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Abstract
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1 Introduction

Portfolio selection problems have been traditionally studied based on the portfolio

theory by Markowitz (1952), which requires modeling the joint distribution of returns.

Portfolios selected based on Markowitz approach, however, do not completely take into

account the risk borne by the investor because only the mean and variance are known

but not the entire distribution.

Brand et al. (2009) (BSCV (2009) hereafter) proposes a parametric portfolio policy

in that weights of stocks depend on stock characteristics. Their approach removes the

necessity of modeling the joint distribution of returns and only a small number of

parameters are estimated to determine optimal portfolio weights. While this approach

is much easier to use in practice compared to the traditional Markowitz approach, it

also lacks the ability to explicitly account for the risk borne by the investor in the

weights function.

This paper considers a parametric portfolio policy with common volatility dynamics

to explicitly incorporate the impact of risk borne by the investor in portfolio selection

decisions. Our portfolio policy function is based on stock characteristics as proposed by

BSCV (2009), but unlike theirs, ours is augmented by the estimates of volatility com-

mon factors. This way, the portfolio policy not only accounts for the first-order (stock)

characteristics but also the second-order (volatility) characteristics thus providing the

investor with the ability to base his decision also on risk.

Our portfolio policy contains only a number of stock characteristics and nests long-

short portfolios of Fama and French (1993), Carhart (1997) and Fama and French

(2015), but it additionally accounts for common volatility dynamics of the stocks. Since

only a number of common stock characteristics are considered instead of historical stock

returns and their joint distribution, dimensionality is significantly reduced. Therefore

our approach is easy to implement in practice and it avoids possible imprecision due

to overfitting.

In the analysis, volatility common factors are estimated first. Stock realized volatil-
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ities (RV’s hereafter), which we calculate based on the jump-robust realized bipower

variation measure due to Barndorff-Nielsen and Shephard (2004), exhibit fractional

long-range dependence as shown by Bollerslev et al. (2013). This requires that stock

RV’s be appropriately differenced with their corresponding integration orders so that

a principal components (PC) estimation can be employed to obtain the estimates of

volatility common factors. These estimates are then plugged in to the parametric

portfolio policy function of BSCV (2009) to determine optimal portfolio weights.

In the estimation of portfolio policy parameters, a generalized method-of-moments

estimation is employed that is shown to produce consistent, asymptotically normal

and efficient estimates as shown by Hansen (1982) within the class of estimators that

employ the same set of moment conditions as ours. Based on these estimates, portfolio

weight and return statistics can be calculated.

To illustrate the effectiveness of our approach, we use montly return data on 30

U.S. industries spanning the time period January 1966 - December 2014, which we

split to January 1966 - August 2008 in-sample and September 2008 - December 2014

out-of-sample periods with the purpose of studying the impact of the recent crisis.

We compare the performance of the portfolio policy that incorporates the common

volatility dynamics to that which only considers first-order (stock) characteristics. The

findings indicate that accounting for common volatility dynamics leads the investor to

select an optimal portfolio with higher returns, reduced risk, higher Sharpe ratios and

positive skewness in sample and out of sample.

The remainder of the paper is organized as follows. Next section explains the

estimation of volatility common factors. Section 3 gives details on the parametric policy

function incorporating common volatility dynamics. Section 4 provides an empirical

illustration with data, and finally Section 5 concludes the paper.
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2 Common Dynamics in Realized Volatilities

It is intuitive and clear that risk associated with the volatility of a stock affects the

investment decision taken by the investor. That said, volatility associated with each

stock can be treated separately to make allocation decisions but when large number of

assets are analyzed instead, volatility-return assessment becomes cumbersome from an

empirical point of view. With this in mind, we suggest using a common-factor model

to capture the information about realized volatilities to reduce the dimension of the

problem significantly. Common factors in the treatment of high-dimensional data has

been used in several different setups; see e.g. Pesaran (2006) and Bai and Ng (2013).

We first construct the realized volatility measures based on bipower variation that

is robust to jumps, following Barndorff-Nielsen and Shephard (2004). Let us denote

an excess return at time t corresponding to industry i, ri,t. Then the monthly realized

bipower variation (RBV) is given by

RBVi,t =

M−1∑
j=1

|ri,j | |ri,j+1| , (1)

where M is the number of trading days in a month. Barndorff-Nielsen and Shephard

(2004) argue that RBV converges to realized variance in the limit assuming asset prices

follow a stochastic-volatility process and the limiting RBV measure is robust to rare

jumps. Therefore, a jump-robust realized volatility measure can be envisaged as the

square-root of RBV in (1).

To investigate the common dynamics of RV’s, a common factor model can be em-

ployed as follows:

RVi,t = λ′ift + εi,t (2)

where λi are unobserved factor loadings indicating how much each cross-section unit

is affected by the unobserved common factors ft, and εi,t are assumed to be identically

and independently distributed volatility shocks with mean zero and variance σ2i . In the
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estimation of common factor models, the use of principal components (PC) analysis, see

e.g. Bai and Ng (2002, 2004, 2013), is standard to get the estimates of factor loadings

and common factors, λ̂i and f̂t. Restricting the attention to (2), the estimates f̂t

constitute the common dynamics of RV’s and are much easier to use in portfolio choice

problems than individual RV’s due to reduced dimensionality providing a portfolio

policy rather than requiring a stock-specific treatment. Asymptotic theory for λ̂i and

f̂t is derived by Bai and Ng (2002, 2004) in case of stationary I(0) and nonstationary

I(1) dependent variables, respectively.

Among others, Bollerslev et al. (2013) show that RV’s exhibit long memory prop-

erties. This requires that RV’s be appropriately differenced to stationarity before

attempting to estimate (2). Bai and Ng (2004) use a similar approach in that they

first-difference I(1) data to obtain stationary variables to get factor structure estimates.

Let us denote the fractional integration order of RVi,t by δi so that RVi,t is I(δi), where

δi is positive. Then, using that ∆ = 1−L with the lag operator L, the common-factor

structure estimates are obtained from the equation,

∆δi
t RVi,t = λ′ift + εi,t. (3)

For some δ > 0,

∆δ
t = ∆δ1(t > 0) =

t−1∑
j=0

πj(δ)L
j , (4)

πj(δ) =
Γ(j − δ)

Γ(j + 1)Γ(−δ)
,

where 1(·) is the indicator function, and Γ(·) denotes the gamma function such that

Γ(d) =∞ for d = 0,−1,−2, . . . , but Γ(0)/Γ(0) = 1. The expression in (4) bestows long-

memory dynamics, in which autocorrelations show an algebraic rather than exponential

decay because πj(µ) ∼ Cj−µ−1 as j →∞ for µ > 0. So, these weights are appropriate

to control for inherent long memory in RV’s as shown by Bollerslev et al. (2013) and

∆δi
t RVi,t becomes I(0).
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When δi are known, this differencing can be directly carried out. However, in

practice δi are unknown and must be estimated. For the estimation, a parametric

approach or a semiparametric approach such as a local Whittle estimation, e.g. by

Robinson (1995), can be used to obtain consistent estimates for δi. Then, we are simply

interested in obtaining factor-structure estimates using a standard PC approach on the

equation,

∆δ̂i
t RVi,t = λ′ift + εi,t, (5)

for which limiting theory is readily established in the literature, e.g. by Bai and Ng

(2013). The number of common factors to be retained in the analysis can be determined

based on the number of eigenvalues exceeding the mean eigenvalue. Denote f̂∗t the

vector of retained common factor estimates that is a subset of the factor estimates

obtained from (5). Then, f̂∗t can be used in different regression settings as plug-

in estimates to serve, for example, as volatility common factor augmentation. The

estimates f̂∗t can also be used solely to capture the common volatility information,

measuring whose impact on invesment decisions is generally of interest.

3 Optimal portfolio policy with common dy-

namics of volatility

In the setup, we consider that at time t, there are Nt number of stocks that are

investable. Each stock i has a return of ri,t+1 from time t to t + 1 and is associated

with a vector of firm characteristics xi,t and retained estimates of common volatility

factors f̂∗t observed at time t. The stock characteristics can contain, among others,

the market capitalization of the stock and the book-to-market ratio of the stock. The

investor’s problem is then to maximize the conditional expected utility of the portfolio
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return rp,t+1 by choosing the weights wi,t optimally, i.e.,

max
{wi,t}

Nt
i=1

Et[u(rp,t+1)] = Et

[
u

(
Nt∑
i=1

wi,tri,t+1

)]
. (6)

Adopting BSCV (2009), we parameterize the portfolio weights as a function of stock

characteristics as well as the common dynamics of stock volatilities,

wi,t = g(xit, f̂
∗
t ; θ, γ). (7)

In particular, we focus on a linear specification of the portfolio weight function:

wi,t = w̄i,t +
1

Nt

(
θ′x̃i,t + γ′f̂∗t

)
, (8)

where w̄i,t is the weight of the stock i at time t in a benchmark portfolio, e.g. the value-

weighted market portfolio, θ and γ are coefficients to be estimated, f̂∗t is the vector of

common factors of volatilities, and x̃i,t are the characteristics of stock i, standardized

cross-sectionally to have zero mean and unit standard deviation across all stocks at

time t. The interest is in estimating weights as a single function of characteristics, as in

BSCV (2009), and also common volatility drivers that applies to all stocks over time.

The parameterization in (8) brings in the possibility to deviate from the benchmark

portfolio, whose weights are given by w̄i,t, based on x̃i,t and f̂∗t . In practice, standard-

ization of characteristics and the normalization factor 1/Nt are necessary to ensure

that weights are not mischosen; see BSCV (2009) for a discussion.

The coefficient vectors to be estimated, θ and γ, do not vary over time, which implies

that portfolio weights depend only on firm and common volatility characteristics and

not on historical returns. Time-invariant coefficients also imply that the coefficients

that maximize the conditional expected utility of the investor also maximize his un-

conditional expected utility. Therefore, the maximization problem can be formulated
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using (7) as

max
θ,γ

E [u (rp,t+1)] = E

[
u

(
Nt∑
i=1

g(xit, f̂
∗
t ; θ, γ)ri,t+1

)]
. (9)

Since, under some regularity conditions, the empirical moment of the expected

utility function converges to the theoretical one, in practice θ and γ will be estimated

by maximizing the sample analogue of the unconditional expected utility,

max
θ,γ

{
1

T

T−1∑
t=0

u(rp,t+1)

}
= max

θ,γ

{
1

T

T−1∑
t=0

[
u

(
n∑
i=1

g(xit, f̂
∗
t ; θ, γ)ri,t+1

)]}
, (10)

for some prespecified choice of u(·), e.g. log, quadratic or a general constant relative

risk aversion (CRRA) function. While the specification of u(·) is a matter of choice,

the power-utility function of the form

u(c) =
(1 + c)1−ζ

1− ζ
(11)

helps realize the implicit assumption made by time-invariant coefficients in (7) that the

stock characteristics fully capture all aspects of the joint distribution of returns that

are relevant for forming optimal portfolios because (11) not only takes into account

the mean and variance, but also higher-order moments such as skewness and kurtosis.

Moreover, CRRA is directly imposed by this functional form which shows sensitivity

to different risk aversion levels through the parameter ζ.

Using (8), (10) can be expressed as

max
θ,γ

{
1

T

T−1∑
t=0

u(rp,t+1)

}
= max

θ,γ

{
1

T

T−1∑
t=0

[
u

(
n∑
i=1

(
w̄i,t +

1

Nt

(
θ′x̃i,t + γ′f̂∗t

))
ri,t+1

)]}
.

(12)

It is important to note that (12) contains parameter vectors θ and γ that are of small

dimensions because there are only a limited number of stock characteristics and very

few (just one or two) common drivers of stock volatility, which makes their estimations

computationally easy. Using this parametric portfolio policy also reduces the risk of
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imprecise estimation due to overfitting.1

A portfolio policy generated by (8) nests the long-short portfolios. Let us write the

return of the portfolio policy in (8),

rp,t+1 =

Nt∑
i=1

w̄i,t+1ri,t+1 +

Nt∑
i=1

(
1

Nt

(
θ′x̃i,t + γ′f̂∗t

))
ri,t+1

= rm,t+1 + rh,t+1, (13)

where m denotes the benchmark value-weighted market, and h denotes a long-short

hedge fund with weights 1
Nt

(
θ′x̃i,t + γ′f̂∗t

)
summing up to zero. The linear portfolio

policy weights in (8) therefore also nests the popular portfolios of Fama and French

(1993, 2015) and Carhart (1997). For example, the return of the three-factor portfolio

by Fama and French (1993) additionally incorporating volatility common factors can

be expressed as

rp,t+1 = rm,t+1 + θsmbrsmb,t+1 + θhmlrhml,t+1 + γ′f̂t
∗ 1

Nt

Nt∑
i=1

ri,t+1 (14)

where rsmb,t+1 and rhml,t+1 are the returns to small-minus-big and high-minus-low

portfolios, respectively.

Having formulated the optimal portfolio weights selection problem as an expected

utility maximization problem, we can obtain the estimates θ̂ and γ̂ resorting to methods

of moments estimation. The estimates θ̂ and γ̂, defined by the optimization problem

in (12) satisfy the first-order conditions

1

T

T−1∑
t=0

{
uθ(rp,t+1)

(
1

Nt
x̂′trt+1

)
+ uγ(rp,t+1)

(
f̂∗t

1

Nt

Nt∑
i=1

ri,t+1

)}
= 0

where uς = (∂/∂ς)u. The asymptotic variance-covariance matrix and its estimate can

be envisaged following Hansen (1982) who shows that GMM estimates such as the

ones we have are consistent, asymptotically normal and efficient within the class of

1For an extensive discussion see BSCV (2009).
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estimators employing the same set of moment conditions. In practice, estimation may

be performed based on multi-step or continuous-updating GMM procedures to acquire

a desired level of parameter convergence.

4 Empirical illustration with data

4.1 Data description and empirical strategy

To illustrate the impact of incorporating common volatility dynamics into the paramet-

ric portfolio policy function by BSCV (2009), we explore the performance of industry

portfolios because they are more informative about economic activity rather than being

of specific investment interest.

We use daily return data on 30 U.S. industries and the composite average index

of NYSE, NASDAQ and AMEX for the time period January 1966 - December 2014

downloaded from Ken French’s Data Library along with the risk-free rates to calculate

monthly industry and market RV’s employing (1). We otherwise use the monthly

data readily available for the three Fama-French factors in French’s Data library. In

the application, the investor is restricted to invest only in stocks. As also discussed

by BSCV (2009), the reason for not including the risk-free asset as an investment

opportunity is that the varying leverage induced by the risk-free asset only corresponds

to a change in the scale of the stock portfolio weights.

The raw data requires standardization so that the results become comparable. The

stock characteristics, xit, show varying cross-sectional means and standard deviations

that we take into account. The risk aversion is taken to be five. The CRRA utility

function in (11) is used in a two-step GMM setting to determine the optimal portfolio

weights.

With the goal of studying the predictive ability of the portfolio using common

volatility factors, we divide the study sample into two groups: the in-sample analysis

uses equity return data from January 1966 to August 2008 (512 data points), and the
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out-of-sample analysis focuses on the period September 2008 - December 2014 (76 data

points), including the recent financial crisis. There is no specific reason as to why we

split the sample to these two periods apart from the interest in investigating whether

there are huge differences in terms of portfolio performance between pre- and post-crisis

periods. Clearly different out-of-sample periods can also be considered.

We first estimate the common factors of industry RV’s to be able to use them as

further characteristics in the portfolio weight function. We then estimate the param-

eters of the portfolio whose returns are given by (14). Based on these estimates, we

calculate portfolio weight statistics alongside with the unconditional mean, standard

deviation, skewness and Sharpe ratio of the optimal portfolio.

4.2 Estimation of the common factors in industry RV’s

First, we estimate the fractional integration orders of industry and market RV’s based

on Robinson (1995)’s local Whittle method that requires specifying the number of

Fourier frequencies to be used. It is well known that long memory should be inves-

tigated in lower frequencies since higher frequencies are susceptible to short-memory

contamination. This is why, we focus on m = 45, 71 Fourier frequencies corresponding

to T .6 and T .67 with T = 588 the time-series length in our dataset.

The nonstationarity bound for long-memory processes is δi = 0.5, so an indicator

exhibits nonstationary long memory for δi ≥ 0.5 and stationary long memory for δi <

0.5 and δi 6= 0. Based on the results in Table 1, industry RV’s show some heterogeneity

in terms of stationarity while the market RV is stationary. This stresses the importance

of appropriately differencing the RV’s before carrying out PC estimation to obtain

factor structure estimates.

After differencing the industry RV’s by their corresponding integration orders2,

we carry out a PC estimation on (5) to get the common factor estimates. The PC

estimation indicates that there is only one common factor driving the industry RV’s,

as can also be seen from the screeplot in Figure 1. This common factor explains 69.64%

2m = 45 Fourier frequencies were used.
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of the total variation in the industry RV’s.

It is also important to show that a common-factor model fits the industry RV’s

well. This can be checked by the uniqueness of variances that are not captured by

the common factor: if uniqueness ratios are small, or equivalently if communality=1-

uniqueness is large, then there is evidence that a common-factor model is well suited to

the analysis of industry RV’s. Table 2 below shows that the factor loadings estimates

are positive and large while the uniqueness ratios are small. So, a common-factor model

indeed fits industry RV’s well.

4.3 Portfolio performance incorporating the common fac-

tor of industry RV’s

In Section 3, we have shown that the linear portfolio policy in (8) nests many widely

analyzed portfolios, such as those of Fama and French (1993), Carhart (1997) and

Fama and French (2015). To simply illustrate the impact of incorporating common

volatility dynamics into the parametric policy function of BSCV (2009), we restrict

our attention to the portfolio of Fama and French (1993) that we discussed in (14).

That said, obviously other portfolios can also be analyzed but the impact of common

volatility dynamics on portfolio selection can be determined more easily in this less

complicated setting.

We first consider the optimization problem in (12) as is, and then restrict γ = 0

to be able to determine the impact of f̂∗t on optimal portfolio selection. A generalized

method of moments estimation for the portfolio policy incorporating volatility common

factor in (8) based on (11) leads to the results in Table 3.

The first six rows of Table 3 present the estimated coefficients of parametric portfolio

policy function with volatility common factor along with their standard errors. These

coefficients indicate that the optimal portfolio is determined by choosing small firms,

value stocks and less volatile stocks since the coefficients are positive and statistically

significant for smb and hml while it is negative for f̂∗t . The finding that the deviation
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of the optimal weights from the benchmark weights increases with smb and hml and

decreases with f̂∗t is quite intuitive and mirrors the findings in the literature.

Rows seven to eleven of Table 3 describe the weights of the optimized portfolio.

The average absolute weight of the optimal portfolio is equal to 0.3871% in sample and

1.6822% out of sample. The average (over time) maximum and minimum weights of

the optimal portfolio are 1.0639% and -4.4701% for the in-sample period and 4.0439%

and -3.6111% for the out-of-sample period, respectively. The average sum of negative

weights in the optimal portfolio is -0.4930 in sample and -0.1308 out of sample. The

average fraction of negative weights (shorted equities) in the optimal portfolio is 0.2047

for in sample and 0.0933 for out of sample. Therefore, the optimal portfolio using

common RV factor does not reflect unreasonably extreme bets on individual equities

and could well be implemented by a combination of an index fund that reflects the

market and a long-short equity hedge fund as in (13).

The remaining rows of Table 3 characterize the performance of the optimal portfolio.

The optimal portfolio has an average monthly return of 0.51% in sample and 1.87%

out of sample. The standard deviation of the optimal portfolio returns is 0.0161 and

0.0359, respectively, for in sample and out of sample that translates into Sharpe ratios

of 0.3158 and 0.5211, respectively. Skewness is positive and large for both split-sample

periods indicating that there is a decreased likelihood of encountering a large negative

return.

In order to show that accounting for common volatility dynamics leads to better

portfolio performance, we consider the parametric portfolio policy restricting the at-

tention to smb and hml only, i.e. γ = 0. The estimation results along with portfolio

weight and return statistics are reported in Table 4.

The estimated coefficients are positive for both smb and hml in sample and out of

sample. That is, small firms and value stocks are positively weighed in for the selection

of the optimal portfolio, which is in line with the findings in the literature. In the out-

of-sample period, smb does not have a significant role in the determination of optimal

portfolio weights but the coefficient of hml remains significant, indicating that in the
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post-crisis period the investment decision is based on high value stocks regardless of

firm size.

Rows seven to eleven of Table 4 describe the weights of the optimized portfolio that

does not account for common volatility dynamics. The average absolute weight of this

portfolio is equal to 0.1949% in sample and 1.3333% out of sample. The average (over

time) maximum and minimum weights of this portfolio are 0.2113% and 0.1807% for the

in-sample period and 1.3984% and 1.2521% for the out-of-sample period, respectively.

The average fraction of negative weights (shorted equities) in the optimal portfolio is

0 for in sample and out of sample, indicating that this portfolio policy recommends

not shorting any of the equities. These findings contrast with the portfolio weight

statistics in Table 3 in that accounting for common volatility dynamics leads to the

recommendation to short equities whose risk is high.

The remaining rows of Table 4 summarizes the optimal portfolio return statistics.

The optimal portfolio has an average monthly return of 0.19% in sample and 1.63%

out of sample. The standard deviation of the optimal portfolio returns is 0.0182 and

0.0762, respectively, for in sample and out of sample that translates into Sharpe ratios

of 0.1044 and 0.2138, respectively. Skewness is negative for both split-sample periods

indicating that there is a likelihood of encountering a large negative return. These

results contrast poorly to the optimal portfolio return statistics in Table 3 in that

the portfolio policy accounting for common volatility dynamics has higher average

monthly returns, reduced portfolio risk, higher Sharpe ratios and positive skewness

both in sample and out of sample.

4.4 The relationship between common factor of industry

RV’s and variance risk premium

When an analysis is carried out at the macroeconomic level based on industry portfo-

lios, it may also be interesting to establish the ties between the factor-structure esti-

mates obtained from (5) and a general measure such as variance risk premium (VRP)
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since an economic discussion can then be pursued.

Common volatility dynamics can be linked to variance risk premium that is defined

as the difference between the ex-ante risk neutral expectation of the future stock market

return variance and the expectation of the stock market return variance between time

t and t+ 1:

V RPt ≡ EQ
t (V art,t+1 (rt+1))− EP

t (V art,t+1 (rt+1)) ,

where “EP
t ” denotes the conditional expectation with respect to physical probabil-

ity. V RPt is unobservable and can be estimated by replacing EQ
t (V art,t+1 (rt+1)) and

EP
t (V art,t+1 (rt+1)) by their estimates ÊQ

t (V art,t+1 (rt+1)) and ÊP
t (V art,t+1 (rt+1)) ,

respectively,

V̂ RP t ≡ ÊQ
t (V art,t+1 (rt+1))− ÊP

t (V art,t+1 (rt+1)) ,

where in practice ÊQ
t (V art,t+1 (rt+1)) and the true variance V art,t+1 (rt+1) are replaced

by the squared VIX and realized variance, respectively.

We then consider the regression for the time period January 1990 - December 2012

whose data we borrow from Zhou (2010):

V̂ RP t = ξ0 + ξ′1f̂
∗
t + εi,t. (15)

The estimation results are summarized in Table 5. These results indicate that the

common factor of industry RV’s are positively linked to the estimate of variance risk

premium. The common factor of industry RV’s is a systematic risk measure while

VRP is a measure of the degree of risk aversion in an economy rather than a market

risk measure as argued by Bollerslev et al. (2009). The positive relationship between

VRP and common factor of industry RV’s can then be explained as follows: an increase

(decrease) in systematic risk leads risk-averse agents to cut (increase) their consumption

and investment expenditures and shift their portfolios from more (less) risky assets to

less (more) risky ones, which is also a consequence of an increase (decrease) in the
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degree of risk aversion, as reflected by VRP.

5 Conclusion

We have proposed incorporating common volatility dynamics as a determinant of the

optimal portfolio weights that contrasts well with both the traditional Markowitz ap-

proach and the approach by BSCV (2009) who did not account for volatility effects in

their portfolio selection methods. We have empirically illustrated the positive impact

of accounting for common volatility dynamics on portfolio performance in a parametric

portfolio setting, and linked the common volatility factor to VRP, which is widely used

in empirical analyses.

While we restricted our attention to industry portfolios in the empirical analysis to

be able to understand general economic activity, further research can be undertaken

considering other investment-purpose portfolios. It could be also interesting to develop

forecasting methods using the parametric portfolio policy that incorporates common

volatility dynamics. Finally, further work is warranted for additional portfolio statis-

tics, such as turnover ratios and truncated weights, which we purposefully neglect in

this paper to focus on the main ideas.
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Table 1: Estimated Integration Orders of Industry Realized Volatilities

m = 45 :

Food Bvrgs Tobac Games Books Hshld Clths Hlth Chems Txtls Market

0.36 0.47 0.61 0.45 0.50 0.37 0.48 0.35 0.49 0.53 0.41

Cnstr Steel FabPr ElcEq Autos Carry Mines Coal Oil Util

0.48 0.49 0.44 0.38 0.45 0.41 0.52 0.61 0.49 0.45

Telcm Servs BusEq Paper Trans Whlsl Rtail Meals Finan Other

0.46 0.45 0.56 0.42 0.39 0.34 0.49 0.48 0.52 0.49

m = 71 :

Food Bvrgs Tobac Games Books Hshld Clths Hlth Chems Txtls Market

0.35 0.45 0.49 0.41 0.51 0.33 0.47 0.33 0.45 0.57 0.40

Cnstr Steel FabPr ElcEq Autos Carry Mines Coal Oil Util

0.44 0.51 0.45 0.42 0.50 0.40 0.45 0.53 0.43 0.44

Telcm Servs BusEq Paper Trans Whlsl Rtail Meals Finan Other

0.48 0.42 0.54 0.42 0.40 0.34 0.42 0.45 0.65 0.47

Note: This table reports the local Whittle estimation results of the individual integration orders of
industry and market realized volatilities with m = 45, 71 Fourier frequencies. Estimates are rounded
to two digits after zero. Standard errors of the estimates are 0.0745 and 0.0593 respectively for
m = 45, 71.
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Figure 1: This screeplot draws the eigenvalues associated with factors and the mean eigen-
value which is equal to 1. Only eigenvalues greater than 1 are retained.
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Table 2: Estimated Factor Loadings and Uniqueness of Variances

RVi Factor loadings Ratio of variance unique to RVi

food 0.8743 0.2357
beer 0.7593 0.4235

smoke 0.5088 0.7411
games 0.8544 0.2699
books 0.8530 0.2724
hshld 0.8622 0.2566
clths 0.8600 0.2605
hlth 0.8230 0.3227

chems 0.8934 0.2018
txtls 0.8017 0.3572
cnstr 0.9080 0.1755
steel 0.8537 0.2712
fabpr 0.9286 0.1377
elceq 0.8920 0.2044
autos 0.8528 0.2727
carry 0.8516 0.2748
mines 0.7192 0.4828
coal 0.6890 0.5252
oil 0.8161 0.3340
util 0.7699 0.4073

telcm 0.8178 0.3312
servs 0.8708 0.2418
buseq 0.8055 0.3512
paper 0.8852 0.2165
trans 0.8692 0.2444
whlsl 0.9059 0.1793
rtail 0.8707 0.2418

meals 0.8156 0.3348
fin 0.8397 0.2948

other 0.8696 0.2439

Note: This table reports the PC estimation results for industry RV’s. The uniqueness ratios are
quite small indicating that the common factor explains much of the variance of each industry RV.
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Table 3: Portfolio performance with common volatility factor

Parameters In-Sample Out-of-Sample

θ̂smb 0.0217∗∗∗ 0.0067∗∗∗

(0.0042) (0.0015)

θ̂hml 0.0084∗∗∗ 0.0033∗∗∗

(0.0022) (0.0012)

γ̂ -0.0756∗∗∗ -0.0254∗∗∗

(0.0107) (0.0058)

|wi| × 100 0.3871 1.6822

maxwi×100 1.0639 4.0439

minwi×100 -4.4701 -3.6111∑
wiI(wi< 0) -0.4930 -0.1308∑
I(wi≤ 0)/n 0.2047 0.0933

r̄ 0.51% 1.87%
σ(r) 0.0161 0.0359

Skewness 5.4814 3.1426

Sharpe Ratio 0.3158 0.5211

Note: This table reports the estimation results of portfolio policy in (8). In-sample study covers the period

from January 1966 to August 2008, and the out-of-sample study, carried out based on a rolling window

of 12 months, covers the period from September 2008 to December 2014. Rows 7 to 11 show statistics

of the portfolio weights averaged across time. These statistics include average absolute portfolio weight

(|wi| × 100), the average maximum (maxwi×100) and minimum (minwi×100) portfolio weights, the

average sum of negative portfolio weights (
∑
wiI(wi< 0)) and the fraction of the negative portfolio weights

(
∑
I(wi≤ 0)/n), respectively. Rows 12 to 15 display the monthly portfolio statistics: average monthly

return (r̄), standard deviation (σ(r)), skewness and Sharpe ratio. Risk aversion is assumed to be equal to

five. “***” indicates statistical significance at the 1% level.
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Table 4: Portfolio performance without common volatility factor

Parameters In-Sample Out-of-Sample

θ̂smb 0.00018∗∗ 0.00011

(0.00008) (0.00015)

θ̂hml 0.00058∗∗∗ 0.00061∗∗∗

(0.00008) (0.00011)

|wi| × 100 0.1949 1.3333

maxwi×100 0.2113 1.3984

minwi×100 0.1807 1.2521∑
wiI(wi< 0) 0 0∑
I(wi≤ 0)/n 0 0

r̄ 0.19% 1.63%
σ(r) 0.0182 0.0762

Skewness -0.4519 -0.5559

Sharpe Ratio 0.1044 0.2138

Note: This table reports the estimation results of portfolio policy in (8) without the common factor of

industry RV’s, i.e. γ = 0. In-sample study covers the period from January 1966 to August 2008, and the

out-of-sample study, carried out based on a rolling window of 12 months, covers the period from September

2008 to December 2014. Rows 7 to 11 show statistics of the portfolio weights averaged across time. These

statistics include average absolute portfolio weight (|wi| × 100), the average maximum (maxwi×100) and

minimum (minwi×100) portfolio weights, the average sum of negative portfolio weights (
∑
wiI(wi< 0))

and the fraction of the negative portfolio weights (
∑
I(wi≤ 0)/n), respectively. Rows 12 to 15 display the

monthly portfolio statistics: average monthly return (r̄), standard deviation (σ(r)), skewness and Sharpe

ratio. Risk aversion is assumed to be equal to five. “***” and “**” indicate statistical significance at the

1% and 5% level, respectively.

Table 5: VRP and Common Factor of Industry RV’s

Estimates ξ̂0 ξ̂1
0.0088 0.5459∗∗∗

(0.0479) (0.0433)
[0.8550] [0.0000]

Note: This table reports the regression results of the variance risk premium estimate on the com-
mon factor of industry RV’s based on (15). Heteroskedasticity and autocorrelation robust standard
errors are reported in parantheses and the corresponding p-values in square brackets. ∗∗∗ indicates
significance at the 1% level.
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