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Abstract

In this paper we propose a continuous-time, Gaussian, linear, state-space system to
model the relation between global mean sea level (GMSL) and the global mean tem-
perature (GMT), with the aim of making long-term projections for the GMSL. We
provide a justification for the model specification based on popular semi-empirical
methods present in the literature and on zero-dimensional energy balance models.
We show that some of the models developed in the literature on semi-empirical mod-
els can be analysed within this framework. We use the sea-level data reconstruction
developed in Church and White (2011) and the temperature reconstruction from
Hansen et al. (2010). We compare the forecasting performance of the proposed
specification to the procedures developed in Rahmstorf (2007b) and Vermeer and
Rahmstorf (2009). Finally, we compute projections for the sea-level rise conditional
on the 21st century SRES temperature scenarios of the IPCC fourth assessment
report. Furthermore, we propose a bootstrap procedure to compute confidence in-
tervals for the projections, based on the method introduced in Rodriguez and Ruiz
(2009).
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1 Introduction

Climate changes, the increase in the global temperature and sea level are long-standing
topics. Monitoring and predicting the rise in the sea level is of great importance due
to its close relation with global climate changes and the socio-economic effects it entails.
In particular, the sea-level rise has direct consequences for populations living near the
current mean sea level, Anthoff et al. (2006), Anthoff et al. (2010), Arnell et al. (2005),
Sugiyama et al. (2008). Physical and statistical models are needed to measure the rate of
change of the sea level and understand its relation to anthropogenic and natural causes.

In this paper we propose a statistical framework to model the relation between the
global mean sea level (GMSL) and the global mean temperature (GMT), with the aim
of making long-term projections for the GMSL. The model belongs to the class of semi-
empirical models. We provide a justification for the model specification based on popular
semi-empirical methods present in the literature and on zero-dimensional energy balance
models. We show that some of the semi-empirical models developed in the literature to
study the relation between sea-level rise and temperature can be analysed within this
framework.

To date, there are two methods of estimating the sea-level rise as a function of climate
forcing. The conventional approach, used by the Intergovernmental Panel on Climate
Change (IPCC) climate assessments, is to use process-based models to estimate contri-
butions from the sea-level components and then sum them to obtain an estimate of the
sea-level increase, see for instance Meehl et al. (2007), Meehl et al. (2007), Pardaens et al.
(2011), Solomon et al. (2009). Variations in the sea level originate from steric, eustatic,
and non-climate changes. By steric, we mean sea-level variations due to ocean volume
changes, resulting from temperature (thermosteric) and salinity (halosteric) variations.
By eustatic, we mean variations in the mass of the oceans as a result of water exchanges
between the oceans and other surface reservoirs (ice sheets, glaciers, land water reservoirs,
and the atmosphere)1. By non-climate causes we mean variations in the quantity of wa-
ter in the oceans due to human impact, such as the building of dams and the extraction
of groundwater. However, the theoretical understanding of the different contributors is
incomplete, as IPCC models under-predict rates of sea-level increase.

The alternative way of making projections of the sea level is the class of semi-empirical
models. These models analyse statistical relationships using physically plausible models
of reduced complexity in which the sea-level rate of change depends on the global tem-
perature. The main idea behind semi-empirical models is that the steric and eustatic
contributors to the sea level (the major ones) respond to changes in the global tempera-
ture. The first semi-empirical model was proposed by Gornitz et al. (1982) who specify a
linear relation between sea level and temperature. Some more recent models where devel-
oped by specifying a differential equation, relating the sea level to temperature or other
climate forcing. Representative examples are Rahmstorf (2007b), Vermeer and Rahmstorf
(2009), Grinsted et al. (2010), Kemp et al. (2011), Jevrejeva et al. (2009), Jevrejeva et al.
(2010), Jevrejeva et al. (2012b), Jevrejeva et al. (2012a).

All semi-empirical models project higher sea-level rise, for the 21st century, that the
last generation of process-based models, summarized in the IPCC Fourth Assessment Re-
port, see for instance Moore et al. (2013), Cazenave and Nerem (2004), Munk (2002), and

1In this paper we adopt the same definitions of steric and eustatic used in Cazenave and Nerem (2004).
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Rahmstorf (2007b). A comprehensive survey on the different process-based and semi-
empirical models can be found in Moore et al. (2013).

We propose a state-space approach to forecast the global mean sea level, conditional
on the global mean temperature. State-space systems allow to address the problems of
smoothing, detrending, and parameter estimation in a unique framework. We consider
in particular continuous-time, linear, Gaussian state-space systems of the type described
in Bergstrom (1997). More specifically, the state vector follows a multivariate, Gaussian,
OrnsteinUhlenbeck process. The discretised system preserves its linearity and Kalman
filtering techniques apply. In particular, the Kalman filter is used for two tasks: the first
one is to compute the likelihood function of the state-space system, needed for parameter
estimation, and the second one is to make forecasts of the sea level, conditional on the
temperature.

The statistical framework of state-space systems allows to distinguish between mea-
surement noise and model uncertainty, through the measurement and state equations,
respectively. Furthermore, in this setup it is possible to consider different levels of mea-
surement noise for different points in time. In fact, the reconstructions of the sea level,
in particular, are typically very noisy and the measurements uncertainty reflects, for in-
stance, the changes in the measurement instruments throughout the decades, as well as
the changes in the data sources. In this study we use the sea-level reconstruction from
Church and White (2011), who also provide an estimate of the uncertainty of their sea-
level estimates. In the state-space approach these uncertainties (measured as standard
deviations) are directly used to parameterise the time-varying variances of the measure-
ment errors of the sea-level time series. Temperature data are taken from Hansen et al.
(2010). Both sea level and temperature data correspond to monthly reconstructions.

We provide a justification for the model specification based on popular semi-empirical
methods present in the literature and on zero-dimensional energy balance models. In more
detail, we specified the system dynamics of sea level and temperature as well as the func-
tional form linking these variables, consistently with the ones suggested by the existing
literature. We show that some of the semi-empirical models developed in the literature
to study the relation between sea level and temperature, can be analysed within this
framework.

Semi-empirical models are usually specified as differential equations, as in Rahmstorf
(2007b), Vermeer and Rahmstorf (2009), Grinsted et al. (2010), Kemp et al. (2011), Jevre-
jeva et al. (2009), Jevrejeva et al. (2010), Jevrejeva et al. (2012b), and Jevrejeva et al.
(2012a). By specifying the state-space system in continuous time and then deriving the
exact discrete-time system, we can make inference on the structural parameters driving
the continuous-time process. A similar approach was used in Pretis (2015) (forthcoming),
in which the author shows the equivalence of a two-component energy balance model to
a cointegrated system. He then shows the exact mapping between the continuous-time
system to the discrete-time one, that amounts to a cointegrated vector autoregressive
system.

In the literature on semi-empirical models, state-space system representations and
the Kalman filter are often used with the aim of assimilating noisy measurements from
different sources2. Such studies are for instance, Miller and Cane (1989) and Chan et al.

2In this context, assimilation usually refers to the filtering of a variable, measured at a specific point
in time and geographic location, by taking into account information from measurements taken at neigh-
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(1996) who use the Kalman filter with an underlying physical model to assimilate average
sea-level anomalies from tide gauge measurements and Cane et al. (1996) and Hay et al.
(2013).

The paper is organised as follows: in Section 2, we explain the statistical framework
and introduce the model specification, showing how it relates to some important models
in the literature; in Section 3, we describe the dataset; in Section 4, we illustrate the fore-
casting procedures; in Section 5, we provide some details on the computational aspects of
the analysis; in Section 6, we present results; finally, Section 7 concludes.

2 Model specification

2.1 Energy balance models and temperature dynamics

In this section we present the foundations for the temperature process used in the state-
space model proposed in Section 2.3. This section draws heavily on North et al. (1981)
and Imkeller (2001) and we refer the reader to these papers for more details. The start-
ing model, for the temperature, belongs to the class of zero-dimensional energy balance
models (EBMs), detailed in North et al. (1981), and whose review is based on the models
introduced in Budyko (1968), Budyko (1969), Budyko (1972), and Sellers (1969). These
models are based on thermodynamic concepts and global radiative heat balance, for the
Earth system. This type of models describe the global temperature process as (possibly
stochastic) univariate, differential equations. In particular, the change in the Planet’s
global temperature at time t is seen as a function of the difference between the incoming
and outgoing radiation.

The incoming (absorbed) radiation Rin is caused by solar irradiance (i.e. the sun-
light reaching the Earth) and is affected by the reflectivity of the Planet. The incoming
radiation is then a function of the solar constant3 σ0, the albedo coefficient4 α, and the
radius R of the Earth, in particular: Rin = σ0(1−α)πR2. The outgoing radiation Rout is
assumed, for simplicity, to be black-body5 radiation, obeying the Stefan-Boltzmann law6.
It is then a function of the absolute temperature T of the Planet and its radius R, in
particular: Rout = 4πR2kSBT

4.
The analysis of zero-dimensional EBMs begins with the concept of global radiative

heat balance. In radiative equilibrium the rate at which solar radiation is absorbed by
the Planet matches the rate at which infrared radiation is emitted by it. The condition

bouring locations at the same point in time. If the filtered variables are output from the Kalman filter,
the contribution of variable j to the estimate of variable i is given by element (i, j) of the Kalman gain
matrix.

3The solar constant is a measure of the mean solar electromagnetic radiation per unit area that would
be incident on a plane perpendicular to the sun rays.

4The term albedo, Latin for white, describes the average reflection coefficient of an object. The
greenhouse effect, for instance, can lower the albedo of the Earth, and cause global warming.

5A black body is an idealized physical object that absorbs all incident electromagnetic radiation. The
total energy per unit of time, per unit of surface area, radiated by a black body depends solely on its
absolute temperature and obeys the Stefan-Boltzman law.

6The Stefan-Boltzmann law describes the power radiated from a black body in terms of its thermo-
dynamic temperature. The thermodynamic temperature (absolute temperature) is commonly expressed
in Kelvin [K], where 0[K] = −273.15[◦C] corresponds to the lowest achievable temperature, according to
the third principle of thermodynamics.
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of radiative equilibrium is given by

Rout
︷ ︸︸ ︷

4πR2kSBT
4 =

Rin
︷ ︸︸ ︷

σ0(1− α)πR2, (1)

where T is the effective radiating temperature of the Planet, and kSB = 0.56687 ·
10−7[Wm−2K4], is the Stefan-Boltzmann constant. Note that both sides of equation
(1) are expressed in units of power, in particular in Watts [W ]. When the incoming ra-
diation does not match the outgoing radiation, the temperature of the Planet changes in
order to compensate the disequilibrium. The time-evolution of the temperature can then
be modelled with the following zero-dimensional EBM:

C
dT (t)

dt
= Rin − Rout

= σ0(1− α)πR2 − 4πR2kSBT
4(t), (2)

where C, that has units of
[
W ·s
K

]
=

[
J
K

]
, represents global thermal inertia and regulates

the speed of the temperature response. With T (t) we make explicit the dependence of
temperature on time. Equation (2) can be written as

C
dT (t)

dt
= Qα̂− γT 4(t),

(3)

where Q is a constant proportional to σ0, γ is a constant proportional to kSB, and
α̂ = (1 − α) is the co-albedo. Note that equation (3) allows to relax the black-body
assumption. In fact, for a so called grey body7 we have that the emissive power, per unit
surface area is I = εkSBT

4, with ε < 1.
Equation (3) is purely deterministic. To allow for random forcing, stochastic EBM

have been introduced, see for instance Fraedrich (1978) and Hasselmann (1976). A
stochastic EBM can be written in the following way:

C
dT (t)

dt
= Qα̂ − γT 4(t) + Ẇ (t), (4)

where Ẇ (t) is a white noise random forcing8.
Depending on the time scale under examination, the solar constant funtion Q can

be allowed to be time-varying. For instance, the Milankovich cycle responsible for the
glaciations, i.e. a cyclical mutation in the eccentricity of the Earth orbit due to the
gravitational pull of other planets, has a period of approximately 105 years and can be
expressed as Q(t) = Q0 + sin(ωt) with ω = 10−5[1/year], see Imkeller (2001). Similarly,
the co-albedo α̂ can be assumed to be time-varying and, in particular, to depend on the
global temperature, i.e. α̂(T (t)). This is motivated, among other reasons, by the ice-cap
feedback. That is, the albedo of the Planet changes with the temperature as a result of
the shrinking or spreading of ice sheets on the Earth’s surface, that depends on the global

7A body that does not absorb all incident radiation.
8The white noise process is defined as E[Ẇ (t)] and E[Ẇ (t)Ẇ (t′)] = q2δ(t − t′) where δ(t − t′) is a

Dirac delta, and q is a constant, see also Nicolis (1982).
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temperature.
Taking into consideration these arguments, equation (4) can be written in the form

C
dT (t)

dt
= Rin − Rout + Ẇ (t)

= Q(t)α̂(T (t))− γT 4(t) + Ẇ (t). (5)

Different specifications for Rin and Rout have been suggested in the literature. Budyko
(1969), for instance, suggested that the infrared radiation to space, Rout, can be repre-
sented as a linear function of the surface temperature T , that is:

4πR2σT 4(t) ∼= 4πR2σ(δ1 + δ2T (t)), (6)

where δ1, and δ2 are constants, taking into account factors such as average cloudiness,
the effects of infrared absorbing gases, and the variability of water vapor. Sellers (1969)
suggested taking a linear approximation also of the albedo, or similarly, of the co-albedo:

α̂(T (t)) = β1 + β2T (t), (7)

where β1 and β2 are constants.
We now show that some important special cases of model (5) can be written in the

form

dT (t) =
{
bT + κTµT (t) + aTSS(t) + aTTT (t)

}
dt+ dηT (t), (8)

where bT , aTS, aTT , and κT are constants, µT (t) is a time-varying process, S(t) is the
sea-level process, and ηT (t) is a scaled Brownian motion with E[dηT (t)dηT (t)] = ΣTTdt.
In particular, equation (8) is an exact representation of model (5) for these specifications:

I. for a time-invariant solar constant Q, a constant co-albedo α̂, and taking a linear
approximation to Rout = γT 4(t) ∼= δ1 + δ2T (t), we obtain the following relation
between the componets of equation (5) and the ones of equation (8):

bT =
1

C
(Qα̂− δ1), κTµT (t) = 0, aTS = 0, aTT = − 1

C
δ2, dηT (t) 6= 0; (9)

II. for a time-varying solar constant Q(t), a constant co-albedo α̂, and taking a linear
approximation to Rout = γT 4(t) ∼= δ1 + δ2T (t), we obtain:

bT = − 1

C
δ1, κTµT (t) =

1

C
Q(t)α̂, aTS = 0, aTT = − 1

C
δ2, dηT (t) 6= 0; (10)

III. for a time-varying solar constant Q(t), a time varying co-albedo α̂(t), and a linear
approximation to Rout = γT 4(t) ∼= δ1 + δ2T (t), we have:

bT = − 1

C
δ1, κTµT (t) =

1

C
Q(t)α̂(t), aTS = 0, aTT = − 1

C
δ2, dηT (t) 6= 0; (11)
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IV. for a time-invariant solar constant Q, a time varying co-albedo, assuming depen-
dence on the temperature of the co-albedo α̂(T (t)) and linearity in the tempera-
ture α̂(T (t)) = β1 + β2T (t), and taking a linear approximation Rout = γT 4(t) ∼=
δ1 + δ2T (t), we obtain:

bT =
1

C
(Qβ1 − δ1), κTµT (t) = 0, aTS = 0, aTT =

1

C
(Qβ2 − δ2), dηT (t) 6= 0.

(12)

The time-varying component κTµT (t) controls for changes in the albedo and/or solar
constant coefficients. That is, it accounts among other things, for the effects of greenhouse
gases and other phenomena that change the radiation-absorbing properties of the Planet.

2.2 Semi-empirical models and sea-level dynamics

Some of the most representative semi-empirical models in the literature are here briefly
presented. Throughout this section we denote with t time, S(t) the global mean sea level,
and with T (t) the global mean temperature. Parameters are indicated with lower case
letters. We consider the following five models:

I. Gornitz et al. (1982) suggest the following link between sea level and temperature:

S∗(t) = aT ∗ (t− t0) + b, (13)

where S∗ and T ∗ are the 5-year averages of the global sea level and temperature,
respectively. The parameters a and b are estimated by least-squares linear regression
and the time lag t0 is chosen to minimize the variance between (13) and the sea-level
curve.

II. Rahmstorf (2007b) suggests the following differential equation relating sea level to
temperature:

dS(t)

dt
= r (T (t)− T0) , (14)

where r is a parameter to be estimated. The sea-level rise above the previous
equilibrium state can be computed as

S(t) = r

∫ t

t0

(T (s)− T0) ds. (15)

The statistical analysis in Rahmstorf (2007b) is comprised of several steps. First, the
GMSL and GMT series are processed to obtain annual means. Second, a singular
spectrum analysis filter, with a 15-year smoothing period, is applied to the series
of yearly averages. Third, data is divided into 5 years bins, in which the average
is taken. Lastly, the resulting sea-level series in first differences is regressed on
the resulting temperature in levels (with optional detrending of both series before
the regression). The data they use are the global mean sea level from Church and
White (2006) and the global temperature anomalies data from GISTemp, Hansen
et al. (2001). See Holgate et al. (2007) and Rahmstorf (2007a) for comments on the
statistical procedure.
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III. Vermeer and Rahmstorf (2009) suggest the following extension of the previous
model:

dS(t)

dt
= v1 (T (t)− T0) + v2

dT (t)

dt
. (16)

In this model the authors add the term v2
dT (t)
dt

to the Rahmstorf (2007b) model,
corresponding to an “instantaneous” sea-level response. The statistical methodology
is similar to the one in Rahmstorf (2007b) and a thorough description of it can be
found in the online appendix to their paper.

IV. Kemp et al. (2011) propose the following model:

dS(t)

dt
= k1 (T (t)− T0,0) + k2 (T (t)− T0(t)) + k3

dT (t)

dt
,

dT0(t)

dt
=

T (t)− T0(t)

τ
. (17)

The first term captures a slow response compared to the time scale of interest, the
second one captures intermediate time scales, where an initial linear rise gradually
saturates with time scale τ as the base temperature T0 catches up with T (t). In
Rahmstorf (2007b), equation (14), T0 was assumed to be constant. The third term
is the immediate response term introduced by Vermeer and Rahmstorf (2009).

V. Grinsted et al. (2010) propose the following model:

Seq = g1T + g2,

dS(t)

dt
=

Seq − S(t)

τ
, (18)

where Seq is the equilibrium sea level, for a given temperature. They assume a
linear approximation of the relation between sea level and temperature, due to the
closeness of the current sea level to the equilibrium in this climate period (late
Holocene-Anthropocene) and for small changes in the sea level. Equation (18) can
be integrated to give the sea level S over time, using the history of the temperature
T and knowledge of the initial sea level at the start of integration S0. They impose
constraints on the model, suggested by reasonable physical assumptions.

We here show how some of the different model specifications for the relation between sea
level and temperature can be seen as special cases of the following stochastic differential
equation

dS(t) =
{
bS + κSµS(t) + aSSS(t) + aSTT (t)

}
dt+ dηS(t), (19)

where bS, κS, aSS, and aST are parameters, µS(t) is a time-dependent process, and ηS(t)
is a scaled Brownian motion with E[dηS(t)dηS(t)] = ΣSSdt. In particular, models II and
V can be written as particular cases of model (19) if some restrictions are imposed on its
components:

II. for the Rahmstorf (2007b) specification we have the following relation between the
components of equation (19) and equation (14):

bS = −rT0, κSµS(t) = 0, aSS = 0, aST = r, dηS(t) = 0; (20)
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V. for the Grinsted et al. (2010) specification, the relation between the components of
equation (19) and (18) are:

bS =
1

τ
g2, κSµS(t) = 0, aSS = −1

τ
, aST =

1

τ
g1, dηS(t) = 0. (21)

Note that in models II and V the component κSµS(t) is zero. This reflects the fact that
in both papers the series of temperature and sea level are detrended before the parameter
estimation. Instead, we prefer to model the trend component jointly with the temperature
and sea-level dynamics.

2.3 State-space system

Combining the temperature and sea-level dynamics, equations (8) and (19), we obtain
the following multivariate process

d

[
S(t)
T (t)

]

= bdt+

[
aSS aST

aTS aTT

] [
S(t)
T (t)

]

dt +

[
κS 0
0 κT

] [
µS(t)
µT (t)

]

dt+ dη(t),

(22)

where b = [bS : bT ]′, µ(t) = [µS(t) : µT (t)]′ is the trend component, and dη(t) = [dηS(t) :
dηT (t)]′ where η(t) is a scaled, 2-dimensional, Brownian motion with E[dη(t)dη(t)′] = Σdt
and

Σ =

[
ΣSS ΣST

ΣTS ΣTT

]

, (23)

a positive semidefinite covariance matrix.
We consider two parametric forms for the trend component µ(t), namely a linear and a
quadratic trend:

(i) linear trend component,

dµ(t) = λldt, (24)

where λl = [λS
l : λT

l ] are parameters to be estimated;

(ii) quadratic trend component,

dµ(t) = λ(t)dt,

dλ(t) = νqdt, (25)

where λ(t) = [λS(t) : λT (t)]′ is a 2-dimensional process and νq = [νS
q : νT

q ]
′ are

parameters to be estimated.

The choice of the trend components was driven by the forecast performance of the models,
according to the forecasting exercise detailed in Section 4.1.
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2.3.1 State equation

We now show how to obtain the exact discrete representation of the continuous-time state-
space system (22) with linear trend (24) (the derivation for the model with the quadratic
trend (25) is analogous). The system of equations (22)-(24) can be written in compact
form, delivering the followin Gaussian, Ornstein-Uhlenbeck (OU) process:

dα(t) = cdt+Aα(t)dt + dξ(t), (26)

where α(t) = [S(t), T (t), µS(t), µT (t)]′, µS(t) and µT (t) indicate the trends for the sea-
level and the temperature, respectively, dξ(t) = [dη(t)′ : 0′]′, c = [b′ : λ′

l]
′ = [0′ : λ′

l]
′,

and the autoregressive matrix has the form

A =







aSS aST 1 0
aTS aTT 0 1
0 0 0 0
0 0 0 0






, (27)

where we constrain the two parameters κS = κT = 1, as suggested in Bergstrom (1997),
in order to avoid identification issues. We set the intercept b = 0 because of the presence
of trend component. The exact discrete state-space representation can be recovered from
the continuous-time equations following, for instance, Bergstrom (1997). The solution of
the OU process (22) is

α(t) = etAα(0) +

∫ t

0

eA(t−s)cds+

∫ t

0

eA(t−s)dξ(s), (28)

where α(0) is the initial value of the system. Note that the solution (28) always exists.
Denote with τ = 1, . . . , n, n ∈ N, the time instances at which the sea-level and the

temperature processes are sampled (measured), i.e. α(t = τ) = ατ . The relationship
between the state vector at time τ and time τ +1 derives from equation (28) and is given
by

ατ+1 = eAατ +

∫ τ+1

τ

eA(τ+1−s)cds+

∫ τ+1

τ

eA(τ+1−s)dξ(s). (29)

Equation (29) corresponds to a Gaussian, vector autoregressive process of this form

ατ+1 = c∗ +A∗ατ + ξτ , (30)

with ξτ ∼ N(0,Σ∗), where

c∗ =

∫ 1

0

eA(1−s)cds,

A∗ = eA,

Σ∗ =

∫ 1

0

eA(1−s)ΣeA
′(1−s)ds. (31)

The constants aSS, aST , aTS, aTT , λ, and Σ are parameters to be estimated.
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2.3.2 Measurement equation

The global mean sea level and the global mean temperature can be seen as stock variables,
sampled at time instances τ and subject to measurement error, see for instance Harvey
and Stock (1993). Let Sr

τ and T r
τ be the reconstructed (or measured) sea-level and tem-

perature processes, respectively, and Sτ and Tτ the true (unobserved), latent ones. The
measurement equation for system (30) is thus:

[
Sr
τ

T r
τ

]

=

[
Sτ

Tτ

]

+

[
ǫSτ
ǫTτ

]

, (32)

where ǫτ = [ǫSτ : ǫTτ ]
′ ∼ N (0,Hτ ) is a bivariate random vector of independent measure-

ment errors. Note that the variance-covariance matrix is allowed to vary through time,
in particular

Hτ =

[
σ2,S
τ 0
0 σ2,T

]

. (33)

The variance of the measurement error for the sea level σ2,S
τ , is allowed to change in

time. In particular, in this work we use the sea-level reconstruction from Church and
White (2011). In their analysis, the authors provide uncertainty estimates of the sea-level
reconstruction at each point in time. The change in the uncertainty of the reconstructed
sea-level series reflects the change in time of the measurement instruments, as well as the
change in the data sources. Note that in this context, the magnitude of the observation
error variances controls the smoothness of the filtered series of sea level and temperature.
The parameter σ2,T is estimated together with the other system parameters, whereas the
sequence {σ2,S

τ }τ=1:n is fixed and corresponds to the uncertainty values reported in Church
and White (2011).

Combining equations (30) with (32) we obtain a linear, Gaussian, state-space system
(see for instance Brockwell and Davis (2009) and Durbin and Koopman (2012)):

[
Sr
τ

T r
τ

]

=

[
1 0 0 0
0 1 0 0

]







Sτ

Tτ

µS
τ

µT
τ






+ ǫτ , ǫτ ∼ N (0,Hτ ) ,







Sτ+1

Tτ+1

µS
τ+1

µT
τ+1






= c∗ +A∗







Sτ

Tτ

µS
τ

µT
τ






+ ξτ , ξτ ∼ N (0,Σ∗) . (34)

System (34) is linear in the state variables and Kalman filtering/smoothing techniques
apply, allowing to estimate the system parameters by maximum likelihood, see for in-
stance Durbin and Koopman (2012).

In the semi-empirical literature, dynamic models of sea level and temperature are
usually formulated in continuous time. A clear mapping between a multivariate, Gaus-
sian, Ornstein-Uhlenbeck process and its discrete-time analogue allows to make inference
on the parameters of the original process, introducing no bias due to discretizations. A
convenient aspect of specifying the model in state-space form is that measurement noise
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and trends can be modelled in a joint framework. In this way the problem of smoothing,
detrending, and parameter inference can be handled in a unified framework.

The dimensional analysis for the continuous-time and discrete-time systems is pro-
vided in Appendix C.

3 Data

• Temperatures. The temperature data are taken from the GISS dataset, Com-
bined Land-Surface Air and Sea-Surface Water Temperature Anomalies (Land-
Ocean Temperature Index, LOTI). The values are temperature anomalies, i.e. de-
viations from the corresponding 1951-1980 means, Hansen et al. (2010)9. The time
series we use is composed of mean global monthly values. The values of the original
series are in centi-degrees Celsius ([c◦C] = 10−2[◦C]).

• Sea level. The sea-level data is from Church and White (2011)10. The authors
also provide uncertainty estimates for each measurement. They estimate the rise in
global average sea level from satellite altimeter data for 1993-2009 and from coastal
and island sea-level measurements from 1880 to 2009. The measurements of the
original series are in millimetres [mm].

In our analysis we use monthly observations ranging from January 1880 to December
2009, range in which the two series overlap, for a sample size equal to 1560.

• IPCC temperature scenarios. These series correspond to reconstructed and
simulated annual temperatures, from 1900 to 2099 from the 2007 IPCC Fourth
Assessment Report, SRES scenarios. In particular, we use the A1b, A2, B1, and
commit groups of temperature scenarios11. The 4 groups correspond to different
“storylines”12. The storylines “describe the relationships between the forces driving
greenhouse gas and aerosol emissions and their evolution during the 21st century for
large world regions and globally. Each storyline represents different demographic,
social, economic, technological, and environmental developments that diverge in
increasingly irreversible ways.” (Carter (2007, page 9)). Each group has a different
number of scenarios and in total there are 75 scenarios. The 4 scenarios groups can
be described in the following way:

(i) A1b group. This group belongs to the A1 storyline and scenario family, that
is “a future World of very rapid economic growth, global population that peaks
in mid-century and declines thereafter, and rapid introduction of new and more
efficient technologies.” (Carter (2007, page 9)) in which an intermediate level
of emissions has been assumed. There are 21 scenarios belonging to this group.

(ii) A2 group. “A very heterogeneous World with continuously increasing global
population and regionally oriented economic growth that is more fragmented

9Data can be downloaded from http://data.giss.nasa.gov/gistemp/.
10Data can be downloaded from http://www.cmar.csiro.au/sealevel/sl_data_cmar.html.
11Data can be downloaded from http://www.ipcc-data.org/sim/gcm_global/index.html.
12For a precise description of the storylines and scenarios see Carter (2007),

http://www.ipcc-data.org/guidelines/TGICA_guidance_sdciaa_v2_final.pdf.
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and slower than in other storylines.” (Carter (2007, page 9)). There are 17
scenarios belonging to this group.

(iii) B1 group. “A convergent World with the same global population as in the
A1 storyline but with rapid changes in economic structures toward a service
and information economy, with reductions in materials intensity, and the in-
troduction of clean and resource-efficient technologies.” (Carter (2007, page
9)). There are 21 scenarios belonging to this group.

(iv) commit group. In this group of scenarios, the World’s countries commit to
lower greenhouse gases emissions. There are 16 scenarios belonging to this
group.

The A1b and A2 groups reflect scenarios with an acceleration in temperature growth
(high temperature increase); the B1 group reflects scenarios of constant tempera-
ture growth (medium temperature increase); the commit group reflects scenarios of
very low temperature growth (low temperature increase). The measurements of the
original series are in degrees Celsius [◦C].

4 Forecasting

4.1 Model comparison

To assess the forecasting power of the state-space models proposed in Section 2.3, we
carry out the following forecasting exercise. Let n denote the complete sample size (i.e.
n = 1560, corresponding to monthly observations ranging from January 1880 to December
2009), n∗ < n the size of the estimation sample, h the forecast horizon, f = n − n∗ the
number of forecasts for a given estimation sample size. For all forecasting methods, the
setup of the exercise is the following:

1. estimate the system parameters using observations of sea level and temperature
from time t = 1 up to t = n∗;

2. compute forecasts using temperature observations from time t = n∗ + 1 to t = n.

In particular, for the state-space system (34) (and for the model with quadratic trend)
the steps to construct the forecasts are the following :

(i) estimate the system parameters by maximum likelihood, using observations of sea
level and temperature from time t = 1 up to t = n∗ (the likelihood function is
delivered by the Kalman filter, see for instance Durbin and Koopman (2012));

(ii) run the Kalman filter, using the estimated parameters, on the dataset composed
of observations of the sea level from time t = 1 to t = n∗ and observations of the
temperature from t = 1 to t = n.

(iii) the forecasts of the sea level are then the filtered values Ŝn∗+h with h = 1, . . . , f .

Observations of the sea level, from time t = n∗ + 1 to t = n, are treated as missing
values, see Durbin and Koopman (2012) for more details on how to modify the filter in
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case of missing observations. Note that for a linear state-space system the Kalman filter
delivers the best linear predictions of the state vector, conditionally on the observations.
Moreover, if the innovations are Gaussian, the filtered states coincide with conditional
expectations, for more details on the optimality properties of the Kalman filter see Brock-
well and Davis (2009).

We select two benchmark forecasting methods to which we compare our specifica-
tions. In particular, we compare our model to the procedures developed in Rahmstorf
(2007b) and Vermeer and Rahmstorf (2009). The choice of these benchmarks reflects
their popularity in the literature and the replicability of the results in the papers due to
the availability of source codes.

4.1.1 Rahmstorf (2007b) procedure

The first competing method is the one used in Rahmstorf (2007b). The model is based
on equations (14)-(15). The procedure can be summarized as follows:

(i) the sea-level and temperature series, from time t = 1 up to t = n∗, are smoothed
using singular spectrum analysis and embedding dimension equal to ned = 180
months, corresponding to 15 years (15× 12 = 180), as used in their paper;

(ii) first differences of the smoothed sea-level series are then taken;

(iii) the smoothed series (temperature and first differences of the sea level) are then
divided into nbin = 60 months bins, corresponding to 5 years (5× 12 = 60), as used
in the paper, and in each bin the average is taken;

(iv) the time series of bin-averages are then detrended (fitting a linear trend);

(v) the bin-averages of sea level in first differences is then regressed onto the bin-averages
of the temperature in levels;

(vi) the estimated regression coefficients are then used to compute the values of the sea
level in first differences from the out-of-sample (smoothed) temperatures (note that
the information set used comprises the sea-level observations from time t = 1 to
t = n∗, and observations of the temperature from t = 1 to t = n);

(vii) the forecasts of the sea level are then obtained by summing the forecast sea level in
first differences.

We also compute forecasts with the combinations: ned = 60/nbin = 60, ned = 60/nbin =
180, and ned = 180/nbin = 180.

4.1.2 Vermeer and Rahmstorf (2009) procedure

The second competing method is the one used in Vermeer and Rahmstorf (2009). Their
model is based on equation (16). The procedure is similar to the previous one, with the
addition of an extra step, and it can be summarized as follows:

(i) the sea-level and temperature series, from time t = 1 up to t = n∗, are smoothed
using singular spectrum analysis and an embedding dimension equal to ed = 180
months, corresponding to 15 years (15× 12 = 180), as used in the paper;
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(ii) first differences of the smoothed sea-level series are then taken;

(iii) the smoothed series (temperature and first differences of the sea level) are then
divided into 60 months bins, corresponding to 5 years (5×12 = 60), as used in their
paper, and in each bin the average is taken;

(iv) both time series of bin-averages are then detrended (by fitting a linear trend);

(v) the parameter v2, in equation (16) (λ in the notation of their paper), is then selected
as the value for which the correlation between the detrended bin-averages of the
smoothed temperature and the detrended bin-averages of the first differences of the
smoothed sea level, is maximized;

(vi) the bin-averages of the smoothed sea level in first differences are then regressed on
the bin-averages of the smoothed temperature in levels, corrected for the rate of
change of the temperature (that is the v2

dT (t)
dt

factor in equation (16));

(vii) the estimated regression coefficients are then used to compute the values of the sea
level in first differences from the out-of-sample (smoothed) temperatures, corrected

for the v2
dT (t)
dt

factor in equation (16), where the v2 used is the one previously

computed and the rate of change dT (t)
dt

is computed in the same way as before but
from the out-of-sample (smoothed) temperatures (note that the information set used
comprises the sea-level observations from time t = 1 to t = n∗ and observations of
the temperature from t = 1 to t = n);

(viii) the forecasts of the sea level are then obtained by summing the forecast sea level in
first differences.

We also compute forecasts with the combinations: ned = 60/nbin = 60, ned = 60/nbin =
180, and ned = 180/nbin = 180.

4.1.3 Performance measure

As a measure of the relative forecasting power between the models, we take the ratios
of the square roots of the mean squared forecast errors, from the different models. For
model j we have:

Rj
f =

√
√
√
√ 1

f

f
∑

h=1

(

Ŝj
n∗+h − Sr

n∗+h

)

, (35)

where Ŝj
n∗+h denotes the sea-level forecast from the j-th model and Sr

n∗+h is the observed

sea level13. We select different values of n∗. Note that in computing Rj
f we are giving

equal weight to forecasts at different horizons. This strategy is motivated by the final
goal of the model, that is to make long-term projections of the sea level. To compare
the models, we take ratios between the R measures, equation (35), from the different
forecasting models/methods.

13The superscript r stands for “reconstructed”, as the observations are a reconstruction of the sea-level
series, made from different measurements of the sea level.
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4.2 Forecasting conditional on AR4-IPCC temperature scenar-
ios

In this subsection we explain the method used to make long-term projections for the sea
level, conditional on the IPCC temperature scenarios. First, note that the measurements
of sea level and temperature go from January 1880 to December 2009 and correspond to
monthly averages, whereas the IPCC temperature scenarios, ranging from 2010 to 2099,
correspond to yearly values. In order to model the data and the scenarios in the same
framework, we transform the yearly values in monthly ones. In particular, for each sce-
nario we treat the temperature value corresponding to a specific year, as an observation
for the month of July for that year, treating the values for the remaining months as miss-
ing values.

Denote with ntot the sample size of the assembled dataset made up of the monthly
observations of sea level and temperatures plus the IPCC temperature scenarios, in partic-
ular we have ntot = 1560 + 1080 = 2640. To construct the sea-level forecasts, conditional
on the temperature scenarios, we follow these steps:

(i) estimate the system parameters by maximum likelihood using observations of sea
level and temperature from time t = 1 up to time t = n;

(ii) run the Kalman filter, using the estimated parameters, on the dataset composed of
observations of the sea level and temperature from time t = 1 to t = n, and one
temperature scenario from t = n + 1 to t = ntot;

(iii) the forecasts of the sea level are then the smoothed values Ŝn+h with h = 1, . . . , ntot−
n.

The procedure is repeated for each of the 75 temperature scenarios. In order to compute
confidence intervals for the sea-level projections, we first use a bootstrap procedure to
obtain an empirical distribution function (EDF) for the forecasts, conditioning on each
scenario separately. We then aggregate these EDFs using the law of total probabilities,
assigning equal probability to the different scenarios. Denoting with Bi the i-th IPCC
temperature scenario, where i = 1, . . . , N (N = 75) and with h the forecast horizon, the
unconditional empirical distribution function for the sea-level projections is

Pr
(

Ŝt+h ≤ s
)

=

N∑

i=1

Pr
(

Ŝt+h ≤ s|Bi

)

Pr (Bi)

=
1

N

N∑

i=1

Pr
(

Ŝt+h ≤ s|Bi

)

, (36)

where Pr(Ŝt+h ≤ s|Bi) is the conditional distribution function of the sea-level forecast
Ŝt+h, given a temperature scenario Bi, and Pr(Bi) is the probability of the i-th tempera-
ture scenario. The confidence intervals for the forecasts Ŝt+h are then obtained by taking
the 1st and 99th percentiles of the cumulative distribution function Pr(Ŝt+h ≤ s). The
EDFs Pr(Ŝt+h ≤ s|Bi) are obtained using a bootstrap procedure, and the probabilities
Pr(Bi) are set equal to 1/N . We thus assume equal probabilities for the different tem-
perature scenarios, in line with the literature.
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The bootstrap procedure is detailed in Appendix B and it is a modification of the
method proposed in Rodriguez and Ruiz (2009). In Rodriguez and Ruiz (2009), they
consider a time invariant state-space system in which the system parameters do not vary
in time. In the present paper, however, we assume a time-varying measurement noise
variance for the sea level σ2,S

t (33), this introduces heteroskedasticity in the innovations.

5 Computational aspects

The parameters of the state-space system are estimated by maximum likelihood. The
likelihood function is delivered by the Kalman filter. We employ the univariate Kalman
filter derived in Koopman and Durbin (2000), as we assume a diagonal covariance matrix
for the innovations in the measurement equation. The maximum of the likelihood function
has no explicit form solution and numerical methods have to be employed. We make use
of two algorithms:

• CMA-ES. Covariance Matrix Adaptation Evolution Strategy, see Hansen and Os-
termeier (1996)14. This is a genetic algorithm that samples the parameter space
according to a Gaussian search distribution, which changes according to where the
best solutions are found in the parameter space;

• BFGS. Broyden-Fletcher-Goldfarb-Shanno, see for instance Press et al. (2002).
This algorithm belongs to the class of quasi-Newton methods and requires the com-
putation of the gradient of the function to be minimized.

The CMA-ES algorithm performs very well when no good initial values are available but
it is slower to converge than the BFGS routine. The BFGS algorithm, on the other hand,
requires good initial values but converges considerably faster than the CMA-ES algorithm
(once good initial values have been obtained). Hence, we use the CMA-ES algorithm to
find good initial values and then the BFGS one to perform the minimizations with the
different sample sizes, needed in the forecasting exercise detailed in Section 4.

To gain speed we choose C++ as the programming language, using routines from the
Numerical Recipes, Press et al. (2002). We compile and run the executables on a Linux
64-bit operating system using the GCC compiler 15. The integrals appearing in equations
(31) can be computed analytically with the aid, for instance, of MATLABr symbolic
toolbox. The generated code can then be directly converted into C++ code with the
command ccode.

6 Results and discussion

6.1 Model comparison results

To compute the out-of-sample forecasts for model (34) we use the Kalman filter, treating
the sea-level values as missing observations, for the time points at which we want to
forecast it. In the tables 1-4 in Appendix D are reported the ratios (35) for different values

14See https://www.lri.fr/~hansen/cmaesintro.html for references and source codes. The authors
provide C source code for the algorithm which can be easily converted into C++ code.

15See http://gcc.gnu.org/onlinedocs/ for more information on the Gnu Compiler Collection, GCC.
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of the estimation sample n∗ and forecast sample f . We label the different forecasting
models according to the following convention.

• model 1. State-space system (22) with linear trend (24), taking the filtered values
as forecasts;

• model 2. State-space system (22) with linear trend (24), taking the smoothed
values as forecasts;

• model 3. State-space system (22) with quadratic trend (25), taking the filtered
values as forecasts;

• model 4. State-space system (22) with quadratic trend (25), taking the smoothed
values as forecasts;

• model 5. Rahmstorf (2007b) procedure (see Section 4.1.1) with embedding dimen-
sion ned = 60 and number of bins nbin = 60;

• model 6. Rahmstorf (2007b) procedure (see Section 4.1.1) with embedding dimen-
sion ned = 60 and number of bins nbin = 180;

• model 7. Rahmstorf (2007b) procedure (see Section 4.1.1) with embedding dimen-
sion ned = 180 and number of bins nbin = 60;

• model 8. Rahmstorf (2007b) procedure (see Section 4.1.1) with embedding dimen-
sion ned = 180 and number of bins nbin = 180;

• model 9. Vermeer and Rahmstorf (2009) procedure (see Section 4.1.2) with em-
bedding dimension ned = 60 and number of bins nbin = 60;

• model 10. Vermeer and Rahmstorf (2009) procedure (see Section 4.1.2) with em-
bedding dimension ned = 60 and number of bins nbin = 180;

• model 11. Vermeer and Rahmstorf (2009) procedure (see Section 4.1.2) with em-
bedding dimension ned = 180 and number of bins nbin = 60;

• model 12. Vermeer and Rahmstorf (2009) procedure (see Section 4.1.2) with em-
bedding dimension ned = 180 and number of bins nbin = 180.

It can be seen from tables 1-4 that the state-space models 1-2 and 3-4 perform quite
well compared to models 5-12. In particular, the quadratic trend component (in models
3-4) seems to help the forecasting performance of the state-space system. The difference
between the filtered and smoothed forecasts is negligible. These results show that similar
(or better) forecasts can be obtained using the state-space systems presented in Section
2.3, compared to the two benchmark procedures outlined in Section 4.

We also considered specifications without trend components, with stochastic trends,
and/or with various sets of coefficients restricted to zero. All these alternative speci-
fications were found to perform poorly compared to the ones presented in this paper,
in terms of forecasting performance. In particular, setting the coefficient aSS = 0 or
adding stochastic components in the trend process, considerably worsened the forecast
performance of the models.
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6.2 Full sample estimation results

In this subsection we present the parameter estimates relative to models 1-2 and models
3-4. The estimation results are contained in tables 5-6 (for models 1-2) and in tables 7-9
(for models 3-4) and they are divided into estimates for the continuous-time and discrete-
time specifications. The tables can be found in Appendix D. We estimate the parameters
using the complete dataset of sea-level and temperature monthly observations, ranging
from January 1880 to December 2009, for a sample size equal to 1560. We group the
comments according to the different models (1-2 and 3-4):

• models 1-2. The estimated standard deviation of the temperature measurement
error is σT = 7.59[cK] (0.0759[K]), which is slightly lower than the average standard
deviation of the sea-level measurement errors σS = 11.43[mm] (0.01143[m]). The
average σS is computed from the sequence of volatilities {σS

τ }τ=1:n, corresponding
to the uncertainty estimates reported in Church and White (2011). The autore-
gressive coefficients A∗,SS = 0.99 and A∗,TT = 0.92 are both close to unity. The
coefficient linking sea level to temperature is found to be quite small, A∗,ST =
0.0054[mm/cK] (0.00054[m/K]), whereas the one linking temperature to the sea
level A∗,TS = 0.0489[cK/mm] (0.489[K/m]) is quite large.

• models 3-4. The estimated standard deviation of the temperature measurement
error is σT = 7.41[cK] (0.0741[K]). The autoregressive coefficients A∗,SS = 0.97
and A∗,TT = 0.89 are both close to unity. Interestingly, the coefficients linking sea
level to temperature, and vice versa, are found to have a negative sign A∗,ST =
−0.0035[mm/cK] (−0.00035[m/K]), A∗,TS = −0.0426[cK/mm] (−0.426[K/m]).

The parameter aST , if left unrestricted, is estimated to be either positive or negative
(depending on the model and the estimation sample) and of the order of 10−2[mm/cK]
(10−3[m/K]) for a one month time-step. The low value of this parameter may be caused
by long response times of the sea level to the temperature and the fact that the time-step
considered is quite small. Early studies indicate lags in the order of 20 years, between
temperature and sea-level rise, Gornitz et al. (1982). One puzzling fact is the change in
sign of aST and aTS between models 1-2 and 3-4.

We found that when the parameter aSS is left unconstrained, the coefficient linking
sea level and temperature is estimated to be very low. This may suggest long response
times of the sea level to the temperature changes, possible distortions in the sea level and
temperature reconstructions, and/or a misspecification of the functional link between the
two variables.

One interesting finding concerns the role of the sea-level measurement error variance
σ2,S
τ in the state-space system. Namely, this parameter regulates the smoothness of the

filtered (and smoothed) sea-level series. Interestingly, if σ2,S
τ = σ2,S is left unrestricted

and estimated together with the other parameters, the value obtained is very close to
zero. This causes the filtered (and smoothed) sea-level series to essentially coincide with
the observed ones. Intuitively, in this case the forecasts worsen.

6.3 Forecasting conditional on AR4-IPCC scenarios results

In this subsection we report the long-term sea-level projections, computed conditionally
on the different temperature scenarios. See Section 4.2 for more details on the forecasting
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procedure and Section 3 for a description of the temperature scenarios used. The scenarios
are depicted in figure 1. We make sea-level rise projections using models 2 and 4, with
respect to the (smoothed) sea-level value in 2009:

• model 2. The forecasts are quite sensitive to the temperature scenarios. Denote
with q0.01 and q0.99 the 1st and 99th percentiles of the distribution of sea-level fore-
casts for the year 2099. If we condition on all of the 75 temperature scenarios,
taken with equal probability, the sea-level forecasts range from q0.01 = 0.0948[m] to
q0.99 = 0.3525[m] with a mean value of 0.2130[m], see figure 2. This range changes
if different scenario groups are considered separately.

(i) A1b group: forecasts range from q0.01 = 0.1829[m] to q0.99 = 0.3537[m] with
a mean value of 0.2470[m];

(ii) A2 group: forecasts range from q0.01 = 0.2030[m] to q0.99 = 0.3654[m] with a
mean value of 0.2845[m];

(iii) B1 group: forecasts range from q0.01 = 0.1485[m] to q0.99 = 0.2688[m] with a
mean value of 0.1941[m];

(iv) commit group: forecasts range from q0.01 = 0.0868[m] to q0.99 = 0.1489[m]
with a mean value of 0.1174[m].

• model 4. The forecasts are not very sensitive to the temperature scenarios. In
particular, the forecasts relative to 2099 for the sea level range between q0.01 =
0.1999[m] and q0.99 = 0.2817[m], with a mean value of 0.2410[m], conditioning on
all temperature scenarios, taken with equal probability, see figure 3. This range
does not change much if different groups are considered separately.

(i) A1b group: forecasts range from q0.01 = 0.1991[m] to q0.99 = 0.2696[m] with
a mean value of 0.2375[m];

(ii) A2 group: from q0.01 = 0.1886[m] to q0.99 = 0.2704[m] with a mean value of
0.2341[m];

(iii) B1 group: from q0.01 = 0.2121[m] to q0.99 = 0.2738[m] with a mean value of
0.2428[m];

(iv) commit group: from q0.01 = 0.2072[m] to q0.99 = 0.2944[m] with a mean value
of 0.2507[m].

The difference between the average, smoothed sea level in 1990 and the smoothed sea
level in December 2009 is 0.0549[m]. Consequently, to compute the sea-level changes with
respect to the average 1990 level, 0.0549[m] has to be added to the previous values. We
make this remark because in several papers the sea-level rise forecasts are reported with
respect to the 1990 average, e.g. in Rahmstorf (2007b), Vermeer and Rahmstorf (2009),
and Grinsted et al. (2010).
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Figure 1: AR4-IPCC tempterature scenarios.
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Temperature observations and AR4-IPCC-SRES tempterature scenarios. The temperature observations
are yearly averages, ranging from January 1880 to December 2009. The AR4-IPCC-SRES scenarios
correspond to yearly simulated values, ranging from January 2010 to December 2099.

Figure 2: Forecasts based on A1b-A2-B1-commit-IPCC scenarios and model 2.
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Forecasts based on IPCC-SRES (A1b, A2, B1, and commit groups) scenarios and model 2 (see Section
4.2). The observations and the projections are monthly values. The sea-level observations range from
January 1880 to December 2009. The projections correspond to smoothed monthly values and range
from January 2010 to December 2099. The base sea-level value is the smoothed sea level in December
2009. The confidence bands correspond to a 98% confidence interval (see Section 4.2).
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Figure 3: Forecasts based on A1b-A2-B1-commit-IPCC scenarios and model 4.
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Forecasts based on IPCC-SRES (A1b, A2, B1, and commit groups) scenarios and model 4 (see Section
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January 1880 to December 2009. The projections correspond to smoothed monthly values and range
from January 2010 to December 2099. The base sea-level value is the smoothed sea-level in December
2009. The confidence bands correspond to a 98% confidence interval (see Section 4.2).

7 Conclusions

In this paper we proposed a statistical framework to model and forecast the global mean
sea level, conditional on the global mean temperature. The specification is formulated as
a continuous-time state-space system. The state vector is composed of the unobserved
sea level and temperature processes, as well as trend components and, jointly, follow an
Ornstein-Uhlenbeck process. This process can be exactly discretised. The measurement
equation adds independent noise to the discretely sampled states. The resulting system
is linear and Kalman filtering techniques apply. In particular, the Kalman filter is used to
compute the likelihood function. Furthermore, we exploit the ability of the Kalman filter
to deal with missing observations, to make projections for the sea level. The state-space
specification also allows to model changes in the accuracy of the reconstructed sea-level
series. Specifically, this is achieved by allowing the volatility parameter of the sea-level
measurement error to be time-varying, and matching it to the sea-level uncertainty values
reported in Church and White (2011). We find that this modelling scheme performs bet-
ter, in forecasting, compared to one in which the volatility of the measurement error of the
sea level is estimated together with the other parameters. If σ2,S

τ = σ2,S is left unrestricted
and estimated together with the other parameters, the value obtained is very close to zero.
This causes the filtered (and smoothed) sea-level series to essentially coincide with the
observed one. In this case the predictive ability of the model deteriorates. The advantage
of using the proposed state-space model is that there is no difference between the system
dynamics assumed for the variables of interest and the statistical model estimated using
real data.

The choice of the models was made according to their forecasting performance, rela-
tive to selected benchmarks, namely the Rahmstorf (2007b) and Vermeer and Rahmstorf
(2009) methods. This model selection criterion was chosen because of the final objective
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of semi-empirical models, that is making long-term projections for the sea level.
We find that the magnitude of the parameter A∗,ST , linking the sea level to the tem-

perature, is estimated to be of the order of 10−2[mm/cK] (10−3[m/K]). Note that A∗,ST

relates the value of the unobserved temperature process at time τ to the value of the sea
level at time τ +1, where the time step corresponds to one month. The low value of A∗,ST

may be caused by long response times of the sea level to the temperature and the fact
that the time step is quite short. Early studies indicate lags of the order of 20 years (240
months), between temperature and sea-level rise, see for instance Gornitz et al. (1982).

When the parameter aSS is left unconstrained, the coefficient linking sea level and
temperature is estimated to be very low. However, if the parameter aSS is restricted to
be zero, the forecast performance of the model deteriorates considerably. One puzzling
fact is the change in sign of A∗,ST and A∗,TS, between the linear and quadratic trend
specifications. In particular, both parameters are positive in the linear trend specification
and negative in the quadratic trend one. This finding is quite surprising, considering that
the quadratic trend model seems to forecast better than the linear one. Concerning the
model comparison exercise, the state-space specifications behave well compared to the
Rahmstorf (2007b) and Vermeer and Rahmstorf (2009) methods. The choice of the trend
component influences somewhat the forecasting performance of the model.

We make projections for the sea level from 2010 up to 2099. Under the linear trend
specification the forecasts are quite sensitive to the temperature scenarios, whereas under
the quadratic one the projections are quite similar across scenarios. Denote with q0.01 and
q0.99 the 1st and 99th percentiles, respectively, of the distribution of sea-level rise forecasts
for the year 2099 with respect to the (smoothed) sea-level value in 2009. Conditionally on
all the 75 temperature scenarios, the sea-level rise forecasts range from q0.01 = 0.0948[m]
to q0.99 = 0.3525[m], with a mean value of 0.2130[m] under the linear trend specification,
and from q0.01 = 0.1999[m] to q0.99 = 0.2817[m], with a mean value of 0.2410[m], under
the quadratic trend model. With respect to the mean, smoothed 1990 sea-level value,
the above results translate into sea-level rise forecasts ranging from q0.01 = 0.1497[m] to
q0.99 = 0.4074[m], with a mean value of 0.2679[m] under the linear trend specification,
and from q0.01 = 0.2548[m] to q0.99 = 0.3366[m], with a mean value of 0.2959[m], under
the quadratic trend model.

The projections obtained with the models proposed in this study are lower than the
ones obtained in Rahmstorf (2007b), Vermeer and Rahmstorf (2009), and Grinsted et al.
(2010). In particular, their projections for the year 2100, with respect to the mean sea
level in 1990, range from 0.5[m] to 1.38[m] for Rahmstorf (2007b), from 0.72[m] to 1.81[m]
for Vermeer and Rahmstorf (2009), and from 1.30[m] to 1.80[m] (or between 0.95[m] to
1.48[m], depending on the temperature reconstruction) for Grinsted et al. (2010). Note,
however, that in these three papers the interpretation of the range spanned by the fore-
casts is different from ours. Most likely, we obtain lower estimates for the sea level because
of the coefficient relating temperature to sea-level A∗,ST , which in the state-space speci-
fications is estimated to be quite small. This implies longer estimated response times of
the sea level to changes in the temperature, with respect to the aforementioned studies.

Possible continuations of this work could be represented by considering alternative
continuous-time stochastic processes to model sea level and temperature, for instance ge-
ometric Brownian motions or more general Itô processes. Another important aspect in
this analysis was the specification of the trend components, which played a key role in
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the forecasting of the sea level. It would be interesting to study alternative specifications
for the trend components and their relation to different climate forcings, such as human
induced changes in greenhouse gases and aerosols concentrations.
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Appendices

A Details of univariate Kalman filter

In this section we give details on the Kalman filter and its univariate version. The uni-
variate Kalman filter was used for the computation of the likelihood function and for the
bootstrap procedure, needed to compute prediction intervals for the sea-level projections,
see Section 6.3. This subsection draws heavily on Durbin and Koopman (2012).

Consider the following state-space system

yt = Zαt + ǫt,

αt+1 = c+Tαt + ηt, (37)

where ǫt ∼ N(0,Ht) takes values in R
p, with Ht a covariance matrix, ηt ∼ N(0,Q)

takes values in R
k, with Q a covariance matrix, yt ∈ R

p, αt ∈ R
k, and Z, T, and c are

parameter matrices and vectors of appropriate dimensions. Notice that the state-space
system (34) is of the same type as system (37). The standard Kalman filter recursions
for system (37) are

vt = yt − Zat,

Ft = ZPtZ
′ +Ht,

K̃t = PtZ
′, (38)

at|t = at + K̃tF
−1
t vt, Pt|t = Pt − K̃tF

−1
t K̃

′
t,

at+1 = Ttat|t + c, Pt+1 = TPt|tT
′ +Q, (39)

for t = 1, . . . , n, where Pt = E [[αt − at][αt − at]
′], Pt|t = E

[
[αt − at|t][αt − at|t]

′], and
at = E[α|y0, . . . ,yt−1] and at|t = E[α|y0, . . . ,yt] are the one-step-ahead prediction and
the filtered states, respectively. Koopman and Durbin (2000) derived a univariate version
of this algorithm in the case of diagonal variance-covariance matrices Ht. In this case the
system (37) can be represented as

yt,i = ziαt,i + ǫt,i, t = 1, . . . , n i = 1, . . . , p,

αt,i+1 = αt,i, t = 1, . . . , n i = 1, . . . , p− 1,

αt,i+1 = c+Tαt,i + ηt, t = 1, . . . , n i = p. (40)

Where zi is the i−th row of matrix Z, yt,i and ǫt,i ∼ N(0, σ2
t,i) are the i−th components of

yt and ǫt, respectively. The Kalman filter recursions for specification (40) can be written
as

vt,i = yt,i − ziat,i, (41)

Ft,i = ziPt,iz
′
i + σ2

t,i, (42)

k̃t,i = Pt,iz
′
i, (43)

at,i+1 = at,i + k̃t,iF
−1
t,i vt,i

Pt,i+1 = Pt,i − k̃t,iF
−1
t,i k̃

′
t,i

}

for i = 1, . . . , p− 1 t = 1, . . . , n, (44)

at+1,1 = T(at,i + k̃t,iF
−1
t,i vt,i) + c

Pt+1,1 = T(Pt,i − k̃t,iF
−1
t,i k̃

′
t,i)T

′ +Q

}

for i = p t = 1, . . . , n. (45)



Notice that Ft,i is a scalar. As a consequence the univariate recursions do not require the
inversion of p× p matrices, as in the standard Kalman filter recursions (38)-(39) and can
lead to computational savings.

The state-space system (40) has two types of disturbances, namely ǫt,i, and ηt. The so
called “innovation form” has a unique source of disturbance, that is vt,i. The innovation
form is made up of the following equations:

yt,i = ziat,i + vt,i,

kt,i = Pt,iz
′
i,

at,i+1 = at,i + kt,iF
−1
t,i vt,i, for i = 1, 2, . . . , p− 1 t = 1, 2, . . . , n,

at+1,1 = T
(
at,i + kt,iF

−1
t,i vt,i

)
+ c, for i = p t = 1, 2, . . . , n. (46)

The innovation form (46) of the state-space system (40) constitutes the basis for the
bootstrap procedure outlined in the following subsection.



B Bootstrap procedure

In this section we outline the bootstrap procedure used to compute the prediction intervals
for the sea-level projections, conditional on the IPCC scenarios, as described in Section 6.3.
We detail the algorithm with respect to the state-space system (37) and the Kalman filter
recursions (41)-(45). The algorithm is a modification of the one proposed in Rodriguez
and Ruiz (2009) that allows for time-varying measurement error variances. Denote with
θ the vector containing the parameters of the state-space system (37). The algorithm we
propose is made up of the following steps:

1. estimate the parameters of model (30) by maximum likelihood and obtain θ̂ and
the sequence of innovations {vt,i}i=1,...,p

t=1,...,n;

2. compute the centred innovations {vct,i}i=1,...,p
t=1,...,n, obtained as vct,i = vt,i − v̄n,i, with

v̄n,i = (1/n)
∑n

t=1 vt,i;

3. obtain the standardized innovations {vst,i}i=1,...,p
t=1,...,n, computed as vst,i =

vct,i√
Ft,i

;

4. obtain a sequence of bootstrap standardized innovations {v∗t,i}i=1,...,p
t=1,...,n via random

draws with replacement from the randomly scaled standardized innovations {vst,i ·
ǫt,i}i=1,...,p

t=1,...,n, where ǫt,i ∼ N(0, 1);

5. compute a bootstrap replicate of the observations {y∗t,i}i=1,...,p
t=1,...,n by means of the in-

novation form (46) using {v∗t,i}i=1,...,p
t=1,...,n and the estimated parameters θ̂;

6. estimate the corresponding bootstrap parameters θ̂
∗
from the bootstrap replicates;

7. run the Kalman filter with θ̂
∗
using the original observations and one temperature

scenario as described in Section 4.2.

Steps 1-7 are repeated N = 500 for each temperature scenario. As made clear in step 4 we
make use of a wild bootstrap procedure as opposed to the simple re-sampling method used
in Rodriguez and Ruiz (2009). The wild bootstrap was originally proposed by Wu (1986)
and it is well known in the literature to perform better than a simple resampling scheme in
the presence of heteroskedasticity, see for instance Liu et al. (1988) and Mammen (1993).
In this paper the heteroskedasticity comes from the time varying matrixHt. Note that the
variance of the innovations vt,i is given by Ft,i = ziPt,iz

′
i + σ2

t,i where σ2
t,i is time-varying.

In the notation of equation (33), it’s the parameter σ2,S
t that causes the innovations vt,i,

in equation (41), to be heteroskedastic.



C State-space system and dimensional analysis

In this section we rewrite the state-space system (22) with linear trend (24), making clear
the fundamental dimensions and the units of measurement of the quantities involved. We
make use of SI units apart from the time dimension, for which we use months (or years).
The time series of the sea level is in millimetres [mm] and the temperature one is in
centikelvin [cK].

C.1 Continuous-time state equation

The continuous-time process driving the state equation has the following dimensions:

d












[mm]

S(t)
[cK]

T (t)
[mm]

µS(t)
[cK]

µT (t)












=











0
0

[ mm
month ]
λS

[ mm
month ]
λT











[month]

dt

+











[ 1

month ]
aSS

[ mm
cK·month ]
aST

[ 1

month ]
κS 0

[ cK
mm·month ]
aTS

[ 1

month ]
aTT 0

[ 1

month ]
κT

0 0 0 0
0 0 0 0






















[mm]

S(t)
[cK]

T (t)
[mm]

µS(t)
[cK]

µT (t)












[month]

dt

+







1 0
0 1
0 0
0 0












[mm]

dηS(t)
[cK]

dηT (t)




 , (47)

denoting with dη(t) = [dηS(t) : dηT (t)], we have E[dη(t)dη(t)′] = Σdt, with Σ a sym-
metric positive semidefinite matrix. To understand the units of measurement of the
components of Σ we can reason in the following way: first, write E[dη(t)dη(t)′] =

E[
√
ΣdW(t)dW(t)′

√
Σ

′
] where

√
Σ represents a square root of the matrixΣ and dW(t) =

[dW S(t) : dW T (t)]′ is a two-dimensional Brownian motion such that

E[dW(t)dW(t)′] =

[
1 ρ
ρ 1

]

dt, (48)

where |ρ| < 1; second, denote

√
Σ =

[
ωSS ωST

ωTS ωTT

]

, (49)

we can write

√
ΣdW(t) =

[
ωSSdW S(t) + ωSTdW T (t)
ωTSdW S(t) + ωTTdW T (t)

]

, (50)



and

E
[√

ΣdW(t)dW(t)′
√
Σ

′]
=

[
ΣSS ΣST

ΣTS ΣTT

]

dt, (51)

where

ΣSSdt = E
[
(ωSSdW S)2 + (ωSTdW T )2 + 2ωSSωSTdW SdW T

]

= (ωSS)2dt+ (ωST )2dt+ 2ωSSωSTρdt

=
[
(ωSS)2 + (ωST )2 + 2ωSSωSTρ

]
dt, (52)

and

ΣSTdt = E
[
ωSSωTS(dW S(t))2 + ωSTωTSdW S(t)dW T (t)

]

+ E
[
ωSSωTTdW S(t)dW T (t) + ωSTωTTdW T (t)dW T (t)]

]

= ωSSωTSdt+ ωSTωTSρdt

+ ωSSωTTρdt+ ωSTωTTdt

=
[
ωSSωTS + ωSTωTSρ+ ωSSωTTρ+ ωSTωTT

]
dt, (53)

from equation (52) we can deduce that ωSS and ωST have units of measurement cor-
responding to [mm/

√
month]; to see this set ωST = 0 in equation 52, we have then

ΣSSdt = (ωSS)2dt which has units of measurement of [mm2], as it is the expectation of
the square of a quantity with units [mm], this implies that (ωSS)2 and ΣSS have units
of [mm2/month], as time is measured in months [month]; from equation (52) it is also
clear that ωST has the same units as ωSS. Using the same line of reasoning we deduce
that (ωTT )2, (ωTS)2, and ΣTT have units of [cK2/month]. Having recovered the units of
measurement of ωSS, ωST , ωTS, and ωTT we can deduce from equation (53) that the units
of measurement of ΣST and ΣTS are [(mm · cK)/month]. In summary we obtain:

Σ =








[

mm2

month

]

ΣSS

[mm·cK
month ]
ΣST

[ cK·mm
month ]
ΣTS

[

cK2

month

]

ΣTT







. (54)

C.2 Discrete-time state vector and measurement equation

The discretized state vector has the following dimensions:











[mm]

Sτ+1
[cK]

Tτ+1
[mm]

µS
τ+1
[cK]

µT
τ+1












=













[mm]

c∗,S

[cK]

c∗,T

[mm]

c∗,µ
S

[cK]

c∗,µ
T













+











A∗,SS
[mm

cK ]
A∗,ST A∗,SµS

[mm
cK ]

A∗,SµT

[ cK
mm ]

A∗,TS A∗,TT

[ cK
mm ]

A∗,TµS

A∗,TµT

0 0 1 0
0 0 0 1






















[mm]

Sτ

[cK]

Tτ

[mm]

µS
τ

[cK]

µT
τ












+










[mm]

ξSτ
[cK]

ξTτ
0
0










, (55)



denoting ξ̄τ = [ξSτ : ξTτ ]
′, we have

E
[

ξ̄τ ξ̄
′
τ

]

=







[mm2]
Σ∗,SS

[mm·cK]

Σ∗,ST

[cK·mm]

Σ∗,TS

[cK2]
Σ∗,TT






, (56)

where the units of measurement were obtained by following the same logic as in the
previous section.

Finally, the measurement equation has the following dimensions:





[mm]

Sr
τ

[cK]

T r
τ



 =

[
1 0 0 0
0 1 0 0

]












[mm]

Sτ

[cK]

Tτ

[mm]

µS
τ

[cK]

µT
τ












+






[mm]

ǫSτ
[cK]

ǫTτ




 . (57)



D Tables

In this section we report the tables with the results for the model comparison forecasting
exercise and the parameter estimates for models 1-2 and models 3-4. See Sections 4 and
6 for more details.



Table 1: Ratios between R1

f and R
j
f , j = 1, . . . , 12.

n∗ 1535 1510 1485 1460 1435 1410 1385 1360 1335 1310
f 25 50 75 100 125 150 175 200 225 250

model 1 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
model 2 1,00 1,02 1,02 1,00 1,01 1,04 0,89 1,06 1,03 1,02
model 3 0,99 1,10 1,08 1,03 1,01 1,03 1,02 1,00 1,02 1,03
model 4 0,99 1,09 1,07 1,02 0,99 0,99 1,02 0,9 0,97 1,03
model 5 1,07 1,00 1,31 1,21 1,19 1,24 1,06 0,75 1,09 1,04
model 6 1,06 0,98 1,26 1,17 1,07 0,82 0,62 1,01 0,56 0,5

model 7 0,7 1,26 1,24 1,09 1,17 1,14 0,76 0,55 1,01 0,97

model 8 0,7 1,25 1,22 1,08 1,15 1,22 1,19 1,15 1,03 0,9

model 9 1,07 1,00 1,31 1,21 1,19 1,24 1,06 0,75 1,09 1,04
model 10 1,06 0,99 1,26 1,17 0,98 0,99 0,77 1,16 0,75 0,66

model 11 0,7 1,24 1,21 1,01 1,02 0,89 0,52 0,38 0,56 0,54

model 12 0,7 1,22 1,17 0,99 1,00 1,18 0,87 0,73 0,97 1,02

n∗ 1535 1510 1485 1460 1435 1410 1385 1360 1335 1310
f 25 50 75 100 125 150 175 200 225 250

model 1 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
model 2 1,04 1,05 0,91 1,00 0,98 0,91 0,9 0,99 0,94 0,97

model 3 1,14 1,09 0,7 0,76 1,28 1,10 1,23 1,04 1,42 1,85
model 4 1,12 1,17 0,78 0,85 1,36 1,21 1,37 1,12 1,59 2,03
model 5 1,12 1,05 0,31 0,31 0,67 0,5 0,48 0,46 0,67 0,96

model 6 0,87 0,68 0,31 0,31 0,59 0,52 0,49 0,46 0,67 1,02
model 7 1,19 0,6 0,38 0,36 0,57 0,51 0,68 0,87 1,03 1,29
model 8 0,91 0,51 0,38 0,35 0,54 0,48 0,62 0,78 0,97 1,17
model 9 1,12 1,05 0,31 0,31 0,67 0,5 0,48 0,46 0,67 0,96

model 10 1,11 1,09 0,4 0,41 0,9 0,8 0,71 0,66 0,97 1,89
model 11 0,85 1,14 0,59 0,66 1,23 1,21 1,63 1,43 1,42 1,80
model 12 1,10 1,08 0,71 0,75 1,24 1,09 1,48 1,53 1,36 1,91

Ratios between R1

f (performance measure (35) for model 1) and R
j
f (performance measure (35) for model j), j = 1, . . . , 12 for different values of n∗ (the

length of the estimation sample) and f (the number of out-of-sample forecasts). See Section 4.1 for more details on the forecasting procedure. The complete
dataset is made up of n = n∗ + f = 1560 observations, ranging from January 1880 to December 2009.



Table 2: Ratios between R2

f and R
j
f , j = 1, . . . , 12.

n∗ 1535 1510 1485 1460 1435 1410 1385 1360 1335 1310
f 25 50 75 100 125 150 175 200 225 250

model 1 1,00 0,98 0,98 1,00 0,99 0,96 1,12 0,94 0,98 0,98

model 2 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
model 3 0,99 1,08 1,05 1,03 1,00 0,98 1,14 0,94 1,00 1,01
model 4 0,99 1,07 1,04 1,02 0,98 0,95 1,14 0,84 0,95 1,01
model 5 1,07 0,98 1,28 1,20 1,17 1,19 1,19 0,71 1,07 1,02
model 6 1,06 0,96 1,23 1,17 1,06 0,78 0,7 0,95 0,54 0,49

model 7 0,7 1,23 1,21 1,09 1,15 1,09 0,85 0,52 0,99 0,95

model 8 0,7 1,23 1,20 1,08 1,14 1,17 1,34 1,08 1,00 0,89

model 9 1,07 0,98 1,28 1,20 1,17 1,19 1,19 0,71 1,07 1,02
model 10 1,06 0,97 1,24 1,16 0,97 0,95 0,87 1,09 0,73 0,65

model 11 0,7 1,22 1,18 1,01 1,00 0,85 0,58 0,36 0,55 0,53

model 12 0,7 1,19 1,14 0,99 0,99 1,13 0,98 0,69 0,94 1,00

n∗ 1535 1510 1485 1460 1435 1410 1385 1360 1335 1310
f 25 50 75 100 125 150 175 200 225 250

model 1 0,96 0,95 1,10 1,00 1,02 1,10 1,11 1,01 1,06 1,03
model 2 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
model 3 1,10 1,04 0,77 0,76 1,30 1,21 1,37 1,05 1,51 1,91
model 4 1,07 1,12 0,86 0,85 1,39 1,33 1,52 1,13 1,69 2,09
model 5 1,07 1,00 0,34 0,31 0,68 0,55 0,53 0,46 0,71 0,98

model 6 0,83 0,65 0,34 0,31 0,6 0,58 0,55 0,46 0,71 1,05
model 7 1,14 0,57 0,42 0,36 0,58 0,57 0,76 0,87 1,10 1,33
model 8 0,87 0,49 0,42 0,35 0,55 0,53 0,69 0,79 1,03 1,20
model 9 1,07 1,00 0,34 0,31 0,68 0,55 0,54 0,46 0,71 0,99

model 10 1,07 1,03 0,44 0,41 0,92 0,88 0,79 0,67 1,03 1,95
model 11 0,82 1,08 0,64 0,66 1,25 1,33 1,81 1,44 1,51 1,86
model 12 1,06 1,03 0,78 0,75 1,26 1,20 1,65 1,54 1,44 1,97

Ratios between R2

f (performance measure (35) for model 2) and R
j
f (performance measure (35) for model j), j = 1, . . . , 12 for different values of n∗ (the

length of the estimation sample) and f (the number of out-of-sample forecasts). See Section 4.1 for more details on the forecasting procedure. The complete
dataset is made up of n = n∗ + f = 1560 observations, ranging from January 1880 to December 2009.



Table 3: Ratios between R3

f and R
j
f , j = 1, . . . , 12.

n∗ 1535 1510 1485 1460 1435 1410 1385 1360 1335 1310
f 25 50 75 100 125 150 175 200 225 250

model 1 1,01 0,91 0,93 0,97 0,99 0,97 0,98 1,00 0,98 0,97

model 2 1,01 0,93 0,95 0,97 1,00 1,02 0,88 1,06 1,00 0,99

model 3 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
model 4 1,00 1,00 0,99 0,99 0,98 0,96 1,00 0,9 0,95 1,00
model 5 1,07 0,91 1,22 1,17 1,17 1,21 1,04 0,75 1,07 1,01
model 6 1,07 0,9 1,17 1,13 1,06 0,8 0,61 1,01 0,54 0,48

model 7 0,71 1,15 1,15 1,06 1,15 1,11 0,75 0,55 0,99 0,95

model 8 0,71 1,14 1,14 1,04 1,14 1,19 1,17 1,15 1,01 0,88

model 9 1,07 0,91 1,22 1,17 1,17 1,21 1,04 0,75 1,07 1,01
model 10 1,07 0,9 1,18 1,13 0,97 0,96 0,76 1,16 0,73 0,65

model 11 0,71 1,13 1,13 0,98 1,00 0,86 0,51 0,38 0,55 0,52

model 12 0,71 1,11 1,09 0,96 0,98 1,15 0,86 0,73 0,95 0,99

n∗ 1285 1260 1235 1210 1185 1160 1135 1110 1085 1060
f 275 300 325 350 375 400 425 450 475 500

model 1 0,87 0,91 1,42 1,31 0,78 0,91 0,81 0,96 0,7 0,54

model 2 0,91 0,96 1,30 1,31 0,77 0,83 0,73 0,95 0,66 0,52

model 3 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
model 4 0,98 1,07 1,11 1,12 1,07 1,10 1,11 1,07 1,12 1,10
model 5 0,98 0,96 0,44 0,4 0,52 0,45 0,39 0,44 0,47 0,52

model 6 0,76 0,62 0,45 0,4 0,46 0,47 0,4 0,44 0,47 0,55

model 7 1,04 0,54 0,54 0,48 0,45 0,47 0,56 0,83 0,73 0,7

model 8 0,8 0,47 0,54 0,46 0,42 0,44 0,5 0,75 0,68 0,63

model 9 0,98 0,96 0,44 0,4 0,52 0,45 0,39 0,44 0,47 0,52

model 10 0,97 0,99 0,57 0,54 0,71 0,72 0,58 0,63 0,68 1,02
model 11 0,75 1,04 0,84 0,86 0,96 1,10 1,32 1,37 1,00 0,97

model 12 0,97 0,99 1,01 0,98 0,97 0,99 1,20 1,46 0,96 1,03

Ratios between R3

f (performance measure (35) for model 3) and R
j
f (performance measure (35) for model j), j = 1, . . . , 12 for different values of n∗ (the

length of the estimation sample) and f (the number of out-of-sample forecasts). See Section 4.1 for more details on the forecasting procedure. The complete
dataset is made up of n = n∗ + f = 1560 observations, ranging from January 1880 to December 2009.



Table 4: Ratios between R4

f and R
j
f , j = 1, . . . , 12.

n∗ 1535 1510 1485 1460 1435 1410 1385 1360 1335 1310
f 25 50 75 100 125 150 175 200 225 250

model 1 1,01 0,92 0,94 0,98 1,01 1,01 0,98 1,12 1,03 0,97

model 2 1,01 0,93 0,96 0,98 1,02 1,06 0,88 1,18 1,06 0,99

model 3 1,00 1,00 1,01 1,01 1,03 1,04 1,00 1,12 1,06 1,00
model 4 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
model 5 1,07 0,91 1,23 1,18 1,20 1,26 1,04 0,84 1,13 1,01
model 6 1,07 0,9 1,18 1,14 1,08 0,83 0,61 1,12 0,57 0,48

model 7 0,71 1,15 1,16 1,07 1,18 1,15 0,75 0,61 1,05 0,95

model 8 0,71 1,15 1,15 1,05 1,16 1,24 1,17 1,28 1,06 0,88

model 9 1,07 0,91 1,23 1,18 1,20 1,26 1,04 0,84 1,13 1,01
model 10 1,07 0,9 1,19 1,14 0,99 1,00 0,76 1,30 0,77 0,64

model 11 0,71 1,14 1,14 0,99 1,03 0,9 0,51 0,42 0,58 0,52

model 12 0,71 1,11 1,09 0,97 1,01 1,19 0,86 0,82 1,00 0,99

n∗ 1535 1510 1485 1460 1435 1410 1385 1360 1335 1310
f 25 50 75 100 125 150 175 200 225 250

model 1 0,89 0,85 1,28 1,17 0,73 0,83 0,73 0,89 0,63 0,49

model 2 0,93 0,9 1,17 1,17 0,72 0,75 0,66 0,88 0,59 0,48

model 3 1,02 0,93 0,9 0,9 0,94 0,91 0,9 0,93 0,9 0,91

model 4 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
model 5 1,00 0,89 0,4 0,36 0,49 0,41 0,35 0,41 0,42 0,47

model 6 0,78 0,58 0,4 0,36 0,43 0,43 0,36 0,41 0,42 0,5

model 7 1,06 0,51 0,49 0,43 0,42 0,43 0,5 0,77 0,65 0,64

model 8 0,81 0,44 0,49 0,41 0,4 0,4 0,45 0,7 0,61 0,58

model 9 1,00 0,9 0,4 0,36 0,49 0,41 0,35 0,41 0,42 0,47

model 10 0,99 0,92 0,51 0,49 0,66 0,66 0,52 0,59 0,61 0,93

model 11 0,76 0,97 0,75 0,77 0,9 1,00 1,19 1,28 0,9 0,89

model 12 0,99 0,92 0,91 0,87 0,91 0,9 1,08 1,36 0,86 0,94

Ratios between R4

f (performance measure (35) for model 4) and R
j
f (performance measure (35) for model j), j = 1, . . . , 12 for different values of n∗ (the

length of the estimation sample) and f (the number of out-of-sample forecasts). See Section 4.1 for more details on the forecasting procedure. The complete
dataset is made up of n = n∗ + f = 1560 observations, ranging from January 1880 to December 2009.



Table 5: Parameter estimates for model 1-2.

(a) Continuous-time, model 1-2, parameter estimates.

σT aSS aST aTS aTT

[cK]
[

1

month

] [

mm
cK·month

]

[

cK
mm·month

]

[

1

month

]

value 7,59 -0,0112 0,0056 0,0512 -0,0816
std. (0,2311) (0,0016) (0,002) (0,0075) (0,0075)

t-ratio [32,84] [-7] [2,8] [6,83] [-10,88]

λS
l

λT
l

√
ΣSS ΣST

√
ΣTT

[

mm
month

]

[

cK
month

] [

mm√
month

] [

mm·cK
month

] [

cK√
month

]

value 0,0012 -0,0022 1,11 0,34 5,87
std. (0,0001) (0,0008) (0,1151) (0,3733) (0,2703)

t-ratio [12] [-2,75] [9,64] [0,91] [21,72]

Parameter estimates for model 1-2 in the continuous-time representation (equations (22), (24), and (32)).
Standard deviations are reported in parentheses, and the t-ratios in square brackets. The parameters
were estimated using information from time t = 1 (January 1880) to time t = n (December 2009). The
standard deviations were obtained from the bootstrap procedure described in Appendix B.

(b) Continuous-time, model 1-2, parameter estimates (alternative measurement units).

σT aSS aST aTS aTT

[K]
[

1

year

]

[

mm
cK·month

]

[

cK
mm·month

] [

1

year

]

value 0,0759 -0,1344 0,00672 6,144 -0,9792

λS
l

λT
l

√
ΣSS ΣST

√
ΣTT

[

m
year

] [

K
year

] [

m√
year

] [

m·K
year

] [

K√
year

]

value 0,000014 -0,00026 0,0038 0,000041 0,20

Parameter estimates for model 1-2 in the continuous-time representation (equations (22), (24), and (32)).
The parameters were estimated using information from time t = 1 (January 1880) to time t = n (Decem-
ber 2009).



Table 6: Parameter estimates for model 1-2.

(a) Discrete-time, model 1-2, parameter estimates.

σT A∗,SS A∗,ST A∗,SµS

A∗,SµT

A∗,TS A∗,TT A∗,TµS

[cK]
[

mm
cK

] [

mm
cK

]

[

cK
mm

] [

cK
mm

]

value 7,59 0,99 0,0054 0,99 0,0027 0,0489 0,92 0,0248
std. (0,2311) (0,0015) (0,0019) (0,0008) (0,001) (0,007) (0,0068) (0,0036)

t-ratio [32,82] [641,96] [2,86] [1275,33] [2,86] [6,98] [135,24] [6,92]

A∗,TµT

cS cT cµ
S

cµ
T

√
Σ∗,SS Σ∗,ST

√
Σ∗,TT

[mm] [cK] [mm] [cK] [mm] [mm · cK] [cK]

value 0,96 0,0006 -0,001 0,0012 -0,0022 1,11 0,44 5,64
std. (0,0035) (0,0001) (0,0004) (0,0001) (0,0008) (0,1108) (0,3661) (0,2535)

t-ratio [273,14] [8,28] [-2,56] [8,25] [-2,57] [9,98] [1,21] [22,24]

Parameter estimates for model 1-2 in the dicrete-time representation (equations (34)). Standard devia-
tions are reported in parentheses, and the t-ratios in square brackets. The parameters were estimated
using information from time t = 1 (January 1880) to time t = n (December 2009). The standard
deviations were obtained from the bootstrap procedure described in Appendix B.

(b) Discrete-time, model 1-2, parameter estimates (alternative measurement units).

σT A∗,SS A∗,ST A∗,SµS

A∗,SµT

A∗,TS A∗,TT A∗,TµS

[K]
[

m
K

] [

m
K

]

[

K
m

] [

K
m

]

value 0,0759 0,99 0,00054 0,99 0,00027 0,489 0,92 0,248

A∗,TµT

cS cT cµ
S

cµ
T √

Σ∗,SS Σ∗,ST
√
Σ∗,TT

[m] [K] [m] [K] [m] [m ·K] [K]

value 0,96 0,0000006 -0,00001 0,0000012 -0,000022 0,00111 0,0000044 0,0564

Parameter estimates for model 1-2 in the discrete-time representation (equations (34)). The parameters
were estimated using information from time t = 1 (January 1880) to time t = n (December 2009).



Table 7: Parameter estimates for model 3-4.

(a) Continuous-time, model 3-4, parameter estimates.

σT aSS aST aTS aTT

[cK]
[

1

month

] [

mm
cK·month

]

[

cK
mm·month

]

[

1

month

]

value 7,41 -0,0288 -0,0037 -0,0458 -0,1169
std. (0,27) (0,0014) (0,0026) (0,006) (0,0106)

t-ratio [27,44] [-20,57] [-1,42] [-7,63] [-11,03]

λS
q λT

q

√
ΣSS ΣST

√
ΣTT

[

mm
month3

] [

cK
month3

] [

mm√
month

] [

mm·cK
month

] [

cK√
month

]

value 0,000003 0,000015 1,25 1,46 5,91
std. (0,0000004) (0,000002) (0,19) (0,47) (0,30)

t-ratio [7,5] [7,5] [6,43] [3,12] [19,97]

Parameter estimates for model 3-4 in the continuous-time representation (equations (22), (25), and (32)).
Standard deviations are reported in parentheses, and the t-ratios in square brackets. The parameters
were estimated using information from time t = 1 (January 1880) to time t = n (December 2009). The
standard deviations were obtained from the bootstrap procedure described in Appendix B.

(b) Continuous-time, model 3-4, parameter estimates (alternative measurement units).

σT aSS aST aTS aTT

[K]
[

1

year

] [

m
K·year

] [

K
m·year

] [

1

year

]

value 0,0741 -0,3456 -0,00444 -5,496 -1,4028

λS
q λT

q

√
ΣSS ΣST

√
ΣTT

[

m
year3

] [

K
year3

] [

m√
year

] [

m·K
year

] [

K√
year

]

value 0,00000043 0,000021 0,0043 0,00018 0,20

Parameter estimates for model 3-4 in the continuous-time representation (equations (22), (25), and (32)).
The parameters were estimated using information from time t = 1 (January 1880) to time t = n (Decem-
ber 2009).



Table 8: Discrete-time, model 3-4, parameter estimates.

σT A∗,SS A∗,ST A∗,SµS

A∗,SµT

A∗,SλS

[cK]
[

mm
cK

] [

mm
cK

]

[month]

value 7,41 0,97 -0,0035 0,99 -0,0018 0,4952
std. (0,27) (0,0013) (0,0024) (0,0007) (0,0012) (0,0002)

t-ratio [27,44] [746,15] [-1,46] [1414,29] [-1,5] [2476]

A∗,SλT

A∗,TS A∗,TT A∗,TµS

A∗,TµT

A∗,TλS

[

month·mm
cK

] [

cK
mm

] [

cK
mm

] [

month·cK
mm

]

value -0,0006 -0,0426 0,89 -0,0218 0,94 -0,0074
std. (0,0004) (0,0053) (0,0092) (0,0028) (0,0048) (0,0009)

t-ratio [-1,5] [-8,04] [96,74] [-7,79] [196,63] [-8,22]

A∗,TλT

cS cT cµ
S

cµ
T

[month] [mm] [cK] [mm] [cK]

value 0,4811 0 0,000002 0,000001 0,000007
std. (0,0016) (0,00000007) (0,00000039) (0,0000002) (0,000001)

t-ratio [300,69] [6,29] [6,05] [6,65] [7,32]

cλ
S

cλ
T

√
Σ∗,SS Σ∗,ST

√
Σ∗,TT

[

mm
month

]

[

cK
month

]

[mm] [mm · cK] [cK]

value 0,000003 0,000015 1,25 1,46 5,91
std. (0,0000004) (0,000002) (0,19) (0,47) (0,3)

t-ratio [6,63] [7,32] [6,58] [3,11] [19,7]

Parameter estimates for model 3-4 in the discrete-time representation (equations (22), (25), and (32)).
Standard deviations are reported in parentheses, and the t-ratios in square brackets. The parameters
were estimated using information from time t = 1 (January 1880) to time t = n (December 2009). The
standard deviations were obtained from the bootstrap procedure described in Appendix B.



Table 9: Discrete-time, model 3-4, parameter estimates (alternative measurement units).

σT A∗,SS A∗,ST A∗,SµS

A∗,SµT

A∗,SλS

[K]
[

m
K

] [

m
K

]

[year]

value 0,074 0,97 -0,00035 0,99 -0,00018 0,041

A∗,SλT

A∗,TS A∗,TT A∗,TµS

A∗,TµT

A∗,TλS

[

year·m
K

]

[

K
m

] [

K
m

] [

year·K
m

]

value -0,000005 -0,426 0,89 -0,218 0,94 -0,0062

A∗,TλT

cS cT cµ
S

cµ
T

[year] [m] [K] [m] [K]

value 0,040 0 0,00000002 0,000000001 0,00000007

cλ
S

cλ
T

√
Σ∗,SS Σ∗,ST

√
Σ∗,TT

[

m
year

] [

K
year

]

[m] [m ·K] [K]

value 0,000000036 0,0000018 0,0013 0,000014 0,0591

Parameter estimates for model 3-4 in the discrete-time representation (equations (22), (25), and (32)).
The parameters were estimated using information from time t = 1 (January 1880) to time t = n (Decem-
ber 2009).
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