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Abstract

We propose an energy spot price model featuring a two-factor price process and a two-component
stochastic volatility process. The first factor in the price process captures the normal variations;
the second accounts for spikes. The two-component volatility allows for a flexible autocorrelation
structure. Instead of using various filtering techniques for splitting the two factors, as often found
in the literature, we estimate the model in one step using an adaptive MCMCmethod with a Rao-
Blackwellized particle filter. We fit the model to UK natural gas spot prices and investigate the
importance of spikes and stochastic volatility. We find that the inclusion of stochastic volatility
is crucial and that it strongly impacts the jump intensity in the spike process. Furthermore,
our estimation method enables us to consider both continuous and purely jump-driven volatility
processes, and thereby assess if the volatility specification also influences the spike process and
the overall model fit.
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1 Introduction

The liberalization of European energy markets over the last couple of decades has led to highly
deregulated and liquid markets for trading energy commodities, in particular gas and electricity.
The introduction of competition has caused the markets to experience a significant increase in price
volatility. In addition, a market place for energy-based derivatives has emerged. The transition
to a competitive market where prices are set according to supply and demand means that energy
spot prices have several distinct characteristics that should be captured by any proposed model.
The most important features are seasonality, mean-reversion, spikes, multi-scale autocorrelation,
and stochastic volatility, see for instance Eydeland and Wolyniec (2003) for empirical evidence on
these stylized facts. Seasonality is caused by the seasonal pattern on the demand side of the market.
Mean-reversion is a direct consequence of the markets being supply and demand driven, which
means that, unlike the stock market, prices are not allowed to evolve freely but will fluctuate around
a (possibly stochastic) level. This also has the important implication that the deseasonalized spot
prices will be modeled using stationary processes. Due to delivery constraints in the spot market,
sudden imbalances in supply and demand are almost immediately reflected in the spot price, causing
the price to jump because of an inelastic demand curve. These imbalances are typically caused by an
unexpected rise in demand or technical problems on the supply side. After a jump, the price quickly
mean-reverts to the normal level, leaving a spike in the price path. In other words, the spike process
has a faster mean-reversion rate than normal variations, and this contributes to the multi-scale
autocorrelation structure observed in many markets. The normal fluctuations, typically referred to
as the "base-signal" process, often display volatility clustering. Stochastic volatility helps replicate
the time series properties of the prices, such as volatility clustering and leptokurtic distributions.

In the univariate model proposed in this paper, the logarithmic spot price is specified as the
sum of a deterministic function and a two-factor stochastic process as in Benth et al. (2008). The
deterministic function models the trend and seasonality of the logarithmic spot price. The first
stochastic factor captures the base-signal part of the price process, and it is modeled using a Gaussian
Ornstein-Uhlenbeck (OU) process with stochastic volatility. The second factor is a purely jump-
driven OU process that accounts for the spike behavior.

The role of stochastic volatility is an important issue to address. Different stochastic volatility
models have different implications in hedging strategies and derivative pricing, and they have been
studied extensively for equity returns, see for example Shephard (2005) and Chernov et al. (2003).
The first volatility model we consider is the non-Gaussian OU processes proposed in Barndorff-
Nielsen and Shephard (2001a). This class of jump-driven models is widely adopted because of its
analytical tractability and its ability to generate large fluctuations. We also consider a continuous
specification, which models the logarithmic variance by a Gaussian OU process.

Both volatility specifications can be augmented by allowing multiple components.1 In the case
1We use "multi-component" instead of "multi-factor" for volatility throughout this paper to distinguish it from

the multi-factor spot price.
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of jump-driven volatility, we use the superposition of independent non-Gaussian OU processes as
in Griffin and Steel (2006). With continuous volatility, the second component is added to the
logarithmic variance in the similar fashion as Alizadeh et al. (2002) and Chernov et al. (2003).
Multi-component volatility models have two major benefits. First, different mean-reversion rate in
the different components generate flexible dependence structure in the overall volatility. Second,
tail of volatility and the persistence can be captured separately. Our proposed model features a
two-factor price process and a two-component stochastic volatility process. In addition, we estimate
and compare twelve nested models to study the interaction between price dynamics and volatility
dynamics and assess the importance of each element.

Our paper contributes to the literature by proposing a method for estimating the model in one
step using the particle Markov chain Monte Carlo (PMCMC) methods developed in Andrieu et al.
(2010). PMCMC is a Bayesian approach which conducts likelihood-based inference through a particle
filter. Flury and Shephard (2011) demonstrate the use of PMCMC in economic models including the
lognormal stochastic volatility model we adopt. The complication induced by stochastic volatility
has been treated by a variety of methods, such as efficient method of moment (see e.g. Gallant
and Tauchen, 1996 and Chernov et al., 2003), simulated maximum likelihood (see e.g. Durham,
2006), and Markov chain Monte Carlo (see e.g. Eraker et al., 2003 and Kalli and Griffin, 2015).
In Green and Nossman (2008), a multi-factor model for power prices with Heston-type volatility
specification is estimated in one step using MCMC. In contrast to our approach, where an unbiased
estimate of the likelihood is obtained from the particle filter, Green and Nossman (2008) condition
on future values when computing the posterior distribution, rendering in-sample volatility a useless
estimate for likelihood evaluation. The authors also have to include a Brownian component in the
specification of the spike factor in order to ensure that the factor has an absolutely continuous
distribution when conditioning on the jumps, and thereby simplifying the MCMC estimation.

Another advantage of PMCMC is its ability to handle non-Markovian models, which is an es-
sential element in the effective sampling algorithm we propose for the multi-factor model. Pitt et al.
(2012) show that the performance of PMCMC can be severely hindered by the variance of the like-
lihood estimate, which depends on the efficiency of the particle filter. In the presence of jumps or
spikes, the efficiency of the particle filter is particularly important, see for example Johannes et al.
(2009). We propose an algorithm based on a non-Markovian representation of the multi-factor model
and use Rao-Blackwellization to decrease the variance of the likelihood estimate. Rao-Blackwellized
particle filter is closely related to the fully adapted particle filter in Pitt and Shephard (1999) and
Pitt et al. (2012), but it could also deal with stochastic volatility models driven by jumps.2

Our proposed model encompasses many of the existing models in the energy literature. The
stepping stone for many of the spot price models found in the literature is the mean-reverting one-

2In Fileccia and Sgarra (2015a,b) the authors use PMCMC with auxiliary particle filter to estimate a non-stationary
model with jumps for the crude oil market. They model considers a stochastic mean factor and a stochastic volatility
factor, both specified with a continuous process.
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factor Schwartz model from Schwartz (1997), where the logarithmic spot price follows a Gaussian
OU process. This model is further extended to include a deterministic seasonality factor in Lucia and
Schwartz (2002). In Benth et al. (2003), the geometric spot price model from Lucia and Schwartz
(2002) is generalized to allow for jumps. A special case of this model is applied to oil and gas in
Benth and S̆altytė Benth (2004). Another special case of the model from Benth et al. (2003) is
the jump diffusion model which has been used for modeling electricity spot prices in Cartea and
Figueroa (2005) and Benth et al. (2012).

The inclusion of stochastic volatility in energy models was suggested by Geman (2005), where a
Heston stochastic volatility extension of the Schwarz model is considered. In Green and Nossman
(2008), a two-factor extension of the Schwartz model with Heston stochastic volatility is proposed
and fitted to electricity spot prices using MCMC methods. A jump-driven specification of the
volatility process is considered in Benth (2011), where the geometric one-factor model is augmented
with stochastic volatility given by the sum of non-Gaussian OU processes. The model is fitted
to UK natural gas spot prices using a one-component volatility process. Benth and Vos (2013)
extend the stochastic volatility model from Benth (2011) to incorporate spikes and leverage effects
in a multidimensional setting, allowing for the joint modeling of several commodities. The model
in Benth and Vos (2013) only allows positive jumps in the spot price, since the non-Gaussian OU
factors entering the model are driven by subordinators. Estimation of the model from Benth and
Vos (2013) is still an open question. The estimation method detailed and employed in this paper
also has potential for usage in the multi-dimensional setup.

The paper is organized as follows: In Section 2 our proposed model and the nest alternatives
are presented. The PMCMC estimation method is outlined in Section 3, and Section 4 describes
the data of our empirical application. In Section 5 the estimation results are presented and various
methods for model comparisons are performed. Section 6 offers a discussion of possible extensions
of the model and estimation procedure. Concluding remarks are given in Section 7.

2 Model Descriptions

We adopt a flexible modeling framework proposed in Benth et al. (2008). Let S(t) denote the spot
price at time t. The dynamics of the spot price is described using the following geometric OU-based
factor model, augmented with stochastic volatility:

d logS(t) = d log Λ(t) + dX(t) + dY (t),

dX(t) = −αxX(t)dt+ σ(t)dB(t),

dY (t) = −αyY (t)dt+ dI(t).

The deterministic function Λ(t) accounts for the possible trend and seasonal patterns of the data.
In this section we focus on modeling the detrended and deseasonalized process: Z(t) = logS(t) −
log Λ(t) , X(t) + Y (t), discretized using a time interval of length ∆ = 1. The first factor, X(t), is
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a Gaussian OU process with stochastic volatility σ(t). It is interpreted as the base-signal process
that models the continuous variations in the logarithmic spot price. The second factor, Y (t), is
a non-Gaussian OU process with a pure jump Lévy process as background driving Lévy process
(BDLP). Y (t) is interpreted as the spike process. The different mean-reversion rates, αx > 0 and
αy > 0, make multi-scale autocorrelation possible and help to reproduce the time series properties
of the data, where a faster mean-reversion rate is observed for the spike process. This model is also
a simplified example of superposition of Lévy semistationary processes studied in Barndorff-Nielsen
et al. (2013).

Table 1: Model Overview.

Two-comp SV One-comp SV Jumps in vol. Jumps in price Two-factor

SF-J !

TF-J ! !

SF-SVIG ! !

SF-SVLog !

SF-SVJIG ! ! !

SF-SVJLog ! !

TF-SVJIG ! ! ! !

TF-SVJLog ! ! !

SF-S2VIG ! !

SF-S2VLog !

SF-S2VJIG ! ! !

SF-S2VJLog ! !

TF-S2VJIG ! ! !

TF-S2VJLog ! ! !

We consider 14 models in total, which comprises three specifications for price jumps: (1) no-jump;
(2) single factor jump-diffusion; (3) two-factor spike process; and four specifications for volatility:
(1) jump-driven OU; (2)two-component jump-driven OU; (3) lognormal OU; (4) two-component
lognormal OU. We also include two constant volatility models. Table 1 gives an overview of the
models we consider.

The next section explains in detail the specifications of X(t) and Y (t) in our proposed model,
and the following subsections present alternative models that are nested in the model described in
section 2.1.
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2.1 Two-Factor Models with Stochastic Volatility

In our proposed two-factor models with stochastic volatility, we will use I(t) = N(t) as the BDLP,
where N(t) is a compound Poisson process with intensity parameter λJ and normally distributed
jump sizes. The detrended and deseasonalized spot price, Z(t), will then solve

dZ(t) = dX(t) + dY (t)

= −αxX(t)dt− αyY (t)dt+ σ(t)dB(t) + dN(t).

If we assume that at most one jump occurs per day and approximate the variance of the increments
in the AR(1) representation of X(t),

´ t+1
t e−2αx(t+1−s)σ2(s)ds, by

σ2(t)

ˆ t+1

t
e−2αx(t+1−s)ds = σ2(t)

1− e−2αx

2αx
,

the discretized model becomes

Zt+1 = Xt+1 + Yt+1

Xt+1 = e−αxXt + εt+1 (1)

Yt+1 = e−αyYt + ξt+1Jt+1,

where εt+1 ∼ N
(
0, σ2(t)(1− e−2αx)/(2αx)

)
, Jt+1 ∼ Bernoulli(λJ) and ξt+1 ∼ N(µJ , σ

2
J).

A similar model was suggested in Green and Nossman (2008), using a Heston specification of
the stochastic volatility process and including an additional independent Brownian component in
the spike process, Y (t). Adding a continuous Brownian component in Y (t) simplifies estimation as
it gives Y (t) a density, but it contradicts our interpretation of Y (t) as the spike process.

We consider both a purely jump-driven specification of the volatility process and a continuous
specification. Note that the base-signal, X(t), will be continuous regardless of the specification of
the volatility process. The specifications of the variance process σ2(t) are given below.

2.1.1 Inverse Gaussian(IG)-OU Stochastic Volatility

The first specification we consider for σ2(t) is an IG-OU process:

dσ2(t) = −λσ2(t)dt+ dL(λt),

where L(t) is an infinite activity jump process and the marginal distribution of σ2(t) follows an
inverse Gaussian (IG) distribution, σ2(t) ∼ IG(δ, γ). Note that this is a special case of the tempered
stable distribution, TS(κ, δ, γ), with κ = 0.5. The IG-OU volatility process is considered in Benth
(2011) to fit the logarithm of natural gas spot prices in the UK. He finds that the jump-driven
volatility specification offers more flexible dynamics than the continuous Heston model. This process
can be simulated recursively from the transition equation

σ2(t+ 1) = e−λσ2(t) + e−λ
ˆ 1

0
eλudL(λu). (2)
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The transitional density is not available analytically. We use an accept-reject algorithm proposed
by Zhang and Zhang (2008) to simulate the innovations in (2). This algorithm is based on ex-
act simulation and it is considerably faster than the infinite series representation of Rosiński (see
Barndorff-Nielsen and Shephard, 2001b) or the Ferguson and Klass representation adopted in Gander
and Stephens (2007).

Equation (1) and (2) form our first model, which features two factors in price with jumps and
stochastic volatility with IG density. We term this model TF-SVJIG.

2.1.2 Two-Component IG-OU Stochastic Volatility

We extend the IG-OU model to a two-component stochastic volatility model where the volatility is
the sum of two independent IG-OU processes:

σ2(t) = σ21(t) + σ22(t)

σ2i (t+ 1) = e−λiσ2i (t) + e−λi
ˆ 1

0
eλiudL(λiu), (3)

where i = 1, 2 denotes the two components in the volatility process. The marginal distribution of
σ2i (t) follows σ2i (t) ∼ IG(δi, γ). We restrict γ to be the same for the two components such that their
marginal distributions have the same mean/variance ratio, and hence the superposition of σ21(t) and
σ22(t) still follows the IG marginal, σ2(t) ∼ IG(δ1 + δ2, γ). The different mean-reversion rates, λ1
and λ2, give rises to a flexible autocorrelation structure in the volatility process:

Corr(σ2(t), σ2(t− u)) = w1 exp(−λ1u) + w2 exp(−λ2u),

where wi = δi/(δ1 + δ2). We term this model TF-S2VJIG.

2.1.3 Log-OU Stochastic Volatility Process

The second volatility specification is a continuous specification, where we assume that the logarithmic
volatility, h(t) = log σ2(t), follows a Gaussian OU process

dh(t) = −αh(h(t)− µh)dt+ σhdBh(t),

where Bh(t) and B(t) are two independent Brownian motions. The transition density for the loga-
rithmic volatility is given by

h(t)|h(t− 1) ∼ N
(
e−αhh(t− 1),

1− e−2αh

2αh
σ2h

)
.

We denote this model TF-SVJLog.
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2.1.4 Two-Component Log-OU Stochastic Volatility

We extend the logarithmic OU model to a two-component stochastic volatility model where the
volatility is the sum of two independent log-OU process:

σ2(t) = exp (µh + h1(t) + h2(t))

h1(t)|h1(t− 1) ∼ N
(
e−αh1h1(t− 1),

1− e−2αh1

2αh1
σ2h1

)
h2(t)|h2(t− 1) ∼ N

(
e−αh2h2(t− 1),

1− e−2αh2

2αh2
σ2h2

)
. (4)

Let Vh1 = σ2h1/(2αh1) and Vh2 = σ2h2/(2αh2) denote the unconditional variance of h1and h2,
respectively; the autocovariance and autocorrelation function implied by this model is

Cov(σ2(t), σ2(t− u)) = exp (2µh + Vh1 + Vh2)
(
exp

(
Vh1e

−αh1u + Vh2e
−αh2u

)
− 1
)

Corr(σ2(t), σ2(t− u)) =
(exp (Vh1e

−αh1u + Vh2e
−αh2u)− 1)

(exp(Vh1 + Vh2)− 1)
.

We denote this model TF-S2VJLog.

2.2 Two-Factor Model with Constant Volatility

In this subsection and the next one, we consider models that are nested in our proposed models
in section 2.1. These nest alternatives serve as a comparison to help us understand what are the
important elements in modeling the deseasonalized logarithmic spot price Z(t).

The first alternative model we consider is obtained by imposing constant volatility in (1). The
latent σ2(t) in the full model becomes a constant parameter, σ2, in this simplified model. The second
factor, i.e. the spike process Y (t), is unaffected. We term this model TF-J.

2.3 Single-Factor Models

We consider single factor models in the sense that the base-signal and spikes have the same mean-
reversion rate, i.e., αx = αy = α. This restriction has the important implication that Z(t) will be a
Markov process:

Zt+1 = e−αZt + εt+1 + ξt+1Jt+1, (5)

where εt+1 ∼ N
(
0, σ2(t)(1− e−2αx)/(2αx)

)
. The BDLP of Y (t) is still assumed to be compound

Poisson with normally distributed jump sizes, hence we obtain the same specification for the inno-
vations in the spike process: Jt+1 ∼ Bernoulli(λJ) and ξt+1 ∼ N(µJ , σ

2
J).

If we further impose σ2(t) = σ2, we obtain model SF-J which is a single-factor model with jumps
and constant volatility. This model resembles the model proposed in Cartea and Figueroa (2005),
with the only difference being the jump size distribution. In Cartea and Figueroa (2005), the authors
use a log-normal jump distribution.
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Alternatively, we can allow stochastic volatility in (5). We adopt the same volatility specification
as in section 2.1, and obtain the following four models: SF-SVJIG, SF-S2VJIG, SF-SVJLog, and SF-
S2VJLog.

To investigate the role of jumps, we also consider a single-factor Gaussian OU process with
stochastic volatility, corresponding to the restriction Y (t) = 0. The discretized model becomes

Zt+1 = e−αZt + εt+1,

where εt+1 ∼ N
(
0, σ2(t)(1− e−2αx)/(2αx)

)
. Depending on the specifications of σ2(t), we have

model SF-SVIG, SF-S2VIG, SF-SVLog, and SF-S2VLog. The SF-SVIG model is a special case of the
model considered in Benth (2011).

3 Estimation Method

Our model is able to account for important features of the spot price dynamics, such as stochastic
volatility, jumps, and separate mean reversion rates for the base-signal and the spike process. The
flexibility of the model also poses many challenges to the estimation. First, for models with stochastic
volatility, evaluating the exact likelihood involves intractable high-dimensional integration since
volatility is latent. By treating the stochastic volatility as a state variable, these models have a
nonlinear state space representation, where the measurement equation describes how the logarithmic
price changes given state variables, and the transition equation describes the evolution of the states.
Jacquier et al. (1994) develop Bayesian MCMC methods for conducting exact inference in stochastic
volatility models. Since then, Bayesian methods have been extensively applied to stock return
models, including jump-diffusion models, see for example Eraker et al. (2003). Second, contrary to
stock prices, energy prices tend to revert to a long-run mean determined by the marginal cost of
production. When jumps are present, they appear as spikes, meaning that prices revert to the mean
level fast after a jump has occurred. Green and Nossman (2008) propose a MCMC algorithm to
handle energy models with multi-factor and continuous stochastic volatility.

The third complication arises when we consider stochastic volatility that is driven by a pure
jump process. In this case, the volatility process and the parameters governing its dynamics can be
highly correlated in their posterior distributions, which results in extremely slowly mixing chains in
the above mentioned MCMC algorithms. This problem is referred to as over-conditioning. Roberts
et al. (2004) suggest a reparameterization to reduce the correlation when the volatility is driven
by a compound Poisson process. Griffin and Steel (2006) propose an algorithm using dependent
thinning and reversible jump MCMC. Gander and Stephens (2007) extend their method to allow
more general BDLP. However, these procedures can not be easily generalized to the multi-factor
models commonly used for energy prices.

Instead, we adopt the particle MCMC methods introduced in Andrieu et al. (2010), in particu-
lar the particle marginal Metropolis-Hastings (PMMH) sampler. PMMH algorithms can be easily
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adapted to accommodate different volatility specifications, including both pure jump OU processes
and the lognormal OU process. Furthermore, it can be applied to non-Markovian models, where the
measurement density or the transition density may depend on the entire past of the latent process.
This allows us to use a non-Markovian representation of the multi-factor model and is essential
for effective sampling of the spike process. In addition, we obtain a likelihood estimate from the
algorithm to compute Bayes factors and conduct model comparison.

As the name suggests, PMCMC has two components: a particle filter or sequential Monte Carlo
(SMC) step and a MCMC step. Specifically, the PMMH sampler employs SMC to approximate the
likelihood and latent variables conditional on the model parameters, then applys MH algorithms to
obtain the joint posterior distribution of the parameters and the states. We extend the standard
PMMH algorithm in two aspects. First, for models with jumps or spikes, advanced SMC techniques
need to be employed to alleviate a problem known as sample impoverishment. We propose to
deal with this issue by marginalizing out some latent variables analytically using a technique called
Rao-Blackwellization; see Doucet et al. (2000). Our approach is similar to auxiliary particle filters
developed by Pitt and Shephard (1999) and illustrated in Johannes et al. (2009). Second, it is costly
to evaluate the likelihood using SMC, and we utilize adaptive algorithms to improve the efficiency
of the Metropolis-Hasting sampler; see Andrieu and Thoms (2008) for a review on adaptive MCMC.
The rest of this section focuses on the estimation of the model in Section 2.1, as it is the most
complex model and nests all the other models.

3.1 Sequential Monte Carlo

In the state space representation of our proposed two factor model, the observed price process, Zt,
is the sum of two latent processes Xt and Yt, without any measurement error. We can not apply
particle filters directly in this case since there is no measurement density. One solution is to add
a small Gaussian error term to the measurement equation as in Green and Nossman (2008). This
is equivalent to assuming that Yt is a jump-diffusion instead of pure jump process. However, this
would still be problematic if particle filters with blind proposals, also called bootstrap filters, are
implemented. If the variance of the measurement errors is small compared to the variance of the
latent process, bootstrap filters will perform poorly, see Pitt et al. (2012) for an illustration.

We propose a different approach for this problem. Specifically, we use the following representation
of the two factor model

Zt+1 = e−αxZt + Yt+1 − e−αxYt + εt+1,

Yt+1 = e−αyYt + ξt+1Jt+1.

Note that this is no longer a Markovian state space model in the sense that the measurement density
depends on both Yt and Yt+1, but we can use SMC methods to evaluate the likelihood and sample
the states given the parameters. Let θ and K denote the parameters and the latent variables,
respectively, where Kt+1 = {σ2(t), Yt+1}. SMC methods start with approximating the continuous
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filtering density pθ(K1:t|Z1:t) by a discrete distribution made of weighted random samples called
particles. We denote the particles by {K(i)

1:t , ω̃
(i)
t }Ni=1, where K

(i)
1:t is a sample from random vector

K1:t, ω̃
(i)
t is the associated weight, andN is the number of particles. Given particles that approximate

pθ(K1:t|Z1:t), SMC obtains samples from pθ(K1:t+1|Z1:t+1) and computes pθ(Zt+1|Z1:t) sequentially.
From Bayes Theorem:

pθ(K1:t+1|Z1:t+1) =
pθ(Zt+1|Kt+1, Z1:t,K1:t)pθ(Kt+1|K1:t)

pθ(Zt+1|Z1:t)
pθ(K1:t|Z1:t), (6)

the density of interest pθ(K1:t+1|Z1:t+1) can be sampled using importance sampling techniques. The
bootstrap filters choose the importance density gθ(K1:t+1) to be pθ(Kt+1|K1:t)pθ(K1:t|Z1:t), i.e., the
new particles K(i)

t+1 are propagated from K
(i)
t using only transition densities and are “blind” to the

observations. The importance weights are given by the ratio of the target density and the importance
density. From equation (6), it is therefore easily seen that the weights for the particles K(i)

1:t+1 are
proportional to ω̂(i)

t+1ω̃
(i)
t , where the incremental weights ω̂(i)

t+1 are simply given by the measurement
density pθ(Zt+1|K(i)

t+1, Z1:t,K
(i)
1:t). The likelihood, pθ(Zt+1|Z1:t), is the normalizing constant for the

particles and is equal to
∑N

i=1 ω̂
(i)
t+1ω̃

(i)
t . After normalizing the weights ω̃(i)

t+1 = ω̃
(i)
t ω̂

(i)
t+1/pθ(Zt+1|Z1:t),

the particles {K(i)
1:t+1, ω̃

(i)
t+1}Ni=1 now approximate pθ(K1:t+1|Z1:t+1).

If the variance of the weights is large, the particles yield a worse approximation to the target
distribution, as the number of effective particles is small. In bootstrap filters, the incremental weights
are simply the measurement density. This algorithm is usually applied when the observations are
less informative about the states than the transition density, which is not the case when the states
include the spike process Yt+1. If there is a jump at time t+ 1 and Yt+1 is propagated from a blind
proposal, the measurement density will peak at a few values, resulting in only a few particles having
prominent weights. To alleviate this problem, one needs to adapt the proposal density of Yt+1, or
in other words, to incorporate Zt+1 in the importance density.

We employ the Rao-Blackwellization technique, since the innovations in the spike process can
be integrated out analytically conditional on other state variables. The vector Kt+1 has two
components, the stochastic volatility, σ2(t), and the spike process, Yt+1. Since the innovation
in Yt+1 is assumed to be Bernoulli distributed jump times with normally distributed jump sizes,
pθ(Yt+1|Zt+1, σ

2(t), Z1:t,K1:t) is analytically tractable. Hence, we can rewrite equation (6) as

pθ(K1:t+1|Z1:t+1)

=
pθ(Yt+1|Zt+1, σ

2(t), Z1:t,K1:t)pθ(Zt+1|σ2(t),K1:t, Z1:t)pθ(σ
2(t)|σ2(t− 1))

pθ(Zt+1|Z1:t)
pθ(K1:t|Z1:t),

and choose the following proposal density,

gθ(K1:t+1|Z1:t+1) = pθ(Yt+1|Zt+1, σ
2(t), Z1:t,K1:t)pθ(σ

2(t)|σ2(t− 1))pθ(K1:t|Z1:t).

Here, the stochastic variance σ2(t) is still propagated from its transition density, but Yt+1 is adapted
to Zt+1 as we can sample directly from pθ(Yt+1|Zt+1, σ

2(t), Z1:t,K1:t). In particular, we draw Jt+1
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and ξt+1 from

pθ(Jt+1|Zt+1, σ
2(t), Z1:t,K1:t) =

pθ(Zt+1|Jt+1, σ
2(t), Z1:t,K1:t)pθ(Jt+1)

pθ(Zt+1|σ2(t),K1:t, Z1:t)
,

and

pθ(ξt+1|Jt+1, Zt+1, σ
2(t), Z1:t,K1:t) =

pθ(Zt+1|ξt+1, Jt+1, σ
2(t), Z1:t,K1:t)pθ(ξt+1)

pθ(Zt+1|σ2(t), Z1:t,K1:t)pθ(Jt+1)
,

then let Yt+1 = e−αyYt + ξt+1Jt+1. The incremental weights ω̂(i)
t+1 = pθ(Zt+1|σ2(t, i),K(i)

1:t , Z1:t) do
not depend on Yt+1 as ξt+1 and Jt+1 are integrated out. As before, the likelihood pθ(Zt+1|Z1:t)

equals
∑N

i=1 ω̂
(i)
t+1ω̃

(i)
t .

This algorithm is easily adapted to different volatility specifications as long as we can simulate
σ2(t) from its transition density, pθ(σ2(t)|σ2(t−1)). In the case of two-component IG-OU volatility,
The state vector K(i)

t+1 becomes {σ21(t, i), σ22(t, i), Y
(i)
t+1}. We simulate σ21(t, i) ∼ pθ(σ21(t)|σ21(t− 1, i))

and σ22(t, i) ∼ pθ(σ
2
2(t)|σ22(t − 1, i)) independently from equation (3), then compute the weights as

before, with σ2(t, i) = σ21(t, i) + σ22(t, i). In the two-component log-OU volatility specification, the
state vector K(i)

t+1 = {h1(t, i), h2(t, i), Y (i)
t+1}, and σ2(t, i) is simulated using equation (4).

If importance sampling is carried out sequentially, weights will degenerate in time and only a
few particles will have significant weights after a few iterations. SMC incorporates a resampling
step to deal with this problem. The particles K(i)

1:t are resampled with replacement according to
their normalized weights ω̃(i)

t , using the multinomial distribution {ω̃(i)
t }Ni=1 for instance. Particles

with higher weights will be duplicated and particles with lower weights will be eliminated. After
resampling the particles, they all have equal weights.

The likelihood computed from SMC is random. The variance of the likelihood, which is related
to the variance of the weights, greatly impacts the acceptance rate in the MCMC step. The Rao-
Blackwellization technique described above is the first step we adopt to reduce the variance. Second,
resampling introduces additional Monte Carlo error, and we implement residual resampling instead
of multinomial resampling, see Douc and Cappe (2005). Residual resampling has smaller variance
it satisfies the unbiasedness condition, meaning that the expected number of resampled particles
is proportional to the weights. Lastly, the variance of the likelihood decreases as the number of
particles increases. However, for limited computation time, one faces a trade-off between the number
of MCMC iterations to run and the number of particles to use in each iteration. 3

3.2 MCMC

SMC methods approximate the likelihood and state variables conditional on the parameters, but we
are interested in the joint distribution of the parameters and states. Note that p(θ,K1:T |Z1:T ) can
be decomposed into p(θ|Z1:T )p(K1:T |θ, Z1:T ). The PMMH sampler suggests the following proposal

3See Pitt et al. (2012) for a guide on how to choose the optimal number of particles.
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density,

q(θ,K1:T |Z1:T ) = q(θ|θg)p(K1:T |θ, Z1:T ).

In this case, a draw from q(θ|θg), θg+1, has the simplified acceptance probability,

αg+1 = min
{
p(Z1:T |θg+1)p(θg+1)q(θg|θg+1)

p(Z1:T |θg)p(θg)q(θg+1|θg)
, 1

}
, (7)

where p(Z1:T |θ) can be replaced by its particle approximation, as shown in Andrieu et al. (2010). If
the marginal distributions of the states are of interest, we also sample Kg+1

1:T from p(K1:T |θg+1, Z1:T )

in the SMC step and accept it jointly with θg+1.
The choice of proposal density q(θ|θg) is another crucial element in determining the efficiency of

the MCMC algorithm. We use a random-walk proposal, θg+1 ∼ TN (θg, βgΣg), where TN denotes
truncated normal, as some of the parameters have finite support. In particular:

q(θg|θg+1) =
fn(θg; θg+1, βgΣg)

FN (θu ; θg+1 , βgΣ g)−FN (θl; θg+1, βgΣg)

q(θg+1|θg) =
fn(θg+1; θg, βgΣg)

FN (θu ; θg , βgΣ g)−FN (θl; θg, βgΣg)
, (8)

where fN and FN denote pdf and cdf of the multivariate normal distribution respectively, θu is the
upper limit of parameters, and θl is the lower limit of parameters. The ratio of proposal densities
in equation (7) simplifies to the ratio of normalizing constants as fn is symmetric:

q(θg|θg+1)

q(θg+1|θg)
=

FN (θu ; θg , βgΣ g)−FN (θl; θ
g, βgΣg)

FN (θu ; θg+1 , βgΣ g)−FN (θl; θg+1, βgΣg)
. (9)

If all parameters have support on the whole real line, the proposal density is symmetric, and the
ratio of proposal densities becomes 1.

Gelman et al. (1996) show that the efficiency of the random-walk MH algorithm is maximized
when Σg is the covariance matrix of the target posterior distribution, and the scaling factor βg is
approximately 2.382/d, where d is the number of parameters.

In practice, we do not know Σg a priori. Adaptive MCMC allows us to learn Σg “on the fly”,
using previous updates in the chain to construct this covariance. The resulting chain {θg+1}Gg=1 is
not Markovian as the proposal density depends on the history of θ, and ergodicity of the chain can
be perturbed. Haario et al. (2001) propose an adaptive Metropolis (AM) algorithm which uses an
increasing part of the chain and preserves the correct ergodic property. We adopt the AM algorithm
with global adaptive scaling as in Andrieu and Thoms (2008). When the chain is starting, Σg might
be a poor initial guess, resulting in too many or too few rejections. Andrieu and Thoms (2008)
suggest adapting the scaling factor βg using the the acceptance probability in (7). If the acceptance
probability is higher than the optimal acceptance probability, βg increases, and vice versa. The
optimal acceptance rate is chosen to be around 24% as suggested in Gelman et al. (1996).

Bayesian inference requires specifying prior distributions for the parameters. For most of the
model parameters, we choose diffuse but proper priors. For the jump process, we use a prior that
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elicit our belief that jumps are large compared to the base-signal. Specifically, we use a gamma
distribution for the standard deviation of jump sizes which places lower probability on small jumps.

3.3 PMMH Algorithm

We outline the algorithm for the two-factor model in this subsection:

1. For g = 1, ..., G, where G is the number of MCMC iterations, sample θg+1 ∼ TN(θg, βgΣg),
then run the following SMC algorithm to obtain p̂(Z1:T |θg+1)) and Kg+1

1:T :

(a) sample σ2(0, i) and Y (i)
1 from their stationary distribution.

i. compute

ω
(i)
1 =

pθ

(
Z1|Y (i)

1 , σ2(0, i)
)

N

for i = 1, ..., N , where N is the number of particles.

ii. obtain likelihood from p(Z1) =
∑N

i=1 ω
(i)
1 , and compute normalized weights: ω̃(i)

1 =
ω
(i)
1

p(Z1)
.

(b) at t = 1, ..., T − 1

i. sample the index a(i)t for i = 1, ..., N , using ω̃t and set ω̃t = 1
N .

ii. simulate σ2(t, i) ∼ pθ(σ2(t)|σ2(t− 1, a
(i)
t )).

iii. sample Y (i)
t+1 ∼ pθ(Yt+1|Zt+1, σ

2(t, i), Y
a
(i)
t

t ).

iv. compute the incremental weights: ω̂(i)
t+1 = pθ(Zt+1|σ2(t, i), Y

a
(i)
t

t , Z1:t).

v. obtain the likelihood: p̂θ(Zt+1|Z1:t) =
∑N

i=1 ω̂
(i)
t+1ω̃

(i)
t .

vi. normalize the weights ω̃(i)
t+1 =

ω̃
(i)
t ω̂

(i)
t+1∑N

i=1 ω̃
(i)
t ω̂

(i)
t+1

.

(c) at t = T

i. obtain p̂(Z1:T |θg+1)) = p̂θ(Z1)
∏T−1
t=1 p̂θ(Zt+1|Z1:t).

ii. use ω̃T and a1:T to draw a realization of states Kg+1
1:T .

2. accept θg+1 and Kg+1
1:T with probability:

αg+1 = min

{
p̂(Z1:T |θg+1))p(θg+1)q(θg|θg+1)

p̂(Z1:T |θg)p(θg)q(θg+1|θg)
, 1

}
,

where p̂(Z1:T |θg+1)) is computed from the SMC algorithm above, p(θ) is the prior density
of the model parameters which is detailed in the Appendix, and q is the truncated normal
proposal density. The ratio of proposal densities is given in Equation (9). If rejected, we set
θg+1 and Kg+1

1:T equal to θg and Kg
1:T .
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3. update the scaling factor and the covariance matrix for the proposal density:

νg+1 = 1/(g + 1)0.8

log βg+1 = log βg + νg+1
(
αg+1 − α∗

)
µg+1 = µg + νg+1(θg+1 − µg)

Σg+1 = Σg + νg+1
((
θg+1 − µg

) (
θg+1 − µg

)T − Σg
)
.

3.4 Model Comparison

The estimation procedure is easily adapted to all the models we considered in Section 2. The
question remains, which of the models fits the data better? Specifically, is stochastic volatility
important? What is the role of jumps? Is it necessary to have different mean reversion rate for the
spike process and the base-signal? To address these important questions, we conduct an extensive
model comparison.

Given two competing models, say M1 and M2, the Bayes factor is the ratio of the probability
of each model given data, i.e., BF = p(M1|Z)/p(M2|Z). If we assume that the competing models
are equally probable a priori, the Bayes factor can be expressed as the posterior odds ratio: BF =

p(Z|M1)/p(Z|M2). The density p(Z|M) is termed marginal likelihood, as it is the likelihood of data
under model M obtained by marginalizing over the parameters in model M :

p(Z|M) =

ˆ
p(Z|θ,M)p(θ|M)dθ, (10)

where p(θ|M) is the prior density of parameters in model M .
We use the output from the PMMH algorithm to compute Bayes factors. The PMMH algorithm

produces {p(Z|θg,M)}Gg=1, where θg are draws from the posterior density p(θ|Z,M). In equation
(10), the integration is over the prior density of θ. Newton and Raftery (1994) propose several esti-
mators to compute marginal likelihood based on importance sampling and Monte Carlo integration.
We adopt the version which uses a mixture of the prior and posterior as the importance density,
yet does not require further simulation from the prior. Given G samples of θ from the posterior,
imagine that additional δpG/(1 − δp) samples of θ are drawn from the prior, resulting in a total of
G/(1− δp) samples from the mixture density δpp(θ|M) + (1− δp)p(θ|Z,M). Assume that the draws
from the prior all have likelihood p(Z|θ,M) equal to their expected value p(Z|M), we then obtain
the following estimator,

p̂(Z|M) =
δpG/(1− δp) +

∑G
g=1 p(Z|θg,M)/ (δp̂(Z|M) + (1− δp) p(Z|θg,M))

δpG/ ((1− δp)p̂(Z|M)) +
∑G

g=1 (δp̂(Z|M) + (1− δp) p(Z|θg,M))−1
. (11)

This estimator reduces the instability from a simple harmonic mean estimator which corresponds
to δp = 0. In practice, we choose δp to be a small number such as 0.01.
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4 Data description

We fit the models from section 2 to a time series of daily UK gas spot prices ranging from September
11, 2007 to February 10, 2014. The data is collected from Bloomberg4 and report day-ahead gas spot
prices collected at the virtual hub NBP (Natural Balancing Point) for trading days (weekdays) in
the sample period. This leaves us with a total of 1620 daily price quotes. We construct a detrended
and deseasonalized logarithmic spot price, Z(t), that is displayed in Figure 1. This series serve as
the input for our estimations.5
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Figure 1: Detrended and Deseasonalized Logarithmic Spot Prices.

5 Estimation Results

We apply the PMMH algorithm in section 3.3 to the deseasonalized and detrended logarithmic
gas spot prices. We start with a preliminary run which uses adaptive MCMC, then “freeze” the
covariance matrix Σ and scaling factor β and run a further 20000 iterations to get the posterior
distributions of θ and K. The number of particles is set to three times the number of observations.
To conduct model comparison, we compute marginal likelihood, p(Z|M), using equation (11). We
also evaluate the likelihood at the mean and median of the posterior distribution of the parameters
using 300,000 particles.

4Code: NBPGDAHD index.
5A detailed description of the data manipulations are given in a supplementary appendix.
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The estimation for the other models from Section 2 follows similar procedures. For models with
jumps in the logarithmic price, we utilize Rao-Blackwellization and integrate out the jumps analyt-
ically for the likelihood.6 For models with two factors, we use the non-Markovian representation.

5.1 Parameter and State Estimates

Table 2, 3, and 4 report the parameter estimates from constant volatility models, IG-OU stochastic
volatility models, and log-OU stochastic volatility models, respectively. We also report the log-
likelihood and marginal log-likelihood in excess of the worst model in each table.

Table 2: Parameter Estimates from Constant Volatility models

αx αy σ2 µJ σJ λJ LLMean LLMedian MarginalLL

SF-J 0.0077 0.00047 -0.0019 0.0934 0.2445 0.00 0.00 0.00
(0.0029) (0.00004) (0.0052) (0.0048) (0.0234)

TF-J 0.0042 0.0396 0.00046 -0.0058 0.0914 0.2521 2.69 2.72 2.09
(0.0020) (0.0171) (0.00004) (0.0053) (0.0045) (0.0229)

The table reports the posterior mean and posterior standard deviation of model parameters. LLmean/LLmedian is
the log-likelihood evaluated at the posterior mean/median using 300,000 particles. The marginalLL is computed using
equation (11). All three log-likelihood are reported in excess of model SF-J.

The parameter estimates in table 2 indicate that neither SF-J nor TF-J adequately capture the
dynamics of the data, although allowing different mean-reverting rates for the spike process yields
an increase in likelihood. Most of the variability in the data is explained by spikes which severely
drives up the estimated jump intensity. In both models, the estimated jump intensity corresponds
to roughly one jump every four days, which does not fare well with the intuition that jumps are rare
events. From the estimated spike innovations or spike processes, plotted in the top panel of Figure
2, we see that there is clustering in the jump times and the assumption of a constant jump intensity
does not hold.

In the SF-J model, the base-signal and spike process have same mean-reversion rate, αx = 0.0077.
This is in line with the estimate α̂ = 0.0064, obtained from fitting the theoretical autocorrelation
function, exp(−α|t|), to the first 100 lags of the empirical autocorrelation function for Z(t). The
mean-reversion rate corresponds to a half-life of approximately 90 days, revealing that the logarith-
mic spot price is very persistent. In the two-factor model TF-J, we impose the restriction αy > αx

to ensure that the estimated mean-reversion rate of the spike process is higher than that of the
base-signal process. We see that the estimate of α obtained in the SF-J model is a weighted average

6For the TF-J model we use auxiliary particle filters. This is the case with “perfect adaptation”, and Rao-
Blackwellized particle filters and auxiliary particle filters only differs in the order of the sampling and resampling
steps.
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of αx and αy, with most weight put on the mean-reversion rate for the base-signal. The half-life of
the base-signal is 165 days and the half-life of the spike process is 17.5 days.

Table 3 contains the stochastic volatility models with IG marginals. Most of the variation in
the data, which was explained by jumps in the SF-J and TF-J models (see the top panel of Figure
2), is now captured by the stochastic volatility, as shown in the top panel of Figure 3 and 4. As a
result, the estimates for jump intensity become a lot smaller, ranging from 6-7 jumps per year for
the one component models to about 1 jump per year in the two component models. The scarcity of
jumps explains the high parameter uncertainty in jump size parameters µJ and σJ , as well as the
mean-reversion rate αY which estimates the half-life of spikes to be about 1/3 of a day. From the
left panels of Figure 3, we see that the estimated variance processes in the one-component models
are similar for different spike specifications, except for the high peak in the end of 2009 which is less
pronounced in the TF-SVJIG model.

The half-life of the variance process in the one-component models is about 3-4 days. In the three
two-component IG models, we observe a slowly mean-reverting process with half-life more than one
month, and a faster mean-reverting process with half-life less than two days. The autocorrelation
function (ACF) of the superposition is simply a weighted sum of the ACF of its two components,
with weights wi = δi/(δ1 + δ2). In all three models, the slowly mean-reverting component has a
higher weight, ranging from 0.55 to 0.56. The left panel of Figure 4 plots the estimated overall
variance from model TF-S2VJIG as well as its two components, with σ(t)2 = σ1(t)

2 + σ2(t)
2.

Next, we look at the models with log-OU stochastic volatility specifications in Table 4 and the
right panels of Figure 3 and 4. As in the cases with IG volatility, the inclusion of log-OU volatility
greatly reduces the need for spikes, and different spike specifications slightly affect the estimate for
volatility. The half-life of the logarithmic variance is about 11 days in the one-component models.
In the two-component models, the first log-component h1 has half-life of two to three months, while
h2 has half-life of less than two days. In Figure 4, the overall variance from the log-OU model is the
multiplication of the two components, exp(h1(t)) and exp(h2(t)), and a constant. While the first
component is more persistent and resembles the overall volatility level in the sample, the fast-moving
second component is more volatile and explains the occasional large changes.
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Table 3: Parameter Estimates from IG-OU Volatility Models.

SF-SVIG SF-SVJIG TF-SVJIG SF-S2VIG SF-S2VJIG TF-S2VJIG

αx 0.0073 0.0065 0.0068 0.0085 0.0080 0.0088
(0.0029) (0.0029) (0.0028) (0.0031) (0.0032) (0.0034)

αy 3.1706 2.1723
(1.0716) (0.9739)

λ1 0.2134 0.1844 0.1702 0.0208 0.0206 0.0202
(0.0256) (0.0286) (0.0299) (0.0063) (0.0062) (0.0062)

λ2 0.3603 0.3479 0.3713
(0.0600) (0.0529) (0.0734)

δ1 0.0235 0.0231 0.0235 0.0125 0.0125 0.0128
(0.0018) (0.0018) (0.0020) (0.0038) (0.0033) (0.0038)

δ2 0.0102 0.0101 0.0103
(0.0018) (0.0019) (0.0019)

γ 8.9667 9.3327 9.9108 5.5620 5.7398 6.7638
(1.7092) (1.8230) (2.0208) (1.9211) (1.8809) (2.1592)

µJ 0.0046 -0.0312 0.0999 -0.3615
(0.0643) (0.0724) (0.8237) (0.7822)

σJ 0.1306 0.1372 0.6923 0.5917
(0.0936) (0.1169) (0.8333) (0.4579)

λJ 0.0182 0.0167 0.0040 0.0022
(0.0162) (0.0098) (0.0055) (0.0017)

LLMean 0.00 2.24 7.81 24.85 21.29 27.90

LLMedian 0.00 3.33 10.37 24.93 24.59 28.81

MarginalLL 0.00 1.76 6.31 23.77 22.60 22.37

The table reports the posterior mean and posterior standard deviation of model parameters. LLmean/LLmedian is
the log-likelihood evaluated at the posterior mean/median using 300,000 particles. The marginalLL is computed using
equation (11). All three log-likelihood are reported in excess of model SF-SVIG.
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Table 4: Parameter Estimates from log-OU Volatility Models.

SF-SVLog SF-SVJLog TF-SVJLog SF-S2VLog SF-S2VJLog TF-S2VJLog

αx 0.0070 0.0078 0.0077 0.0073 0.0073 0.0071
(0.0021) (0.0029) (0.0016) (0.0029) (0.0029) (0.0027)

αy 2.1297 2.1937
(0.4785) (0.8928)

αh1 0.0605 0.0637 0.0634 0.0104 0.0094 0.0076
(0.0135) (0.0143) (0.0135) (0.0082) (0.0069) (0.0062)

αh2 0.4498 0.4848 0.4062
(0.1695) (0.2015) (0.1783)

σ2h1 0.2737 0.2742 0.2651 0.0395 0.0369 0.0289
(0.0578) (0.0543) (0.0528) (0.0265) (0.0218) (0.0195)

σ2h2 0.7950 0.8608 0.7326
(0.2508) (0.3136) (0.2516)

µh -7.0472 -7.1098 -7.1014 -7.0647 -7.1245 -7.1515
(0.1379) (0.2162) (0.1482) (0.6388) (0.6420) (0.6409)

µJ 0.0744 -0.3270 -0.8251 -0.3206
(1.6863) (0.3583) (1.7866) (0.3288)

σJ 0.4919 0.4330 0.7678 0.4687
(0.2920) (0.2301) (0.6031) (0.2757)

λJ 0.00031 0.0022 0.00098 0.0016
(0.00020) (0.0013) (0.0012) (0.0011)

LLMean 0.31 0.00 5.35 14.00 12.94 18.04

LLMedian 0.25 0.00 5.32 14.73 13.72 19.22

MarginalLL 1.51 0.00 4.60 14.24 11.95 16.52

The table reports the posterior mean and posterior standard deviation of model parameters. LLmean/LLmedian is
the log-likelihood evaluated at the posterior mean/median using 300,000 particles. The marginalLL is computed using
equation (11). All three log-likelihood are reported in excess of model SF-SVJLog.
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Figure 2: Spikes. The left panels plot the estimated spike innovations in the single-factor mod-
els, computed from the mean of the posterior distribution p(ξ1:TJ1:T |Z1:T ). The left panels plot
the estimated spike processes in the two-factor models, computed from the mean of the posterior
distribution p(Y1:T |Z1:T ).
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Figure 3: One-component Volatility. The figure depicts the estimated variance processes from the
one-component volatility models, computed from the mean of the posterior distribution p(σ2(1 :

T − 1)|Z1:T ).
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Figure 4: Two-component Volatility. The figure depicts the estimated variance processes from the
TF-S2VJ model and its two components, computed from the mean of the posterior distribution.

5.2 Model Evaluation

We conduct a comprehensive comparison between the models using Bayes factors computed from
the marginal log-likelihood. Bayes factor do not require alternative models to be nested, so we can
compare different volatility specifications such as log-OU and IG volatility. Another benefit is that it
accounts for parameter uncertainty. For example, in Table 3, model TF-S2VJIG has higher likelihood
than the simpler model SF-S2VIG using log-likelihood evaluated at the point estimates of parameters,
but it has lower marginal log-likelihood which takes parameter uncertainty into consideration.
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We compute twice the logarithm of the Bayes factor as it has the same scale as likelihood ratio test
statistics. Let LBF(M1,M2) = −2(log p(M2|Z) − log p(M1|Z)), Kass and Raftery (1995) suggest
the following scale for interpretation: if LBF(M1,M2) is between 2 to 6, it is viewed as positive
evidence against model M2; between 6 to 10, it indicates strong evidence; and a value greater than
10 is interpreted as very strong evidence. Negative values are interpreted on the same scale while it
suggests evidence in favor of M2.

Model evaluation allows us to access the importance of each model-building element, in addition
to pick out the best model. In the following subsections, we compare models in terms of spike
specifications and volatility specifications, respectively.

5.2.1 Spike Specifications

Table 5 compares three possible cases regarding the price jumps: 1) no-jump; 2) one-factor jump-
diffusion; 3) two-factor process, where the base-signal and spike process have different mean reversion
rate. The comparison is conducted in four groups; each group has the same volatility specification.

In the group with one-component IG volatility, there is strong evidence in favor of the two-
factor model against either the no-jump specification or the one-factor jump-diffusion. As for the
two-component IG volatility, no-jump specification is slightly preferred than the other two models.
Two-component volatility specification allows for more complex dynamics in volatility, and this
reduces the need for jumps in price.

With one-component log-OU volatility, we observe a different pattern: simply including jumps
in the model is unfavorable compared to the no-jump case, while the two-factor specification with
αx 6= αy does improve model fit. The two-component log-OU group offers similar conclusion. This
finding is in line with our intuition that jumps are faster decaying and this feature is important for
model building.

Table 5: Bayes Factors Regarding Spike Specifications.

SF-SVIG SF-SVJIG SF-SVLog SF-SVJLog

SF-SVJIG 3.5 SF-SVJLog -3.0
TF-SVJIG 12.6 9.1 TF-SVJLog 6.2 9.2

SF-S2VIG SF-S2VJIG SF-S2VLog SF-S2VJLog

SF-S2VJIG -2.3 SF-S2VJLog -4.6
TF-S2VJIG -2.8 -0.5 TF-S2VJLog 4.6 9.1

The table reports twice the natural logarithm of the Bayes factors. The entry (i, j) in the
matrix compares the model in the ith row and the model in the jth column, with a positive
value favoring the first model and a negative value favoring the latter.
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5.2.2 Volatility Specifications

First, we compare the jump-driven IG-OU volatility to the log-OU continuous volatility, conditional
on the same jump specification and number of components. From Table 6, models with the log-OU
volatility specification are strongly favored over models with IG-OU volatility across different jump
specifications. When we consider two-component models, the difference becomes smaller, indicating
that allowing more than one component is particularly important for jump-driven volatility.

Table 6: Bayes Factors Regarding Volatility Specifications.

SF-SVIG SF-SVJIG TF-SVJIG

SF-SVLog 43.8 SF-SVJLog 37.2 TF-SVJLog 37.3

SF-S2VIG SF-S2VJIG TF-S2VJIG

SF-S2VLog 21.7 SF-S2VJLog 19.5 TF-S2VJLog 29.1

The table reports twice the natural logarithm of the Bayes factors. The entry (i, j) in the matrix
compares the model in the ith row and the model in the jth column, with a positive value favoring
the first model and a negative value favoring the latter.

Next, we focus on the number of volatility components. Table 7 suggests that the two-component
models provide better fit to the data regardless of volatility type. Furthermore, we look at the
empirical ACF of filtered σ2(t), which is computed using the posterior mean of parameters with
300,000 particles, and the theoretical ACF computed from the same parameter estimates. The top
panels in Figure 5 compare the ACF of σ2(t) from the best performing one-component model, TF-
SVJLog, to the best performing two-component model, TF-S2VJLog. The empirical ACF is decaying
fast at small lags and slowly at larger lags, and this feature is better captured by the two-component
model. This is further illustrated by the bottom panels of Figure 5, which plots the ACF of the two
components separately.

Last, we compare the constant volatility models SF-J and TF-J to the stochastic volatility
model with lowest marginal log-likelihood, SF-SVIG. We find LBF(SF-SVIG, SF-J) = 466.9 and
LBF(SF-SVIG, TF-J) = 462.7. The inclusion of stochastic volatility greatly reduces the need for
price jumps and increases the marginal likelihood.

Table 7: Bayes Factors Regarding Volatility Components.

SF-SVIG SF-SVJIG TF-SVJIG

SF-S2VIG 47.5 SF-S2VJIG 41.7 TF-S2VJIG 32.1

SF-SVLog SF-SVJLog TF-SVJLog

SF-S2VLog 25.4 SF-S2VJLog 23.9 TF-S2VJLog 23.8

The table reports twice the natural logarithm of the Bayes factors. The entry (i, j) in the matrix
compares the model in the ith row and the model in the jth column, with a positive value favoring
the first model and a negative value favoring the latter.
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Figure 5: The figure displays the theoretical and empirical autocorrelation functions for the variance
processes. The theoretical ACF are computed using the posterior mean of the parameters governing
the volatility processes. The empirical ACF is computed from filtered variance using the posterior
mean of the parameters and 300,000 particles.

5.3 Model Validation

We conclude our empirical investigation by checking whether our models are able to produce price
and return distributions that match the empirical distributions of the data. This is particular
important for purposes of derivative pricing and risk management. For each estimated model, we
simulate 5,000 artificial data sets of the same length as the deseasonalized logarithmic spot price
Z(t). Then, we calculate the skewness/kurtosis of prices and returns for each simulated path, and
obtain an empirical distribution of skewness/kurtosis implied by the model. Table 8 reports the
1st, 5th, 50th, 95th, and 99th percentiles of the model implied distributions of price and return
skewness/kurtosis. The table also reports the values from the observed deseasonalized UK natural
gas spot prices.

Table 8 shows that stochastic volatility is crucial for capturing the price skewness and kurtosis.
All the models except SF-J and TF-J have distributions covering the observed negative price skewness
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Table 8: Distribution of skewness and kurtosis

prctile SF-J SF-SVIG SF-SVLog SF-SVJIG SF-SVJLog TF-J TF-SVJIG TF-SVJLog SF-S2VIG SF-S2VLog SF-S2VJIG SF-S2VJLog TF-S2VJIG TF-S2VJLog

Price Skewness -0.78
1th -0.90 -1.35 -1.75 -1.22 -1.72 -0.73 -1.29 -1.68 -2.19 -2.14 -1.82 -2.32 -2.20 -2.10

5th -0.61 -0.88 -1.13 -0.83 -1.09 -0.51 -0.87 -1.08 -1.45 -1.42 -1.19 -1.73 -1.40 -1.44

50th 0.01 0.01 -0.01 0.00 0.00 -0.02 0.01 -0.02 0.01 -0.02 0.10 -0.41 -0.02 -0.02

95th 0.59 0.90 1.11 0.84 1.12 0.48 0.92 1.06 1.40 1.47 1.30 1.24 1.39 1.45

99th 0.91 1.31 1.79 1.25 1.67 0.70 1.35 1.67 2.16 2.16 1.99 1.93 2.08 2.21

Price Kurtosis 3.86
1th 1.87 1.94 2.00 1.87 2.03 2.07 1.90 2.04 2.11 2.10 2.08 2.12 2.19 2.11

5th 2.06 2.15 2.23 2.08 2.26 2.23 2.14 2.28 2.40 2.39 2.35 2.45 2.47 2.42

50th 2.63 2.95 3.22 2.83 3.24 2.77 2.96 3.29 3.64 3.69 3.49 3.84 3.71 3.75

95th 3.62 4.83 6.09 4.57 6.05 3.65 4.81 5.92 7.99 7.63 6.62 7.72 7.60 7.60

99th 4.34 6.46 8.36 5.78 8.50 4.26 6.25 8.65 11.59 11.35 9.70 11.21 11.36 11.31

Return Skewness -0.37
1th -0.67 -1.84 -3.02 -1.57 -4.40 -0.79 -1.22 -2.81 -3.03 -3.06 -9.33 -22.85 -2.88 -3.13

5th -0.49 -1.08 -1.41 -0.97 -1.86 -0.63 -0.77 -1.97 -1.55 -1.56 -5.37 -16.91 -2.05 -2.06

50th -0.07 -0.00 -0.01 0.02 0.04 -0.21 -0.01 -0.54 0.00 -0.00 0.90 -2.54 -0.53 -0.36

95th 0.36 1.11 1.41 1.04 2.35 0.21 0.77 0.83 1.53 1.64 8.16 1.34 0.89 1.18

99th 0.52 1.84 2.73 1.70 6.14 0.40 1.36 1.79 2.89 3.43 11.83 4.12 1.79 2.48

Return Kurtosis 21.48
1th 7.56 8.35 7.28 8.76 7.31 7.31 8.58 8.86 8.63 7.79 13.39 8.88 10.02 9.02

5th 7.94 9.39 8.54 9.74 8.62 7.65 9.62 11.75 10.35 9.23 18.48 11.19 13.27 11.59

50th 9.04 14.17 14.34 13.64 15.24 8.70 13.32 43.45 17.89 16.29 66.53 62.72 48.81 34.74

95th 10.56 27.01 42.90 23.88 66.23 10.13 21.79 142.35 44.79 48.36 215.15 474.24 179.47 164.69

99th 11.41 42.08 85.26 34.20 169.97 10.91 30.31 210.04 80.41 90.41 336.19 752.56 264.20 254.64

The table reports the skewness and kurtosis of the deseasonalized logarithmic spot price (Z(t)) and its return series. The table also report the percentiles of the
simulated sample skewness and kurtosis for each of the considered models. For each model, the percentiles are computed using 5000 simulated data sets with 1620
observations each. The simulations are performed using the posterior mean of parameters.
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and small excess kurtosis. For both the SF-J and TF-J model, the probability that the observed
value of skewness and kurtosis are realizations from the model implied distributions is less than 5%.

Turning our attention to the return distributions, Table 8 shows that return skewness can be
captured by all the considered models. Once again, we find that the inclusion of stochastic volatility
enables the model to produce more skewness. As for the kurtosis of the return series, Table 8 indicates
that stochastic volatility is essential to produce a high enough level of kurtosis. It is also clear
that the volatility specification impacts the distribution of return kurtosis. For the one-component
models, only log-OU volatility specifications are able to fully match the level of kurtosis observed
in the data. Form the kurtosis distribution with IG-OU specification, the probability of observing
an outcome that is more extreme than the sample value from our data is only around 5%. Allowing
two-component in volatility greatly increases return kurtosis. In the two-component models, both
log-OU and IG-OU models are able to generate high levels of kurtosis. Spike specification also
impacts return kurtosis. The one-factor jump-diffusion tends to generate too much kurtosis, placing
the observed kurtosis near the 5th lower percentile.

To sum up, we find that inclusion of stochastic volatility is crucial for matching the price and
return distributions. In financial applications such as risk management, matching the skewness and
kurtosis of the return series is often more important than matching the price distribution. In this
context, we found that the volatility specification and the inclusion of a separate mean-reversion
rate for the spike process greatly impacts the models ability to generate observed levels of kurtosis.

6 Discussion: Implications and Extensions

The implications of our findings in relation to pricing remain to be tested. One approach is to
consider how the different model specifications impacts the forward prices. Specifically, we could
compute the empirical risk premium, RP (t) = F observed(t, T1, T2) − F P(t, T1, T2), defined as the
difference between the observed market price and the predicted spot price over the period of delivery
[T1, T2]. The latter is computed using the theoretical forward prices with Q = P, and then averaged
over the delivery period. The forward prices depend on the factors X(t) and Y (t) as well as the
stochastic volatility process σ2(t). One interesting implication of this result is that even without
jumps in the spot price model the forward price can still jump if the volatility process has jumps.
The study of forward price dynamics might therefore serve as a way of testing the economical
difference between the different volatility specifications. Derivation of forward prices in our full
model is therefore a topic for future research.

It would also be of interest to see how the model performs on data from other energy markets. In
particular the electricity market, where spikes are larger and more frequent and the overall volatility
of the observed spot prices are higher compared to the gas spot prices. In this data it might also be
important to consider other jump size specifications as most of the spikes are positive.

The clustered jumps in model SF-J suggest that it could be interesting to incorporate a time-
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varying jump intensity. For example, we can specify a stochastic process for the jump intensity, or
allow the jump intensity to depend on the spot volatility or on exogenous variables such as weather.

Finally, it would be very interesting to try to adapt our estimation approach to the multi-
dimensional model from Benth and Vos (2013) and investigate how the different model characteristics
impact the joint modeling of for instance gas and electricity spot prices.

7 Conclusion

We propose a two-factor geometric model with stochastic volatility and jumps for the detrended
and deseasonalized logarithmic UK gas spot price. We also provide a general estimation procedure
based on the particle marginal Metropolis-Hastings sampler from Andrieu et al. (2010). To effi-
ciently implement PMCMC, we develop a sequential Monte Carlo algorithm using a non-Markovian
representation of the model and Rao-Blackwellization. Our estimation method is flexible and can be
easily adapted to different volatility specifications, including pure jump-driven processes with super-
position. This allows us to estimate and compare fourteen models with different jump or volatility
specifications, and address important empirical questions.

Our application to UK natural gas spot prices showed that inclusion of stochastic volatility is
more important than having jumps in the model. Failing to include stochastic volatility results in
a severely overestimated jump intensity. With regards to jump specification, simple jump-diffusion
is either unfavorable or only slightly favorable compared to the models with no jump. Two-factor
models with separate mean-reversion rates justify the inclusion of jumps in the model even though
the spike process only accounts for a small part of the variations in our data. We also find that
the models with log-OU volatility outperforms the models with IG-OU, and the two-component
volatility specifications are preferred over the one-component counterparts. Our results suggest that
the two-factor model with two-component log-OU volatility, TF-S2VLog, is best suited for modeling
UK gas spot prices.
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Appendix

Priors

The same prior is specified for models with overlapping parameters, and we assume that the pa-
rameters are independent a priori and the joint prior is simply the multiplication of the follow-
ing univariate prior distributions. In summary, the priors for the mean-reversion parameters are
αx ∼ G(1, 1) and αy ∼ G(1, 1), where G denotes the Gamma distribution. In the TF-J model, we
also impose αy > αx to ensure that the mean-reversion rate for the spike process is larger than the
mean-reversion rate for the base-signal. For stochastic volatility with inverse Gaussian marginals, we
specify δ1, δ2, γ ∼ G(1,

√
50), λ1 ∼ G(1, 0.2), and λ2 ∼ G(1, 1), so the first component has a slower

mean-reversion rate. For logarithmic volatility, αh2 ∼ G(1, 1), µh ∼ N(−7, 2) and σ2h1, σ
2
h2 ∼ G(1, 2).

αh1 is very close to zero so we estimate log(αh1) instead, and the prior is set to log(αh1) ∼ N(−3, 5).
For models with constant volatility, we choose σ2 ∼ G(1, 2). Finally, the priors for jump parameters
are µJ ∼ N(0, 2), σJ ∼ G(1.5, 0.5), and λJ ∼ G(1, 10).

Model Diagnostics

We present the model diagnostic plots for TF-S2VJIG and TF-S2VJLog in Figure 6 and 7. The
plots for other models are similar and omitted here. The left panels are trace plots of parameter
draws against iterations, while the right panels report the prior and empirical posterior distributions
(histogram) of the parameters. We first look at the trace plots. Visual inspection indicates conver-
gence, although the mixing of some parameters is less satisfactory, for example for σj , the standard
deviation of jump sizes. This is likely due to the very low jump intensity in these two models, and
hence the algorithms have a hard time estimating the jump sizes.

From the posterior-prior plots, we use different scales for the densities: ticks on the left axis are
the density for posterior, while ticks on the right axis denote the density for prior. For most of the
parameters, prior information is negligible compared with posterior. One exception is σj , for which
we choose a prior that places lower probability on jumps being small. The posterior-prior plots in
both models indicate that the prior for σj is informative about the posteriors.
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Figure 6: Diagnostic Plots for the TF-S2VJ model with IG-OU volatility. Left panels are trace plots
of parameters. In the right panels, bars are posterior densities, while lines indicate priors.
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Figure 7: Diagnostic Plots for the TF-S2VJ model with log-OU volatility. Left panels are trace plots
of parameters. In the right panels, bars are posterior densities, while lines indicate priors.
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