Testing constancy of the unconditional variance

3.1 Testing constancy in the GARCH framework
As discussed for example in Amado and Teräsvirta (in press), the first step in
generalising a GARCH model into a TV–GARCH model is to test stability of the
unconditional variance over time. This is important because the model defined
by (5) and (6) is not identified when the null hypothesis holds, that is, when gt ≡

1. In what follows, for simplicity we consider the first-order GARCH model,
p = q = 1 in (4), assume that r = 1 under the alternative in (4) and choose
γ1 = 0 as our null hypothesis. With this choice of H0, δ1 and c1 are unidentified
nuisance parameters under H0. This being the case, standard asymptotic inference
is invalid. We circumvent this identification problem as in Luukkonen, Saikkonen
and Teräsvirta (1988) and approximate the transition function by a third-order
Taylor expansion around γ1 = 0. After merging terms and reparameterising this
yields

G1(t/T ; γ1, c1) = θ0 + θ1t/T + θ2(t/T )2 + θ3(t/T )3 + R3t = θ′t∗ + R3t (7)

where R3t is the remainder and θ j = γ
j
1δ j with δ j , 0, j = 0, 1, 2, 3. The new null

hypothesis is thus H′0: θ = 0.
Constructing an LM-type test for testing H′0 has the advantage that the model is

only estimated under the null hypothesis, and then R3t = 0. This leads to standard
asymptotic inference: the LM statistic has an asymptotic χ2-distribution with four
degrees of freedom when the null hypothesis holds.

The approximate log-likelihood for observation t has the form

`t = k − (1/2) ln ht − (1/2) ln g∗t −
ε2

t

2htg∗t
(8)
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where g∗t = 1 + θ′t∗. Set α = (α0, α1, β1)′ and denote r̂1t = ∂̂̀t/∂α = (̂ζ2
t −

1)̂h−1
t ∂̂ht/∂α, where ̂̀t is `t evaluated under H′0, ĥt equals ht estimated under H′0,

ζ̂2
t = ε2

t /̂ht, and ∂̂ht/∂α = m̂t−1 + β̂1∂̂ht−1/∂α is ∂ht/∂α evaluated under H′0 with
m̂t = (1, ε2

t , ĥt). Furthermore, let r̂2t = ∂̂̀t/∂θ = (̂ζ2
t − 1)̂g∗−1

t ∂g∗t /∂θ = (̂ζ2
t − 1)t∗,

where ĝ∗t = 1.
The test can be carried out in stages:

1. Estimate the GARCH(1,1) model, save the squared standardised residuals
ζ̂2

t and construct the ’residual sum of squares’ S S R0 =
∑T

t=1(̂ζ2
t − 1)2.

2. Regress ζ̂2
t − 1 on r̂1t and r̂2t and form the residual sum of squares S S R1.

3. Compute the test statistic

LM = T
S S R0 − S S R1

S S R0
. (9)

Under H0, LM has an asymptotic χ2-distribution with four degrees of free-
dom.

The value of the test statistic can also be computed from the conventional quadratic
form of the χ2-statistic. Our simulations suggest, however, that the TR2 form is
numerically more stable when the sum α1 + β1 in (4) assuming p = q = 1 is close
to (but below) one. The simulation results we report are based on the TR2 form of
the statistic.

3.2 Testing constancy without specifying the conditional vari-
ance component

Another way of testing the constancy of the unconditional variance is to do it be-
fore specifying the conditional variance component. The LM-type test would thus
serve as a specification tool and not as a misspecification test as it was introduced
in Amado and Teräsvirta (in press) and presented in the preceding section. This
implies setting ht = 1 in (8). The transition function is defined as

gt = δ0 + δ1G1(t/T ; γ1, c1) (10)

where G1(t/T ; γ1, c1) is defined as in (6) and δ0 > 0 is a free parameter because
ht = 1. The null hypothesis is γ1 = 0, and in testing (10) is approximated by (7).
Now, since δ0 is a free parameter, the null hypothesis is H

′′

0 : θ1 = θ2 = θ3 = 0 in
(7). The approximate log-likelihood for observation t equals (8) with ht = 1. The
maximum likelihood estimator of the free intercept δ0 equals δ̂0 = T−1 ∑T

t=1 ε
2
t .
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Then r̂1t = ∂̂̀t/∂θ0 = (ε2
t /̂δ0 − 1)̂δ−1

0 and r̂2t = ∂̂̀t/∂θ = (ε2
t /̂δ0 − 1)g∗−1

t ∂g∗t /∂θ
= (ε2

t /̂δ0 − 1)̂δ−1
0 t
∗, where θ = (θ1, θ2, θ3)′ and t∗ = (t/T, (t/T )2, (t/T )3)′. Stages 1

and 2 of the LM-type test are as follows:

1. Estimate the model (2) and (3) with ht ≡ 1 and gt = δ0, save the standardised
squared residuals φ̂2

t = ε2
t /̂δ0 and construct the ’residual sum of squares’

S S R0 =
∑T

t=1(φ̂2
t − 1)2.

2. Regress φ̂2
t − 1 on r̂2t and form the residual sum of squares S S R1.

The final stage consists of computing the TR2 form of the statistic as in (9).
The test statistic has an asymptotic χ2-distribution with three degrees of freedom
when the null hypothesis holds. The assumption of independence of εt is likely
to be violated in practice, however, because {εt} typically contains conditional
heteroskedasticity. If this is the case, the relevant critical values of the null distri-
bution of the test statistic have to be found by simulation. This will be discussed
in Section 4.3.

4 Simulations

4.1 Critical values for the LM-type test
In this section we address the size discrepancy of the LM-type test of Amado and
Teräsvirta (in press). In the simulations reported in that paper it turned out that
the test was somewhat oversized even in relatively large samples. This concerns
the test the authors called non-robust, which is the one we are going to consider.
In order to correct the size of the test, we compute the relevant critical values for
the test statistic by simulation. The standard way of doing this is as follows:

1. Generate T observations from the GARCH(1,1) model we are simulating,
estimate the parameters using these observations and compute the value of
the test statistic.

2. Draw T variables z(1)
t , t = 1, ...,T, with replacement from the population

consisting of the estimated residuals ẑt and use them and the estimated con-
ditional variances ĥt to obtain a new set of observations ε(1)

t = z(1)
t ĥ1/2

t , t =

1, ...,T.

3. Fit the GARCH(1,1) model to this series and the compute the value of the
test statistic. Repeat step 2 and this step B times. This yields one estimate
of the critical value(s).
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4. Repeat steps 1–3 K times and compute the critical value of interest as the
mean of the values resulting from these K replications. We set K = 5000.

This method is time-consuming because it requires estimating KB GARCH
models. Besides, adjusting the size is just a prelude to power simulations, which
are our main object of interest. In order to save time, we adopt the warp-speed
bootstrap by Giacomini, Politis and White (2013). It differs from the ordinary
bootstrap in one important respect. Instead of B bootstraps for each replication,
only one is performed (B = 1). The authors show that the warp-speed bootstrap is
practically as efficient as the standard one.

In the ensuing power simulations we generate 1000 replications for T = 1000,
2500 and 5000. Because estimation of GARCH models is numerically difficult
(estimates unreliable) in small samples, a few realizations have to be discarded
when T = 1000. The simulated critical values of the LM-type test, a χ2-test with
four degrees of freedom, for the three sample sizes and the significance levels
α = 0.01 and 0.05, are computed separately for each experiment and can be found
in Table 1. It is seen that the misspecification LM-type test is indeed size distorted
and that the problem becomes worse when the kurtosis of the GARCH process
increases. This suggests that distinguishing between GARCH and changes in the
unconditional variance can become quite difficult when the GARCH process gen-
erates clusters with a large amplitude, when the changes present are rather modest,
and when the number of observations is not very large. Results of power simula-
tions in the next section seem to support this conclusion.

4.2 Power simulations 1: the misspecification test
A central assumption of the TV–GARCH model is that the changes in the uncon-
ditional variance can be smooth. It is of interest to consider the behaviour of tests
of constant unconditional variance for different degrees of smoothness measured
by the slope parameter γ. It is equally interesting to consider the effect of the size
of the switch or switches, measured by δ1, on the power of the test. In addition,
the effect of the GARCH parameters α1 and β1 (and thus the kurtosis of φt) on the
power of the test should be investigated as well.

Two sets of parameters in (4) are considered. First, the parameters α0 = 0.05,
α1 = 0.09, and β1 = 0.9 form a ‘big GARCH’: kurtosis of φt equals 16.1. Second,
the parameters α0 = 0.05, α1 = 0.05, and β1 = 0.9 define an intermediate or
‘mild GARCH’: kurtosis of φt equals 3.16. The errors are standard normal, and
the GARCH(1,1) model is tested against the approximate alternative (7). The true
alternative is (5) with r = 1 and K1 = 1 in (6), i.e.,

gt = 1 + δ1
(
1 + exp {−γ1 (t/T − c1)}

)−1 , γ1 > 0.
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The test of H′0: θ = 0 in (7) is carried out using the TR2 form described in Section
3.1.

The adjusted critical values for the two cases appear in Table 1. It is seen that
the size distortion is an increasing function of the kurtosis of the GARCH process.
‘Big GARCH’ five and one per cent critical values are considerably larger than
those of ‘mild GARCH’. This leads one to expect that the size-adjusted power of
LM-type test is lower for ‘big GARCH’ than it is for ‘mild GARCH’.

Since the test appears to be consistent, it is of interest to find out what happens
to the power in finite samples when the parameters δ1 and γ1 = eη in the alternative
are varied. (We reparameterise γ1 following Goodwin, Holt and Prestemon (2011)
and Hurn, Silvennoinen and Teräsvirta (in press) and vary η.) The size-adjusted
power of the test at significance levels 0.05 and 0.01 for various values of η and δ1

when ht = 1 and T = 2500, 5000, will be reported for both designs, see Tables 2
and 3. The results for T = 1000 can be found at www. ... [web address to
additional material].

The results for ‘big GARCH’ for T = 2500 and c1 = 0.5 in the top panel of
Table 2 indicate that when δ1 ≤ 2, the slope parameter η has little effect on the
power of the test. This means that for small shifts, smoothness of the shift is not
an important factor. Tables 4 and 5 show that for these values of δ1, the GARCH
parameters are well estimated on average. For larger values of δ1, α̂1+β̂1 ≈ 1. (See
Hillebrand (2005, Table 1) for similar results when η = ∞.) At the same time, for
a given δ1 ≥ 2 smooth shifts become easier to detect than abrupt ones. This is
particularly clear at α = 0.01. In other words, it is more difficult to find evidence
for a sudden change in the amplitude of the clusters if the change is abrupt than it
is when this change is gradual.

The location of the shift matters. It is seen from the mid-panel of Table 2
that when the mid-point of the positive shift is located early (c1 = 0.2), a shift in
the conditional variance is easier to detect than if a similar positive shift occurs
halfway through the sample or towards the end; results for c1 = 0.8 can be found
in the bottom panel of Table 2. A smooth change, η = 1, constitutes an exception.
When the shift has an early location, the power as a function of η is nonmonotonic.
It increases from η = 1 to η = 2 and decays thereafter. This phenomenon cannot
be seen in the top or the bottom panel of the table. Furthermore, when c1 = 0.2,
the decrease in power of the test as a function of η is not fully monotonic. This
is particularly clear when δ = 25 and α = 0.01. There the decay does not begin
before η = 3.

The bottom panel of Table 2 also shows that a late positive shift (c1 = 0.8) is
generally difficult to detect unless it happens to be large but at the same time quite
smooth (η = 1). This may be explained by the fact that a smooth change can begin
quite early, although its mid-point is located late in the sample. Evidence about
the change thus stretches over a large part of the sample. But then, an analogous
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argument does not fully apply to the case c1 = 0.2. As already pointed out, the
results in the mid-panel of Table 2 indicate that the smoothest changes are not as
easy to detect as the ones with η > 1.

It should be pointed out, however, that these results are not invariant to the
direction of the shift. In the reported simulations, the variance component changes
from 1 to 1 + δ1, where δ1 > 0, so the shift is positive. If the shift is negative and
the change is from 1 + δ1 to 1, the conclusions drawn for c1 = 0.8 are valid for
c1 = 0.2 and vice versa. Simulation results not reported here support this claim.
In our simulations the shift is a monotonic function of the transition variable t/T .
Nonmonotonic shifts are of course possible but are not considered here.

Table 3 contains results for the same designs for T = 5000. As may be ex-
pected, the powers are higher than for T = 2500, but the patterns visible in Table 2
repeat themselves here.

Next consider ‘mild GARCH’. Results of the power simulations when T =

2500 can be found in Table 6. A comparison with the ‘big GARCH’ results indi-
cates that the decrease in kurtosis from 16.1 to 3.18 has a strongly positive effect
on power. The power patterns found in the two tables are similar, however, in
that even in Table 6 the power of the test decreases with increasing η (decreasing
smoothness). The decrease is not very strong at α = 0.05 because the power is
generally quite high but is more clearly visible at the 1% level of significance.

The results in the mid- and bottom panels of Table 6 show that shifts occurring
early (c1 = 0.2) are more difficult to find than the ones with their mid-point located
late in the sample (c1 = 0.8) when the shift is small. When δ1 is sufficiently large,
these differences even out. The differences in power are more visible at α = 0.01.
An interesting detail in the bottom panel of the table (c1 = 0.2) is that the power
is nonmonotonic in δ1 when η = 1. This is most clearly seen for α = 0.01.
Furthermore, for fixed η ≥ 3 and c = 0.2, the power first increases, then decreases
and then begins to increase again when δ1 increases. This pattern is also best seen
when α = 0.01. With few exceptions when α = 0.05, the power is highest for
δ1 = 25 for all three values of c1.

When T = 5000, the power of the test is very close to one for all designs, and
because of this Table 7 only contains results for α = 0.01. The previous patterns
are now somewhat harder to see because the power of the tests is considerably
higher and for large values of δ1 quite close to one. Differences between the
empirical powers reported in this table and the corresponding values in Table 3
are quite remarkable. It seems that volatility in the GARCH component measured
by the kurtosis of φt has a considerable effect on the size-adjusted power of the
test. High volatility makes it difficult to detect fluctuations in the unconditional
variance.

Table 8 contains the averages of the GARCH parameter estimates for ‘mild
GARCH’ for T = 2500 and Table 9 reports the same averages for T = 5000.
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While α1 is reasonably well estimated for small shifts (δ1 ≤ 2), the persistence
parameter β1 is consistently overestimated. The average of the sum α̂1+β̂1 reaches
unity for δ1 ≥ 23 for c1 = 0.2, 0.5, and remains slightly below one for c1 = 0.8.
An increase in the sample size from 2500 to 5000 has little effect on these values.

In practice, it is not possible to accurately adjust the size because the size dis-
tortion varies according to the (unknown) parameters of the null model. Previous
experience suggests that after parameterising the unconditional variance and esti-
mating the TV–GARCH model, the sum α̂1 + β̂1 lies clearly below one. A rule of
thumb would be to use the critical values determined for ‘mild GARCH’, but the
size correction would in that case be only approximate.

Two solutions to this problem are available. It is possible to use the robustified
LM-type test as defined by Amado and Teräsvirta (in press). Simulations in that
paper suggest that it is clearly less size distorted than its nonrobust counterpart.
Another alternative would be to test constancy of the unconditional variance be-
fore estimating the GARCH component. Doing so would prevent the GARCH
parameter estimates from absorbing nonstationarity due to nonconstant uncondi-
tional variance. This possibility will be considered in the next section.

4.3 Power simulations 2: specification test
We simulate a model in which the conditional heteroskedasticity is generated us-
ing the ‘big GARCH’ parameters: α0 = 0.05, α1 = 0.09 and β1 = 0.9. However,
in testing constancy of the unconditional variance, the GARCH component is ig-
nored, i.e., it is assumed that ht = 1. The alternative to εt = ztδ

1/2
0 is thus assumed

to be εt = ztg
1/2
t where gt is defined in (5) with r = 1 and (6) with K1 = 1.

Since the sequence {εt} contains (neglected) conditional heteroskedasticity, the
test assuming iid observations under H0 may be oversized. Even here, the size is
corrected using the warp-speed bootstrap, so only a single bootstrap replication is
performed for each experiment. The following four steps are needed:

1. Generate T observations from the GARCH model we are simulating, esti-
mate the intercept δ0 using these observations and compute the value of the
test statistic.

2. Draw T independent variables ε(1)
t = z(1)

t δ̂1/2
0 , t = 1, ...,T, using the standard

normal distribution for z(1)
t .

3. Estimate the intercept δ0 from this series and the compute the value of the
test statistic. This yields one estimate of the critical value(s).

4. Repeat the steps 1–3 K = 5000 times and compute the critical value of
interest as the mean of the values resulting from these K replications.

9



The critical values thus obtained can be found in Table 1. It is seen that the
test is hardly size distorted, which means that the asymptotic critical values can
be used for the sample sizes considered here.1 When conditional heteroskedas-
ticity is present, estimating the GARCH component before testing constancy of
the unconditional variance seems to be the single most important cause of the size
distortion observed in the misspecification test.

The simulation results for T = 2500 and c1 = 0.5 show that the power is very
close to one for all combinations of η and δ1, the lowest value being equal to 0.977
for η ≥ 4 and δ1 = 1 at the 1% significance level. The situation hardly changes
for c1 = 0.2 or c1 = 0.8. For this reason, no tables for these results are provided.
We are able to conclude that it would be preferable to test constancy of the un-
conditional variance before modelling the GARCH component instead of doing it
thereafter. The LM-type test would thus be a specification tool and not a misspec-
ification test. One might even suggest that the whole deterministic unconditional
variance component (up to the intercept) defined in (5) should be specified by se-
quential testing as in Amado and Teräsvirta (in press) but before modelling the
conditional variance. This possibility will be investigated elsewhere.

Power simulations of this section suggest that the test could work well in much
smaller samples and could therefore be used for testing constancy of the variance
in models for the conditional mean. In order to consider this idea we repeated the
previous simulations for T = 50 but generated the data without any conditional
heteroskedasticity. In that case the asymptotic theory is valid and no size correc-
tion is necessary. Table TABLE:sigval shows that this is still true for T = 50. The
results appear in Table 10. The power is seems largely independent of η for η ≥ 2.
It does increase monotonically with δ1 and c1. This means that shifts occurring
late are easier to detect than ones occurring early in the sample. This is true for a
positive shift: for a negative one the conclusion is reversed. In the last two cases,
c1 = 0.5 and c1 = 0.8, the power is already quite reasonable when the shift is suffi-
ciently large. Doubling the length of the series (T = 100; results not shown here)
considerably increases the power. Summing up, the LM-type test considered here
appears a promising tool in testing constancy of the variance in conditional mean
models estimated from short time series. A further study of the LM-type test in
this context would seem worthwhile but lies beyond the scope of this work.

5 A brief application
To illustrate the behaviour of the tests we apply them to daily exchange rate re-
turns of the Indonesian rupiah, Korean won and Taiwanese dollar from 2 January

1For completeness, the experiment is repeated using ‘mild GARCH’ and the resulting critical
values can be found in Table 1.
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1994, to 31 December 2012, 6939 observations in total. They are extended and
modified versions of the series Davidson (2004) considered and are graphed in
Figure 1.2 Modelling these time series would require more information about
the changes in the currency regimes during this period, but here the series only
illustrate properties of the tests.

It is seen that there is a sharp increase in volatility around 1997–98 in all three
series. Davidson ascribes this to a creeping peg, at least for the rupiah and the won
that, after the outburst of the 1997 Asian Financial crisis, was abandoned in favour
of a free float. Bouts of turbulence on top of normal clustering appear in all series
even thereafter. Since the test statistics can be affected by extreme outliers, see the
Indonesian and Korean series in particular, we truncate them to equal ±6 standard
deviations of the original series. The estimates of the GARCH(1,1)-parameters α1

and β1 can be found in Table 11. The sum α̂1 + β̂1 either equals (Indonesia and
Korea) or is very close to one (Taiwan).

The values of the χ2-statistic also appear in Table 11. They are much larger for
the specification than for the misspecification test. If the ‘mild GARCH’ critical
values for T = 5000 are employed, the misspecification test applied to the residu-
als of the Taiwanese GARCH model does not even reject the null hypothesis at the
1% level. Even stranger results emerge if the period is restricted to be the same
as Davidson’s, ending 15 June 2000, so that the single turbulent period following
the distinct shift visible in the series dominates. Despite this large shift around
late 1997 and early 1998, the misspecification test only rejects the null hypothesis
for the won when α = 0.05. If the 1% significance level is applied, none of the
three null hypotheses is rejected. The specification test, however, strongly rejects
constancy of the unconditional variance for returns of all three currencies. These
results support the conclusion that the constancy hypothesis should be tested be-
fore fitting any GARCH models to return series under consideration.

6 Conclusions
In this work we consider testing the hypothesis of constant unconditional variance
in GARCH models. The alternative is that the unconditional variance changes
deterministically over time. Such tests have so far been performed as misspecifi-
cation tests, that is, after fitting a GARCH model to the original series. Previous
research has already demonstrated that some of these tests are positively size dis-
torted. We find that size distortion is a function of the kurtosis of the GARCH
process. High kurtosis means strong size distortion. Since the null model is un-
known in practice, adjusting the size for each application becomes difficult.

2Our series are not exactly the same as the ones in Davidson (2004). The difference is that
Saturday and Sunday returns are included in our series but not in Davidson’s.
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This is one reason for considering the possibility of testing constancy of the
unconditional variance before fitting a GARCH model to the data. It turns out
to be a very useful idea. The power of the test is vastly superior to that of the
misspecification test and the size distortion does not seem to be a problem. This
suggests rethinking the whole GARCH modelling strategy presented in Amado
and Teräsvirta (in press). Instead of fitting the GARCH model to the series first
and testing constancy and specifying the unconditional variance component there-
after, one could reverse the order of things. One would then not only test constancy
but (if rejected) even specify the whole unconditional variance component of the
GARCH process before fitting a GARCH model to the rescaled series. Exploring
this suggestion is left for further research.
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7 Tables and Figures
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Figure 1: Exchange rate returns for Indonesia (IDR/USD), Korea (KRW/USD),
and Taiwan (TWD/USD), from 2 January 1994 until 31 December 2012.
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Misspecification test

T = 1000 T = 2500 T = 5000 χ2
4

5% 1% 5% 1% 5% 1% 5% 1%
‘big GARCH’ 15.547 25.090 13.712 21.596 12.116 19.654 9.488 13.277
‘mild GARCH’ 12.898 18.556 10.816 15.339 10.182 15.763

Specification test

T = 50 χ2
3

5% 1% 5% 1%
no heterosk. 7.972 11.301 7.815 11.345

T = 1000 T = 2500 T = 5000 χ2
3

5% 1% 5% 1% 5% 1% 5% 1%
‘big GARCH’ 8.018 11.758 7.809 11.633 7.592 11.125 7.815 11.345
‘mild GARCH’ 8.149 11.777 7.844 11.632 7.636 11.208

Table 1: Simulated critical values from the ‘big GARCH’ and ‘mild GARCH’
experiments (top panel), as well as from the specification test experiments where
no heteroskedasticity is present (middle panel) and where the heteroskedasticity
is ignored (bottom panel). For reference, the critical values from the theoretical
distributions of the test statistics are reported in the two rightmost columns.
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c1 = 0.5
α = 0.05 α = 0.01

δ1 δ1
η 20 21 22 23 24 25 η 20 21 22 23 24 25

1 0.141 0.291 0.483 0.682 0.831 0.928 1 0.030 0.044 0.091 0.188 0.330 0.531
2 0.168 0.303 0.450 0.610 0.796 0.936 2 0.031 0.049 0.065 0.120 0.241 0.515
3 0.164 0.268 0.393 0.534 0.741 0.909 3 0.029 0.044 0.046 0.071 0.179 0.446
4 0.157 0.258 0.356 0.510 0.730 0.903 4 0.027 0.040 0.038 0.066 0.150 0.400
5 0.156 0.257 0.353 0.505 0.721 0.894 5 0.026 0.039 0.034 0.058 0.142 0.349
6 0.156 0.255 0.351 0.493 0.703 0.864 6 0.026 0.038 0.035 0.052 0.126 0.321
7 0.155 0.254 0.356 0.498 0.678 0.813 7 0.026 0.037 0.035 0.051 0.111 0.264
8 0.155 0.254 0.352 0.496 0.660 0.768 8 0.026 0.037 0.035 0.051 0.108 0.231
9 0.155 0.254 0.352 0.495 0.653 0.759 9 0.026 0.036 0.035 0.050 0.108 0.218
10 0.155 0.254 0.352 0.495 0.653 0.757 10 0.026 0.036 0.035 0.050 0.108 0.217

c1 = 0.2
α = 0.05 α = 0.01

δ1 δ1
η 20 21 22 23 24 25 η 20 21 22 23 24 25

1 0.107 0.188 0.314 0.459 0.570 0.627 1 0.022 0.028 0.051 0.091 0.118 0.155
2 0.154 0.333 0.581 0.784 0.905 0.958 2 0.025 0.058 0.129 0.261 0.410 0.616
3 0.169 0.326 0.554 0.741 0.888 0.969 3 0.027 0.054 0.130 0.215 0.374 0.657
4 0.168 0.308 0.503 0.686 0.863 0.960 4 0.026 0.045 0.108 0.166 0.313 0.616
5 0.166 0.300 0.476 0.667 0.853 0.958 5 0.026 0.042 0.099 0.149 0.279 0.577
6 0.164 0.301 0.476 0.662 0.835 0.954 6 0.025 0.042 0.096 0.141 0.262 0.531
7 0.165 0.302 0.479 0.652 0.819 0.922 7 0.025 0.041 0.097 0.135 0.242 0.451
8 0.165 0.303 0.481 0.654 0.809 0.890 8 0.024 0.041 0.099 0.132 0.238 0.393
9 0.165 0.302 0.477 0.659 0.809 0.887 9 0.024 0.041 0.099 0.137 0.235 0.386
10 0.165 0.302 0.477 0.660 0.809 0.886 10 0.024 0.041 0.099 0.138 0.234 0.386

c1 = 0.8
α = 0.05 α = 0.01

δ1 δ1
η 20 21 22 23 24 25 η 20 21 22 23 24 25

1 0.103 0.168 0.299 0.485 0.675 0.861 1 0.033 0.036 0.052 0.092 0.170 0.345
2 0.105 0.158 0.245 0.371 0.534 0.764 2 0.033 0.036 0.040 0.066 0.108 0.235
3 0.104 0.146 0.203 0.295 0.439 0.659 3 0.035 0.036 0.034 0.046 0.071 0.161
4 0.107 0.136 0.199 0.265 0.404 0.624 4 0.035 0.036 0.037 0.043 0.052 0.130
5 0.106 0.135 0.197 0.255 0.391 0.601 5 0.034 0.035 0.033 0.036 0.043 0.115
6 0.104 0.135 0.195 0.257 0.391 0.578 6 0.033 0.035 0.032 0.036 0.041 0.101
7 0.104 0.134 0.197 0.253 0.376 0.539 7 0.033 0.035 0.032 0.037 0.041 0.091
8 0.105 0.134 0.194 0.258 0.358 0.483 8 0.032 0.036 0.032 0.037 0.040 0.085
9 0.105 0.134 0.194 0.258 0.357 0.482 9 0.032 0.036 0.032 0.039 0.040 0.083
10 0.105 0.134 0.194 0.258 0.358 0.482 10 0.032 0.036 0.032 0.039 0.040 0.083

Table 2: Estimated power of the LM-type statistic for testing the ‘big GARCH’
model against time-varying unconditional variance with T = 2500, locations c1 =

0.5, 0.2, and 0.8, and significance levels α = 0.05 and 0.01.
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c1 = 0.5
α = 0.05 α = 0.01

δ1 δ1
η 20 21 22 23 24 25 η 20 21 22 23 24 25

1 0.306 0.619 0.874 0.949 0.986 0.998 1 0.072 0.201 0.415 0.604 0.777 0.916
2 0.383 0.685 0.865 0.946 0.993 0.999 2 0.094 0.228 0.365 0.509 0.724 0.909
3 0.369 0.648 0.798 0.910 0.983 0.999 3 0.088 0.202 0.285 0.410 0.642 0.857
4 0.361 0.627 0.777 0.898 0.975 0.996 4 0.083 0.179 0.254 0.376 0.611 0.837
5 0.359 0.618 0.766 0.891 0.975 0.996 5 0.083 0.175 0.245 0.375 0.597 0.823
6 0.358 0.617 0.763 0.894 0.977 0.996 6 0.083 0.173 0.245 0.371 0.592 0.820
7 0.357 0.622 0.769 0.899 0.973 0.996 7 0.083 0.174 0.244 0.372 0.584 0.800
8 0.356 0.618 0.770 0.897 0.968 0.989 8 0.082 0.175 0.248 0.373 0.568 0.755
9 0.356 0.617 0.771 0.895 0.967 0.979 9 0.082 0.174 0.247 0.371 0.563 0.725
10 0.356 0.617 0.771 0.896 0.965 0.979 10 0.082 0.174 0.248 0.372 0.557 0.721

c1 = 0.2
α = 0.05 α = 0.01

δ1 δ1
η 20 21 22 23 24 25 η 20 21 22 23 24 25

1 0.212 0.403 0.635 0.790 0.874 0.907 1 0.045 0.109 0.244 0.389 0.516 0.575
2 0.340 0.652 0.887 0.967 0.994 0.998 2 0.079 0.277 0.529 0.734 0.881 0.954
3 0.364 0.669 0.865 0.956 0.992 1.000 3 0.089 0.281 0.464 0.647 0.850 0.960
4 0.366 0.656 0.836 0.950 0.990 1.000 4 0.091 0.253 0.406 0.589 0.823 0.957
5 0.367 0.644 0.828 0.945 0.991 1.000 5 0.087 0.239 0.380 0.560 0.816 0.957
6 0.364 0.643 0.825 0.945 0.990 1.000 6 0.086 0.239 0.376 0.560 0.813 0.957
7 0.365 0.643 0.825 0.942 0.989 1.000 7 0.086 0.241 0.377 0.560 0.802 0.946
8 0.364 0.642 0.826 0.941 0.987 0.997 8 0.087 0.239 0.377 0.555 0.780 0.903
9 0.364 0.642 0.828 0.940 0.986 0.991 9 0.087 0.238 0.378 0.545 0.767 0.874
10 0.364 0.642 0.827 0.940 0.986 0.992 10 0.087 0.237 0.379 0.549 0.767 0.878

c1 = 0.8
α = 0.05 α = 0.01

δ1 δ1
η 20 21 22 23 24 25 η 20 21 22 23 24 25

1 0.203 0.379 0.671 0.873 0.962 0.992 1 0.051 0.092 0.228 0.385 0.592 0.796
2 0.210 0.376 0.608 0.766 0.888 0.970 2 0.051 0.092 0.165 0.263 0.406 0.624
3 0.205 0.357 0.533 0.681 0.824 0.926 3 0.052 0.082 0.118 0.192 0.305 0.466
4 0.201 0.336 0.490 0.636 0.789 0.893 4 0.052 0.081 0.111 0.157 0.264 0.417
5 0.198 0.333 0.483 0.628 0.779 0.896 5 0.049 0.074 0.109 0.151 0.250 0.400
6 0.199 0.336 0.487 0.632 0.780 0.895 6 0.050 0.077 0.113 0.155 0.248 0.394
7 0.198 0.337 0.484 0.638 0.783 0.887 7 0.051 0.077 0.112 0.154 0.252 0.386
8 0.198 0.338 0.487 0.643 0.779 0.858 8 0.051 0.078 0.112 0.155 0.248 0.362
9 0.198 0.338 0.485 0.644 0.772 0.851 9 0.051 0.078 0.109 0.155 0.242 0.344
10 0.198 0.338 0.486 0.640 0.772 0.846 10 0.051 0.078 0.109 0.155 0.241 0.344

Table 3: Estimated power of the LM-type statistic for testing the ‘big GARCH’
model against time-varying unconditional variance with T = 5000, locations c1 =

0.5, 0.2, and 0.8, and significance levels α = 0.05 and 0.01.
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c1 = 0.5
α = 0.05 α = 0.01

δ1 δ1
η 20 21 22 23 24 25 η 20 21 22 23 24 25

1 0.908 0.994 0.995 1.000 1.000 1.000 1 0.722 0.934 0.960 0.982 0.999 1.000
2 0.943 0.970 0.990 0.998 1.000 1.000 2 0.765 0.840 0.829 0.906 0.992 1.000
3 0.919 0.932 0.949 0.992 1.000 1.000 3 0.681 0.680 0.634 0.768 0.963 0.999
4 0.908 0.926 0.936 0.984 0.999 1.000 4 0.637 0.638 0.584 0.705 0.917 0.998
5 0.909 0.932 0.939 0.982 0.999 1.000 5 0.638 0.639 0.577 0.689 0.897 0.991
6 0.909 0.934 0.944 0.980 0.998 0.997 6 0.639 0.642 0.583 0.692 0.875 0.966
7 0.910 0.934 0.945 0.980 0.994 0.987 7 0.639 0.644 0.584 0.696 0.849 0.912
8 0.910 0.936 0.945 0.979 0.991 0.974 8 0.638 0.645 0.586 0.694 0.840 0.868
9 0.910 0.936 0.946 0.979 0.990 0.974 9 0.638 0.645 0.587 0.695 0.837 0.868
10 0.910 0.936 0.946 0.979 0.990 0.974 10 0.638 0.645 0.587 0.696 0.837 0.869

c1 = 0.2
α = 0.05 α = 0.01

δ1 δ1
η 20 21 22 23 24 25 η 20 21 22 23 24 25

1 0.601 0.940 0.998 1.000 1.000 1.000 1 0.297 0.746 0.960 0.991 0.995 0.997
2 0.854 0.994 0.999 1.000 1.000 1.000 2 0.566 0.936 0.969 0.983 0.997 1.000
3 0.867 0.972 0.979 0.999 1.000 1.000 3 0.570 0.808 0.787 0.876 0.995 1.000
4 0.851 0.947 0.951 0.992 1.000 1.000 4 0.532 0.706 0.619 0.734 0.967 1.000
5 0.850 0.944 0.934 0.982 1.000 1.000 5 0.523 0.681 0.575 0.668 0.929 0.999
6 0.849 0.942 0.930 0.976 1.000 0.999 6 0.522 0.676 0.566 0.629 0.895 0.979
7 0.849 0.942 0.933 0.976 0.995 0.990 7 0.521 0.675 0.568 0.626 0.874 0.942
8 0.848 0.942 0.935 0.976 0.993 0.984 8 0.522 0.677 0.573 0.638 0.856 0.911
9 0.848 0.942 0.935 0.976 0.994 0.983 9 0.522 0.677 0.574 0.640 0.859 0.909
10 0.848 0.942 0.935 0.976 0.994 0.983 10 0.522 0.677 0.574 0.640 0.859 0.909

c1 = 0.8
α = 0.05 α = 0.01

δ1 δ1
η 20 21 22 23 24 25 η 20 21 22 23 24 25

1 0.757 0.975 0.995 1.000 1.000 1.000 1 0.455 0.848 0.946 0.982 0.999 1.000
2 0.812 0.959 0.980 0.998 1.000 1.000 2 0.517 0.767 0.802 0.870 0.966 0.999
3 0.771 0.912 0.947 0.981 0.999 1.000 3 0.466 0.624 0.659 0.753 0.899 0.989
4 0.748 0.896 0.936 0.975 0.996 1.000 4 0.427 0.581 0.613 0.727 0.886 0.979
5 0.743 0.898 0.944 0.979 0.997 0.999 5 0.422 0.576 0.628 0.753 0.899 0.977
6 0.743 0.901 0.948 0.982 0.996 0.997 6 0.422 0.584 0.648 0.773 0.904 0.963
7 0.744 0.901 0.951 0.981 0.995 0.994 7 0.422 0.584 0.652 0.778 0.897 0.947
8 0.746 0.901 0.951 0.982 0.993 0.990 8 0.423 0.585 0.653 0.779 0.892 0.915
9 0.746 0.901 0.950 0.982 0.993 0.988 9 0.423 0.585 0.652 0.778 0.892 0.913
10 0.746 0.901 0.950 0.982 0.993 0.988 10 0.423 0.585 0.652 0.778 0.892 0.913

Table 6: Estimated power of the LM-type statistic for testing the ‘mild GARCH’
model against time-varying unconditional variance with T = 2500, locations c1 =

0.5, 0.2, and 0.8, and significance levels α = 0.05 and 0.01.
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c1 = 0.5
α = 0.05 α = 0.01

δ1 δ1
η 20 21 22 23 24 25 η 20 21 22 23 24 25

1 1.000 1.000 1.000 1.000 1.000 1.000 1 0.993 0.999 0.999 1.000 1.000 1.000
2 0.999 1.000 1.000 1.000 1.000 1.000 2 0.994 0.993 0.995 1.000 1.000 1.000
3 0.999 0.999 1.000 1.000 1.000 1.000 3 0.984 0.979 0.969 0.992 1.000 1.000
4 1.000 0.999 1.000 1.000 1.000 1.000 4 0.978 0.963 0.943 0.980 0.999 1.000
5 1.000 0.998 1.000 1.000 1.000 1.000 5 0.977 0.963 0.949 0.982 0.999 1.000
6 1.000 0.998 1.000 1.000 1.000 1.000 6 0.977 0.963 0.959 0.982 0.999 1.000
7 1.000 0.998 1.000 1.000 1.000 1.000 7 0.977 0.962 0.959 0.982 0.998 0.998
8 1.000 0.998 1.000 1.000 1.000 0.998 8 0.977 0.962 0.961 0.984 0.997 0.994
9 1.000 0.998 1.000 1.000 1.000 0.998 9 0.977 0.962 0.961 0.984 0.997 0.984
10 1.000 0.998 1.000 1.000 1.000 0.998 10 0.977 0.962 0.961 0.984 0.997 0.983

c1 = 0.2
α = 0.05 α = 0.01

δ1 δ1
η 20 21 22 23 24 25 η 20 21 22 23 24 25

1 0.943 0.999 1.000 1.000 1.000 1.000 1 0.738 0.993 1.000 1.000 1.000 1.000
2 0.997 1.000 1.000 1.000 1.000 1.000 2 0.961 0.997 0.997 1.000 1.000 1.000
3 0.997 0.999 1.000 1.000 1.000 1.000 3 0.959 0.978 0.970 0.993 1.000 1.000
4 0.996 0.997 0.998 1.000 1.000 1.000 4 0.944 0.951 0.893 0.974 1.000 1.000
5 0.994 0.997 0.998 1.000 1.000 1.000 5 0.942 0.933 0.867 0.944 1.000 1.000
6 0.994 0.997 0.998 1.000 1.000 1.000 6 0.940 0.931 0.865 0.937 1.000 1.000
7 0.994 0.997 0.998 1.000 1.000 1.000 7 0.940 0.930 0.867 0.936 0.998 1.000
8 0.994 0.997 0.998 1.000 1.000 0.999 8 0.940 0.931 0.873 0.937 0.997 0.991
9 0.994 0.997 0.998 1.000 1.000 0.998 9 0.940 0.931 0.874 0.936 0.996 0.985
10 0.994 0.997 0.998 1.000 1.000 0.998 10 0.940 0.931 0.874 0.938 0.996 0.986

c1 = 0.8
α = 0.05 α = 0.01

δ1 δ1
η 20 21 22 23 24 25 η 20 21 22 23 24 25

1 0.989 1.000 1.000 1.000 1.000 1.000 1 0.895 1.000 1.000 1.000 1.000 1.000
2 0.999 1.000 1.000 1.000 1.000 1.000 2 0.952 0.997 0.997 0.998 1.000 1.000
3 0.998 0.999 1.000 1.000 1.000 1.000 3 0.928 0.984 0.986 0.991 0.999 1.000
4 0.996 1.000 1.000 1.000 1.000 1.000 4 0.894 0.972 0.978 0.992 0.999 1.000
5 0.997 1.000 1.000 1.000 1.000 1.000 5 0.889 0.971 0.981 0.995 1.000 1.000
6 0.996 1.000 1.000 1.000 1.000 1.000 6 0.889 0.974 0.983 0.998 1.000 1.000
7 0.996 1.000 1.000 1.000 1.000 1.000 7 0.888 0.975 0.984 0.998 1.000 1.000
8 0.996 1.000 1.000 1.000 1.000 1.000 8 0.888 0.974 0.985 0.998 1.000 0.996
9 0.996 1.000 1.000 1.000 1.000 0.999 9 0.888 0.974 0.985 0.998 0.998 0.990
10 0.996 1.000 1.000 1.000 1.000 0.999 10 0.888 0.974 0.985 0.998 0.998 0.990

Table 7: Estimated power of the LM-type statistic for testing the ‘mild GARCH’
model against time-varying unconditional variance with T = 5000, locations c1 =

0.5, 0.2, and 0.8, and significance levels α = 0.05 and 0.01.
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c1 = 0.5
α = 0.05 α = 0.01

δ1 δ1
η 20 21 22 23 24 25 η 20 21 22 23 24 25

1 0.103 0.207 0.354 0.509 0.626 0.684 1 0.029 0.064 0.133 0.202 0.283 0.319
2 0.129 0.255 0.483 0.682 0.793 0.835 2 0.036 0.083 0.192 0.314 0.409 0.469
3 0.135 0.264 0.496 0.683 0.775 0.823 3 0.037 0.086 0.199 0.323 0.410 0.466
4 0.134 0.271 0.494 0.671 0.769 0.806 4 0.036 0.085 0.196 0.320 0.401 0.452
5 0.135 0.271 0.493 0.670 0.769 0.804 5 0.035 0.085 0.197 0.319 0.400 0.447
6 0.135 0.271 0.493 0.670 0.769 0.804 6 0.035 0.085 0.197 0.319 0.400 0.447
7 0.135 0.271 0.493 0.670 0.769 0.804 7 0.035 0.085 0.197 0.319 0.400 0.447
8 0.135 0.271 0.493 0.670 0.769 0.804 8 0.035 0.085 0.197 0.319 0.400 0.447
9 0.135 0.271 0.493 0.670 0.769 0.804 9 0.035 0.085 0.197 0.319 0.400 0.447
10 0.135 0.271 0.493 0.670 0.769 0.804 10 0.035 0.085 0.197 0.319 0.400 0.447

c1 = 0.2
α = 0.05 α = 0.01

δ1 δ1
η 20 21 22 23 24 25 η 20 21 22 23 24 25

1 0.054 0.069 0.088 0.095 0.107 0.112 1 0.012 0.012 0.016 0.020 0.022 0.024
2 0.051 0.074 0.096 0.117 0.131 0.143 2 0.010 0.014 0.019 0.023 0.027 0.029
3 0.053 0.078 0.099 0.126 0.148 0.167 3 0.011 0.014 0.017 0.025 0.027 0.030
4 0.053 0.076 0.100 0.132 0.153 0.166 4 0.011 0.014 0.016 0.025 0.026 0.029
5 0.053 0.075 0.100 0.132 0.153 0.166 5 0.011 0.014 0.016 0.025 0.025 0.029
6 0.053 0.075 0.100 0.132 0.153 0.166 6 0.011 0.014 0.016 0.025 0.025 0.029
7 0.053 0.075 0.100 0.132 0.153 0.166 7 0.011 0.014 0.016 0.025 0.025 0.029
8 0.053 0.075 0.100 0.132 0.153 0.166 8 0.011 0.014 0.016 0.025 0.025 0.029
9 0.053 0.075 0.100 0.132 0.153 0.166 9 0.011 0.014 0.016 0.025 0.025 0.029
10 0.053 0.075 0.100 0.132 0.153 0.166 10 0.011 0.014 0.016 0.025 0.025 0.029

c1 = 0.8
α = 0.05 α = 0.01

δ1 δ1
η 20 21 22 23 24 25 η 20 21 22 23 24 25

1 0.127 0.273 0.473 0.726 0.876 0.924 1 0.048 0.107 0.262 0.444 0.618 0.725
2 0.176 0.354 0.607 0.829 0.920 0.949 2 0.065 0.186 0.371 0.593 0.737 0.795
3 0.187 0.360 0.625 0.808 0.884 0.924 3 0.073 0.204 0.376 0.596 0.713 0.759
4 0.192 0.363 0.621 0.794 0.869 0.904 4 0.072 0.203 0.372 0.580 0.692 0.742
5 0.192 0.364 0.620 0.793 0.867 0.904 5 0.073 0.202 0.370 0.576 0.690 0.742
6 0.192 0.364 0.620 0.793 0.867 0.904 6 0.073 0.202 0.370 0.576 0.690 0.742
7 0.192 0.364 0.620 0.793 0.867 0.904 7 0.073 0.202 0.370 0.576 0.690 0.742
8 0.192 0.364 0.620 0.793 0.867 0.904 8 0.073 0.202 0.370 0.576 0.690 0.742
9 0.192 0.364 0.620 0.793 0.867 0.904 9 0.073 0.202 0.370 0.576 0.690 0.742
10 0.192 0.364 0.620 0.793 0.867 0.904 10 0.073 0.202 0.370 0.576 0.690 0.742

Table 10: Estimated power of the LM-type statistic for the specification test with
T = 50, locations c1 = 0.5, 0.2, and 0.8, and significance levels α = 0.05 and
0.01.
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2 January 1994 – 31 December 2012 (6939 observations)

Testing constancy in Specification test
GARCH framework
α̂1 β̂1 α̂1 + β̂1 TR2 TR2 p

Indonesia 0.052 0.948 1.000 16.839 245.997 0.000
Korea 0.073 0.927 1.000 26.648 43.695 0.000
Taiwan 0.087 0.905 0.992 11.655 171.839 0.000

2 January 1994 – 15 June 2000 (2357 observations)

Testing constancy in Specification test
GARCH framework
α̂1 β̂1 α̂1 + β̂1 TR2 TR2 p

Indonesia 0.067 0.933 1.000 9.914 133.129 0.000
Korea 0.084 0.916 1.000 12.566 85.632 0.000
Taiwan 0.120 0.880 1.000 5.396 39.108 0.000

Table 11: Estimation and misspecification test results as well as the specification
test results for the exchange rates for Indonesia, Korea, and Taiwan. The top panel
shows the results for the period 1994–2012 and the bottom panel for 1994–2000,
the time period considered in Davidson (2004). The p-value is calculated using
χ2

3 distribution.
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Amado, C. and Teräsvirta, T.: 2008, Modelling conditional and unconditional het-

eroskedasticity with smoothly time-varying structure, SSE/EFI Working Pa-
per Series in Economics and Finance 691, Stockholm School of Economics.
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