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Abstract

We introduce a new mathematical model of electricity spot prices which accounts for the

most important stylized facts of these time series: seasonality, spikes, stochastic volatility and

mean reversion. Empirical studies have found a possible fifth stylized fact, fractality, and our

approach explicitly incorporates this into the model of the prices. Our setup generalizes the

popular Ornstein Uhlenbeck-based multi-factor framework of Benth et al. (2007) and allows us to

perform statistical tests to distinguish between an Ornstein Uhlenbeck-based model and a fractal

model. Further, through the multi-factor approach we account for seasonality and spikes before

estimating – and making inference on – the degree of fractality. This is novel in the literature

and we present simulation evidence showing that these precautions are crucial to accurate

estimation. Lastly, we estimate our model on recent data from six European energy exchanges

and we find statistical evidence of fractality in five out of six markets. As an application of our

model, we show how, in these five markets, a fractal component improves short term forecasting

of the prices.

Keywords: Energy markets; electricity prices; roughness; fractals; mean reversion; multi-factor

modelling; forecasting.

JEL Classification: C22, C51, C52, C53, Q41

1 Introduction

This paper proposes a new mathematical model of electricity spot prices which parsimoniously

accounts for the most important statistical properties of such prices. These stylized facts are em-

pirical features consistently observed in the time series of electricity prices and at least four stylized

facts are by now well-documented in the literature: (i) seasonality which is attributable to month-

to-month variation in prices, mainly due to the seasons, and day-to-day variations, mainly due to

weekly dependence of demand; (ii) spikes which are large up- or downwards movements followed

by rapid reversion to previous levels often attributed to the non-storable nature of electricity com-

bined with the fact that the energy grid needs to be in complete balance at all times. Because
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of very inelastic demand the price can surge (or drop) suddenly if the supply is limitied (or in

surplus) e.g. due to plant outages or unforseen weather conditions. (iii) Extreme variability of

prices as compared to traditional financial time series such as storable commodities or stocks; and

(iv) mean-reversion of prices which has been found by several authors such as Weron and Przyby-

lowicz (2000), Kaminski (2004) and Pilipovic (2007). The wish to incorporate these stylized facts

into a mathematical model of electricity spot prices has motivated a large literature starting with

the seminal work of Schwartz (1997) who introduced a model of commodity prices based on the

Ornstein-Uhlenbeck (OU) process. Since Schwartz (1997), this model has been extended in several

ways and applied to electricity price series, e.g. the jump-diffusion model of Cartea and Figueroa

(2005) and the threshold model of Geman and Roncoroni (2006). Benth et al. (2007) generalized

the Ornstein-Uhlenbeck framework to the so-called multi-factor model, where the (log-)price of

electricity is modelled as

St = Λt +Xt + Yt, t ≥ 0,

where Λ is a seasonal term, X is the base signal accounting for smaller day-to-day variations in

the price, and Y is a spike signal accounting for large up- or down-movements and the ensuing

rapid reversion to previous levels. A typical approach is to model Λ by a deterministic sinusoidal

function, X as a Gaussian OU process and Y as a non-Gaussian (i.e. Lévy driven) OU process (e.g.

Meyer-Brandis and Tankov, 2008; Benth et al., 2012). This model has been particularly useful as

it elegantly accounts for the stylized facts (i)-(iv).

Meanwhile, a possible fifth stylized fact has been found in a different strand of literature,

namely that the time series of electricity spot prices exhibit (v) fractal characteristics (often termed

antipersistence in the literature). Specifically, a number of studies show that the fractal index 1 of

electricity spot price time series is negative, meaning that the paths of the spot prices are very rough

as compared to a model based on the Brownian motion such as the Brownian-driven OU process.

This was for instance found for the Nordic market, Nord Pool, in Simonsen (2002) and Erzgräber

et al. (2008), for the Spanish market in Norouzzadeh et al. (2007) and the for Czech market in

Kristoufek and Lunackova (2013). Although fractality of the price series on several energy markets

is by now well established, very few authors have utilized their findings to actually employ and

estimate a fractal model for the spot prices. A notable exception is Rypdal and Løvsletten (2013)

who compared a fractal model based on a multifractal random walk with a (non-fractal) model of

Ornstein-Uhlenbeck type and concluded that the latter best described the Nord Pool spot prices

from May 1992 to August 2011.

The main contribution of the present paper is to add to the above literature and merge the

multi-factor approach with the fractal approach. In short, we propose a fractal multi-factor model

of electricity spot prices, i.e. a multi-factor model where the base signal, X, is modelled by a

fractal process. This will allow us to account for all the stylized facts (i)-(v), contrary to the

above mentioned previous studies employing either a multi-factor model (accounting for stylized

1The fractal index α ∈
(
− 1

2
, 1
2

)
of a time series is a measure of the ’roughness’ of the price curve. Negative values

of α refer to curves more rough than those arising from the paths of a Brownian motion (which has α = 0) while

positive values of α refer to smooth paths, see also Section 3.
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facts (i)-(iv)) or a fractal model (accounting for stylized fact (v) only). What is more, our setup

accomodates testing, in a rigorous statistical sense, for the presence of fractality in the price series;

this is a novel contribution in the literature, as previous studies have focused on point estimates of

the fractal index in lieu of confidence intervals and hypothesis testing. In fact, as we shall see, our

approach provides a direct statistical hypothesis test of whether the base signal is best described

by a Brownian-driven OU process (the null) or of a fractal process (the alternative). Additionally,

the multi-factor setup allows us to account for spikes before estimating and making inference on

the fractal index; this is crucial because spikes can be detrimental to the estimation as shown in

the Appendix.

As an application of the model we consider a simple forecasting exercise, showing that including

a fractal component provides superior short-run forecasts of the base signal, as compared to three

benchmark models. The exercise indicates that agents in the energy markets might improve their

forecasts of prices by including a fractal component in their models.

The rest of the paper is structured as follows. In Section 2, we take a closer look at the six data

sets we consider. Section 3 briefly explains the main ideas behind roughness and fractality as they

relate to time series of electricity prices. Section 4 introduces the modelling framework we propose;

this section also contains an estimation procedure for the model. Section 5 is concerned with the

implications of our model as it relates to arbitrage and to forecasting. In Section 6, we present

our empirical work where we find evidence of fractality in five out of the six markets considered.

Section 7 discusses the findings and concludes. The Appendix contains an in-depth look at the

estimation procedure by detailing the individual steps using the German EEX data set. Using

simulations, the Appendix also briefly investigates possible sources of biases when estimating the

fractal index of electricity prices and illustrates how the multi-factor framework helps in alleviating

these.

2 The data

Electricity markets are organized as day-ahead markets where participants submit their bid/ask

price for a given amount of electricity in a given hour of the day. The exchange then matches

supply and demand, which yields 24 spot prices, one for each hour, for the following day.2 In the

following we define the ’spot price’ as the peak load price which is computed as the mean of the spot

prices from 9 a.m. to 8 p.m., the hours where load (demand) is highest. We consider data from

six different European exchanges, as shown in Table 1 and plotted in Figure 1. All data series are

excluding weekends as these tend not to add a lot of information not contained in the Friday price

(Meyer-Brandis and Tankov, 2008). It is well known that electricity prices are subject to strong

seasonal effects and before working with the data we therefore pre-process it by de-seasonalizing

as explained in Section 4.1 below. Some empirical characteristics of these de-seasonalized prices

and their increments are seen in Table 2. Looking at the table we see that the (log as well as raw)

increments exhibit significant departures from normality. Indeed, the series display some skewness

2Unlike the five other markets, which records spot prices every hour, the UK market which we consider in this

paper has prices for every 30 minutes, i.e. 48 prices per day.
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Table 1: Data summary

Abbr. Region Start End Observations

EEX Germany Jan. 1, 2008 Jan. 23, 2015 1844

NP Nordic Jan. 1, 2008 Jan. 23, 2015 1844

PN France Jan. 1, 2008 Jan. 23, 2015 1844

GME Italy Jan. 1, 2008 Dec. 19, 2014 1819

UKAPX United Kingdom Jan. 1, 2008 Jan. 23, 2015 1844

NLAPX Netherlands Jan. 1, 2008 Jan. 23, 2015 1844

and a large amount of (excess) kurtosis ranging from 9.5 to 650 in the raw increment series and

6.6 to 116 in the log-increments. Naturally then, when conducting a formal test for normality

(Jarque-Bera), we reject the null of Gaussianity of the increments in all time series considered.

The question of whether the levels of electricity prices constitute a stationary time series has

been much debated in the literature. In Table 3 we therefore run two tests for a unit root in the

data; the Phillips-Perron (PP) test and the augmented Dickey-Fuller (ADF) test with automatic

lag selection3. Both tests reject the null of a unit root in the raw prices series as well as the

log-prices at all reasonable significance levels. That is, we find evidence of stationarity in the de-

seasonalized prices and we therefore proceed to model all price series as stationary in the following.

3As implemented in the MFE Toolbox of Kevin Sheppard, http://www.kevinsheppard.com/MFE_Toolbox.
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Figure 1: Illustration of the six data sets: log-price evolution in log-Euros per Mwh (UK APX is

in log-British Pounds).
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Table 2: Descriptive statistics of electricity price increments
Panel A: Raw increments Panel B: Log-increments

EEX NP Powernext GME APX UK APX NL EEX NP Powernext GME APX UK APX NL

Observations 1848 1844 1844 1819 1844 1844 1848 1844 1844 1819 1844 1844

Mean 0.028 0.011 0.023 0.024 0.013 0.015 0.001 0.000 0.000 0.000 0.000 0.000

Min −61.273 −60.748 −1064.780 −2195.649 −115.513 −50.791 −2.191 −0.573 −2.669 −3.518 −0.860 −0.708

Max 99.152 97.258 1080.133 2182.405 150.305 41.812 2.053 0.884 2.830 3.345 1.292 0.917

SD 9.710 5.790 39.397 79.447 14.430 7.830 0.203 0.099 0.194 0.215 0.184 0.127

Skewness 0.558 2.569 0.725 −0.193 0.218 0.018 0.052 0.747 0.349 0.060 0.101 0.421

Kurtosis 12.549 78.412 616.925 653.490 21.017 9.474 23.412 15.590 57.139 115.594 6.610 10.128

Jarque-Bera 7114 438737 28943260 32052661 24942 3219 32066 12343 225113 960318 1004 3956

P-value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Descriptive statistics for the increments of the de-seasonalized (see Section 4.1) electricity prices for the various power exchanges. Weekends are excluded. Panel

A (left) is for the raw increments, while Panel B (right) is for the log-increments (log-returns).

Table 3: Testing for unit roots in electricity price series
Panel A: Raw prices Panel B: Log-prices

EEX NP Powernext GME APX UK APX NL EEX NP Powernext GME APX UK APX NL

PP −14.486 −9.594 −32.437 −40.137 −17.399 −11.086 −18.391 −7.448 −16.002 −23.681 −15.453 −12.147

P-value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

ADF −4.136 −4.481 −10.276 −19.057 −2.696 −3.365 −5.832 −4.830 −6.206 −3.990 −3.046 −3.320

P-value 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.003 0.000

Unit root tests of the de-seasonalized (see Section 4.1) electricity prices for the various power exchanges. Weekends are excluded. Panel A (left) is for the raw

prices, while Panel B (right) is for the log-prices. PP stands for the Phillips-Perron test for a unit root, while ADF is the augmented Dickey-Fuller test with

automatic lag selection.
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3 Fractality and roughness in electricity prices

In this section, we explain how fractals and roughness relate to one-dimensional time series and

hence to electricity prices. In particular, we consider a time series Xt ∈ R and its graph

X = {(t,Xt) ∈ R× R, t ∈ T ⊂ R} ⊂ R2,

where T is a finite set of times where the process X is observed. The fractal dimension of the

time series refers to the one-dimensional curve that arises in the (continuum) limit as the data gets

observed at an infinitesimally dense subset of R (e.g. [0, 1]). This approach of observing a time series

at increasingly finer scales, is often termed infill asymptotics in the literature. If the limit curve

is smooth and differentiable, then its fractal dimension, D, equals the topological dimension, i.e.

D = 1 in the one-dimensional time series case. Conversely, for a rough, non-differentiable curve

the fractal dimension may exceed the topological dimension. For instance, consider a Gaussian

process X = {Xt}t∈R with stationary increments with variogram

γ2(h) =
1

2
E[|Xt+h −Xt|2], h ≥ 0,

satisfying

γ2(h) = c2|h|2α+1 + o(|h|2α+1+β), as h ↓ 0, (3.1)

where α ∈
(
−1

2 ,
1
2

)
, β ≥ 0 and c2 > 0.4 The graph of a sample path of X now has fractal dimension

D =
3

2
− α,

almost surely. We will refer to α as the fractal index of the process X: positive values of α

– implying a fractal dimension close to the topological dimension, i.e. close to dimension 1 –

corresponds to a smooth process (with α = 1
2 corresponding to a.s. differentiable sample path of

X), while negative values of α – implying a fractal dimension close to one plus the topological

dimension, i.e. close to dimension 2 – corresponds to very rough paths. A typical example of a

Gaussian process with non-trivial fractal dimension is the fractional Brownian motion (fBm) with

Hurst parameter H ∈ (0, 1], corresponding to a fractal index α = H − 1
2 and fractal dimension

D = 2−H. Here α = 0 (so H = 1
2) implies that the fBm is a standard Brownian motion. Several

simulated fBm paths for different values of α are shown in Figure 2. The differing roughness of

the paths, when the fractal parameter changes, is evident: we see how a low α corresponds to a

high fractal dimension (rough paths) and vice versa. The rougher the curve, the more it fills of the

two-dimensional space: as α decreases, the fractal dimension increases and the one-dimensional

curve becomes ”closer to 2-dimensional”. Relating this discussion back to time series of electricity

prices, other authors have often found α < 0 for these data sets, i.e. that the paths of the spot

prices are rougher than what a Brownian motion-based model such as the Brownian-driven OU

model would suggest. The next section introduces a model for electricity prices which is compatible

with this observation.
4Note the non-standard parametrization as compared to e.g. Gneiting et al. (2012); their definition has the fractal

index in (0, 2] and corresponds to 2α+ 1 in our parametrization. We find our choice more convenient for the present

purposes as α = 0 plays an important role here: this is where the process has sample paths of the same fractal

dimension as a Brownian motion and hence also the Brownian-driven OU process.
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Figure 2: Simulated paths of an fBm for varying values of the fractal index α. Recall that the

Hurst index is H = α + 1
2 , so that α = 0 corresponds to the process being a standard Brownian

motion. The same random numbers were used in the six simulation, hence the only difference is

the roughness of the simulated paths as dictated by the value of α.

4 A fractal multi-factor modelling framework

Consider the multi-factor decomposition of the electricity spot price

St = Λt +Xt + Yt, t ≥ 0, (4.1)

where Λ = {Λt}t≥0, X = {Xt}t≥0, and Y = {Yt}t≥0 are the seasonal component, the base signal

and the spike signal respectively. This decomposition is the basis of the multi-factor model and

has been extensively studied and succesfully employed to electricity prices in several studies, such

as Benth et al. (2007), Meyer-Brandis and Tankov (2008) and Hayfavi and Talasli (2014). The

decomposition (4.1) can be seen as both an arithmetic and geometric model of the spot price by

letting St = Pt or St = logPt accordingly, where P = {Pt}t≥0 denotes the spot price of electricity.

Note, that only the arithmetic model will allow for the possibility of negative spot prices, which

has recently been observed in some markets. However, as we work with the peak load price, which

is an average of the prices in 12 consecutive hours, and as negative prices do not tend to persist

for many hours at the time, we do not observe any negative (or zero) prices in any of the time

series under consideration. Hence, we proceed to work with the geometric model, St = logPt in
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the following. We want to note and stress that we also performed the analysis using the arithmetic

model (i.e. using non-log prices), which did not yield qualitative differences and actually resulted

in even rougher paths (i.e. a more negative fractal index α) than what we will see in the following.

That is, the conclusions drawn in this paper concerning fractality of electricity prices hold a fortiori

when considering an arithmetic model. As mentioned above, in the multi-factor framework the

processes X and Y in (4.1) are usually modelled as (possibly non-Gaussian) OU processes but here

we take a more general approach when modelling X, as explained in Section 4.2 below.

4.1 Modelling the seasonal component

Following Meyer-Brandis and Tankov (2008) we will take the seasonal component, Λ, to be a

deterministic sinusoidal function plus an intercept and a trend. In full generality one could consider

a more general stochastic process as a model for the seasonal component, which would, probably,

be more realistic. However, since our focus is on the fractal nature of the prices, we will not pursue

this here. We thus model the seasonal component as

Λt = c1 + c2t+ a1 sin

(
2πt

5

)
+ a2 cos

(
2πt

5

)
+ a3 sin

(
2πt

260

)
+ a4 cos

(
2πt

260

)
, t ≥ 0, (4.2)

where c1, c2, ai ∈ R, i = 1, . . . , 4, are unknown coefficients to be estimated. The first two terms in

(4.2) model the overall level and trend, while the following two takes care of the weekly seasonal

component and the last two are for the yearly seasonal pattern (recall that weekends have been

removed).

Inspecting the price series in Figure 1 and given that we reject the presence of a unit root in

the series, there seems to be no evidence of any trend in the data; indeed, in Section 6 we will

obtain estimates of c2 which are practically zero. One could therefore argue that the linear trend

term in the seasonal function is superfluous, but since the specification (4.2), including the linear

trend component, is standard in the literature, we will keep it in the sequel.

4.2 Modelling the base component

As explained in the introduction, several earlier studies have found evidence of fractal characteristics

of the prices and we therefore propose to model the base component X as a fractal process. A

mathematical process which is particularly suited for our needs is the volatility modulated Brownian

semistationary (BSS) process (Barndorff-Nielsen and Schmiegel, 2007, 2009),

Xt =

∫ t

−∞
(t− s)αe−λ(t−s)σsdWs, t ≥ 0, (4.3)

where λ > 0, α ∈
(
−1

2 ,
1
2

)
and σ = {σt}t≥0 is a stochastic volatility process, possibly correlated

with the standard Brownian motion W. As shown in Bennedsen et al. (2015) the fractal index

of X, as defined in Section 3, is equal to α almost surely. We only consider Xt for t ≥ 0; the

integration from minus infinity in (4.3) is purely for modelling reasons since it causes X to be a

(strictly) stationary process as long as σ is stationary as well, which we assume henceforth. As

discussed in Section 2 and evidenced in Table 2, stationarity is a desirable feature for our purposes,

9



as the (de-seasonalized) electricity prices we work with are found to be stationary. A few additional

comments on the BSS process X are in order. First off, (4.3) evidently extends the popular OU

model, which is the go-to process in the multi-factor literature. To see this, consider (4.3) with

α = 0; now X indeed reduces to the (volatility modulated) OU process. This will provide the basis

of our statisitical test for fractality later: we will test the null hypothesis H0 : α = 0 against the

alternative Ha : α < 0, which gives rise to a statistically rigorous way to decide if the base signal is

best described by a rough fractal BSS process or whether one can do away with an OU process as

is the standard choice in the multi-factor literature. In other words, this methodology provides a

direct test comparing the OU model with the fractal BSS model which improves on the comparison

made in e.g. Rypdal and Løvsletten (2013) where the authors compared an OU process with a

fractal model by comparing various statistical properties of the two processes ”by eye”. Lastly,

the framework in equation (4.3) allows for non-Gaussianity through volatility modulation; in fact,

in the multi-factor literature, the base signal is often modelled as a Gaussian OU process, despite

studies such as Benth et al. (2012) finding evidence of non-Gaussianity. Indeed, in Section 6.2

we also find evidence of non-Gaussianity. The next section explains how the BSS framework can

accomodate this through the stochastic volatility component σ.

4.2.1 Stochastic volatility: marginal distribution of the base component

The stochastic volatility process allows for flexible modelling of the marginal distributon of the

BSS process X. When the SV process is constant, σ(t) = 1 for all t say, the resulting process X

is Gaussian. When σ is stochastic, however, we get, conditionally on σ,

Xt|σ ∼ N
(
0, ξ2

t

)
, t ≥ 0, (4.4)

where

ξ2
t :=

∫ ∞
0

x2αe−2λxσ2
t−xdx, t ≥ 0.

This shows that the distribution of Xt for t ≥ 0 is a mean-variance mixture and the form of σ will be

determining the marginal distribution of the BSS process. Specifying σ2 as a Lévy semistationary

process (LSS) process, i.e.

σ2
t =

∫ t

−∞
k(t− s)vsdZs, t ≥ 0,

where k is a kernel function, v is volatility of volatility and Z is a subordinator (a non-decreasing

Lévy process), provides a particularly powerful and convenient modelling framework.

As the marginal distribution of electricity spot price series has been found (e.g. Barndorff-

Nielsen et al., 2013; Veraart and Veraart, 2014, and also Section 6.2) to be well described by the

Normal Inverse Gaussian (NIG) distribution, it is an attractive feature of the BSS framework that

it accomodates this distribution for Xt. Indeed, as shown in Barndorff-Nielsen et al. (2013), when

X is given as in (4.3) and when letting k(x) = x−2α−1e−2λx

Γ(2α+1)Γ(−2α) , vt := 1 for all t and thus

σ2
t =

1

Γ(2α+ 1)Γ(−2α)

∫ t

−∞
(t− s)−2α−1e−2λ(t−s)dZs, t ≥ 0, (4.5)

10



with Γ being the gamma function, then, by the stochastic Fubini theorem,

ξ2
t =

∫ t

−∞
e−2λ(t−s)dZs, t ≥ 0. (4.6)

In other words, ξ2 = {ξ2
t }t∈R is a Lévy driven OU process with mean reversion parameter 2λ. As

argued in Barndorff-Nielsen et al. (2013), (4.6) implies the exisitence of a Lévy process Z, such that

ξ2
t has the Inverse Gaussian distribution; the upshot is that X, by (4.4), is NIG distributed, see

e.g. Barndorff-Nielsen and Halgreen (1977). In Section 6.2 we illustrate how the NIG distribution

fits the empirical distribution of the base signal much better than the Gaussian distribution does,

strengthening our view that stochastic volatility is needed in the model. Note also, that the

parameters in (4.5) are the same as those of the BSS process (4.3). In other words, when modelling

the SV component as in (4.5), and thus obtaining the NIG distribution as the marginal distribution

of X, we need only estimate the parameters θ = (α, λ)T of the BSS process to also estimate the

parameters from the SV process σ.

4.2.2 An alternative fractal component

A perhaps more well-known choice for a stationary fractal component is the fBm-driven OU process,

i.e.

XH
t =

∫ t

−∞
e−λ(t−s)dBH

s , t ≥ 0, (4.7)

where λ > 0 and BH is a fractional Brownian motion with Hurst index H ∈ (0, 1). Recall, that

in terms of the fractal index we have α = H − 1
2 , so that H = 1/2 corresponds to BH being a

standard Brownian motion, while H < 1/2 indicates paths rougher than the Bm. This fBm-OU

framework was indeed what was employed in Rypdal and Løvsletten (2013). However, we wish to

employ a more flexible fractal model with a more tractable autocorrelation structure than (4.7) –

which is not available in closed form – and we therefore prefer to use the BSS process (4.3), which

ACF is in closed form and given below in Equation 4.10. In Section 6.3 we will compare the two

models when investigating if a fractal process can be utilized for increased forecast performance of

prices, see also Section 5.2.

4.3 Modelling the spike component

When examining paths of electricity prices such as the ones seen in Figure 1, it seems reasonable

to model the very extreme moves by a spike process, i.e. a process which suddenly jumps a large

(positive or negative) value and rapidly reverts back to the previous level. The reasons for such

moves are numerous and were briefly discussed in the introduction. A standard and very general

approach to model the spikes in the multi-factor framework is using a non-Gaussian OU model for

Y, such as was done in e.g. Meyer-Brandis and Tankov (2008) and Benth et al. (2012). That is,

we take

Yt =

∫ t

−∞
e−λY (t−s)dLs, t ≥ 0,
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where λY > 0 controls the speed of mean reversion and L is a pure jump Lévy process, e.g. a

compound Poisson process. Typically, λY will be quite large, implying fast decay of the spikes.

Again, the integration from minus infinity is to ensure stationarity of Y. To focus on the fractal

nature of the base signal we will be wholly agnostic about the distribution and general form of the

spike component, Y . Examining the dynamics and distributional properties of the spike signal Y

is an interesting subject in itself; we leave such investigations in the fractal-based framework to

future studies.

For simplicity, we assume that X and Y are independent; this will cause the de-seasonalized

prices, S − Λ = X + Y, to be (strictly) stationary.

4.4 Estimation of the fractal multi-factor model

The estimation procedure we propose and will use in the empirical study in Section 6 is straigth-

forward given the above discussion. In a first step, we wish to estimate the seasonal component

(4.2). However, the estimation can be very sensitive to outliers (spikes), and we therefore con-

struct a smoothed prices series on which we estimate (4.2) by OLS. Specifically, the time series

we use for this OLS regression is obtained by a block moving average of the log-prices, where the

window length is 15 observations on each side of an individual observation. After having estimated

the seasonal parameters we subtract the seasonal signal, (4.2), from the (original, non-smoothed)

log-prices, leaving us with the time series {St − Λt} = {Xt + Yt}. The next step is to separate

the base signal X from the spike signal Y. We do this using the hard thresholding algorithm of

Meyer-Brandis and Tankov (2008) – an example of such filtering is given in Section A.2 where we

study the EEX data set in detail. Finally, after subtracting the jump process we are left with the

base signal {Xt} = {St − Λt − Yt}, which we proceed to model as the BSS process (4.3).

4.4.1 Estimation the fractal index of time series of electricity prices

There are several estimators available in the literature with which to estimate the fractal index

of a time series. In this section, we will briefly review some of them and explain how they fit in

our setup; we refer to Gneiting et al. (2012) a more detailed exposition. For our purposes, we face

two major obstacles when estimating the fractal index of electricity prices; (i) jumps (spikes) in

the price process and (ii) relatively low frequency (daily) data. In Appendices B.1 and B.2 we will

look closer at how the estimators behave under (i) and (ii), and we find that the former causes a

downward bias in the estimation of the fractal index, while the latter is innocuous in our setup.

The downward bias introduces by (i), i.e. the spikes, is the reason for us filtering out the spike

signal Y , before estimating the fractal index α. This has not been done in previous studies, which

leads us to conjecture that earlier studies might have found values of α which are more negative

than they are in reality, cf. Section 6 and in particular Table 6.

The most straightforward estimation of the fractal index is to use relations similar to Equation

(3.1). For a stationary Gaussian process X we actually have the more general (see Gneiting et al.,

2012) result concerning the variogram of order p > 0,

γp(h) =
1

2
E[|Xt+h −Xt|p] = cp|h|(2α+1)p/2 + o

(
|h|(2α+1+β)p/2

)
, as h ↓ 0, (4.8)
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where again α is the fractal index of the process, β ≥ 0 and cp > 0.5 Now, for a p > 0, an estimator

of a = (2α+ 1)p/2 is obtained by regressing log |h| on an estimate of the log-variogram, i.e.

log γ̂p(h) = C + a log |h|, (4.9)

where C is a constant. We then estimate α̂(p) = â/p − 1
2 , where â is obtained from the OLS

regression in (4.9) with γ̂p(h) 1
N−h

∑N−h
i=1 |Xi+h−Xi|p. In practice it is prudent to use only very few

lags of h in this regression, e.g. two or three lags. One also need to choose the power parameter p, a

standard choice being p = 2 so that γp(h) = γ2(h) is the variogram of the process. However, p = 1

— which means that γp(h) = γ1(h) is the so-called madogram — has been found to be more robust

to outliers (see Section B.1 and Gneiting et al. (2012)). In the following we will employ this method

using both p = 1 and p = 2, and will term them ”madogram” and ”variogram” respectively.

Besides the straightforward method discussed above, there exist a wealth of more sophisticated

estimators of the fractal index α (often in the form of an estimator of the Hurst index H = α+ 1
2),

see Taqqu et al. (1995) for a partial list along with a Monte Carlo study of their finite sample

performances. We focus here on the one-dimensional, i.e. time series, case. Popular estimators

used in the literature include Detrended Fluctuation Analysis (DFA) of Peng et al. (1994) and

estimation of the generalized Hurst exponent (GEN), see e.g. Matteo (2007). Here we also consider

the absolute value method (ABS) and the aggregated variance method (AGG), see Taqqu et al.

(1995), as well as the Change-of-Frequency (COF) estimator of Barndorff-Nielsen et al. (2011).

Both the GEN and the COF estimators rely on choosing a power parameter p, as was the case

of the madogram/variogram in the regression (4.9). Thus, in the following we will write GEN(p)

and COF (p) for the respective estimator using the power parameter p, typically p = 1 or p = 2.

We note, that the COF (2) estimator comes with a CLT (Barndorff-Nielsen et al., 2011), which

makes this estimator particularly attractive for our purpose, since it will allow us to do inference

on the fractal parameter and test whether it is statistically different from zero (recalling that zero

corresponds to the BSS process X being actually a OU process). Of the above estimators, DFA has

arguably been the most popular one in the electricity price literature as it controls for the possible

non-stationarity induced by seasonal effects. When estimating the fractal index in what follows,

we will employ all the above mentioned estimators instead of relying on one single method, as is

the usual practice in the electricity literature. We do this for two reasons; firstly, we use them as

a robustness check to see whether all estimators agree. Secondly, presenting the estimations using

all of the well-known (and some not so well-known) estimators should make it more comparable to

earlier studies. For implementation of the respective estimators, we refer to the references above.

4.4.2 Estimating the mean reversion parameter λ

As λ controls the mean reversion (at least on longer scales), we seek to estimate this parameter

using the dependence structure of the base signal X. We do this using our estimate of α and the

autocorrelation function (ACF) of the BSS process (4.3), which can be shown to be equal to (e.g.

5Note, that even though this definition is stated for Gaussian processes, it equally well applies to volatility

modulated BSS (and OU) processes, see e.g. Bennedsen et al. (2015).
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Barndorff-Nielsen, 2012)

ρ(h) = Corr(Xt+h, Xt) =
2−α+ 1

2

Γ(α+ 1/2)
(λh)α+ 1

2Kα+ 1
2
(λh), h ∈ R, (4.10)

where Γ is the gamma function and Kν(x) is the modified Bessel function of the third kind with

parameter ν, evaluated at x, see e.g. Abramowitz and Stegun (1972). To estimate λ, we perform

a non-linear least squares estimation fitting (4.10) to the empirically observed autocorrelations.

5 Implications of a fractal model of electricity prices

Fractal models of financial prices are non-standard and will as such have different implications than

a usual model based on a non-fractal process. We briefly consider some of these implications here.

5.1 Arbitrage

It is well known that fractal models such as the fBm-OU model (4.7) and the fractal BSS process

in (4.3) are, in general, not semimartingales. Classically, using such a process as the basis of the

price of a financial asset would constitute an arbitrage opportunity (or, more precisely, a free lunch

with vanishing risk), as was shown in Delbaen and Schachermayer (1994), see also Rogers (1997).

One could fear that introducing a fractal model for the price of electricity would induce the same

adverse effects. Fortunately, there are several reasons why this need not be. Most importantly,

the electricity spot market is wholly different from the usual financial markets in that one can not

buy electricity and hold it in a portfolio for a later date. For this reason, the usual ’buy-and-hold’

arbitrage arguments break down and we can not rely on the classical no-arbitrage results such as the

one in Delbaen and Schachermayer (1994). As an additional assurance, Pakkanen (2011) showed

that BSS processes such as the one in (4.3) will not be the source of arbitrage when transaction

costs are considered.

5.2 Forecasting

Since fractality refers to the small scale behavior of the time series under consideration, it is

plausible that including a fractal term will provide superior forecasts of prices at least in the short

run. Since our three components in (4.1) are assumed independent, we will focus on forecasting

the base signal only; the (deterministic) seasonal component is then easily adjusted for, as are the

spike signal Y , given a model for this. However, as we explained in Section 4.3 we do not go into

details with the spike part in this work. Hence, we will focus on predicting X in the following.

The two forecasting methods we outline here will be empirically tested in Section 6.3 and visually

illustrated for the EEX data set in Appendix A.4.

5.2.1 Forecasting the BSS process

Ideally, for a forecast horizon h > 0 (days, say) we would like to compute

X̂t+h = E[Xt+h|Ft], (5.1)
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where Ft = σ{Xs, s ∈ [0, t]} is the filtration generated by the base signal X. Unfortunately, for

the BSS process, the expression for (5.1) is an unsolved problem. Instead, we will use a linear

combination of past observed values to predict the future, i.e. we use the best linear predictor. The

best linear predictor is given in terms of the autocorrelation function of the BSS process, which

we recall is given by Equation (4.10). The best linear predictor of Xt+h given X1, X2, . . . , Xt is

(e.g. Grimmett and Stirzaker, 2001, Section 9.2.)

X̌t+h =
t∑
i=1

aiXi, h ≥ 1,

where a1, a2, . . . , at ∈ R solves

t∑
i=1

aiρ(|i− j|) = ρ(h+ j), 1 ≤ j ≤ t.

5.2.2 Forecasting the fBm-OU process

In the case of forecasting, there are advantages in choosing the fBm-based OU process in Equation

(4.7) as a model of the base signal; the fBm has been extensively studied and in particular, we

have a closed-form expression for the conditional expectation (5.1). To be precise, Nuzman and

Poor (2000) show that for H < 1
2

E[BH
t+h|FHt ] =

cos(Hπ)

π
hH+1/2

∫ t

−∞

BH
s

(t− s+ h)(t− s)H+1/2
ds,

where FHt = σ{BH
s , s ≤ t} is the filtration generated by the fBm BH during its entire history (i.e.

from the infinite past until time t). Now, as argued in Gatheral et al. (2014), for reasonably small

time scales h and for small values of the mean reversion parameter λ, we have the approximation

E[XH
t+h|FHt ] ≈ cos(Hπ)

π
hH+1/2

∫ t

−∞

XH
s

(t− s+ h)(t− s)H+1/2
ds, (5.2)

where XH is the fBm-OU process in (4.7). We approximate this expression using the observed

values of XH together with a straightforward Riemann sum:

X̂H
t+h =

cos(Hπ)

π
hH+1/2

bt/δc∑
i=1

XH
iδ

(t− (i− r) δ + h) (t− (i− r) δ)H+1/2
δ, r ∈ (0, 1],

where δ > 0 is the observation frequency (i.e. δ = 1 day in our case) and H = α + 1
2 is the Hurst

exponent. Note, that we face a rather arbitrary choice of r ∈ (0, 1] when evaluating the integral

at the points s = (i− r)δ for i = 1, . . . , bt/δc; in Section 6.3 we will simply choose r such that the

forecast performance is optimized for the shortest forecast horizon h = 1 day.

6 Empirical analysis

In this section we apply the estimation procedure explained in Section 4.4 to the data in Table 1;

in Appendix A we will illustrate the approach by considering the German EEX data in detail. The

15



Table 4: Estimation of seasonality parameters

c1 c2 a1 a2 a3 a4

EEX 4.303 −0.000 0.030 −0.006 −0.079 0.071

(0.011) (0.000) (0.007) (0.007) (0.007) (0.007)

NP 3.938 −0.000 0.017 0.000 0.010 0.101

(0.013) (0.000) (0.009) (0.009) (0.009) (0.009)

Powernext 4.333 −0.000 0.024 −0.008 −0.060 0.118

(0.011) (0.000) (0.007) (0.007) (0.008) (0.007)

GME 4.666 −0.000 0.011 −0.008 −0.064 0.041

(0.009) (0.000) (0.006) (0.006) (0.006) (0.006)

APX UK 4.112 −0.000 0.005 0.001 −0.031 0.019

(0.012) (0.000) (0.009) (0.009) (0.009) (0.009)

APX NL 4.270 −0.000 0.016 −0.011 −0.046 0.065

(0.011) (0.000) (0.007) (0.007) (0.008) (0.007)

Estimates of the parameters of the seasonal function (4.2) with standard errors in parentheses.

estimation results for all six data sets are seen in Tables 4-6. Table 4 shows the estimates from the

seasonal function in Equation (4.2): we see no noticable trend (c2), while there is a level effect (c1)

and some seasonality in all data series (a1, a2, a3, a4).

6.1 Roughness of electricity price series

Table 5 contains the most important information for our purposes. From the COF(2) estimator

we have estimates of the fractal index α, which are negative across the board, indicating that

the time series indeed do display a degree of fractality. Similarly, when conducting the formal

hypothesis test of H0 : α = 0 against the alternative Ha : α < 0, we reject H0 for all markets

under consideration, except Nord Pool, indicating that in these energy markets the BSS process

is to be preferred over the OU model as a model of the base signal. That is, we conclude that

five out of the six markets studied here display fractal characteristics in their base signals. To

further check this fact we employ all estimators of α discussed in Section 4.4.1; the results are seen

in Table 6 which corroborates the findings. Indeed, all estimates of α are negative. Note that if

one does not filter out the spikes (Panel A), the α estimates from Nord Pool using either of the

GEN(1), GEN(2) and DFA estimators would – incorrectly – lead one to find α < 0 in this market.

Further, this is even the case after filtering out the spikes (Panel B) for the estimators ABS and

AGG. Recall, that the DFA estimator has traditionally been popular in the literature. Therefore,

it is evident that it is important to first filter out the spikes and, further, that which estimator

one uses really does matter as ABS and AGG in general give more extreme results than do the

other estimators. Additionally, it is not only in the Nord Pool case that some estimators become

downward biased when one does not first filter out the spikes; to examine this closer we plot in

Figure 3 the estimates of α for all markets using the madogram, variogram, COF(1) and COF(2)

estimators. The first conclusion we can draw from this plot is that the four estimators agree more

closely after filtering out the spikes, strengthening our conviction that some estimators are more
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biased than others in the presence of outliers (see also Appendix B.1). The second conclusion is

that the estimates coming from some markets become noticably less negative, when first filtering

out the jumps. This is most evident in the GME and Powernext data sets, but also to a lesser

degree in EEX and APXUK. Again, this is evidence for the presence of biases in the estimation

when one does not account for the spike signal separately. Indeed, the above shows that accounting

for spikes prior to estimation of α is crucial and the fractal multi-factor framework is thus ideally

suited for modelling electricity prices, since it allows us to do this in a straightforward manner.

We note again that most authors in the fractal literature have generally not done any attempt to

account for spikes, thus leading us to conjecture that earlier estimates in the literature might have

been too negative.

Finally, turning again to Table 5, we also see estimates of the mean reversion parameter λ from

both the BSS model and the OU model. In all cases, the estimates coming from the BSS model

are smaller in magnitude as compared to the estimates coming from the OU model, implying slower

(long term) mean reversion in the BSS models. The reason for this is that the α parameter helps

in fitting the autocorrelations in the short run: a negative value of α implies a sharp decrease in

autocorrelation for the very short lags. This allows the λ parameter in the BSS model to better fit

the ACF at the longer lags. This effect is similar to what an OU two-factor model would achieve:

here two different mean reversion parameters would also allow for both fast and slow decay of

autocorrelations. The advantage of the BSS model is that it does this while also allowing for

fractality. Further, the BSS model is more parsimonious as it only requires a single source of

randomness, instead of two in the two-factor model.
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Table 5: Estimating and testing for fractality
Panel A: Log-prices

EEX NP Powernext GME APX UK APX NL

α̂ −0.204 −0.045 −0.300 −0.405 −0.306 −0.161

std(α̂) 0.100 0.069 0.168 0.230 0.049 0.061

Test-stat −2.044 −0.646 −1.792 −1.763 −6.283 −2.668

P-value 0.020 0.259 0.037 0.039 0.000 0.004

Reject at 5 perc 1 0 1 1 1 1

λ (BSS) 0.120 0.043 0.034 0.019 0.021 0.052

λ (OU) 0.296 0.056 0.218 0.463 0.192 0.131

Panel B: Filtered log-prices (base signal)

EEX NP Powernext GME APX UK APX NL

α̂ −0.211 −0.059 −0.198 −0.246 −0.308 −0.191

std(α̂) 0.037 0.046 0.045 0.044 0.040 0.040

Test-stat −5.683 −1.281 −4.410 −5.597 −7.664 −4.825

P-value 0.000 0.100 0.000 0.000 0.000 0.000

Reject at 5 perc 1 0 1 1 1 1

λ (BSS) 0.048 0.026 0.033 0.031 0.011 0.019

λ (OU) 0.149 0.037 0.105 0.144 0.144 0.074

Estimating the fractal index, α, and testing H0 : α = 0 for various data sets. Panel A is using the standard approach

of directly estimating the fractal index of the de-seasonalized prices. In contrast, Panel B is after filtering the seasonal

and spike signals from the data, i.e. the estimations are done on the base signal. α̂ is estimated using the COF (2)

estimator. The test statistic and P-value refer to the hypothesis test H0 : α = 0 against the alternative Ha : α < 0.

The bottom two rows are estimates of the mean reversion parameter λ in the BSS model as well as the OU model.
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Table 6: Estimating the fractal index of all data sets using various estimators
Panel A: Log-prices

EEX NP Powernext GME APX UK APX NL

COF (2) −0.204 −0.045 −0.300 −0.405 −0.306 −0.161

COF (1) −0.198 −0.022 −0.197 −0.260 −0.306 −0.184

Variogram −0.270 −0.088 −0.294 −0.421 −0.342 −0.224

Madogram −0.243 −0.052 −0.211 −0.290 −0.343 −0.201

GEN(2) −0.340 −0.135 −0.286 −0.464 −0.365 −0.329

GEN(1) −0.301 −0.112 −0.231 −0.341 −0.382 −0.296

ABS −0.345 −0.278 −0.293 −0.350 −0.399 −0.273

DFA −0.375 −0.169 −0.320 −0.454 −0.402 −0.335

AGG −0.403 −0.350 −0.370 −0.431 −0.431 −0.307

Panel B: Filtered log-prices (base signal)

EEX NP Powernext GME APX UK APX NL

COF (2) −0.211 −0.059 −0.198 −0.246 −0.308 −0.191

COF (1) −0.230 −0.033 −0.194 −0.210 −0.314 −0.218

Variogram −0.220 −0.073 −0.178 −0.253 −0.314 −0.198

Madogram −0.232 −0.052 −0.175 −0.218 −0.314 −0.190

GEN(2) −0.248 −0.082 −0.170 −0.267 −0.328 −0.222

GEN(1) −0.242 −0.082 −0.176 −0.252 −0.349 −0.229

ABS −0.323 −0.235 −0.294 −0.346 −0.446 −0.297

DFA −0.309 −0.092 −0.243 −0.300 −0.369 −0.291

AGG −0.334 −0.291 −0.341 −0.365 −0.460 −0.316

Estimating the fractal index for various data sets and with the estimators of Section 4.4.1. In Panel A estimation is

done on the de-seasonalized log-prices. In contrast, Panel B (right) is after filtering the seasonal and spike signals

from the data, i.e. the estimations are done on the base signal.
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Figure 3: Estimation of the fractal index of the spot prices from various energy exchanges. Esti-

mation is done on the raw log-prices (top) and on base signal, i.e. after filtering out the seasonal

component and the spike signal (bottom).

6.2 Marginal distribution of the base signal

As explained in Section 4.2.1, the BSS framework accomodates the NIG distribution as its marginals;

we now take a closer look at how this distribution fits the empirical distribution of the base signal.

We see below in Figure 4 that the NIG distribution indeed fits very well the empirically observed

marginal distribution of the base signal, a fact that was also found in e.g. Barndorff-Nielsen et al.

(2013) and Veraart and Veraart (2014). The plots in the left column of Figure 4 simply plots the

empirical density of the base signal against a fitted Gaussian and a fitted NIG density: in most

cases the NIG distribution fits the data much better than do the Gaussian distribution, especially

around the center of the distribution. To examine the density in the tails better, we consider

similars plot in the right column of Figure 4 but now using log-densities: here we again see that

the NIG distribution is in general also better at capturing the tail behavior of the data, indicating

fat tails of the marginal density of the time series under consideration. This is evidence of the in-

adequacy of the Gaussian OU process as a model of the base signal and thus indicates the presence

of stochastic volatility. In summary, in view of the arguments in Section 4.2.1, the BSS framework

is able to accurately capture the empirically observed marginal density of the extracted base signal

of electricity prices.
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Figure 4: Empirical marginal distribution of the base signal (blue solid line) superimposed with

a fitted NIG density (green half-broken line) and the corresponding fitted Gaussian density (red

broken line). The plots in the right column is using log-densities.
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6.3 Forecasting

Lastly, in Table 7 we present the results of a forecasting exercise. We took the extracted base signal

from each of the six exchanges and applied the forecasting approaches of Section 5.2 using different

values of forecast horizon h. We then compared the forecasts from the BSS model with those from

three benchmark models, the fBm model, the OU model, and a random walk (RW) model. The

RW model is simply a ”no-change” forecast, while the (discretized) OU model can be written as

an AR(1) model and therefore easily forecast using standard methods. Table 7 shows root mean

squared forecast errors (RMSFE) of the three approaches FBM, OU, and RW as compared to the

BSS approach. That is, the numbers reported are

Relative RMSFE(x) =
RMSFE(BSS)

RMSFE(x)
, x = FBM,OU,RW.

Thus, values less than one indicate that the BSS-based forecasts fare better than the alternative

model. Some conclusions emerge: firstly, the fBm-based forecasts perform very poorly in general;

this could be an indication that the model is not describing the data well, but more likely it is

because the approximation in (5.2) is poor for our purpose. Note, that the autocorrelation of the

OU-fBm model (4.7) is not available in closed form, hence making prediction using the best linear

predictor, as was done for the BSS process, difficult, at least without resorting to approximations or

numerical calculations of the autocorrrelation function. This makes fractal models with tractable

autocorrelation structures, such as the BSS process, preferable from a forecasting standpoint.

Secondly, the BSS forecast method generally fares better than the (non-fractal) OU method, when

the market in question display fractality, i.e. for all markets except Nord Pool (where we could

not reject H0 : α = 0, see Table 5). Lastly, the RW model performs poorly, especially for longer

horizons, indicating that including some form of mean reversion in the model is indeed important

for forecasting.
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Table 7: Forecasting the base signal
RMSE relative to BSS

h = 1 h = 2 h = 4 h = 8 h = 12 h = 16

EEX RW 0.928 0.909 0.880 0.835 0.796 0.781

OU 0.968 0.980 0.993 1.005 1.004 0.988

FBM 0.821 0.846 0.861 0.856 0.842 0.844

NP RW 1.007 0.990 0.978 0.945 0.914 0.882

OU 1.015 1.005 1.006 1.001 1.000 0.996

FBM 0.694 0.833 0.913 0.952 0.952 0.944

Powernext RW 0.958 0.948 0.919 0.858 0.813 0.781

OU 0.988 1.001 1.012 1.025 1.034 1.032

FBM 0.866 0.888 0.890 0.867 0.845 0.830

GME RW 0.921 0.904 0.900 0.885 0.884 0.873

OU 0.958 0.954 0.943 0.910 0.901 0.907

FBM 0.760 0.810 0.858 0.892 0.913 0.918

APX UK RW 0.870 0.842 0.833 0.807 0.813 0.796

OU 0.910 0.905 0.909 0.871 0.842 0.819

FBM 0.680 0.747 0.814 0.858 0.887 0.895

APX NL RW 0.942 0.924 0.902 0.874 0.853 0.835

OU 0.964 0.963 0.967 0.973 0.973 0.964

FBM 0.943 0.938 0.934 0.924 0.912 0.904

Forecasting the base signal using the four models, BSS, FBM, OU and RW. The forecast horizon is h days and the

numbers in the tables are root mean squared (RMSE) forecast errors relative to the BSS model. Values less than one

favors the BSS model, while values greater than one favors the alternative method.
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7 Conclusion

This article has conducted an in-depth investigation of the apparent fractality of time series of elec-

tricity spot prices. Similar to other authors we find evidence of fractal characteristics in electricity

spot prices: in particular, in five out of the six markets studied, we reject the null hypothesis of

a zero fractal index in favor of the alternative hypothesis of a negative index. Only in the Nord

Pool market could we not reject the null α = 0. Contrary to previous studies, we sought to avoid

possible sources of biases in the estimators of the fractal index by filtering the prices for seasonality

and spikes before estimating the degree of fractality in the data. We considered two pieces of

evidence, which indicate that the BSS model is indeed to be preferred over the OU model for most

electricity price series. Firstly, we simply find statisically significant values of the fractal index

and that these are negative. Secondly, the results of our forecasting exercise showed that there are

gains to be had in this area by applying the fractal BSS model; a very interesting avenue of future

research would be to include a fractal component in a more realistic forecasting setup, such as the

one considered in Weron (2014). Additionally, we showed that the BSS framework admits the

NIG distribution as the marginal distribution of electricity prices and that this is desirable since

the empirical distribution of the base signals was well fit by this distribution.

The analysis in the present work was done on log-prices, but we stress that the approach would

apply equally well to raw prices. In fact, we conducted the same analysis on these prices (not given

here for brevity) and the results on fractality hold a fortiori: we find even more extreme (negative)

values of the fractal parameter α in this case.

Finally, in the model presented here, we all but ignored a very important component of elec-

tricity prices, namely the spike process. Further research into a full-fledged fractal model and the

implications for spikes, stochastic volatility, and stochastic seasonality is left for future research.
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A An empirical case study: The German EEX market

We analyze the German EEX spot market from January 1, 2008 to January 23, 2015 excluding

weekends using the estimation approach outlined in the article. We work on the peak load price,

i.e. the average price over Hour 9 to Hour 20 each day, yielding 1844 daily observations. The raw

price (top) and log-price (bottom) are seen in Figure 5.
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Figure 5: Raw price (top) and log-price (bottom) of EEX peak load prices from January 1, 2008 to

January 23, 2015.

A.1 De-seasonalizing the data

We do OLS using the seasonal function (4.2) on the log-prices as explained in Section 4.1. The

resulting fit is seen in Figure 6 (top) where we also show the residuals {logPt − Λt} = {Xt + Yt}
(bottom).
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Figure 6: Log-prices and fitted seasonality function (top) and residuals from the non-linear least

squares regression (bottom).

A.2 Filtering the jump process

We use the hard thresholding method described in Meyer-Brandis and Tankov (2008) and filter

out the path of the spike process Y. One could estimate the mean reversion parameters and use

them in the thresholding algorithm, but both Meyer-Brandis and Tankov (2008) and Benth et al.

(2012) find that tuning them by eye works better. We follow their recommendations and choose

λ1 = 1
115 and λ2 = 1

4 . There is an additional tuning parameter, ε, controlling how many jumps

to remove in an initial step. Specifically, we remove ε = 0.045 = 4.5% of the largest (in absolute

value) increments of the process before we calculate the (target) standard deviation of the resulting

process. Then we insert back the ε values and then run the thresholding algorithm, removing spikes

until the standard devation of the base signal equals the target standard deviation. The result is

seen in Figure 7.
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Figure 7: Result of hard thresholding where we see the initial signal (blue), the filtered base signal

(red), and the filtered spike signal (green).

A.3 Analysis of the residual base signal

The filtered base signal from the hard thresholding algorithm is now assumed to be {Xt} = {logPt−
Λt−Yt}, where Y is the filtered spike signal; see Figure 8. We will modelX as the BSS process (4.3),

which will be fit to the empirical base signal — specifically, we will estimate α using the COF (2)

estimator and then λ from the empirical autocorrelation (4.10). We then test the hypothesis

H0 : α = 0 to see if we can do away with an OU model or if there is still the need for a fractional

parameter in the base signal; the result of this test was seen in Table 5, Panel B, where the null

hypothesis is rejected in favor of Ha : α < 0.

We also estimate the mean-reversion parameter of an OU process, λOU , which is likewise fitted

to the OU ACF, ρOU (h) = e−λOUh. For the estimations involving the correlation function we use

b
√
Nc+ 1 = 43 lags, where N = 1844 is the total number of observations of the base signal X. As

discussed above, the fractal nature of the BSS process causes the estimate of λ to be lower than

in the OU model (λ̂ = 0.048 compared to λ̂OU = 0.149). This is evidence that the α parameter

helps in the rapid mean reversion around the very short lags, allowing λ to take care of the longer

lags and hence fit the ACF better at these lags.
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Figure 8: Residuals of log-prices after filtering for seasonality and spikes. This signal will be

modelled as a BSS process.

A.4 Forecasting the base signal

We here take a slightly closer look at the forecasting exercise of Section 6.3. Figure 9 plots the

cumulative squared forecast errors (CSFE) for the three benchmark models as compared to the

BSS forecasts, when applied to the EEX data set. That is, we plot

Excess CSFE(x) = CSFE(x)− CSFE(BSS), x = FBM,OU,RW,

so that postive values are in favor of the BSS model. We use the first 400 oberservations for

estimation and then forecast h periods into the future. After this we re-estimate the model the

next day, forecast h periods into the future and repeat. The figure shows how the BSS model fares

best, but as the horizon h increases, the peformance of the OU model gets closer to that of the

BSS. Both the fBm and RW models perform very poorly in general for the reasons discussed in

Section 6.3.

B Estimating the degree of fractality in practice

B.1 Fractality estimation in the presence of spikes

To gauge the effect that possible jumps in the price process have on the estimators of the fractal

index, we here conduct a small Monte Carlo study. Table 8 shows the bias of the various estimators,

when outliers are introduced in a fractal process. We learn a few things from Table 8. Firstly,

all estimators are virtually unbiased when no outliers are present. Secondly, when introducing

outliers, all estimators become biased downwards; that is, in the presence of spikes, the estimate

one obtains of the fractal index will indicate rougher paths than otherwise. Indeed, with only one

outlier inserted, the estimators based on the power p = 2, i.e. the variogram, COF(2) and GEN(2),
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Figure 9: Cumulated squared forecast errors for h periods ahead forecast using the three benchmark

models, fBm, OU and a random walk (RW) as compared to the BSS model.
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Table 8: Estimating the fractal index in the presence of outliers
Number of outliers

0 1 2 3 4 5 6 7 8 9

Madogram −0.001 −0.020 −0.035 −0.049 −0.061 −0.072 −0.082 −0.091 −0.099 −0.106

Variogram −0.001 −0.125 −0.165 −0.186 −0.199 −0.207 −0.213 −0.217 −0.221 −0.223

COF(1) −0.008 −0.030 −0.048 −0.064 −0.078 −0.090 −0.100 −0.109 −0.118 −0.125

COF(2) −0.005 −0.137 −0.175 −0.195 −0.206 −0.214 −0.219 −0.223 −0.226 −0.228

GEN(1) −0.002 −0.018 −0.045 −0.069 −0.091 −0.087 −0.107 −0.109 −0.114 −0.124

GEN(2) −0.004 −0.128 −0.195 −0.235 −0.266 −0.250 −0.264 −0.257 −0.249 −0.256

ABS −0.015 0.005 0.005 0.005 −0.036 −0.075 −0.075 −0.087 −0.008 −0.030

DFA 0.013 −0.068 −0.101 −0.121 −0.136 −0.140 −0.147 −0.150 −0.154 −0.158

AGG −0.009 −0.057 −0.057 −0.057 −0.110 −0.190 −0.190 −0.200 −0.078 −0.099

Bias of the fractal index estimators when outliers are placed in the data series. The simulated process, X, is a BSS

process with α = −0.25 and λ = 1 on [0, 1] with N = 500 observations. See Bennedsen et al. (2015) for a method to

simulate the BSS process. Outliers of size ±5std(Xt) are then introduced equidistantly into the process. 5, 000 Monte

Carlo replications.

become noticably biased. In contrast, the estimators based on p = 1, i.e. COF(1), GEN(1), ABS

and the Madogram are significantly less biased, even for a moderate amount of spikes in the process.

This robustness when p = 1 supports a similar finding in Gneiting et al. (2012). However, when

spikes become more frequent, say more than 5 spikes (constituting 5% of the observations) even

these estimators – except maybe ABS – also become biased. Given that most electricity price

series arguably contain somewhat frequent spikes, this is a possible source of significant downwards

bias. Indeed, this effect might explain the very low estimates of the fractal index found by previous

authors, e.g. Simonsen (2002), Norouzzadeh et al. (2007) and Erzgräber et al. (2008).

B.2 Fractality estimation using low-frequency data

Besides spikes, another problem arises when we try to estimate the fractal index of (peak load)

electricity prices. Electricity prices are recorded daily and are as such inherently sampled at a

relatively low frequency. This is worrisome because the very definition of fractality is a local one;

the fractal index is describing the very fine structure of the path of the stochastic process. This is

also evident in the discussion in Section 3, where we saw that the definition of the fractal index is

given in terms of in-fill asymptotics. In the same vein, the estimators such as the ones through the

variogram in Equation (4.8) rely on the distance between observations, h, being very small. The

question becomes whether it is possible at all to estimate the fractal index of a stochastic process

observed so infrequently. Fortunately, the answer is in the affirmative. To see this, we conduct

a Monte Carlo study where we simulate N = 500 observations of a fractal process on [0, T ] and

estimate its fractal index. We do this with varying values of T and thus of the sampling frequency

dt = T/N. Choosing T = N and thinking of T as days, this mimicks daily data.

The results of the Monte Carlo study are seen in Table 9. Again a few conclusions emerge. As

expected, the bias increases when we sample less frequently; further, this is a downwards bias, i.e.

the paths of the price process are estimated to be rougher than what the underlying process truly
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Table 9: Estimating the fractal index with low frequency data
λ = 0.1 λ = 0.5 λ = 1

dt = 0.1 0.5 1 0.1 0.5 1 0.1 0.5 1

Madogram −0.001 −0.004 −0.010 −0.004 −0.034 −0.073 −0.011 −0.072 −0.137

Variogram −0.001 −0.005 −0.010 −0.004 −0.034 −0.073 −0.011 −0.073 −0.137

COF(1) −0.006 −0.007 −0.009 −0.006 −0.019 −0.050 −0.009 −0.050 −0.116

COF(2) −0.004 −0.004 −0.005 −0.003 −0.017 −0.047 −0.006 −0.048 −0.113

GEN(1) −0.003 −0.018 −0.039 −0.017 −0.097 −0.153 −0.040 −0.153 −0.203

GEN(2) −0.005 −0.019 −0.040 −0.018 −0.098 −0.155 −0.041 −0.154 −0.204

ABS −0.019 −0.073 −0.133 −0.075 −0.218 −0.252 −0.131 −0.253 −0.259

DFA 0.013 −0.003 −0.031 −0.002 −0.100 −0.152 −0.031 −0.152 −0.186

AGG −0.013 −0.068 −0.129 −0.070 −0.214 −0.248 −0.127 −0.249 −0.256

Bias of the fractal index estimators when sampling infrequently and for different values of the mean-reversion param-

eter λ. The simulated process, X, is a BSS process with α = −0.25 and λ ∈ {0.1, 0.5, 1, 2} on [0, T ] with N = 500

observations and for T ∈ {50, 250, 500}. This corresponds to sampling the process at dt ∈ {0.1, 0.5, 1} (days). 5, 000

Monte Carlo replications.

is. This behavior is amplified when we increase the value of the mean reversion parameter λ, as

also seen in the table. The reason for this is that strong mean reversion can have the same effect

as a negative fractal index when the data is observed infrequently. Indeed, a negative fractal index

causes the increments of the process to be negatively correlated and mean reversion mimicks this.

The upshot is that when we sample infrequently (e.g. dt = 1), low fractal indices can simply be a

product of strong mean reversion. As in the case of spikes, investigated in the previous section, this

is a possible further source of (downward) bias in previous studies. Fortunately, when estimating

the mean reversion parameter λ in the data, we often find it on the order λ̂ ∼ 0.01− 0.10; see e.g.

Benth et al. (2012) and also Table 5 in Section 6 where the range 0.011 − 0.048 is found for the

data in Table 1. Looking again at Table 9 we notice that several of the estimators, such as COF (1)

and COF (2), are not very biased in this situation, even for daily data (dt = 1). This makes us

confident that it is, after all, feasible to estimate the fractal index, even using infrequently sampled

data. This also holds for the DFA estimator, but not for the ABS and AGG estimators.

B.3 Lessons from the simulation experiment

The two previous sections above show that one should be careful when estimating the fractal index

of electricity prices. In particular, spikes in the time series will cause the estimators to be downward

biased. The same is true for data sampled with low frequency, especially when the mean reversion

parameter, λ, is large in magnitude. We conclude that it is important to filter the prices for spikes

before estimating the value of the fractal index. Further, it is preferable to use an estimator that is

not too biased in the low frequency environment. Given the above and the fact that there is a CLT

attached to it, we recommend using the COF(2) estimator. However, it is prudent to use several

estimators, including ones that are robust to outliers, such as the ones using p = 1; we recommend

employing several estimators and only trusting the results when most of them agree.
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